Appendix A: Data and Identities for the United States Model

The data and identities for the US model are discussed in this appendix. Tables A-1 through A-4 describe the construction of the variables, and Table A- 5 contains the identities. The stochastic equations of the model, which are presented in Chapter 4, are repeated in Table A-5. (The tables are grouped together at the end of this appendix.) Some of the material in these tables was discussed in Section 4.1.2, and the discussion will not be repeated here.

The FFA data were taken from a Flow of Funds tape of data through 1982III. The NIA data prior to 1977 I were taken from an NIA tape. The tape consisted of data through 1981I, but the data from 19771 on were preliminary and subject to revision. NIA data for the 1977I-1982I period were taken from the July 1982 issue of the Survey of Current Business. In addition, data for a few variables for 1973I-1976IV were taken from this issue (table 3, pp. 131-132) to replace the data taken from the tape. NIA data for 1982II and 1982111 were taken from an advance copy of the Survey of Current Business tables dated December 1982.

Table A-1 lists the sectors of the model. The notation on the RHS of the table ($H 1, F A$, and so on) is used in Table A-2 in the description of the FFA data. The notation on the LHS (h, f, and so on) is used in the model.

Table A-2 contains a description of all the raw-data variables. These variables are used in Table A-4 to construct the actual variables in the model. The units quoted in Table A-2 are the units used for the construction of the variables in Table A-4; they are not necessarily the units from the original sources. The raw-data variables are listed in alphabetic order at the end of Table A-2. This makes it easier to find particular raw-data variables, which one needs to do to see how the variables in Table A-4 are constructed.

The source for the interest rate data is the Federal Reserve Bulletin, denoted FRB in the table. Listed in the table for each interest rate variable is the table number in the November 1982 issue of the FRB where the variable can be found. Some of the past data were obtained directly from the Federal Reserve.

The main source for the employment and population data is Employment and Earnings, denoted EE in the table. Listed in the table for each variable is the table or page number in the February 1982 issue of EE where the variable can be found. Some of the past data were obtained directly from the Bureau of Labor Statistics (BLS). For two variables, $J F$ and $H F$, the relevant data are not published in EE, and they were obtained directly from the BLS.

A few adjustments were made to the raw data, and these are also presented in Table A-2. The quarterly social insurance variables 171-176 were constructed from the annual variables 73-78 and the quarterly variables 33,54 , and 66 . Only annual data are available on the breakdown of social insurance contributions between the federal and the state and local governments with respect to the categories "personal," "government and government enterprises employer," and "other employer." It is thus necessary to construct the quarterly variables using the annual data. It is implicitly assumed in this construction that as employers, state and local governments do not contribute to the federal government and vice versa.

The tax variables 177 and 178 concern the breakdown of corporate profit taxes of the financial sector between federal and state and local. Data on this breakdown do not exist. It is implicitly assumed in this construction that the breakdown is the same as it is for the total corporate sector.

Regarding the tax and transfer variables 51 and 56 , the tax surcharge of 1968III-1970III and the tax rebate of 1975II were taken out of personal income taxes (TPG) and put into personal transfer payments ($T R G H$). The tax surcharge numbers were taken from Okun (1971, table 1, p. 171). The rebate was 7.8 billion dollars at a quarterly rate.

The multiplication factors in Table A-2 pertain to the population, labor force, and employment variables. Official adjustments to the data on $P O P$, $P O P 1, P O P 2, C L, C L 1, C L 2$, and $C E$ were made a few times, and these must be accounted for. This was done as follows. Consider as an example the adjustments to $P O P$. In January 1972 the BLS added 787 thousand to $P O P$ (a .547 percent increase), and in March 1973 it added 13 thousand (a .009 percent increase). To account for the first change, the old data on $P O P$ for the 1952I-1971IV period were multiplied by 1.00547. To account for the second change, the old data on POP ("old" now including the first change) for the 1952I-1972IV period were multiplied by 1.00009 and the old data for 1973I were multiplied by 1.00006 . Since the second change occurred in March 1973, the adjustment to the old data for 1973I was only two-thirds of the adjustment for the earlier quarters. The same procedure was followed for the other variables. For four of the variables ($C L, C L 1, C L 2$, and $C E$), there was
also an official adjustment in January 1978. All the multiplication factors are presented in Table A-2. The official adjustments are discussed in Employment and Earnings, February 1972, April 1973 (note to Table A-1), and February 1978. Some of the official adjustment numbers were obtained directly from the BLS. In the February 1983 issue of Employment and Earnings the household data were revised back to 1970 to reflect the information from the 1980 Census. These revisions did not eliminate the need to make the above adjustments, but they did otherwise make the pre- and post-Census data comparable.

Table A-3 contains the checks on the consistency of the NIA and FFA data. The financial savings of the sectors are defined in Eqs. (1)-(6). The savings must sum to zero across sectors, which is Eq. (7). The savings variables are based on NIA data, and they must match the corresponding variables based on FFA data-Eqs. (8)-(13). Equations (14)-(16) are adding-up checks on the FFA data alone.

Table A-4 presents all the variables in the model. With a few exceptions, the variables are either defined in terms of the raw-data variables in Table A-2 or are determined by identities. The construction of each variable is given in brackets. If the variable is determined by an identity, the notation "Def., eq." appears, where the equation number is the identity in Table A-5 that defines the variable. In a few cases the identity that defines an endogenous variable is not the equation that determines it in the model. For example, Eq. 85 defines $L M$, whereas stochastic equation 8 determines $L M$ in the model. Equation 85 instead determines E, E being constructed directly from raw-data variables. Also, some of the identities define exogenous variables. For example, the exogenous variable $d_{2 g}$ is defined by Eq. 49. In the model Eq. 49 determines $T_{f g}, T_{f g}$ being constructed directly from raw-data variables.

The financial stock variables in the model that are constructed from flow identities need a base quarter and a base quarter starting value. The base quarter values are indicated in the table. The base quarter was taken to be 1971IV, and the stock values for this quarter were taken from the Flow of Funds tape.

There are also a few internal checks on the data in Table A-4. The variables for which there are both raw data and an identity available are GNP, GNPR, $M_{b}, P U_{g}, P U_{s}$, and π_{f}. In addition, the savings variables in Table A-3 (SAH. $S A F$, and so on) must match the savings variables in Table A-4 (S_{h}, S_{f}, and so on). The checks on the savings variables are strong because many variables affect savings. Finally, there is one redundant equation in the model, Eq. 80, which the variables must satisfy.

There are a few variables in Table A-4 whose construction needs some explanation. They are discussed in the following sections.

The Variable H_{f}^{*}

H_{f}^{*} is H_{f} detrended. The trend factor was obtained from a regression of H_{f} on a constant and t for the 1952I-1982III period. The estimate of the coefficient of t was -.56464, and this is the coefficient that is used in the definition of H_{f}^{*} (Eq. 100).

The Variable HO

Data are not available for $H O$ for the first 16 quarters of the sample period (1952I-1955IV). The equation that explains HO in the model has $\log \mathrm{HO}$ on the LHS and a constant and H_{f}^{*} on the RHS. This equation was estimated for the 1956I-1982III period, and the predicted values from this regression for the (outside sample) 1952I-1955IV period were taken to be the actual data. For this work the equation was estimated under the assumption of no serial correlation of the error term. The equation that is actually used in the model is estimated under the assumption of first-order serial correlation.

The Variable JJ*

$J J^{*}$ is $J J$ detrended. The trend factor was obtained from a regression of $\log J J$ on a constant and t for the 1952I-1982III period. The estimate of the coefficient of t was -.00083312, which is the coefficient that is used in the definition of $J J^{*}$ (Eq. 96).

The Parameter γ_{g}

γ_{g} is the progressivity tax parameter in the personal income tax equation for g. It was obtained as follows. The sample period was divided into 15 subperiods, each subperiod corresponding roughly to a period in which there were no major changes in the federal tax laws. The 15 subperiods are 1954I-1963IV, 1964I-1965I, 1965II-1968II, 1968III-1969IV, 1970I-1970IV, 1971I1971IV, 1972I-1972IV, 1973I-1975I, 1975II, 1975III-1976IV, 1971I, 1977II, 1977III-1980IV, 1981I-1981IV, and 1982I-1982III. Two assumptions were then made about the relationship between $T_{\text {hg }}$, personal income taxes, and $Y T$, taxable income. The first is that within a subperiod $T_{h g} / P O P$ is
equal to $\left[d_{1}+\gamma_{g}(Y T / P O P)\right](Y T / P O P)$ plus a random error term, where d_{1} and γ_{g} are constants. The second is that changes in the tax laws affect d_{1} but not γ_{g}. These two assumptions led to the estimation of the following equation:

$$
\begin{align*}
& \frac{T_{h g}}{P O P}=-\underset{(3.39)}{.0187}+\sum_{i=1}^{15} \hat{a}_{i} D U M G_{i} \frac{Y T}{P O P}+\underset{(8.84)}{.015513\left(\frac{Y T}{P O P}\right)^{2}} \tag{A.1}
\end{align*}
$$

$$
\begin{aligned}
& \mathrm{SE}=.00355, \mathrm{R}^{2}=.999, \mathrm{DW}=1.74,1954 \mathrm{I}-1982 \mathrm{III}
\end{aligned}
$$

$D U M G_{i}$ is a dummy variable that takes on a value of one in subperiod i and zero otherwise. \hat{a}_{i} is an estimate of d_{1} for subperiod i. The estimate of the coefficient of (YT/POP) ${ }^{2}, .015513$, is the estimate of γ_{g}. Since (A.1) is only a rough approximation, a constant term was included in the estimated equation even though the above two assumptions do not call for it. When $Y T$ is zero, $T_{h g}$ ought to be zero, but the zero-zero point is so far removed from any observation in the sample period that it seemed unwise from the point of view of approximating the tax system to constrain the equation to pass through this point.

