
11 Models with Rational Expectations 

11 .I Introduction 

The model considered in this chapter is one in which expectations of future 
values of endogenous variables appear as explanatory variables in the sto- 
chastic equations and the expectations are assumed to be rational in the Muth 
(I 96 I) sense. This means that given a set of expectations of the exogenous 
variables, the expectations of the endogenous variables are equal to the 
model’s predictions of these variables. The model (6.1) that was used for 
Chapters 6- 10 must be modified for this chapter. The model will be written 

(11.1) L(Y,,Y 1-1, ,~,~~,,,~~I;,,~~Y,+,. , ~Yt+n,.~,,~~ =q<. 
t-1 > 

i=l,. *n, t=1,. .T, 

where y, is an n-dimensional vector of endogenous variables at time t, x, is a 
vector of exogenous variables at time f, E is the conditional expectations 

operator based on the model and on information through period t - I. q is a 
vector of unknown coefficients, and ui, is an error term. Compared to the 
notation in (6.1), x, now includes only exogenous variables rather than both 
exogenous and lagged endogenous variables. As was the case for (6.1), the first 
m equations in (Il. 1) are assumed to be stochastic, with the remaining ui, 
(i = pn + 1, , n) identically zero for all t. 

The key difference between (6.1) and (1 I. I) is the assumption that the 
expectations are rational. Ifthey are not. but are instead, say, a function ofthe 
current and lagged values of a few variables, they can be substituted out of 
(1 I. I) to end up with a model like (6.1). This may introduce restrictions on 
the coefficients, but (6. I) already encompasses such restrictions. An example 
of this type of substitution is presented in Section 2.2.2, (2.1)-(2.3). In this 
case the expectation is only a function of the lagged values ofthe own variable. 
Another example is presented in Section 4.1.3, where expectations of price 
and wage inflation are assumed to be functions of a few lagged values. 

An example of (1 I. I) is Sargent’s model in Section 5.4. where the expecta- 
tions variable E,_,pz appears as an explanatory variable in the first two 
equations. Another example is presented later in this chapter in Section I 1.7, 
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where the US model is modified to incorporate the assumption that there are 
rational expectations in the bond and stock markets. 

The question of how to estimate and solve (I 1.1) is not easy. The next three 
sections are concerned with thisquestion. A numerical method for solving the 
model for a given set of coefficients is discussed in Sections 11.2. I and I 1.2.2. 
A simple example is presented in Section 11.2.3 to motivate the method and 
to relate it to analytic techniques that have been used in previous research for 
solving and estimating rational expectations models. A numerical method for 
obtaining the full information maximum likelihood estimate of the coeffi- 
cients is presented in Section 1 I .3. The possible use of stochastic simulation is 
discussed in Section 11.4, and the solution of optimal control problems for 
rational expectations models is considered in Section I I .5. Examples of using 
the methods are presented in Sections 11.6 - 1 I .8. 

The solution method is an extension of the iterative technique used in Fair 
(1979d). In addition to dealing with serial correlation and multiple viewpoint 
dates, the extension involves an iterative procedure (called type III in the 
following discussion) designed to ensure numerical convergence to the ra- 
tional expectations solution. 

The estimation method is an extension to the nonlinear case of full 
information maximum likelihood techniques designed for linear rational 
expectations models, as described by Wallis ( 1980) and Hansen and Sargent 
(1980, 1981). Applications to particular economic problems are found in 
Sargent (1978) and Taylor (1980). The connection between the estimation 
problem considered in this chapter and the one considered by Hansen and 
Sargent appears in the f; functions in ( 11. l), which for Hansen and Sargent 
would represent first-order conditions for the linear-quadratic optimization 
problem that they consider. Chow (1980) has proposed an alternative ap 
preach that leads to the same functional relationship between the structural 
parameters and the likelihood function as does the Hansen and Sargent 
approach. 

Full information estimation techniques are particularly useful for rational 
expectations models because ofthe importance ofcross-equation restrictions, 
where most of the testable implications of the rational expectations hypoth- 
esis lie. For linear models one can explicitly calculate a reduced form of model 
(I 1.1) in which the expectations variables are eliminated and nonlinear 
restrictions are placed on the coefficients. Under the assumption that the II,, 
are normally distributed, this restricted reduced form can be used to evaluate 
the likelihood function in terms ofthe structural coefficients. The maximum 
of the likelihood function with respect to the structural coefficients is found 
using some maximization algorithm like DFP. 
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For nonlinear models the reduced form cannot be calculated explicitly. but 
it can be calculated numerically. The estimation strategy here is to replace the 
calculation ofthe restricted reduced form in linear models with the numerical 
solution in nonlinear models. This permits one to evaluate the likelihood 
function in terms of the unknown structural coefficients much like in the 
linear case. 

Although the solution and estimation methods described here should 
expand the range ofempirical problems that can be approached using rational 
expectations, there is a limitation that may affect their general applicability. 
Because of computational costs, it is necessary in some applications to 
approximate the conditional expectations that appear in (11. I) by setting the 
future disturbances ui, equal to their conditional means in a deterministic 
simulation of the model. In nonlinear rational expectations models, the 
conditional expectations will involve higher-order moments of the u,, in 
addition to their means. (See Lucas and Prescott 1970. for example.) Al- 
though it is possible, as discussed in Section 11.4, to use stochastic simulation 
to obtain the conditional forecasts, this is computationally expensive. The 
results in Chapter 7 suggest that the bias introduced by using deterministic 
rather than stochastic simulation to solve models is small for typical macro- 
econometric models, and thus for many applications the use of stochastic 
simulation for rational expectations models is not likely to be needed. For 
other applications, however, the deterministic approximation may not be 
accurate, and stochastic simulation will be needed even though it is expen- 
sive. 

With respect to (1 l.l), it should be noted that the model can include 
expectations of nonlinear functions of the endogenous variables. For exam- 
ple, ifya = J$,, then the appearance of E y2, in one ofthe equations indicates 

that agents are concerned with the conditibnally expected variance ofy,, The 
model does not, however, include expectations based on current period (l) 
information. The incorporation of such variables does not cause difficulties 
for the solution of the model (as described below), but it does cause difficulties 
for estimation since the Jacobian of the transformation from the u, to the .v, is 
altered. 

11.2 A Solution Method 

The numerical solution of (I 1.1) for a particular period sand for a given set of 
values of the cu, coefficients is considered in this section. The model without 
serial correlation of the errors is considered first, and then the modifications 
needed for the serial correlation case are discussed. 
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In the following discussion E x,, will be used to denote the expected value 
I-, 

of x,+, based on information through period 1 - 1. Both the actual realiza- 
tions ofx, and the expected values are assumed to be known. lfthere are any 
exogenous variables that are not known but can be described by a known 
stochastic process, these are treated as endogenous and incorporated in the J’, 
vector. In this section, all simulations ofthe model are deterministic and are 
subject to the approximation mentioned in Section 11. I. 

11.2.1 Models without Serial Correlation: The Basic Method 

If one were given numerical values for the expected endogenous variables in 
(1 I, 1) for all periods from s on, then it would be straightforward to solve the 
model for period s using the Gauss-Seidel iterative technique. The numerical 
method described here entails a series of iterations that converge from an 
arbitrary initial path of values for these expectations to a path that is consist- 
ent with the forecasts of the model itself. Let the initial set of values for the 
expected endogenous variables, E J:+,, be represented as g,, r = 0, I, 

s-1 
Since in general the model will have no natural termination date, an infinite 
number of these values need to be specified in principle. In practice, however. 
only a finite number will be used in obtaining a solution with a given finite 
tolerance range. The initial values are required to be bounded: I&:I < A4 for 
every r, where M is not a function of r. 

The solution method can be described in terms of five steps. 
1. Choose an integer k, which is an initial guess at the number of periods 

beyond the horizon h for which expectations need to be computed in order to 
obtain a solution within a prescribed tolerance level 6. Set E &+, equal to K,, 

S-I 
I = 0, I_ , k + 2h. For the purpose ofdescribing the iterations, call these 
initial values e,( 1 ,k), I = 0, I, , k + 2h; the values at later iterations will 
then be called e,(i,k), i > 1. 