Given $\gamma_{g}, d_{1 g}$ is defined to be $T_{h g} / Y T-\left(\gamma_{g} Y T\right) / P O P$ (see Table A-4). $d_{1 g}$ is taken to be exogenous, and $T_{h g}$ is explained (Eq. 47) as [$d_{1 g}+\left(\gamma_{g} Y T\right) /$ $P O P] Y T$. This treatment allows a marginal tax rate to be defined (Eq. 90): $d_{1 g}^{M}=d_{1 g}+\left(2 \gamma_{g} Y T\right) / P O P$.

The Parameter γ_{s}

γ_{s} is the progressivity tax parameter in the personal income tax equation for s. The same procedure was used to estimate this parameter as was used to estimate γ_{g}. There were 19 subperiods: 1954I-1964IV, 1965I-1965IV, 1966I-1966IV, 1967I-1967IV, 1968I-1968IV, 1969I-1969IV, 1970I1970IV, 1971I-197IIV, 1972I-1972IV, 1973I-1973IV, 1974I-1974IV, 1975I-1975IV, 1976I-1976IV, 1977I-1977IV, 1978I-1978IV, 1979I-

1979IV, 1980I-1980IV, 198II-1981IV, and 1982I-1982III. The estimated equation was
(A.2) $\quad \frac{T_{h s}}{P O P}=-\underset{(12.93)}{-.0157}+\sum_{i=1}^{19} \hat{b}_{i} D U M S_{i} \frac{Y T}{P O P}+\underset{(2.38)}{.0022626}\left(\frac{Y T}{P O P}\right)^{2}$

$$
\begin{align*}
& \hat{b}_{1}=.0352, \hat{b}_{2}=.0344, \hat{b}_{3}=\underset{(17.35)}{.0344,}, \hat{b}_{4}=\underset{(17.53)}{.0351,}, \tag{12.93}\\
& \hat{b}_{5}=\underset{(18.79)}{.0362}, \hat{b}_{6}=\underset{(18.74)}{.0371}, \hat{b}_{7}=\underset{(19.18)}{.0383}, \hat{b}_{8}=\underset{(19.78)}{.0398},
\end{align*}
$$

$$
\hat{b}_{9}=\underset{(20.93)}{.0431}, \hat{b}_{10}=\underset{(19.05)}{.0408}, \hat{b}_{11}=\underset{(18.01)}{.0398}, \hat{b}_{12}=\underset{(18.10)}{.0408}
$$

$$
(20.93) \quad(19.05) \quad(18.01)
$$

$$
\hat{b}_{13}=.0415, \hat{b}_{14}=.0413, \hat{b}_{15}=.0401, \hat{b}_{16}=.0380
$$

$$
(17.60) \quad(16.56) \quad(14.90) \quad(13.09)
$$

$$
\hat{b}_{17}=\underset{(12.32)}{.0379}, \hat{b}_{18}=\underset{(10.99)}{.0368}, \hat{b}_{19}=\underset{(10.82)}{.0375}
$$

$$
\mathrm{SE}=.000780, \mathrm{R}^{2}=.999, \mathrm{DW}=1.82,1954 \mathrm{I}-1982 \mathrm{III}
$$

As can be seen, the estimate of γ_{s} is $.0022626 . d_{1 s}$ is defined to be $T_{h s} /$ $Y T-\left(\gamma_{s} Y T\right) / P O P$ (see Table A-4). The marginal tax rate is defined to be (Eq. 91): $d_{1 s}^{M}=d_{1 s}+\left(2 \gamma_{s} Y T\right) / P O P$.

The Variable V

The base quarter for the stock of inventories, V, was taken to be 1980IV. The base quarter value was 340.6 , which was taken from the Survey of Current Business, July 1981, p. 17.

The Variable $\mathbf{K H}$

KH is an estimate of the stock of housing of the household sector. It is defined by Eq. 59:
59. $K H=\left(1-\delta_{H}\right) K H_{-1}+I H_{h}$.

Given $I H_{h}$, which is constructed from the raw data, $K H$ can be constructed once a base quarter value and a value for the depreciation rate δ_{H} are chosen. Annual estimates of the stock of housing are available through 1975 from the Survey of Current Business, April 1976. The base quarter for $K H$ was taken to be 1963IV, and the base quarter value was taken to be 657.1. This number is
the sum of the last four numbers in the 1963 row in table 8, p. 52, of the April 1976 issue of the Survey. Given this starting point, alternative values of δ_{H} were used to generate different $K H$ series from Eq. 59 . The aim was to find a value that led to fourth-quarter values of $K H$ that were close to the published values. The value of δ_{H} that was chosen was .00655 , which is a depreciation rate of . 655 percent per quarter. The generated value of $K H$ for 1973IV was 905.4, which compares almost exactly to the published value of 905.9. (Again, the 905.9 number is the sum of the last four numbers in table 8, p. 52 , of the Survey.) The generated value for 1974IV was 928.1, which compares to the published value of 923.3 .

The Variable KD

$K D$ is an estimate of the stock of durable goods. It is determined by Eq. 58, which is similar to Eq. 59 for $K H$. Annual estimates of $K D$ are available through 1979 from the Survey, April 1981. The base quarter was taken to be 1964 IV , and the base quarter value was taken to be 249.6 , which is the 1964 value in table 4, p. 65, of the April 1981 issue of the Survey. The value of the depreciation rate, δ_{D}, that led to a good approximation to the published series was 0515 . The generated value of $K D$ for 1979IV was 599.7 , which compares to the published value of 598.3.

The Variable KK

$K K$ is an estimate of the stock of capital of the firm sector. It is determined by Eq. 92 , which is similar to Eqs. 58 and 59 for $K D$ and $K H$. Annual estimates of KK are available through 1979 from the Survey, February 1981. In this case no one depreciation rate could be found that adequately approximated the published data, and in the end two rates were used. The first rate, .0247 , was used from 1952I through 1963IV, and the second rate, .0263 , was used from 1964 I on. The first base quarter was 1952 IV , with a value of 290.3 , and the second base quarter was 1963IV, with a value of 413.0 . The first value is the 1952 value in table 4, p. 60, of the February 1981 issue of the Survey under the column heading "Corporate Nonfinancial." The second value is the value of $K K$ generated for 1963IV using the first depreciation rate. This value compares closely to the published value of 411.3 . The value of $K K$ generated for 1979IV (using the second rate) was 812.5 , which compares to the published value of 806.0.

TABLE A-1. The six sectors in the model

Sector in the model	Corresponding sector [s] in the flow of Funds accou
1. Household (h)	1a. Households, Personal Trusts, and Nonprofit Organizations (H1)
	lb. Farms, Corporate and Noncorporate (FA)
	1c. Nonfarm Moncorporate Business (NN)
2. Firm (f)	2. Nonfinancial Corporate Business, Excluding Farms (F)
3. Financial (b)	3a. Commercial Banking (B1): (1) U.S. Chartered Compercial Banks (2) Domestic Affiliates of Comnercial Banks (3) Foreign Banking Offices in U.S. (4) Banks in U.S. Possessions
	3b. Private Nonbank Financial Institutions (B2): (1) Savings and Loan Associations (2) Mutual Savings Banks
	(3) Credit Unions
	(4) Life Insurance Companies (5) Private Pension Funds
	(6) State and Local Goyermment Employee Retirement Funds
	(7) Other Insurance Companies
	(8) Finance Companies
	(9) Real Estate Investment Trusts
	(10) Open-End Investment Companies (Mutual Funds)
	(11) Money Market Mutual Funds
	(12) Security Brokers and Dealers
4. Foreign (x)	4. Foreign Sector (R)
5. Federal Govermment (g)	5a. U.S. Government (US)
	5b. Federally Sponsored Credit Agencies and Mortgage Pools (CA)
	5c. Monetary Authority (MA)
6. State and Lacal Government	6. State and Local Governments (S)

TABLE A-2. The raw-data variables

| NIA data from the Survey of Current Business | | |
| :--- | :---: | :---: | :---: | :--- |
| | | |
| Variable | Table Line Units | Description |

TABLEE A-2 (continued)

Data from the Flow of Funds tape.
(All flow data are SAQR\$. All stock data are end of quarter in billions of current dollars.)