2. Obtain a new set of values for E yr+,, I = 0, 1, , k + h, by solving 
1-1 

the model dynamically for J*+?, r = 0, I, , k + h. This is done by set- 
ting the disturbances to their expected values (usually zero), using the 
values Ex;, / E-\-r_,,+& in place of the actual x’s, and using the values 

j-1 i--l 
eAi,k) in place of El;+,. Call these new guesses e,(i + I? k), I = 0. I, . 

I- I 
k + h. If the model is nonlinear, the solution for each period requires a series 
of Gauss-Seidel iterations. Call each of these a type I iteration. 
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3. Compute for each expectations variable and each period the absolute 
value of the difference between the new guess and the previous guess, that is, 
compute the absolute value of the difference between each element of the 
eAi + 1, k) vector and the corresponding element of the e,(i,k) vector for 
r=O,I, , h + k. lfany ofthese differences are not less than a prescribed 
tolerance level (that is_ ifconvergence has not been achieved), increase i by I 
and return to step 2. Ifconvergence has been achieved, go to step 4. Call this 
iteration (performing steps 2 and 3), a type II iteration. (The type II tolerance 
level should be smaller than 6, which is the overall tolerance level. Similarly, 
the type I tolerance level should be smaller than the type II tolerance level.) 
Let e,(k) be the vector of the convergent values of a series of type II iterations 
(r-0. I, >k+h). 

4. Repeat steps I through 3 replacing k by k + I. Compute the absolute 
value of the difference between each element of the eAk + I) vector and the 
corresponding element of the e,(k) vector. r = 0. I, , h. If any of these 
differences are not less than 6, increase k by I and repeat steps I through 4. If 
convergence has been achieved, go to step 5. Call this iteration (performing 
steps I through 4) a type III iteration. Let r, be the vector ofthe convergent 
values of a series of type 111 iterations (I = 0, I, , h). 

5.Usee,for Eys+,,r=O. I,. , h, and the actual values for x, to solve 
S-I 

Ihe model for period s. This gives the desired solution. say Gs,, and concludes 
the solution method. 

To summarize, the method just outlined iterates on future paths of the 
expected endogenous variables. EJJ,+~, Starting from an initial guess at the 

I--1 
path g,, r = 0, I, 2, , k + Zh, the path is extended beyond k + 2h until 
further extensions do not affect the solution by more than 6. 

Note with respect to step 3 that in the process of achieving type I1 
convergence, the initial guesses e,( I ,k), r = k + h + I, , k + 2h, never 
get changed. These guesses are needed to allow the model to be solved through 
period s + /I + k. Also note that when one is repeating steps 1 through 3 for 
k + 1. it may be possible to speed convergence by using some information 
from iteration k. The most obvious thing to do is to use as initial guesses 
e,(l.k + I) = e,(k), I= 0. I_ , k + h. The values 6: would then be used 
for~,(l,k+l),r=k+h+I,. ,k+2h+l. 

Computational costs for the method are determined by the total number of 
passes through the model required for convergence. A pass is simply a single 
evaluation of the LHS endogenous variables in terms of the RHS variables. 
Let X, be the number of type 1 iterations required for convergence. and let Iv; 
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be the number of type II iterations required for convergence. Then the 
number of passes through the model required for one type III iteration is 
given by the product of the number of passes for one type II iteration, 
R’, X (h + k + l), and the number of type II iterations required for conver- 
gence, hi. The total number of passes through the model to obtain type III 
convergence is given by the sum of this expression from k to k + N3 - 1, 
where AJ, is the number of type III iterations required for convergence. In 
other words, the number of passes through the model required by type III 
convergence is approximately 

r-+hj- I 
2 [iv2 x N, x (h + q + l)]. 
gck 

This formula is only approximate because it is based on the assumption ofthe 
same number oftype I iterations for each period and the same numberoftype 
II iterations for each type III iteration. In practice this is usually not the case. 

Two points about the solution method should be noted. First, it can be 
easily modified to handle the case in which the expectations are based on 
information through period s rather than through period s- 1: one just 
replaces E by E everywhere. Second. if the expectations horizon is infinite 

5-1 
(h = m), then it &St be truncated first. For most models the error introduced 
by this truncation for reasonably large values of h is likely to be small. A large 
value of h means, of course: that a large number of calculations are required 
per type 11 iteration, and thus in practice there may be a trade-off between 
truncation error and computational cost. 

For a general nonlinear model there is no guarantee that any of the 
iterations will converge. If convergence is a problem, it is sometimes helpful 
to damp the successive solution values. “Damping” means to take the value 
of a variable at, say, the start of iteration n to be some fraction of the difference 
between the value actually computed on iteration n - 1 and the value used at 
the start of iteration n - I. (See the discussion of damping in Section 7.2.) 

In special cases a problem may have terminal conditions. If. say, the values 
E J:+,, I = k + h + 1, , k + 2h, are known, then the present method 

3-1 
gives the correct answer after type II convergence. No type III convergence 
tests are needed because the values for periods s + k + h + I through 
s + k + 2h are known. Cases with terminal conditions are referred to as 
two-point boundary value problems. They have been used to study rational 
expectations models when one can approximate the terminal conditions with 
steady-state values, which may be derived in certain situations. (See Lipton et 
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al. 1982, who use a “multiple shooting” method to solve the two-point 
boundary value problem.) The approximation that comes from equating the 
terminal conditions with the steady-state values does not arise with the 
present method. Moreover, the method does not require that one compute 
steady-state values beforehand. 

One final point about the solution method should be noted. If the model 
either has no exogenous variables or if the actual values of the exogenous 
variables are used for all periods, the solution values of the expectations- 
E&+,, r = 0, I, , h-are the final predicted values of the model. This 

i- 1 
means that j?$ in step 5 is simply E y,, and therefore step 5 does not have to be 

5-L 
done. It also means that ifa dynamic simulation is to be run for, say, periods s 
through s + 4, the model only needs to be solved once in the above manner 
(for period s) to get all the predicted values if 4 is less than or equal to h. 

For purposes of the following discussion, the method presented in this 
section will be called the “basic method.” 

11.2.2 Models with Serial Correlation 

Forerusting and Policy Applimtions 

The case of first-order serial correlation is considered in this section: 

(11.2) U, = Pi% I + % , i= 1 ,...,n, 

where the pi are serial correlation coefficients. The solution method is first 
modihed for applications in which there are enough data prior to the solution 
period s to permit calculation of the solution values with only a negligible 
effect of the errors prior to period s - 1. This situation is likely to occur in 
forecasting or policy applications, where a large sample prior to the simula- 
tion period is usually available. The method is then modified for estimation 
applications, where sufficient prior data are generally not available. 

First note that (11.1) and (11.2) can be combined to yield 

where the pican be thought of as structural coefficients. For solution purposes 
the important difference between (1 I. 1) and (1 I .3) is the addition in (1 I .3) of 
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an extra viewpoint data (t - 2). This requires an additional type of iteration, 
denoted type IV. 

If one were given values for the expectations with viewpoint date s - 2, 
then (I 1.3) could be solved using the basic solution method in Section 1 I .2.1. 
The expectations with viewpoint dates - 2 could be obtained by solving the 
model one period earlier at time s - 1. but this in turn would require values 
for the expectations with viewpoint data s - 3. and so on. By working 
backward in this way, however, it is possible to ensure that these initial values 
have negligible influence on the current period s. 

The procedure is as follows. 
(a) Choose an integer j, which is an initial guess at the number of periods 

before periods for which the model needs to be solved in order to achieve the 
prescribed tolerance level. Set E ys-j_ I+, , I = 0, I, , h, to an initial set 

E-j-* 
of values, (As with the basic method. the initial guesses are required to be 
bounded.) 

(b) Given the values from (a)_ solve the model for period s-j using the 
basic method. For this solution the viewpoint date for the expectations for 
.x_/ and beyond is s -j - 1. Actual values are used for x~-~~~. The solution 
yields values for E Y$_~+,, I = 0, 1, , h. 

s-j- I 
(c)Given the expectations with viewpoint dates -j - 1 from (b), solve the 

model for period s-j + 1 using the basic method. For this solution the 
viewpoint date for the expectations for x,,,, and beyond is s -j. Actual 
values are used for x1-,-, This solution yields values for EyS:,,+ it,, I = 0, 

s--l 
1, , h. Continue this procedure (using the basic method to solve for the 
next period, given the solved-for expectations from the previous period) 
through period S. The solution for period s yields values for EyS+,, I = O_ 

J-I 
1, ) k. 