Vari	Code	Description
79 CDDCF	103020001	Change in Demand Deposits and Currency, F
80 NFIF	105000005	Net Financial Investment, F
81 IHMF	105012205	Residential Construction, Multi-family Units, Nonfinancial Corporate Business
82 IH1F	105012405	Residential Construction, 1-4 Family Structures, Change in Work in Process on Corporate Nonfarm
83 MRS	105030003	Mineral Rights Sales
84 PIEF1	106060005	Profits before Tax, F
85 DISF	107005005	Discrepancy, F
86 CDDCNN	113020003	Change in Demand Deposits and Currency, NN
87 NFINN	115000005	Net Financial Investment, NN
88 IKNN	115013005	Nonresidential Fixed Investment, NN
89 IVNN	115020000	Inventory Investment, NN
90 CCNN	116300005	Capital Consumption, NN. Also, Current Surplus $=$ Gross Saving, NN
91 CDDCFA	133020003	Change in Demand Deposits and Currency, FA
92 NFIFA	135000005	Net Financial Investment, FA

TABLE A-2 (continued)

Variable	Code	Description
93 IKFA	135013003	Nonresidential Fixed Investment, FA
94 IVFA	135020003	Inventory Investment, FA
95 PIEFA	136060003	Corporate Profits, FA
96 DFA	136120003	Dividends, FA
97 TFA	136231003	Tax Accruals, FA
98 CCFA	136300103	Capital Consunption, FA
99 CCADFA	136310103	Capital Consumption Adjustment, FA
100 CDDCHI	153020005	Change in Checkable Deposits and Currency,
101 MVCE, CCE	153064005	Net Purchases of Corporate Equities of Households MVCE is the market value of the stock. CCE is the change in the stock excluding capital gains and losses.
102 NFIH1	155000005	Net Financial Investment, H1
103 IKH1	155013003	Nonresidential Fixed Investment, Nomprofit Institutions
104 DISHI	157005005	Discrepancy, H1
105 NFIS	205000005	Net Financial Investment, S
106 DISS	207005005	Discrepancy, S
107 CDUCS	213020005	Change in Denand Deposits and Currency, S
108 RET	224090005	Retirement Credits to Households, 3
109 CGLDR	263011005	Change in Gold and SDR's, R
110 CDDCR	263020001	Change in U.S. Demand Deposits,
111 CFXUS	263111005	Change in U.S. Official Foreign Exchange and Net IMF position
112 NFIR	265000005	Net Financial Investment, R
113 PIEF2	266060001	Net Corporate Earnings Retained Abroad
114 DISR	267005005	Discrepancy, R
115 Cgldexus	313011005	Change in Gold, Sor's, and Foreign Exchange, US
116 codeus	313020001	Change in Denand Deposits and Currency, US
117 INS	313154005	Insurance Credits to Households, US
118 NFIUS	315000005	Net Financial Investment, US
119 DISUS	317005005	Discrepancy, US
120 CDDCCA	403020000	Change in Demand Deposits and Currency, CA
121 NIACA	404090005	Net Increase in Financial Assets, CA
122 NILCA	404190005	Net Increase in Liabilities, CA
123 SURCA	406006003	Current Surplus of CA
124 DISCA	407005005	Discrepancy, CA
125 NIDDLEB2	493127005	Net Increase in Liabilities in the forn of Checkable Deposits, B2
126 IHBZ	645012205	Residential Construction, Multimfanily Units, Reits
127 CGD	656120000	Capital Gains Dividend
128 CDDCB2	693020005	Change in Demand Deposits and Currency, B2
129 NIAB2	694090005	Net Increase in Financial Assets, B2
130 NILB2	694190005	Net Increase in Liabilities, B2
131 DISB2	697005005	Discrepancy, B2
132 CGLDFXMA	713011005	Change in Gold and Foreign Exchange, MA
133 CFRLMA	713068000	Change in Federal Reserve Loans to Domestic Banks, MA.
134 NILbrma	713113001	Charge in Member Bank Reserves, MA
135 NIDDLRMA	713122605	Change in Liabilities in the form of Demand Deposits and Currency due to Foreign of the MA
136 NIDDLGMA	713123101	Change in Liabilities in the form of Demand Deposits and Currency due to U.S. Government of the MA
137 NILCMA	713125001	Change in Liabilities in the form of Currency Outside Banks of the MA
138 NIAMA	714090005	Net Increase in Financial Assets, MA
139 NILMA	714190005	Net Increase in Liabilities, MA
140 SURMA	716006003	Current Surplus of MA
141 CVCBRB1	723020005	Change in Vault Cash and Member Bank Reserves, B1
142 Nilvema	723025000	Change in Liabilities in the form of Vault Cash of Cowmercial Banks of the MA
143 DISB1	727005005	Discrepancy, Bl
144 NIDDABI	743020003	Net Increase in Financial Assets in the form of Demand Deposits and Currency of Banks in U.S. Possessions
145 NIDDLBI	763120005	Net Increase in Liabilities in the form of Checkable Deposits, B1
146 NIAB1	764090005	Net Increase in Financial Assets, B1
147 NILB1	764190005	Net Increase in Liabilities, B1
148 IKBZ	795013003	Nonresidential Fixed Investment, Financial Corporations
149 MAILFLTI	903023105	Mail Float, U.S. Government
150 MAILFLT2	903029205	Mail Float, Private Donestic Nonfinancial

TABLE A-2 (continued)

Interest rate data	
Variable	Description
151 RS	```Three-Month Treasury Bill Rate (Auction Average), percentage points [FRB, A28. Quarterly average of monthly data.]```
152 RM	Mortgage Rate, percentage points, [FRB, A40. FHA mortgages (HUD series), secondary markets. Quarterly average of monthly data. Linear interpolation for missing monthly observations.]
153 RB	Aaa Corporate Bond Rate, percentage points. [FRB, A28. Quarterly average of monthly data.]
154 RD	Discount Rate, percentage points. [FRB, A7. Rate at F.R. Bank of N.Y. Quarterly average, inclusive of any surcharge.]
Emplayment and population data	
Variable	Description
155 CE	Civilian Erployment, SA in millions. [EE, A-33. Quarterly average of monthly data. See below for adjustments.]
156 CL	Civilian Labor Force, $S A$ in millions, [EE, A-33. Quarterly average of monthly data. See below for adjustments.]
157 CL 1	Civilian Labor Force of Males $25-54$, SA in millions. [EE, p, 132. Quarterly ayerage of monthly data. See below for adjus ments.]
158 CL2	Civilian Labor Force of Females $\mathbf{2 5 - 5 4}$, SA in millions. [EE, P, 133. Quarterly average of monthly data. See below for adjustments.]
159 AF	Amped Forces, millions. [EE, A-33, Quarterly average of monthly data.]
160 AFI	Armed Forces of Males 25-54, millions. IEE, A-3. Total labor force - Civilian labor foree. Quarterly average of monthly data.]
161 AF 2	Armed Forces of Females, 25-54, millions. IEE, A-3. Total labor force - Civilian labor force. Quarterly average of monthly data.]
162 POP	Total noninstitutional population 16 and over, millions. [EE, A-3. Quarterly average of monthly data. See below for adjustments.]
163 POPI	Noninstitutional population of males 25-54, millions. [EE, A-3. Total labor force + Not in labor force, Quarterly average of monthly data. See below for adjustments.]
164 POP2	Noninstitutional population of females $25-54$, millions. [EE, A-3. Total labor force + Not in labor force. Quarterly average of monthly data. See below for adjustments.]
165 JF	Employment, Total Private Sector, All Persons, SA in millions. [BLS, unpublished, "Basic Industry Data for the Total Private Sector, A11 Persons." November 29, 1982.]
166 HF	Average Weekly Hours, Total Private Sector, All Persons, SA. [BLS, umpublished, "Basic Industry Data for the Total Private Sector, All persons." Noveraber 29, 1982.]
167 H0	Average Weekly Overtime Hours in Manufacturing, SA. [EE, C-6. Quarterly average of monthly data,]
168 JQ	Total Government Eraployment, SA in millions. [EE, B-4. Quarterly average of monthly data.]
169 JG	Federal Government Employment, SA in millions. [EE, B-4. Quarterly average of monthly data.]
170 JHQ	Total Government Employee Hours, SA in millions of hours per quarter. [EE, C-9. Quarterly average of monthly data.]

TABLE A-2 (continued)

```
Adjustments to the raw data
171 SIHG = (SIHGA/(SIHGA + SIHSA)) (SIG + SIS - SIT)
    [Contributions for Social Insurance, h to g.]
172 SIHS = SIG + SIS - SIT - SIHG
    [Contributions for Social Insurance, h to s.]
173 SIFG = (SIFGA/ (SIFGA + SIQGA) ) (SIG - SIHG)
    [Contributions for Social Insurance, f to g.]
174 SIGG = SIG - SIHG - SIFG
    [Contributions for Social Insurance, g to g.]
175 SIFS = [SIPSA/ (SIFSA + SIQSA)) (SIS - SIHS)
            [Contributions for Social Insurance, f to s.]
176 SISS = SIS - SIHS - SIFS
            [Contributions for Social Insurance, s to s.]
177 TBG = (TCG/(TCG + TCS) ) (TCB - TCBN)
            [Corporate Profit Tax Aceruals, b to g.]
178 TBS = TCB - TCBN - TBG
    [Corporate Profit Tax Accruals, b to s.]
51 TPG = TPG from raw data - TAXADJ
56 TRGH = TRGH from raw data + TAXADS
    [TAXADJ: 1968 III = 1.525, 1968 IV = 1.775, 1969 1 = 2.675,
        1969 II =2.725, 1969 III = 1.775, 1969 IV = 1.825,
        1970 I = 1.25, 1970 II = 1.25, 1970 111 = .1,
        1975 II = -7.8.]
```

Multiplication factors (See the discussion in Appendix A.)