(d) Increase j by I and repeat (a) through (c). This yields new values 
for Ey,,,, I= 0, I_ , h. Compare these values to the values obtained 

I-I 
by using the smaller j. If any new value is not within the prescribed tolerance 
level of the old value, increase j by 1 and repeat steps (a) through (c). Keep 
doing this until convergence is reached. Call this iteration (performing steps a 
through c) a type IV iteration. (The tolerance level for the type IV iterations 
should be greater than 6, the tolerance level for the type III iterations.) 

(e) After type IV convergence one has final values of E &+, and E ys- I +,, 
s-1 r-2 

r-0,1, , h. Use these values and the actual values of& and x,_ , to solve 
the model for period S. 
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Each type IV iteration requires solving the model for j + 1 starting points 
(that is, achieving type III convergence j + 1 times). The serial correlation 
case is thus considerably more expensive than the nonserial correlation case 
when one is solving the model for one period. However, no additional type IV 
iterations are required for solving the model for periods later than s, once the 
solution for periods has been obtained. The predictions with viewpoint date 
s - 1 are known after solving for period s, for example, and they can be used 
in solving for period s + 1. 

It should be emphasized that type IV iterations can handle problems that 
are more general than the case of first-order autoregressive errors. In particu- 
lar, the expectations variables with viewpoint dates f - 2 need not arise solely 
from the presence of autoregressive errors. and there can be more than two 
viewpoint dates. If, say, viewpoint date t.- 3 were also included in the model. 
the only change in the procedure would be the addition of initial guesses for 

E values in step (a). One would merely need to keep track ofthree sets of 
r-j-3 
expectations instead of two as the solutions proceeded from period s-j to 
period s. 

Type IV iterations require sufficient data prior to the solution period that the 
initial guesses have a negligible effect on the solution. In most estimation 
problems one would not want to lose as many observations from the begin- 
ning ofthe sample as would be required for type IV convergence. Fortunately, 
there is a way around this problem, which is based on an assumption that is 
usually made when one is estimating multiple equation models with moving 
average residuals. This assumption is that the last presample uncorr&ted 
error is zero: in particular that ei,$-, = 0 in (11.2) when one is solving for 
period s. As before, the case of first-order serial correlation is considered: 
generalization to higher orders is fairly straightforward. The method requires 
data for period s - 1. (Data before period s - 1 will be needed if there are 
lagged endogenous or lagged exogenous variables in the model. It is implicitly 
assumed here that sufficient data for the lagged variables are available for the 
solution for period s - I .) Rather than first transforming (Il. I) into (11.3), 
the method works directly with (I l.l), treating (11.2) as another set of 
equations. 

If u,-~ were known, then (I 1. I) could be solved for period s - 1 and 
all subsequent periods using the basic method and the fact that 
E uhf, = &‘“’ u+~. In other words, in the dynamic simulations that under- 

s--2 
lie the basic method. one would use &+*)u~~_~ on the RHS of (1 I. I). The 
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problem then becomes one of choosing an appropriate value for t~,-~. This is 
where the assumption about eiS_, comes in. The idea is to choose u,-~ in such 
a way that when the model is solved for period s - 1, it generates a value of 
ti,V_I = 0; that is, q-l = p~&~. The rationale for this choice is simply that 0 
is the unconditional mean of E,-, , and thus the actual value is likely to be 
relatively close to this value. 

An iterative procedure for choosing u,_~ so that Ed,_, = 0 can be described 
as follows (note that each calculation is performed for each equation 
i= 1, ,m). 

(i) Guess values for the error terms u~,-~. 
(ii) Given the values from (i), solve the model for period s - 1 using the 

basic method. Note that E u,,, is set to p:“” u,,$_~ in calculating the predicted 
s--z 

values. 
(iii) Given the predicted value of yiJ_, (F+J from step (ii), calculate 

&_ , = yis_ 1 - ji.7_, and fi,_ , = piuiJ_2 + C,_, , where Q_~ is the initial guess. 
If&_. I is not within a prescribed tolerance level of 0, then convergence has not 
been reached, (that is, the solution is not consistent with the assumption that 
l ir- , = 0). 

(iv) Ifconvergence is not reached in (iii), set the new value of uir--2 equal to 
ir,_,/p, and do (ii) and (iii) over for these new values. Repeat this until 
convergence is reached. 

(v) Using the converged iterate I&~, compute u,_, = &u~~-~. Given these 
values, solve for period s using the basic method, where in this case 
,511 = 

1_, S+r 
p!‘“‘r&, is used in calculating the predicted values. This com- 

pletes the solution for period s. 
Once the solution for period s has been obtained, the solutions for periods 

s + 1 and beyond do not require further iterations from those used by the 
basic method. The reason for this is that the forecasts with viewpoint date 
s - 1 are known after solving for period s. 

11.23 A Simple Example 

The conditions under which the solution method just presented will converge 
from an arbitrary set of initial guesses to the rational expectations solution are 
examined for a simple linear model in this section. The aim is to motivate the 
method and relate it to existing analytic techniques. 

A scalar linear version of (1 I. I) with serial correlation is given by 
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(11.4) ~,=aEJ~,+,+~E.X,+U,,, 
,--I ,--I 

(11.5) x; = ,Lx_, + Q,, 

(11.6) % = P&-l + ElZ> 

where (Y, y, A, and p are scalar parameters and (elr, +) is a serially uncorrelated 
vector. It is assumed that IAl < 1 and IpI < 1. Equations (I 1.4) and (11.5) 
correspond to (1 I, 1) when the exogenous variable x, is assumed to follow a 
known stochastic process. and (11.6) corresponds directly to the autoregres- 
six error assumption made in (I I .2). 

The rational expectations solution of (1 I .4) through (I 1.6) in period s is 
given by 

(See Hansen and Sargent 198 1 and Taylor 1980 for discussion of an analytic 
solution method.) Note that the last equality in (11.7) requires that laA^I < 1 
and lapI < I, which will be satisfied ifla/ < 1, The objective is to show that the 
numerical solution method generates the same solution value as that given in 
(I 1.7). For now take u,,_, as given: a procedure for calculating u,,-, is 
described subsequently. Recall that e,(i,k) is the guess of EYE,,, on type 11 

J-I 
iteration i and type III iteration k. Each type III iteration is started with an 
initial set of guesses e,( 1 ,k), I = 0, 1, , k + 2 (h = I in this example). The 
aim is to show that lim q,(i,k) equals the RHS of (11.7). 

i,X-= 
For a fixed k the type II iterations can be described by the set of equations 

(11.8) e,(i+ l,k)=ole,+,(i,k)+ya’x,_, +/Yu,~_,, 

where I= 0. 1, ~ k + 1. By repeated substitution 

k+l 
(11.9) e,(k+ 3, k)=(cU)k+2ck+2(1, k) + yj.~C(d)'Y,,-, 

h-l 

which is the converged iterate of the type II iterations for a fixed k. Equation 
(I I ,9) is not equal to the RHS of (1 I .7). However, if(al < 1, then the limit of 
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r,,(k + 3, k) as k - 0~ is equal to the RHS of (1 I .7). This motivates the 
requirement that the initial values Q+~( I ,k) = gkt2 are bounded, and it shows 
that type 111 iterations converge to the rational expectations solution. Note 
that in this model thesolution isindependent ofall&values. Given that theg, 
values are bounded, type 111 iterations ensure convergence to the correct 
a”sWW. 

Note that the condition for this convergence (Ial < 1) is identical to the 
condition needed to obtain a unique solution in rational expectations models 
(see Taylor 1977). This suggests that the numerical method will converge in 
the class ofrational expectations models for which the uniqueness conditions 
hold, although a general proof is still open. 

This example will now be used to illustrate the relationship between the 
procedure described in Section 11.2.2 (designed to choose initial conditions 
for estimation applications) and the conditional maximum likelihood esti- 
mates of linear ARMA models. 

Substituting (I 1.7) into (I 1.4) results in 

Subtracting the lagged value of ( I 1.10) multiplied by 0 from (I I. 10) results in 
the “quasi-differenced” expression 

which when combined with (I 1.5) gives a two-dimensional vector 
ARMA(2,I) model with nonlinear constraints on the parameters. For esti- 
mation ofthe parameters ofthis ARMA model it is necessary to calculate the 
residuals (Ed,, E*J in terms of the data and the parameters. For “conditional” 
maximum likelihood estimates. this calculation is started by settinge,,_, = 0 
and taking JJ~-~, x,_, , and x~_~ as given. where s is the beginning of the 
estimation period. The residual E,~ is then computed by subtracting (I I. 1 I) 
with these values from the actual observation y,. The residuals for later 
periods are calculated recursively using this computed residual E,~. 

The procedure described in Section 1 I .2.2 is designed to calculate these 
“conditional” residuals numerically for linear as well as nonlinear models. 
This can be illustrated by showing that 
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when the value ulr_, in (I I .7) is chosen according to the procedure outlined 
in steps(i) through(v) in Section 1 I .2.2. It is known from (1 I .7) that the basic 
numerical solution method will generate 

aA 
(11.13) ,C-, =- - , _ &, xx-2 + , Pap Ulr-2 

when applied in period s - 1, as indicated in step (ii). Iterating steps (iii) and 
(iv) will yield a converged iterate of u+~ that has the property that 
>j,T_I - J?_~ - l ls_-l = 0 to within the tolerance level. From (I I, 13) this value 
of t~~~-~ is given by 

and therefore 

Substituting ( 1 I. 15) into ( 1 I, 17) yields ( 11,12), which is what is to be shown. 
Note that when analytic techniques can be used, it is trivial to choose ulr-* 
according to (I 1.14). but when the solutions are calculated numerically, it is 
necessary to search for the value t~ls--2 that gives 6,$-i = 0. 

11.3 FIML Estimation 

11.3.1 Evaluating and Maximizing the Likelihood Function 

FIML estimates of the coefficients are obtained by maximizing I> in (6.33), 
which is repeated here: 

(6.33) L = - f logIS/ + i loglJ,l. 
I-I 

S is the ITI X m matrix whose ij element is + 2 u;&,, and J, is the n X n 
I I 

Jacobian matrix whose ij element is &/CJ&,. &cause the expectations in 
(I I. I) are based only on information through period f - 1 (and thus not on 
J$,)$ the derivatives of the expectations with respect to the yjl (j = 1, _ n) 
are zero. The expectations are thus like the exogenous variables with respect 
to the Jacobian calculations. 

Given the solution method in Section 1 I .2, it is straightforward to compute 
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L for a given value of (Y for rational expectations models. If there is no serial 
correlation, then for a given value of a one can solve for E y,, E y x+1, , 

s--l s--I 
E ys+h for s = 1, 2. , T using the solution method. These values can 

5-1 
then be used in conjunction with the y and x data to compute values of U, 
(s = 1,2: , T) and thus the matrix S. The Jacobian determinants can be 
computed in the usual way_ thereby completing the determination ofL. The 
extra work involved in the calculation of L for rational expectations models 
thus consists of using the solution method to compute the expected values for 
each ofthe Tviewpoint dates. For models without rational expectations none 
of these calculations are needed. Given this extra work, however, FIML 
estimates can be obtained in the usual way by maximizing L numerically with 
respect to 01. For small models an algorithm like DFP may be sufficient to 
maximize L, but for other models the Parke algorithm is likely to be needed. 

When the ui, follow a first-order autoregression process, only one main 
change to the procedure given above is necessary. In this case steps(i) through 
(iv) in Section 11.2.2 are needed to calculate the expected values for the first 
sample point (say, period 2). Given these expected values, which have 
viewpoint date 1, the expected values for period 3 can be obtained using the 
solution method. These expected values can then be used in the calculation of 
the expected values for period 4, and so on through the end of the sample 
period. The only extra work in the serial correlation case pertains to the first 
sample point. Numerical maximization in this case is with respect to both the 
structural coefficients and the serial correlation coefficients. 

11.3.2 A Less Expensive Method for Maximizing the Likelihood Function 

The procedure in Section 11.3.1 is expensive because many evaluations of L 
are needed in the process of maximizing the likelihood function, and the 
model must be solved T times for each evaluation of L. This requires a very 
large number of passes through the model for a given estimation problem. In 
this section a way of modifying the estimation method is considered that 
requires fewer calls to the solution method. This modification is as follows. 

(A) Given the initial value of LY, solve for E ys, E y s+,r , E Ys+n for 
1-t s--I s-1 

s = 1, 2, , T using the solution method. This requires doing steps 
1 - 5 in Section 11.2. I T times. Call the solution values from this step the 
“base” values. 

(B) Perturb each coefficient (one at a time) from its initial value and use the 
solution method to get a new set of solution values. From these values and 
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the base values, calculate numerically the derivatives of the expectations 
with respect to the coefficients. This step requires doing steps l-5 Rimes 
for each coefficient. 

(C) In the procedure that calculates L for a given value of cy, use the base 
values and the derivatives to calculate new expected values for each new 
value of (Y. This eliminates the need to use the solution method in 
computing new values of L. 

(D) Once the maximization algorithm has found the value of 01 that maxi- 
mizes L, compute a new set of base values using the new value ofa and a 
new set of derivatives. Given the new derivatives. use the maximization 
algorithm again to find the value of 01 that maximizes L. Keep doing this 
until the successive estimates of a from one use of the maximization 
algorithm to the next are within a prescribed tolerance level. 

The advantage ofthis modification is that once the problem is turned over 
to the maximization algorithm, the solution method is no longer needed. The 
use of the base values and derivatives in the calculation of L is very inexpen- 
sive relative to the use of the solution method, and given that algorithms 
require many calculations of L, this modification is likely to result in a 
considerable saving of time. There is. of course, no guarantee that the 
procedure will converge. If the expectations are not a well-behaved function 
ofa, then computing the derivatives at a given point may not be very helpful. 
It may be, in other words, that using the base values and derivatives to 
calculate new expected values yields values that are far from the (correct) 
values that would be computed by the solution method. 

Once the estimates have been obtained, the covariance matrix in (6.34) can 
be calculated by taking numerical derivatives of L with respect to a (at the 
optimum). It may be possible to use the derivatives of the expectations with 
respect to 01 in the calculation of the values of L. This would allow the 
covariance matrix to be computed without using the solution method. 

For the serial correlation case one must also calculate in step (B) the 
derivative of i&-, with respect to u (for each i), where s is the first sample 
point. ii,_, isa function ofa, and therefore ifsteps( are to be bypassed 
in the calculation of L, the derivative of &-, with respect to (Y must also be 
calculated and used. 

11.4 Solution and Estimation Using Stochastic Simulation 

The use of stochastic simulation to estimate and solve rational expectations 
models isdiscussedin thissection. Thecaseof( 1 I. 1) with no serialcorrelation 
will be considered. 
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Consider first the problem of solving a rational expectations model. Sup- 
pose that both the 01 coefficients in ( 1 I. I) and S are known, where S is the 
covariance matrix of the disturbances ui,. Assume that the tlir are normally 
distributed. The solution procedure is modified as follows. First, the expected 
values computed in step 2- E ys+,, I’ = 0, 1, , k + h-are computed 

by stochastic rather than deterministic simulations. Instead of setting the 
disturbances to their expected values and solving once, one solves the model 
for many different trials. Each trial consists of a set of draws of the distur- 
bances I+*+,> r = 0, 1, , k + h, from the N(O,S) distribution (assuming 
the expected values of all the disturbances are zero). Each expected value is 
computed as the average across all the trials. Second, the final solution value 
jjs computed in step 5 is also computed by a stochastic rather than a deter- 
ministic simulation. In this case only draws of the disturbances for period s 
are needed. 