1952 I	1952 I	1951	1952 I
-1971	IV	-1972 IV	

POP	1.00547	1.00009	1.00006	-
POP1	. .99880	1.00084	1.00056	-
POP2	1.00251	1.00042	1.00028	-
CL	1.00391	1.00069	1.00046	1.00239
CL1	.99878	1.00078	1.00052	1.00014
CL2	1.00297	1.00107	1.0071	1.00123
CE	1.00375	1.00069	1.00046	1.00268

Abbreviations
BLS Bureau of Labor Statistics
CC Capital Consumption Allowances with Capital Consumption Adjustment
EE Employment and Earnings. February 1982
FRB Federal Reserve Bulletin, Novenber 1982
SA Seasonally Adjusted
SAQR Seasonally Adjusted at Quarterly Rates in Billions of 1972 Dollars
SAQRS Seasonally Adjusted at guarterly Rates in Billions of Current Dollars
YEARS Annual Data, Billions of Current Dollars.
For the construction of variabies $171-176$, the same yearly observation was used for each quarter of the year.

See Table A-1 for abbreviations: B1, B2, CA, F, FA, H1, MA, NN, R, S, US.

TABLE A-2 (continued)

Alphabetical listing of the raw-data variables							
Variable	Number	Variable	Number	Variable	Nunber	Variable	Number
AF	159	DISCA	124	MAILFLT1	149	RB	153
AF1	160	DISF	85	MAILFLT2	150	RD	154
AF2	161	DISH1	104	MRS	83	RET	108
CCADCB	41	DISR	114	MVCE	101	RM	152
CCADCBN	46	DISS	106	NFIF	80	RNT	48
CCADFA	99	DISUS	119	NFIFA	92	RS	151
CCCB	36	DPER	30	NFIH1	102	SIFG	173
CCCEN	42	EX	17	NFINN	87	SIFGA	75
CCE	101	ExZ	8	NFIR	112	SIFS	175
CCFA	98	FA	24	NFIS	105	SIFSA	$\begin{array}{r}78 \\ \hline\end{array}$
CCNN	90	FAZ	21	NFIUS	118	SIG	54
CCT	27	GNP	1	NIAB1	146	SIGG	174
CD	11	GNPR	10	NIAB2	129	SIHG	171
CDDCB2	128	$\mathrm{HF}^{\text {c }}$	166	NIACA	121	SIHGA	73
CDDCCA	120	HO	167	NIAMA	138	SIHS	172
CDDCF	79	IBTG	53	NIDDAB1	144	SIHSA	76
CDDCFA	91	TBTS	65	NTDDLBI	145	SIQGA	74
CDDCHE	100	IH	15	NIDDLB2	125	SIQSA	77
CDDCAN	86	IHBZ	126	NIDDLGMA	136	SIS	66
CODCR	110	IHMF	81	NIDDLRMA	135	SISS	176
CDDCS	107	HH 2	6	NTLBRMA	134	SIT	33
CDDCUS	116	IHIF	82	NILB1	147	STAT	28
CDZ	2	IK	14	NILB2	130	SUBG	61
CE	155	IKB2	148	NILCA	122	SUBS	70
CFRLMA CEXUS	133	IKFA	93	NILCMA	137	SURCA	123
CGXUS	111	IKH1	103	NILMA	139	SURMA	140
CGLDFXMA	132	IKN	88 5	NILVCMA	142	TBG	177
CGLDFXUS	115	IM	18	PIECBN	37 43	TBS	178
CGLDR	109	IMZ	9	PIEFA	95	TCBN	44
CL	156	INS	117	PIEF1	84	TCG	52
CLI	157	INTF	35	PIEF2	113	TCS	64
CL2	158	INTG	59	POP	162	TFA	97
CN	12	INTGR	60	POP1	163	TPG	51
CNZ	3	INTS	69	POP2	164	TPS	63
COMPMIL	72	IV	16	PRI	47	TRFH	31
CS	13	IVA	40	PROG	25	TRGH	56
$\mathrm{CSZ}_{\text {CVCBRB1 }}$	4 141	IVFA	94	PROGZ	22	TRGR	57
CVCBRB1 DC	141 34	IVN	89	PROS	26	TRGS	58
DCB	39	JF	165	PROSZ PURG	23	TRHR	50
DCBN	45	JG	169	PURG	59	TRRSH UB	68
DFA	96	JHQ	170	PURS	20	WLDF	29
DISB1	143	JQ	168	PURSZ	67	WLDG	62
DISB2	131					WLDS	71

1.1	HH	None
1.2	FH	```COMPT - PROGZ -- PROSZ - (SIT - SIGG - SISS) - WLDF - SUBG - SUBS + PRI + PNT + INTF + TRFH + DCBN + DC - DFA - DCB + PIEFA + CCT - CCCB + CCFA```
1.3	BH	DCB - DCBN + CGD
1.4	RH	None
1.5	GH	PROGZ - SIGG - WLDG + TRGH + INS + INTG - INTGR + SUBG
1.6	SH	PROSZ - SISS - WLDS + TRRSH + RET + INTS + DP - DC + SUBS
2.1	HF	$\begin{aligned} & \mathrm{CSZ} \\ & +\mathrm{CN} Z+\mathrm{CDZ}-\mathrm{IBTG}-\mathrm{IBTS}-\mathrm{IM} 2-\mathrm{PJECB}+\mathrm{PIECBN}-\mathrm{CCCB} \\ & \quad+\mathrm{IKFA}+\mathrm{IKCADCB}+\mathrm{CCADCBN}+\mathrm{IHZ}-\mathrm{IH} 1 F-\mathrm{IHMF}-\mathrm{IHBZ}+\mathrm{IKHz} \\ & \end{aligned}$
2.2	FF	IH1F + IHMF + IKZ - IKH1 - IKFA - IKNN - IKBZ + IVZ - IVFA - IVNN
2.3	BF	IHBZ + IKBZ
2.4	RF	EXZ
2.5	GF	PURGZ - PROGZ
2.6	SF	PURSZ - PROSZ
3.1	HB	PLECB - PIECBN + CCCB - CCCBN + CCADCB - CCADCBN
3.2	FB	None
3.3	BB	None
3.4	RB	None
3.5	GB	None
3.6	SB	None
4.1	HR	IMZ + TRHR
4.2	FR	None
4.3	BR	None
4.4	RR	None
4.5	GR	TRGR + INTGR
4.6	SR	None
5.1	HC	TPG + TFA + IBTG + SIHG
5.2	FG	TCG - TFA - TBG + MRS + SIFG
5.3	BG	TBG + SURCA + SURMA
5.4	RG	None
5.5	GG	SIGG
5.6	SG	None
6.1	HS	TPS + IBTS + SIHS
6.2	FS	TCB - TCG - TBS + SIFS
6.3	BS	TBS
6.4	RS	None
6.5	CS	TRGS
6.6	SS	SISS

Savings of the sectors:
(1) $\quad \mathrm{SAH}=\mathrm{FH}+\mathrm{BH}+\mathrm{GH}+\mathrm{SH}-(\mathrm{HF}+\mathrm{HB}+\mathrm{HR}+\mathrm{HG}+\mathrm{HS})$
(2) $\mathrm{SAF}=\mathrm{HF}+\mathrm{FF}+\mathrm{BF}+\mathrm{RF}+\mathrm{GF}+\mathrm{SF}-(\mathrm{FH}+\mathrm{FF}+\mathrm{FG}+\mathrm{FS})$
(3) $S A B=H B-(B H+B F+B S+B G)$
(4) $S A R=H R+G R-R F$
(5) $S A G=H G+F G+B G+G G \sim(G H+G F+G R+G S+G G)$
(6) $\mathrm{SAS}=\mathrm{HS}+\mathrm{FS}+\mathrm{BS}+\mathrm{GS}+\mathrm{SS}-(\mathrm{SH}+\mathrm{SF}+\mathrm{SS})$

Checks:

```
(7) \(0=S A H+S A F+S A B+S A R+S A G+S A S\)
(8) \(\mathrm{SAH}=\mathrm{NIFIHI}+\mathrm{NFIFA}+\mathrm{NFINN}+\) DISH1
(9) SAF \(=\) NFIF + DISF + WLDF + STAT
(10) \(S A B=N I A B 1-N I L B 1+N I A B 2-N I L B 2+D I S B 1+D I S B 2\)
(11) \(\mathrm{SAR}=\mathrm{NFIR}+\mathrm{DISR}\)
(12) SAG \(=\) NFIUS + NIACA - NILCA + NIAMA - NILMA + DISUS + DISCA
(13) 5 AS \(=\) NFIS + DISS
(14) \(0=-\mathrm{NIDDLB} 1+\mathrm{NIDDAB} 1+\mathrm{CDDCB} 2-\mathrm{NIDDLB} 2+\mathrm{CDDCF}+\mathrm{MAILFLT} 1\)
    + MAILFLT2 + CDDCUS + CDDCCA - NIDDLRMA - NIDDLGMA + CDDCH1
    + CDDCFA + CDDCNN + CDDCR + CDDCS - NILCMA
(15) \(0=\) CVCBRB1 - NILBRMA - NILVCMA
(16) \(0=\) CGLDR - CFXUS + CGLDFXUS + CGLDFXMA
```

```
Notes: * IJ = receipts from I to J; I, J = H, F, B, R, G, S.
    * See Table A-2 for the definitions of the variables.
```