Stochastic simulation can also be used to obtain F’IML estimates of the 
coefficients, In contrast to the deterministic case, however, the likelihood 
function cannot be “concentrated” as it is in (6.33). In the fully stochastic 
case, changes in S affect the solution of the model and thereby the computed 
residuals. Instead, one works directly with the “unconcentrated” (log) likeli- 
hood function, which except for a constant can be written 

(11.16) L*=~log~J,i-::log,s,-:~u:s-‘u,, i=, t-1 

where a, = (u,,, , u,,) I. FIML estimates can be obtained by maximizing 
L * with respect to the parameters (cu,S). Each evaluation of L* for a given set 
of values of (Y and S requires computing the expected values, E y,+,, r = 0, 

t--I 
1, , k + h, by means of stochastic simulation, where each trial consists of 
draws of the disturbances from the N(O,S) distribution. The expected values 
are-computed for each sample point t = 1, , T, which then allows a, to 
be computed for each point. The determinants ofthe J, can be obtained, and 
thus the function L* can be evaluated in terms of the parameters (a,S). 
Nonlinear maximization routines can then be used to maximize L*. 

Because this estimation procedure requires maximization over the 
(m + l)m/2 independent elements of S in addition to the elements of o and 
because of the stochastic simulation costs, the method is likely to be ex- 
tremely expensive in practice. Given this, experiments with the method on 
small representative nonlinear models would be useful to try to gauge how 
much accuracy is likely to be gained by using stochastic simulation. 



Models with Rational Exoectations 385 

11.5 Solution of Optimal Control Problems for Rational 
Expectations Models 

The method for solving optimal control problems in Section 10.2 merely 
requires the ability to solve the model for a given set of values of the control 
variables. Given this, the problem is turned over to a maximization algorithm 
like DFP to find the optimum. The method in Section 11.2 provides the 
ability to solve rational expectations models, and thus optimal control prob- 
lems can be solved for these models by using this solution method within the 
context of the overall method in Section 10.2. 

Since rational expectations models are forward-looking, future values of 
the control variables affect current decisions, and therefore more values of the 
control variables have to be determined in this case than in the standard case. 
Values of the control variables must be chosen far enough into the future so 
that adding another future period has a negligible effect on the solutions for 
the actual control problem. The solution method in Section 1 I .2 ensures that 
the predicted values in the last future period have a negligible effect on the 
predicted values for the current period, and thus the requirement for the 
optimal control problem is merely to choose the number of control values 
that are required by the solution method in the course of solving the model. 

There is a potential problem of time inconsistency in solving optimal 
control problems for rational expectations models, which has been pointed 
out by Kydland and Prescott (1977). Consider a deterministic setting, and 
assume that a control problem has been solved using the above procedure for 
periods I through T. This yields optimal values z:, z:, , 2;. Now wait 
for one period, and consider the solution of the problem at the beginning of 
period 2. Since the settingisdeterministic, nothing unexpected has happened, 
and therefore one might think that the same optimal values zf. , z$ 
would be determined. Ifthe model is forward-looking, this is not necessarily 
the case, and when it is not, the optimal policy is said to be time-inconsistent. 
The model does not have to be a rational expectations model in order for this 
problem to arise; it only needs to have the property that future values ofthe 
control variables affect current decisions. 

The problem of time inconsistency does not mean that the above solution 
of the control problem is not optimal. It is optimal if it is believed and carried 
out. The problem is that the policymakers have an incentive to do something 
different in the future, and therefore agents may not believe that the original 
plan will be carried out. If it is not possible for the policymakers to convince 
agents that the plans will be carried out, other policies may be better. Even in 
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this case, however, it is of some interest to solve the control problem in the 
above manner in order to have a benchmark to which other policies can be 
compared. 

11.6 Results for a Small Linear Model 

11.6.1 Model without Serial Correlation 

For purposes of testing the solution and estimation methods, a small linear 
model has been analyzed. This model can be solved and estimated using 
existing linear techniques, and thus it provides a useful check for the nonlin- 
ear methods. The model is a version ofthe wage-contracting model in Taylor 
(1980). It can be represented as 

1--L I--I 
+ a,, EY,, + ax Eyzt+, + %EYz<+z + UI,> 

1--I c-1 L--l 

(11.18) yz, = ~ZIYU + RIYI,-I + ‘YZ&-~ + uzt, 

with restrictions 01,~ = Q = ), (Y,* = a,, = &, LY,~ = 01~~ = cxl,, azl = 
cyz2 = 01~~. There are two free coefficients to estimate, (Y,~ and a*, . The data 
for this model were generated by simulating the model using normally 
distributed serially independent errors with zero correlation between equa- 
tions. Values of LY,~ and c+, of .0333333 and -.333333 were used for this 
purp0Se. 

The model was first solved and estimated using the technique described in 
Taylor (1980), which is based on a factorization procedure that calculates a 
restricted ARMA version of the model. The ARMA version is used for the 
likelihood function calculations. Because of its small size, the model does not 
require the use of the Parke algorithm for the FIML estimation, so the DFP 
algorithm was used. Using a sample of 50 observations, the estimated coeffi- 
cients were &,$ = .02601 and&,, = -.3916, with t-statistics of 1.18 and 6.33, 
respectively. Each evaluation of the likelihood function took about .004 
seconds on an IBM 360/9 1 at Columbia University using this factorization 
technique. The DFP algorithm required 90 function evaluations starting 
from the true values (.0333333 and - .333333). 

The model was next solved using the method in Section 11.2. The model 
was solved for all 50 observations, and the value of the likelihood function 
was computed. When evaluated at the same coefficient values, the method 
gave the same value of the likelihood function as did the factorization 
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technique, which serves as a useful check on both procedures. The details of 
the iterations of the method when solving the model are summarized in the 
upper section of Table It_ 1. A total of about 27,7 50 passes through the model 
were required for one function evaluation, which is estimated to take about I 
second on an IBM 360/91. This is about 250 times slower than the factoriza- 
tion technique. (The actual computations were done on a computer at Yale 
University, and the estimated time for the IBM 360/91 is only approximate.) 

Had the same DFP program been used to maximize the likelihood function 
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as was used for the factorization technique, the same 90 function evaluations 
would have been required to find the maximum. The reason for this is that the 
solution method and the factorization technique give the same value of the 
likelihood function for the same set of coefficient values, and this is all the 
information that the DFP algorithm takes from the methods. The total time 
needed to estimate the model would thus be about 90 seconds. The DFP 
calculations were not repeated, but instead an attempt was made to maximize 
the likelihood function using the less expensive method discussed in Section 
11.3.2. These calculations will now be described. 

The calculations using the less expensive method are summarized in Table 
1 l-2. Using the true values of the coefficients as starting values, the model was 
first solved for each of the 50 observations. As noted in Table 11-1, this 
requires about 27,750 passes through the model. The model was then solved 
two more times to calculate the derivatives ofthe expectations with respect to 
the two coefficients. The problem was then turned over to the DF’P algorithm. 
The computer program ofthe DFP algorithm used here was different from the 
program used above for the factorization technique, and the performance of 
the algorithm for a given problem does vary across programs. The following 
results thus differ in two respects from the results using the factorization 
technique: the derivatives are used in one case but not in the other, and the 
computer programs differ. It is not possible to say which of these factors is 
more important regarding the performance ofthe DFP algorithm, but this is 
not of great concern here. The question of interest is whether the use of the 
derivatives results in the optimum being found. (The program of the DFP 
algorithm used here is also not the one that I wrote and used for the results in 
Section 10.4. The work for the present section was done before I wrote the 
DFP program that is now part of the overall Fair-Parke program.) 

As indicated in Table 11-2, the first DFP iteration required 45 calls to the 
subroutine that calculates L for a given value of the coefficient vector. 
Convergence was essentially achieved after the first iteration. The program 
was allowed to run for three more iterations, where for each iteration the 
model was solved three times: once to get the base values and twice more to 
get the derivatives. The results in Table 11-2 show that the use of the 
derivatives provides a close approximation to the “true” value of L obtained 
by solving the entire model. Given that the DFP algorithm required 45 
evaluations of L (for the first iteration), the use of the derivatives saved a 
considerable amount of time. The derivatives were also used in the calcula- 
tion of the covariance matrix after the optimum was reached. 
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11.6.2 Model with Serial Correlation 

The linear model was also solved and estimated for the case where u,, in 
(11.17) follows a first-order autoregressive process, with pI = .7. Steps (i)-(v) 
were used with a damping factor of .25 to solve for the first observation, with 
steps I-4 used thereafter. Some initial experimentation with no damping 
factor for calculating the initial condition indicated that convergence would 
either not be achieved or would be very slow. Again, for the same set of 
coefficient values, the same likelihood value was obtained using both the 
factorization technique and the method in Section 11.2. A summary of the 
calculations for the method is presented in the lower section of Table 11-l. 
The required number of passes in this case was about 37,563, which is about 
35 percent greater than the number required for the model without serial 
correlation. 

An attempt was made to use the less expensive method to estimate this 
version of the model. but this was not successful. The expectations did not 
appear to be well-behaved functions of the coefficients, and quite different 
derivatives were obtained for different step sizes. The values of L computed 
using the derivatives were generally not very close to the values ofL computed 
by solving the entire model. It appears for this version that the entire model 
has to be solved for each new evaluation of L. 

The use of the less expensive method for the small linear model thus 
produced mixed results. More estimation of alternative models is needed 
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before one can determine whether the difficulties with the serial correlation 
case are specific to the example and, if so, whether the example is representa- 
tive of the type of model that is likely to be estimated in practice. 

11.7 Results for the US Model with Rational Expectations in the Bond 
and Stock Markets (USREl and USREZ) 

An interesting exercise with the US model is to consider how its policy 
properties would differ if it were specified to be consistent with the assump- 
tion of rational expectations in the bond and stock markets. The method in 
Section 11.2 can be used to solve the model in this case. The modifications of 
the model to incorporate the rational expectations assumption are discussed 
first, and then the policy properties of the different versions are compared. 

11.7.1 The Two Term Structure Equations 

The two term structure equations in the model, Eqs. 23 and 24, are discussed 
in Section 4. I .6. In each equation the long-term rate, RB or RM, is a function 
of current and lagged values of the short-term rate. RS. The theory on which 
these equations are based is the expectations theory of the term structure of 
interest rates. According to this theory, the return from holding an n-period 
security is equal to the expected return from holding a series of one-period 
securities over the n periods. Let Rx+, denote the expected one-period rate of 
return for period f + i, the expectation being conditional on information 
available as ofthe beginning of period I, and let R, denote the yield to maturity 
in period t on an n-period security. Then according to the expectations theory, 

(11.19) (l+R,)“=(l +Rq)(l+R.Sf.+J. r. (I+RSI,._,). 

When considered by themselves, Eqs. 23 and 24 are consistent with the 
expectations theory in the sense that the current and lagged values of RS are 
proxies for the expected future values in (11.19). When these equations are 
considered as part of the overall model. however. they are not consistent with 
the expectations theory if’expectations ofthe future values of RSare rational. 
The reason for this is that in simulations ofthe model, the predicted values of 
the long-term rates and the short-term rates do not in general satisfy (1 I. 19). 

The US model can be modified to be consistent with the rational expecta- 
tions assumption by dropping Eqs. 23 and 24 from the model and requiring 
instead that the solution values ofR.S, RB, and RMsatisfy ( I I. IS), where R, in 
( Il. 19) represents RB and RM. The resulting model, which will be called 
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USRE 1, is then consistent with the assumption of rational expectations in the 
bond market if( 1) people believe that USREl is the true model and know 
how to solve it and (2) people at any one time have the same set of forecasts 
regarding the future values of the exogenous variables and the same set of 

, expectations regarding the future values of the error terms. Given these 
assumptions. the solution values of the endogenous variables are people’s 
expectations of these values (ignoring the bias due to the nonlinearity of the 
model). Since three ofthe endogenous variables in the model are RS, RB, and 
RM, if the solution values of these variables satisfy (11.19), then people’s 
expectations are consistent with this equation. 

11.7.2 The Stock-Price Equation 

The stock-price or capital-gains equation, Eq. 25, is also discussed in Section 
4.1.6. The capital-gains variable, CG, is a function of the change in RB, the 
change in after-tax cash flow, and the one-quarter-lagged value ofthe change 
in after-tax cash flow. The theory on which this equation is based is that the 
value of stocks is the present discounted value of expected future after-tax 
cash flow, the discount rates being the expected future short-term interest 
rates. Let K, = CF, - 7”+ - Tel denote the actual value of after-tax cash flow 
for period t, and let n;+; denote the expected value for period f + i, the 
expectation being conditional on information available as of the beginning of 
period t. Let SP, denote the value of stocks for period t based on information 
as of the beginning of period t. Then according to the theory 

-....z- G+ I 
(11’20) Spr=l+RS:+(l+R~)(I+R~+,)+ ‘. 

+(l+RSJ)(l+R;;I;. (l+R;+,,)’ 

where T is large enough to make the last term in (I 1.20) negligible. By 
definition 

(11.21) CG,=SP,-SP,_,, 

where CG is the capital-gains variable used on the LHS of Eq. 25. 
When considered by itself, Eq. 25 is consistent with ( 11.20) and ( 11.2 1) in 

the sense that the change in the bond rate is a proxy for expected future 
interest rate changes and the changes in after-tax cash flow are proxies for 
expected future changes. When considered as part of the overall model, Eq. 
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25 is not consistent with (11.20) and (11.21) if expectations of the future 
values are rational: this is because in simulations of the model the predicted 
values of CC do not in general satisfy (1 I .20)-( Il.2 1). 

The US model can also be modifid to be consistent with the rational 
expectations assumption regarding stock prices by dropping Eq. 25 and 
requiring instead that the solution values of CG satisfy ( I 1 JO)-{ 1 I .2 1). If this 
modification is made in conjunction with the modification regarding the term 
structure of interest rates, the resulting model, which will be called USRE2, is 
consistent with the assumption of rational expectations in both the bond and 
stock markets. Note in this case that because RSis used as the discount rate in 
(1 I .20). the expected return on stocks is the same as the expected return on 
bonds. There are no arbitrage opportunities in USREZ between bonds and 
stocks, just as there are none in either USREI or USREZ between bonds of 
different maturities. 

RS is in units of percentage points at an annual rate, and for use in ( Il. 19) 
and (I 1.20) in the following experiments, each RS term was divided by 400. 
This puts RS in units of percent at a quarterly rate. 

11.7.3 The Policy Experiments 

Unmticipated Change 

Since both USREl and USREZ have expected future values on the RHS of 
some equations, the solution method in Section 1 I .2 must be used to solve the 
models. Before they can be solved, however, some assumption must be made 
about n in (11.19) and Tin (I 1.20). For present purposes both n and T were 
taken to be 32 quarters. The policy experiment consisted of a permanent 
increase in C, (from its historical values) of 1 .O percent of real GNP. This is 
the same experiment as the first experiment in Table 9-1 except for a different 
period. The period here is 19581- 196OIV; this early period was chosen so that 
enough future data would be available to avoid having to make any assump 
tions about values of variables beyond the end of the data. 

The value of h in (11.1) for both models is 3 1. The initial value of k in step 1 
was chosen to be 67. This required initial guesses of the expectations of the 
future values of RS and of after-tax cash flow for 19581 through 199011, 
although the values for the last 31 quarters are not changed during the 
solution process. For all but the last 31 quarters the initial expected values 
were taken to be the actual values. For the last 31 quarters (1982IV- 199011) 
the values were taken to be the 1982111 values. 
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An important question for the experiment is how to handle the fact that 
(I 1.19) and ( 11.20)-( 1 I .2 I) do not fit the data perfectly. The present experi- 
ment is not meant to be a test ofthe assumption ofrational expectations in the 
bond and stock markets, but merely to examine the sensitivity ofthe proper- 
ties of the model to this assumption. Given this, the easiest thing to do is to 
add error terms to (I 1.19) (for both RB and Rnil) and to (11.20) in such a way 
that the equations fit perfectly when the expected values are taken to be the 
actual values. If the actual values of the error terms are also used for the other 
equations, the solution of the model using the actual values of the exogenous 
variables (including Cg) is the perfect tracking solution. The base values for 
the C, experiment are thus the actual values, which is the same as for the 
experiments in Chapter 9. The actual values of the exogenous variables were 
used for the experiment. 