Name	Equation number	Description
A_{b}	73	Net financial assets, b, B\$. [Def., eq. 73. Base Period $=1971$ IV, Value $=250.697$.]
A_{f}	70	Net financial assets, $\mathrm{f}, \mathrm{B} \$$. [Def., eq. 70. Base Period $=1971$ IV, Value $=-240.261$.
${ }^{\text {A }} \mathrm{g}$	77	Net financial assets, g, B\$. [Def., eq. 77. Base Period $=1971 \mathrm{IV}$, Value $=-214.404$.]
A_{h}	66	Net financial assets, $h, B \$$. [Def., eq, 66. Base Period $=1971$ IV, Value $=1321.270$.]
A_{r}	75	Net financial assets, $\mathrm{r}, \mathrm{B} \$$. [Def., eq. 75. Base Period $=1971$ IV, Value $=-31.570$.
A_{S}	79	Net financial assets, s, B\$. [Def., eq. 79. Base Period $=1971 \mathrm{IV}$, Value $=-105.872$.
AA	89	Total net wealth, h, B72\$. [Def., eq. 89.]
BO	22	Bank borrowing from the Fed, B $\$$. [Sum of CFRLMA. Base Period $=1971 \mathrm{IV}$, Value $=.039$.
BR	57	Total bank reserves, B\$. [Sum of CyCBRB1. Base Period $=1971 \mathrm{IV}$, Value $=35.329$.]
C_{g}	0	Purchases of goods, g, B72\$. [PURG - PROG]
C_{s}	0	Purchases of goods, 5, B72\$. [PURS - PROS]
CC_{b}	0	Capital consumption, b, B72\$. $[([C C B+C C A D C B-C C C B N-C C A D C B N) / P X$. See below for PX.]
CC_{f}	21	Capital consumption, $\mathbf{f}, \mathbf{B} \$$. [CCCBN + CCADCBN - CCFA - CCADFA]
CC_{h}	0	Capital consumption, h, B\$. $[\mathrm{CCT}-\mathrm{CCCB}+\mathrm{CCFA}]$
CD	3	Consumer expenditures for durable goods, B72\$. [CD]
CF	68	Cash flow, f, B\$. [Def., eq. 68.]
CG	25	Capital gains (+) or losses (-) on corporate stocks held by the household sector, $\mathrm{B} \$$. [NVCE - NCE ${ }_{-1}$ - CCE]
CN	2	Consumer expenditures for nondurable goods, B72\$. [CN]
cs	1	Consuner expenditures for services, B72\$. [CS]
CuR	26	Currency held outside banks, B\$. [Sum of NILCMA. Base Period $=1971$ IV, Value $=53.438$.
$\mathrm{d}_{1 \mathrm{~g}}$	0	Personal income tax parameter, g. [Def., eq. 47.]
$\mathrm{d}_{1 \mathrm{~g}}^{\mathrm{N}}$	90	Marginal personal income tax rate, g. [Def., eq. 90.]
$\mathrm{d}_{1 \mathrm{~s}}$	${ }^{0}$	Personal income tax parameter, s. [Def., eq, 48.]
$\mathrm{d}_{1 \mathrm{~s}}$	91	Marginal personal income tax rate, s. [Def., eq. 91.]
$\mathrm{d}_{2 \mathrm{~g}}$	0	Profit tax rate, g. [Def., eq. 49.]
$\mathrm{d}_{2 \mathrm{~s}}$	0	Profit tax rate, s. [Def., eq. 50.]
${ }^{\text {dg }}$	0	Indirect business tax rate, g. [Def., eq. 51.]
$\mathrm{d}_{3 \mathrm{~s}}$	0	Indirect business tax rate, s. [Def., eq. 52.]
$\mathrm{d}_{4 \mathrm{~g}}$	0	Employee social security tax rate, g. [Def., eq. 53.]
$\mathrm{d}_{4 \mathrm{~s}}$	0	Employee social security tax rate, s. [Def., eq. 54.]
$\mathrm{d}_{5 \mathrm{~g}}$	0	Employer social security tax rate, g. [Def., eq. 55.]
$\mathrm{d}_{5 \mathrm{~s}}$	0	Employer social security tax rate, s. [Def., eq. 56.]
D593	0	1 in 1959 III; 0 otherwise.
D594	0	1 in 1959 N ; 0 otherwise.
D601	0	1 in 1960 I; 0 otherwise.
D651	0	1 in 19651 ; 0 otherwise.
D652	0	1 in 1965 II; 0 otherwise.
0691	0	1 in 1969 I; 0 otherwise.
D692	0	1 in 1969 II; 0 otherwise.

Name	Equation number	Description
0714	0	1 in 1971 IV; 0 otherwise.
D721	0	1 in 1972 I; 0 otherwise.
DD793	0	1 fron 1979 III on; 0 otherwise.
DD811	0	1 from 1981 I on; 0 otherwise.
D_{b}	0	Dividends paid, b, B\$. $[\mathrm{DCB}-\mathrm{DCBN}+\mathrm{CGD}]$
D_{f}	18	Dividends paid, $f, B \$$. [DC - DFA - (DCB - DCBN)]
$\mathrm{OHS}_{\mathrm{b}}$	0	Discrepancy for $b, B \$$. [DISB1 + DISB2]
$\mathrm{DIS}_{\mathbf{f}}$	0	Discrepancy for $f, B \$$. [DISF]
$\mathrm{DIS}_{\mathrm{g}}$	0	Discrepancy for $\mathrm{g}, \mathrm{B} \$$. [DISUS + DISCA]
DIS_{h}	0	Discrepancy for h, $B \$$. [DISHI]
DIS $_{\text {r }}$	0	Discrepancy for r, B\$. [DISR]
DIS_{s}	0	Discrepancy for $s, B \$$. [DISS]
DR_{s}	0	Dividends received by $s, 8 \$$. [DC - DPER]
E	85	Total employment, civilian and military, millions. $[C E+A F]$
EX	0	$\begin{aligned} & \text { Exports, B72\$. } \\ & {[E X]} \end{aligned}$
EXP_{g}	106	Total expenditures, $\mathrm{g}, \mathrm{B} \$$. [Def., eq. 106.]
EXP_{s}	113	Total expenditures, $s, B \$$. [Def., eq. 113.]
EA	0	Farm gross product, B72\$. [PA]
g_{1}	0	Reserve requirement ratio. [Def., eq. 57.]
GNP	82	Gross National Product, B\$. [Def., eq. 82, or GNP.]
GNPD	84	GNP deflator. [Def., eq. 84.]
GNPR	83	Gross National Product, B72\$. [Def., eq. 83, or GNPR.]
GNPR*	- 0	```High activity level of GNPR, B72$. [Peak to peak interpolation of GNPR. Peak quarters are 1952 I - 1953 II, 1955 III, 1960 I, 1962 II, 1966 I, 1968 II-1969 II, 1973 I, and 1978 IV.]```
H_{f}	14	Average number of hours paid per job, f, hours per quarter. [$13 \cdot \mathrm{HF}$]
$\mathrm{H}_{\mathbf{f}}^{*}$	100	H_{f} detrended. [Def., eq. 100.]
H_{8}	0	```Average number of hours paid per civilian job, g, hours per quarter. [JHQ/JQ]```
$\mathrm{H}_{\text {IB }}$	0	Average number of hours paid per military job, g, hours per quarter. $[520 .]$
H_{5}	0	Average number of hours paid per job, s, hours per quarter. [JHQ/JQ]
HN	62	Average number of non overtime hours paid per job, f, hours per quarter. [Def., eq. 62.]
HO	15	```Average number of avertime hours paid per job, f, hours per quarter. [13-HO. Constructed values for 1952 I - 1955 IV. See the discussion in Appendix A.]```
${ }^{18 T}{ }_{\mathrm{g}}$	51	Indirect business taxes, $g, B \$$. [IBTG]
${ }^{\text {IBT }}$	52	Indirect business taxes, $s, B \$$. [IBTS]
IH_{b}	0	Housing investment, b, B72\$. [$\mathrm{IHBZ} /(\mathrm{IHZ} / \mathrm{IH})]$
$\mathrm{IH}_{\mathbf{f}}$	0	Housing investment, f, B72\$. $[(\mathrm{IH} 1 \mathrm{~F}+\mathrm{IHMF}) /(\mathrm{IHz} / \mathrm{IH})]$
IH_{h}	4	Housing investment, $h, B 72 \$$. $[(1 H Z-I H I F-I H M F-I H B Z) /(1 H Z /[E)]$