The error terms in (11.19) and (11.20) are not assumed to be serially 
correlated, which means that steps (a)-(e) in Section 1 I .2.2 do not have to be 
used. Even though some ofthe stochastic equations in the model have serially 
correlated errors, steps (a)-(e) do not have to be used unless the serial 
correlation occurs in equations with explanatory expectations variables. 

The estimated policy effects are presented in Table 11-3. The solution 
method in Section I 1.2 worked quite well in solving USREI and USREZ. For 
USRE2, for example, the number of type II iterations required for conver- 
gence was 28 for k = 67. When k was increased by one, the required number 
was 17. Type III convergence was achieved at this point. In other words, the 
initial value of k was chosen large enough so that increasing it by one more 
had negligible effects on the solution values for the lirst 32 quarters. For 
h = 3 I and k = 67, each type II iteration requires solving the model for 
31 + 67 + 1 = 99 quarters. The solution for each quarter requires about .2 
seconds on the IBM 434 1, so the solution time for one type II iteration is 
about 19.8 seconds. The total time for the 28 type II iterations was thus about 
9.2 minutes. Fork increased by one, the time per type II iteration is only .2 
seconds longer. The time for the other 17 type II iterations was thus about 20 
seconds X 17 = 5.7 minutes. The total time required for the solution for 
USRE2 was thus about 14.9 minutes. The times for USREl were similar. If 
one compares these times to the time required to solve the regular version of 
the US model for the 12 quarters in Table 11-3 of 12 X .2 seconds = 2.4 
seconds, the USRE 1 and USRE2 models are about 373 times more expensive 
to solve than the US model. 

It is important to note with respect to solution times that the model only 
had to be solved once for each set of results in Table 11-3. The reason for this 
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is that the actual values of the exogenous variables were used and that the 
length of the simulation period of interest (12 quarten) was less than h. (See 
the discussion at the end of Section 11.2.1 for an explanation of this.) 

The results in Table 11-3 are fairly easy to understand. For all three 
versions, the Fed responded to the increase in C, by raising RS. In the regular 
version this had a gradual effect over time on RB and RM through the term 
structure equations. In the other two versions, however, knowledge that the 
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Fed was going to raise RSin the future was incorporated immediately into the 
long-term rates, and therefore the initial changes in RB and RMwere greater 
for USREl and USRE2 than for the US model. This led to lower initial 
increases in real GNP and to smaller initial decreases in the unemployment 
rate. The lower initial increases in real GNP led to smaller increases in the 
GNP deflator. 

Because of the lower initial increases in real GNP for USRE 1 and USRE2, 
the initial increases in RS were also lower. In other words, the Fed responded 
less with respect to increasing RS in these two cases. The higher initial values 
of RE and RM for USRE 1 and USRE2 required less of an increase in RS in 
order to lessen the expansionary impact of the increase in C,. 

One puzzling feature of the results in Table 11-3 is why the initial change in 
stock prices (CC) is negative for USRE2. It is more negative for USRE2 than 
it is for USREI, which through the wealth effects in the model leads to a 
slightly more expansionary economy for USREl than for USRE2. If future 
values of cash flow are higher because of the expansion, this information 
should be reflected immediately in higher stock prices for USRE2. There are, 
of course, two effects on stock prices, a positive one through higher future 
values of cash flow and a negative one through higher future values of the 
discount rates. It may merely be that the negative discount rate effect 
dominates for USREZ. This is not. however, the case. The problem is that 
future values of cash flow are smaller rather than larger. (This can be seen for 
the first 12 quarters in Table 11-3.) The reason for this is that interest 
payments of the firm sector, which are subtracted from cash flow, are larger 
because of the higher bond rate. (This can also be seen for the first 12 quarters 
in Table 1 l-3). 

The puzzling result is thus due to the higher interest payments of the firm 
sector. Interest payments are determined by Eq. 19 in the model. This 
equation, as discussed in Section 4.1 S, does not have good statistical proper- 
ties, and in particular it may be that the bond rate coefficient in the equation is 
too large. The USREl versus USRE2 results thus unfortunately depend on a 
questionable equation. In order to see how sensitive the results in Table 11-3 
are to the interest payments equation, the experiments were done over with 
the interest payments equation dropped and interest payments taken to be 
exogenous. The results ofthese experiments are presented in Table 11-4. The 
results for US and USREl are not much affected, but it is now the case that 
future values of cash flow are positive. The initial change in stock prices for 
USRE2 is now positive. CG increased by 1.28 in the first quarter for USRE2, 
whereas it decreased by 1.96 for USREI. The decrease for USREI is a result 
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ofthe higher value ofRB. which appears as an explanatory variable in the CG 
equation. The economy is now more expansionary for USRE2 than it is for 
USREI. 

This feature of the results regarding the difference between USREl and 
USRE2 is thus sensitive to the interest payments equation. The results in 
Tables I l-3 and 1 l-4 bound the differences in the sense that interest pay- 
ments are probably too sensitive to interest rates in Table I l-3 and not 
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sensitive enough in Table 11-4. For purposes of illustrating the properties of 
the two versions of the US model, these results are sufficient. 

An interesting aspect of the results is that the sums of the GNP changes 
across the 12 quarters are quite close. The timing of the GNP changes differs 
between the US model and the two rational expectations versions, but this is 
to some extent the only substantial difference among the results. 

The experiment just reported is an unanticipated increase in C, beginning in 
19581. Ifthe increase had been announced before this time, the quarters prior 
to the enactment would have been affected in models USREl and USRE2. To 
investigate this, a second experiment was run in which it wasassumed that the 
announcement of the C, increase beginning in 19581 was made at the 
beginning of 19561. The results of this experiment are reported in Table 1 l-5. 
(The interest payments equation was used for these results.) The initial value 
of k was taken to be 75 for this experiment rather than 67, and the starting 
quarter was 19561 rather than 19581. Otherwise, the procedure for this 
experiment was the same as that for the first. Convergence was achieved in 
two type III iterations for each model, and the solution times were similar to 
those for the first experiment. 

The results for the US model in Table II-5 are the same as those in Table 
11-3. The announcement has no effect on this model since it is not forward- 
looking. For the other two models, knowledge that the Fed will raise RSin the 
future gets incorporated immediately into RB and R.44, which has a negative 
effect on real output. Real GNP is lower in 1956 and 1957 because of the 
higher long-term interest rates. RS is lower in these two years because of the 
contractionary economy; RS begins to rise after the increase in C, actually 
takes place. 

The sum of the output changes across the 20 quarters is 4.95 for the US 
model, 3.96 for USREl, and 3.44 for USREZ. The difference between the US 
model and the others is larger here than it is in the first experiment, which is 
due to the negative effects in the first two years for USREl and USRE2. The 
reason the economy is less expansionary for USRE2 than for USRE 1 is again 
because of the interest payments equation. The opposite result would be 
obtained if the interest payments equation were dropped. 

Conclu.sions 

These experiments give a good indication of the sensitivity of the policy 
properties ofthe model to the assumption ofrational expectations in the bond 
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and stock markets. It is clear that there are some important quantitative 
policy differences, especially with respect to timing and anticipated changes. 
The rational expectations assumption is clearly of some quantitative impor- 
tance. 

It should be stressed again that the results in this section provide no tests of 
the rational expectations assumption. For purposes of the experiments, 
(1 I. 19) and (I 1.20) have been made to fit perfectly by merely adding the 
actual errors to them before they are solved. These errors are in fact quite large 
relative to the errors in the estimated term structure and capital gains 
equations. This is not, however, evidence against the specification of (I I. 19) 
and (I 1.20). Some of the reasons for this are the following. 

1. The RB and RM rates are not eight-year rates, as assumed here, and 
therefore a closer matching of the rate data to n would be needed in any 
tests. 

2. The value of Tused for ( I 1.20), 32 quarters, is not large enough to make the 
last term in the equation negligible. 

3. The data on cash flow after taxes and stock prices do not match exactly. 
4. The use of actual values of RS and z for the expected future values in the 

construction of the error terms for ( Il. 19) and ( 1 I .20) is not appropriate. 