TABLE A-4 (continued)

Name	Equation number	Definition
1 Kb	0	Plant and equipment investment, b, B72\$. [IKBZ/(IKZ/IK])
IK_{E}	12	Plant and equipment investment, $f, B 72 \$$. $[(1 K Z-I K H 1-I K F A-I K N N-I K B Z) /(I K Z / I K)]$
IK ${ }_{\text {h }}$	0	Plant and equipment investment, $h, B 72 \$$. $[(I K H 1+I K N N+I K F A) /(I K Z / I K)]$
IM	27	Imports, B72\$. $[\mathrm{IM}]$
INS	0	Insurance credits to households from $g, B \$$. [INS]
${ }_{\text {INT }}{ }_{\mathbf{E}}$	19	Interest payments, $f, B \$$. [INTF]
$\mathrm{INT}_{\mathrm{g}}$	29	Interest payments, $\mathrm{g}, \mathrm{B} \$$. [INTG]
INT $_{\text {gr }}$	0	Interest payments to r from $g, B \$$. [INTGR]
$\mathrm{INT}_{\mathbf{S}}$	0	Interest payments, s, B\$. [INTS]
$I_{\text {f }}$	117	Inventory investment, f, B72\$. [(IVZ - IVFA - IVNN)/PIV]
IV ${ }_{\text {h }}$	0	Inventory investment, $h, B 72 \$$. [(IVFA + IVNN)/PIV]
IVA	20	Inventory valuation adjustment, $\mathrm{B} \$$. [IVA]
$J_{\text {f }}$	13	Number of jobs, f, millions. $[\mathrm{JF}]$
J_{g}	0	Number of civilian jobs, g, millions. [JG]
J_{16}	0	Number of military jobs, g, millions. [AF]
J_{s}	0	Number of jobs, s, millions. [JQ-JG]
JHMIN	94	Number of worker hours required to product γ, millions. [Def., eq. 94.]
JJ	95	Ratio of the total number of worker hours paid for to the total population 16 and over. [Def., eq. 95.]
J.J*	96	JJ detrended. $\text { [Def., eq. } 96 .]$
KD	58	Stock of durable goods, B72\$. [Def., eq. 58. Base Period $=1964$ IV, Value $=249.6$, Dep. Rate $=.0515$.
${ }_{\mathrm{K}}^{\mathrm{H}}$	59	```Stock of housing, h, B72$. [Def., eq. 59. Base Period = 1963 IV, Value = 657.1, Dep. Rate = .00655.]```
kK	92	```Stock of capital, f, B72$. [Def., eq. 92. Base Period 1 = 1952 IV, Value = 290.3, Dep. Rate = .0247; Base Period 2 = 1963 IV, Value = 413.0, Dep. Rate = .0263.]```
KKMIN	93	Amount of capital required to produce Y, B72\$. [Def., eq. 93.]
L1	5	Labor force of males $25-54$, millions. [CL1 + AF1]
L2	6	Labor force of females, 25-54, millions. [CL2 + AF2]
L3	7	Labor force of all others, millions. $[C L+A F-C L 1-A F 1-C L 2-A F 2]$
LM	B	Number of "moonlighters": difference between the total number of jobs (establishment data) and the total number of people employed (household survey data), millions. [Def., eq. 85.]
Mb_{b}	71	Net demand deposits and currency, b, B\$. [Def., eq. 71. Also sum of -NIDDLB1 + NIDDAB1 + CDDCB2 - NIDDLB2. Base Period $=1971 \mathrm{TV}, \mathrm{Value}=-189.409$.
M_{f}	17	```Demand deposits and currency, f, BS. [Sum of CDDCF + MAILFLTL + MAILFLT2. Base Period # 1971 IV, Value = 64.905.]```
M_{g}	0	```Demand deposits and currency,g, B$. [Sum of CDDCUS + CDDCCA - NIDDLRMA - NIDDLGMA. Base Pexiod = 1971 IV, Value = 10.530.]```
M_{h}	9	Demand deposits and currency, h, B\$. [Sum of CDDCHl + CDDCPA + CDDCNN. Base Period $=1971 \mathrm{IV}$, Value $=149.448$.
$\mathrm{M}_{\mathbf{r}}$	0	Demand deposits and currency, $r, B \$$. [Sum of CDDCR, Base Period $=1971 \mathrm{IV}$, Value $=6.503$.]

TABLE A-4 (continued)

Name	Equation number	Description
M_{s}	0	Demand deposits and currency, $s, B \$$. [Sum of CODCS. Base Period $=1971$ IV, Value $=11.966$.]
MDIF	0	Net increase in demand deposits and currency of banks in U.S. possessions plus change in demand deposits and currency of private nonbank financial institutions plus change in demand deposits and currency of federally sponsored credit agencies and mortgage pools minus mail float, U.S. government, B\$. $[\mathrm{NIDDAB1}+\mathrm{CDDCB} 2+\operatorname{CDOCCA}-\mathrm{MAILFLT} 1]$
MRS	0	Mineral rights sales, B\$. [MRS]
M1	81	Money supply, B\$. [Def., eq. 81. Base Period $=1971$ IV, Value $=247.136$.]
P_{f}	10	Price deflator for X-FA. [Def., eq. 31.]
P_{g}	40	Price deflator for C_{g}.
$\mathrm{P}_{\text {h }}$	34	[(PURGZ - PROGZ)/(PURG - PROG)] Price deflator for domestic sales exclusive of indirect. business taxes. [Def., eq. 34]
$\mathrm{P}_{\text {s }}$	41	Price deflator for C_{S}.
PCGNPD	122	$[(P U R S Z ~-~ P R O S Z) /(P U R S ~-~ P R O S)] ~$ Percentage change in GNPD, annual rate, percentage points
PCGNPR	123	[Def., eq. 122.] Percentage change in GNPR, annual rate, percentage points. [Def., eq. 123.]
PCM1	124	Percentage change in M1, amual rate, percentage points. [Def., eq. 124.]
PCD	37	Price deflator for CD. [CDZ/CD]
PCN	36	Price deflator for CN. [$\mathrm{CN} 2 / \mathrm{CN}]$
PCS	35	Price deflator for CS. [CSZ/CS]
PD	33	Price deflator for $\mathrm{X}-\mathrm{EX}+\mathrm{IM}$ (domestic sales) [Def., eq. 33.]
PEX	32	Price deflator for EX. [EXZ/EX]
PFA	0	Price deflator for FA. [FAZ/FA]
PIH	38	Price deflator for housing investment. $[\mathrm{IHz} / \mathrm{IH}]$
PIK	39	Price deflator for plant and equipment investment. $[\mathrm{IKZ} / \mathrm{IK}]$
PIM	0	Price deflator for $1 M$. [IMZ/IM]
PIV	42	Price deflator for inventory investrent, adjusted. [IVZ/IV. The following adjustments were made: $\begin{aligned} & 1953 \text { III }=.7637,1958 \mathrm{III}=.7981,1959 \mathrm{III}=.7956, \\ & 1975 \mathrm{III}=1.4110,1975 \mathrm{IV}=1.4110,1979 \mathrm{IV}=1.5000, \\ & 1980 \mathrm{I}=1.5000,1980 \mathrm{II}=1.5000,1981 \mathrm{I}=3.0000 .] \end{aligned}$
POP	120	Noninstitutional population 16 and over, millions. [POP. POP is the sum of three exogenous variables and so it is in fact exogenous.]
POP1	0	Noninstitutional population of males 25-54, millions. [POP1]
POP2	0	Noninstitutional population of females $25-54$, millions. [POP2]
POP3	0	Noninstitutional population of all others, millions. [POP - POP1 - POP2]
PROD	118	Output per paid for worker hour ("productivity"). [Def., eq. 118.]
PU_{g}	104	Purchases of goods and services, g, B\$. [Def., eq. 104, or PURGZ.]
Pu_{s}	110	Purchases of goods and services, $s, B \$$. [Def., eq. 110, or PURSZ.]
PX	31	Price deflator for X , $[\mathrm{COZ}+\mathrm{CNZ}+\mathrm{CSZ}+\mathrm{IHZ}+\mathrm{IKZ}+\mathrm{PURGZ}-\mathrm{PROGZ}+\mathrm{PURSZ}$ - PROSZ + EXZ - IMZ - IBTG - IBTS - IVFA + IVNN $) /(C D+$ $+\mathrm{CN}+\mathrm{CS}+\mathrm{IH}+\mathrm{IK}+\mathrm{PURG}-\mathrm{PROG}+\mathrm{PURS}-\mathrm{PROS}+\mathrm{EX}-\mathrm{IM}$ + (IVFA + IVNN)/PIV)]
Q	0	Gold and foreign exchange, g, $\mathrm{B} \$$. [Sum of CGLDFXUS + CGLDFXMA. Base Period $=1971 \mathrm{IV}$, Value $=12.167$.

Name	Equation number	Definition
RB	23	Bond rate, percentage points. [RB]
RD	${ }_{0}$	Discount rate, percentage points. [RD]
REC_{g}	105	Total receipts, $\mathrm{g}, \mathrm{B} \$$. [Def., eq. 105.]
REC_{s}	112	Total receipts, $5, \mathrm{~B} \$$. [Def., eq. 112.]
RET	0	Retirement credits to households from $s, B \$$. [RET]
RM	24	Nortgage rate, percentage points. [RM]
RMA	128	After tax mortgage rate, percentage points. [Def., eq. 128.]
RNT	0	Rental income, $\mathrm{h}, \mathrm{B} \$$. [RNT]
RS	30	Three month bill rate, percentage points. [RS]
RSA	130	After tax bill rate, percentage points. [Def., eq. 130.]
S_{b}	72	Savings, $b, B \$$. [Def., eq. 72.]
S_{f}	69	Savings, f, B\$. [Def., eq. 69.]
S_{8}	76	Savings, g, B\$. [Def., eq. 76.]
S_{g}^{\prime}	107	NIA surplus (+) or deficit (-), g, B\$. [Def., eq. 107.]
S_{h}	65	Savings, h, B\$. [Def., eq. 65.]
s_{r}	74	Savings, $r, B \$$. [Def., eq. 74.]
S_{s}	78	Savings, $s, B \$$. [Def., eq. 78.]
$\mathrm{S}_{\mathbf{s}}{ }^{\text {d }}$	114	NIA surplus (+) or deficit (-), s, B\$. [Def., eq. 114.]
$\mathrm{SHRT}_{\mathrm{f}}$	121	Ratio of after tax profits to the wage bill net of employer social security taxes. [bef., eq. 121.]
SI_{8}	103	Total social insurance contributions to g, B. [SIG]
SI_{5}	109	Total social insurance contributions to $\mathrm{s}, \mathrm{B} \$$. [SIS]
$\mathrm{SI}_{\mathrm{fg}}$	55	Social insurance contributions, f to $g, B \$$. [SIFG]
$\mathrm{SI}_{\text {fs }}$	56	Social insurance contributions, f to $s, B \$$. [SIFS]
$\mathrm{SI}_{\mathrm{gg}}$	0	Social insurance contributions, 8 to $g, B \$$. [SIGG]
$\mathrm{SI}_{\mathrm{hg}}$	53	Social insurance contributions, h to $g, B \$$. [SIHG]
$\mathrm{SI}_{\text {hs }}$	54	Social insurance contributions, h to $s, B \$$. [SIHS]
$\mathrm{SI}_{\text {ss }}$	0	Social insurance contributions, s to $s, B \$$. [SISS]
SP	-	```Stock price, B$. [Sum of CG. Base Period = 1971 IV, value = 832.806. This variable is only used for the USRE2 model in Section 11.7. See equation (11.21).]```
SR	116	Savings rate, h. [Def., eq. 116.]
STAT	0	Statistical discrepancy, $\mathrm{B} \$$. [STAT]
$\mathrm{SUB}_{\mathrm{g}}$	0	Subsidies less current surplus of government enterprises, g, B\$. [SUBG]
SUB_{5}	0	Subsidies less current surplus of govermment enterprises, s, B\$. [SUBS]
SUR	0	Current surplus of federally sponsored credit agencies and mortgage pools and of the monetary authority, $B \$$. [SURCA + SURMA]
t	0	1 in $1952 \mathrm{I}, 2$ in 1952 II , etc.

- Name	Equation number	Definition
T_{bg}	0	Corporate profit taxes, b to $g, B \$$. [TBG]
T_{bs}	0	Corporate profit taxes, b to $s, B \$$. [TBS]
T_{fg}	49	Corporate profit taxes, f to $\mathrm{g}, \mathrm{B} \$$. [Def., eq. 102.]
${ }^{T} \mathbf{f s}$	50	Corporate profit taxes, f to $s, B \$$. [Def., eq. 108.]
$\mathrm{T}_{\text {hg }}$	47	Personal income taxes, h to $g, B \$$. [Def., eq. 101.]
T_{hs}	48	Personal income taxes, h to $s, B \$$. [TPS]
TC_{g}	102	Corporate profit tax receipts, g, B\$. [TCG]
TC_{5}	108	Corporate profit tax receipts, s, $\mathrm{B} \$$. [TCS]
TPA	0	Farm taxes, B\$. [TPA]
TP_{g}	101	Personal income táx receipts, g, $B \$$. [TPG]
$\mathrm{TR}_{\mathrm{fh}}$	0	Transfer payments, f to $\hbar, B \$$. [TRFH]
$\mathrm{TR}_{\mathrm{gh}}$	0	Transfer payments, g to $h, B \$$. [TRGH]
$\mathrm{TR}_{\mathrm{gr}}$	0	Transfer payments, g to $r, B \$$. [TRGR]
$\mathrm{TR}_{\mathrm{gs}}$	0	Transfer payments, g to $s, B \$$. [TRGS]
$\mathrm{TR}_{\mathrm{hr}}$	0	Transfer payments, h to $r, B \$$. [TRHR]
TR ${ }_{\text {sh }}$	0	```Transfer payments, s to h, excluding unemployment insurance benefits, B$. [Def., eq. 111.]```
$\mathrm{TRR}_{\text {sh }}$	111	Total transfer payments, s to $h, B \$$. [TRRSH]
U	86	Number of people unemployed, rillions. [Def., eq. 86.]
UB	28	Unemployment insurance benefits, B\$. [UB]
UBR	125	Unborrowed reserves, B\$. [Def., eq. 125.]
UR	87	Civilian unenployment rate. [Def., eq. 87.]
V	63	Stock of inventories, $\mathrm{f}, \mathrm{B72} \mathrm{\$}$. [Def., eq. 117. Base Period $=1980$ IV, Value $=340.6$.]
${ }_{\mathrm{N}} \mathrm{f}$	16	Average hourly earnings excluding overtime of workers in f. [(COMPT - PROGZ - PROSZ - (SIT - SIGG - SISS) - WLDF + PRI) $/(\mathrm{JF}(\mathrm{HF}+.5 \mathrm{HO}))]$
W_{g}	44	Average hourly earnings of civilian workers in g. [(PROGZ - COMPMLL - SIGG - WLDG) / (JG(JHQ/JQ))]
W_{h}	43	Average hourly earnings excluding overtine of all workers. [Def., eq. 43.]
W_{La}	45	Average hourly earnings of military workers. [COMPMIL/ (520*AF)]
$\mathrm{W}_{\text {S }}$	46	Average hourly earnings of workers in 5 . [(PROSZ - SISS - WLDS $) /[(\mathrm{JQ}-\mathrm{JG})(\mathrm{JHO} / \mathrm{JQ})]]$
WA	126	After tax wage rate. [Def., eq. 126.]
$W^{\text {LD }}$	0	Wage accruals less disbursements, f, B\$. [WLDF]
W_{g}	0	Wage accruals less disbursements, $\mathrm{g}, \mathrm{B} \$$. [WLDG]
$\mathrm{WLD}_{\mathbf{S}}$	0	Wage accruals less disbursements, $5, B \$$. [WLDS]
WR	119	Real wage rate of workers in f. [Def., eq. 119.]
X	60	Total sales, $\mathrm{f}, \mathrm{B} 72 \$$. [Def., eq. 60.]

Name	Equation number	Definition
xx	61	Total sales, $\mathrm{f}, \mathrm{B} \$$. [Def., eq. 61.]
Y	11	Production, f, B72S. [Def., eq. 63.]
YO	115	Disposable income, $h, B \$$. [Def., eq. 115.]
YN	88	After tax nonlabor income, $h, B \$$. [Def., eq. 88.]
YT	64	Taxable income, h, B . [Def., eq. 64.]
YTR	99	Transfer payments, g and s to $h, B \$$. [Def., eq. 99.]
2	97	Labor constraint variable. [Def., eq. 97.]
22	98	Demand pressure variable. [Def., eq. 98.]
m_{b}	0	Before tax profits, $\mathrm{b}, \mathrm{B} \$$. [(PIECB - PIECBN)/PX. See above for PX.]
Π_{f}	67	Before tax profits, $f, B \$$. [Def., eq. 67, or PIEF1 + PIEF2.]
$\pi_{\text {h }}$	0	Before tax profits, h, b $\$$ [PIEFA]
δ_{D}	a	Physical depreciation rate of the stock of durable goods, rate per quarter. [.0515]
δ_{H}	0	Physical depreciation rate of the stock of housing, rate per quarter. $[.00655]$
δ_{K}	0	Physical depreciation rate of the stock of capital, rate per quarter. [.0247 through 1963 III, . 0263 thereafter.]
λ	0	Amount of output capable of being produced per worker hour. [Peak to peak interpolation of $\mathrm{Y} /\left(\mathrm{J}_{\mathrm{f}} \mathrm{H}_{\mathrm{f}}\right)$. Peak quarters are
$\mu \bar{H}$	0	$1952 \mathrm{I}, 1953 \mathrm{II}, 1955 \mathrm{I}, 1966 \mathrm{I}, 1973 \mathrm{I}$, and 1977 I.$]$ Anount of output capable of being produced per unit of capital. [Peak to peak interpolation of Y / KK. Peak quarters are 1953 II, $1966 \mathrm{I}, 1973 \mathrm{I}$, and 1978 IV.$]$
ψ_{1}	0	Ratio of PEX to PX. [Def., eq. 32.]
ψ_{2}	0	Ratio of PCS to $\left(1+d_{3 g}+d_{3 s}\right)$ PD. [Def., eq. 35.]
ψ_{3}	0	Ratio of PCN to $\left(1+d_{3 g}+d_{3 s}\right) \mathrm{PD}$. [Def., eq. 36.]
$\stackrel{\psi}{4}_{4}$	0	Ratio of PCD to $\left(1+\mathrm{d}_{3 \mathrm{~g}}+\mathrm{d}_{3 \mathrm{~s}}\right)$ PD. [Def., eq. 37.]
ψ_{5}	0	Ratio of PIH to PD. [Def., eq. 38.]
* 6	0	Ratio of PIK to PD. [Def., eq. 39.]
ψ_{7}	0	Ratio of P_{g} to PD . [Def., eq. 40 .]
ψ_{8}	0	Ratio of P_{S} to PD. [Def., eq. 41.]
ψ_{9}	D	Ratio of PIV to PD. [Def., eq. 42.]
ψ_{10}	0	Ratio of $W_{g_{4}}$ to W_{f}. [Def.. eq. ${ }^{\text {8 }} 4$.]
ψ_{11}	0	Ratio of W_{m} to W_{f}. [Def., eq. 45.]
ψ_{12}	0	Ratio of w_{s} to W_{f}. [Def., eq. 46.]
${ }_{4}{ }_{13}$	0	Ratio of gross product of g and s to total employee hours of g and s. [$(\mathrm{PROG}+\mathrm{PROS}) /(\mathrm{JHQ}+520 \cdot \mathrm{AF})]$
γ_{g}	0	```Progressivity tax parameter in personal income tax equation for g. [Determined from a regression. See the discussion in Appendix A.]```
r_{s}	0	```Progressivity tax parameter in personal income tax equation for s. [Deternined from a regression. See the discussion in Appendix A.]```