None of these problems are important for the sensitivity experiments 
performed in this section, but they are obviously so for testing. If better data 
were collected so that 1 and 3 were taken care ofand ifa larger value of Twere 
used so that 2 was taken care of, then the rational expectations assumption 
with respect to the bond and stock markets could be tested by, say, comparing 
the accuracy of the predictions from USRE2 and US, especially the predic- 
tions of RB, RM and CG. For USRE2 one would have to choose for each 
beginning quarter of a prediction period a set of future values of the exoge- 
nous variables that one believes were expected at the time. The predictions for 
each different beginning quarter would be based on a different set of future 
values of the exogenous variables. The joint hypothesis that would be tested 
by this procedure is that (a) people know USREZ and believe it to be true, 
including ( 11.19) and ( 11.20); (b) the chosen exogenous variable values and 
error terms correctly reflect the expectations at the time; and (c) expectations 
with respect to future values of RS and cash flow after taxes are rational. 

11.8 Results for Sargent’s Model (SARUS) 

The estimation of Sargent’s model is somewhat involved, as is true of any 
rational expectations model, and it will be easiest to discuss the estimation of 
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it in steps. The model is presented in Section 5.4. and the reader should review 
this material before reading this section, in particular the material in Tables 
5-3 and 5.4. The model consists of five stochastic equations and one identity. 
These equations are listed in Table 11-6. The first thing to remember about 
the model is that the error term in Eq. (4) is assumed to be uncorrelated with 
the other error terms in the model. This means that Eq. (4) can be treated 
separately from the rest and simply estimated by OLS. 

The key variable in Sargent’s model isp, - E,_,p,, which is an explanatory 
variable in Eqs. (1) and (2). Without this variable, the model is not a rational 
expectations model and can thus be estimated by standard techniques. The 
first step in the estimation work was to estimate the model by 2SLS without 
thept - E,_,p, variable included. These estimates are presented first in Table 
11-6. The first-stage regressors that were used for these estimates are listed at 
the bottom ofthe table. The next step was to estimate this same version of the 
model by FIML. These estimates are presented next in Table 11-6. The 2SLS 
estimates were used as starting values. The value of L (see Eq. 6.33) at the 
starting point was 2438.49. The Parke algorithm was allowed to run for 40 
iterations, which increased L by 10.37 to 2448.86. Near the end of the 40 
iterations, L was increasing by about .Ol per iteration. Each iteration cone- 
sponds to about 180 function evaluations and takes about 65 seconds on the 
IBM 434 I, At the stopping point the covariance matrix of the coefficient 
estimates was computed ( ?d in Eq. 6.34), and this is where the t-statistics for 
the first set of FIML estimates in Table I l-6 come from. 

The next step was to add the expectations variable to the model and 
estimate it using the method in Section 11.2. The solution of the model is 
fairly easy because there are no expectations variables for periods t + I and 
beyond, only for period 1. This means that no type 11 or type III iterations have 
to be performed. In order to get the values for E,_ ,p, (t = 1. , T) that are 
needed for the computation of L, the model is simply solved each period 
using the expected values of the exogenous variables. The predicted values of 
p! from this solution are the values used for Et- @, For purposes ofestimation 
there are three exogenous variables: m,, pop,. and R,. As noted in Table 5-4. 
the expected values of m, and pop, were taken to be predicted values from 
eighth-order autoregressive equations. The expected values of R, were taken 
to be the predicted values from Eq. (4). 

In this third step each evaluation of L requires that the model be solved for 
each of the I 14 observations of the sample period. This solution takes about 
10.5 seconds on the IBM 4341. As noted earlier, the number of function 
evaluations required per iteration of the Parke algorithm is about 180. which 
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takes about 65 seconds for the nonrational expectations version ofthe model. 
The total time per iteration for the complete model is thus about 10.5 
seconds X 180 + 65 seconds = 32.6 minutes. Because of the cost per itera- 
tion, the Parke algorithm was only allowed to run for eight iterations. The 
FIML estimates of the nonrational expectations version were used as starting 
values. The value of L was increased from the starting value of 2448.86 to 
2475.16, which is a change of 26.30 points. 

The set of estimates at this point is the third set presented in Table 11-6. 
The key result in this table is that both coefficient estimates forp, - E,_g, are 
of the expected sign (negative in Eq. 1 and positive in Eq. 2). According to the 
theory behind the model, positive price surprises should lead to a fall in the 
unemployment rate and a rise in labor supply, and the results are consistent 
with this theory. 

The covariance matrix of the third set of coefficient estimates was not 
computed because of the expense, but it is the case that the two coefficient 
estimates forp, - E,_,p, are jointly significant. This can be seen by perform- 
ing a likelihood ratio test. Let L* denote the optimal value of L and let L** 
denote the value ofL obtained by maximizing the likelihood function subject 
to the constraint that both coefficients are zero. Then 2(L* - L**) has an 
asymptotic x2 distribution with two degrees of freedom. The value of L** is 
2448.86 from the above results. A lower bound for the value of L* is the final 
vaIueof2475.16. (Thisisonlyalowerbound becausetheParkealgorithm was 
not allowed to NII long enough to obtain the maximum.) Twice the differ- 
ence between the lower bound for L* and L** is 52.60, which is clearly 
greater than the critical f value at the 95-percent confidence level of 5.99. 
Therefore, even using this conservative value, the two coefficient estimates 
are highly significant. 

Because ofthe expense of estimating Sargent’s model, it was not feasible to 
use the method in Chapter 8 to examine the accuracy of the model. It did 
seem worthwhile, however, to try to get a rough idea of its accuracy. This was 
done by computing within-sample root mean squared errors (RMSEs). 
RMSEs were computed for one- through eight-quarter-ahead predictions for 
the 19701- 1982111 period. This was done for the three estimates of Sargent’s 
model in Table 11-6, for the ARUS model, and for the US model. The results 
are presented in Table 11-7. The results in Table 11-7 for the US model are 
the same as those in Table 8-5 (2SLS estimates). 

Before discussing the results in Table 11-7, one should be clear about how 
the rational expectations version of Sargent’s model is solved when the 
simulation is dynamic. (The simulations that were used in the above estima- 
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tion of the model were all static.) Remember that the model is actually solved 
two times per quarter to get the final solution values. The model is first solved 
using the expected values of the exogenous variables, which gives a solution 
value for E,_,p,. The model is then solved again using this solution value plus 
the actual values of the exogenous variables. For both the static and dynamic 
simulations the expected values of the two exogenous variables, m, and pop,, 
were taken to be static predictions from the two estimated eighth-order 
autoregressive equations. It would not be appropriate to use dynamic predic- 
tions for this purpose because of the exogeneity of m, and pop, themselves. For 
solution purposes, in contrast to estimation purposes. R, is an endogenous 
variable, and therefore the above procedure form, and pop, is not followed for 
R,. The R, equation, Eq. (4), is simply added to the model for solution 
purposes. 

The results in Table I 1-7 indicate that Sargent’s model is not very accurate. 
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All three versions are considerably less accurate than the US model for all 
three variables. All versions are less accurate than the ARUS model for the 
GNP deflator. The three versions and ARUS are ofabout the same degree of 
accuracy for the unemployment rate. The rational expectations version of 
Sargent’s model is slightly more accurate than ARUS for real GNP for the 
five- through eight-quarter-ahead predictions. The other two versions are less 
accurate than ARUS for real GNP. Although these results are subject to the 
reservations discussed in Chapter 8 regarding within-sample RMSE compari- 
sons, they are clearly not encouraging regarding Sargent’s model. 

Sargent’s model was the first serious attempt to construct an econometric 
version ofthe class ofrational expectations models discussed in Section 3.1.7, 
and thus it is obviously very preliminary in nature. The negative results 
achieved here should thus be interpreted with some caution. It may be that 
with more work on models of this type, the accuracy will be much improved. 
It is really too early to judge this type of model. One discouraging feature 
about this work, however, is that there have been no attempts to follow up on 
Sargent’s model or models like it. Unless more econometric work is done on 
this class of rational expectations models, it may lose by default. 