TABLE A-5. The equations of the US model

Stochastic equations (2SLS estimates in Chapter 4. Estimation period = 1954 I-1982 III.)
Household sector:

$$
+\underset{(0.36)}{.00714} \frac{\mathrm{YN}}{\mathrm{POP} \cdot \mathrm{P}_{\mathrm{h}}} \cdots \underset{(5.87)}{.00126 \mathrm{RSA}+\underset{(1.92)}{.0231} 2}
$$

[consumer expenditures
2. $\mathrm{NN}: \frac{\mathrm{CN}}{\mathrm{POP}}=\underset{(3.96)(109.03)}{.106}\left(\frac{\mathrm{CN}}{\mathrm{POP}}\right)_{-1}+\underset{(5.05)}{.00227\left(\frac{\mathrm{AA}}{\mathrm{POP}}\right)_{-1}}+\underset{(2.48)}{.185 \mathrm{WA}}$

$$
-\underset{(2.16)}{.0469 \mathrm{PCN}}+\underset{(2.14)}{.0637} \frac{\mathrm{YN}}{\mathrm{POP} \cdot \mathrm{P}_{\mathrm{h}}}-\underset{(1.05)}{.000610 \mathrm{RSA}}+\underset{(3.54)}{.0829 \mathrm{Z}}
$$

[consumer expenditures for nondurable goods]
3. $\mathrm{CD}: \quad \frac{\mathrm{CD}}{\mathrm{POP}}=\underset{(3.57)}{.0735}+\underset{(5.95)}{.458}\left(\frac{\mathrm{CD}}{\mathrm{POP}}\right)_{-1}+\underset{(6.18)}{.00235\left(\frac{\mathrm{AA}}{\mathrm{POP}}\right)_{-1}}+\underset{(4.08)}{.405 \mathrm{WA}}$

$$
-\underset{(3.12)}{.104 \mathrm{PCD}}+\underset{(1.19)}{.0668} \frac{\mathrm{YTR}}{\mathrm{POP}_{\mathrm{h}}}-\underset{(7.96)}{.00617 \mathrm{RMA}}+\underset{(3.38)}{.1232}
$$

4. $\mathrm{IH}_{\mathrm{h}}: \frac{\mathrm{IH}}{\mathrm{POP}}=\underset{(3.89)}{.0650}+\underset{(9.86)}{.738}\left(\frac{\mathrm{IH}}{\mathrm{POP}}\right)_{-1}-\underset{(3.18)}{.0157}\left(\frac{\mathrm{KH}}{\mathrm{POP}}\right)_{-1}+\underset{(3.73)}{.00182\left(\frac{\mathrm{AA}}{\mathrm{POP}}\right)_{-1}}$
[consumer expenditures for durable goods]

$$
-\underset{(5.19)}{.00367} \mathrm{RMA}_{-1}, \quad \hat{\rho}=\underset{(4.65)}{.551}
$$

[housing investment, h]
5. $\left.\mathrm{LI} ; \frac{\mathrm{LI}}{\mathrm{POP1}}=\underset{(3.67)(12.20)}{.230}+\frac{\mathrm{LI}}{\mathrm{POP1}}\right)_{-1}-\underset{(3.56)}{.0278\left(\frac{\mathrm{YN}}{\mathrm{POP} \cdot \mathrm{P}_{\mathrm{h}}}\right)_{-1}}$
6. $\left.\mathrm{L} 2: \frac{\mathrm{L} 2}{\mathrm{POP} 2}=\frac{.0605}{(3.75)(17.98)}+\frac{\mathrm{L} 2}{\mathrm{POP2}}\right)_{-1}+\underset{(3.77)}{.160 \mathrm{WA}-\underset{(2.95)}{.0200} \mathrm{P}}+\underset{(2.86)}{.03642}$
[labor force of males 25-54]
[1abor force of females 25-54]
7. $\mathrm{L3}: \frac{\mathrm{L3}}{\mathrm{POP}}=\underset{(5.02)(17.53)}{\left..133+\underset{(3.76)}{\mathrm{POP3}})_{-1}-\underset{(4.00121}{(\mathrm{POP}}\right)_{-1}+\underset{(4.14)}{.0930} \mathrm{WA}}$
$-\underset{(4.25)}{.0318} \mathrm{P}_{\mathrm{h}}+\underset{(4.81)}{.0738 \mathrm{Z}}$
labor force of all others 16 and over]

9. $M_{h}: \log \frac{M_{h}}{\operatorname{POP} \cdot \mathrm{~F}_{\mathrm{h}}}=\underset{(3.63)}{.0297}-.000698 t+\underset{(2.64)}{.835} \log \left(\frac{\mathrm{M}}{\mathrm{POP} \cdot \overline{\mathrm{P}}}\right)_{-1}$

$$
+\underset{(3.13)}{.123 \log \frac{\mathrm{YT}}{\mathrm{POP} \cdot \mathrm{P}_{\mathrm{h}}}-.00416 \mathrm{RSA}}(3.81)
$$

[number of moonlighters
[demand deposits and currency, h]

Firin sector:

18. $D_{f}: D_{f}=\underset{(1.05)(108.28)}{-.0227}+. .978 \mathrm{D}_{\mathrm{f}-1}+\underset{(5.64)}{.0201}\left(\mathrm{H}_{\mathrm{f}}-\mathrm{T}_{\mathrm{fg}}-\mathrm{T}_{\mathrm{fs}}\right)$
19. $\mathrm{INT}_{\mathrm{f}}: \quad \mathrm{INT}_{\mathrm{f}}=\underset{(1.96)}{-3.59}+\underset{(8.59)}{.746 \mathrm{INT}_{\mathbf{f}-1}}+\underset{(1.91)}{.0200}\left(-\mathrm{A}_{\mathrm{f}}\right)+\underset{(4.25)}{.467 \mathrm{RB}}$,

$$
\hat{\rho}=.954
$$

20. IVA: $I V A=\frac{1.52}{(0.98)-95.2 P X}+\underset{(3.51)}{92.2)^{2}} \mathrm{PX}_{-1}, \quad \hat{\rho}=\underset{(12.45)}{.801}$
21. $\mathrm{CC}_{\mathrm{f}}: \quad \mathrm{CC} \mathrm{f}_{\mathrm{f}}=\underset{(3.69)(67.13)}{-.0930}+\underset{\mathrm{f}-1}{.966} \mathrm{CC}_{(4.69)}^{.0447} \mathrm{PIK}_{\left(3 K_{f}\right.}+\underset{(6.29)}{.562 \mathrm{DD811}}$
[price deflator for X -FA]
[production, f]
[plant and equipment investment, f]
[number of jobs, f]
[average number of
hours paid per job, f]
[average number of overtime hours paid per job, f]
[average hourly earnings excluding overtime of workers in f$]$
[demand deposits and currency, f]
[dividends paid, f]
[interest payments, f]
[inventory valuation adjustment.]
[capital consumption, f]

Financial sector:

Foreign sector:
27. IM: $\frac{\mathrm{IM}}{P O P}=\underset{(4.44)(15.31)}{-.0277}+\underset{(4,752}{P O P}+\underset{(4.10)}{.0256} \frac{\mathrm{X}}{\mathrm{POP}}-\underset{(3.90)}{.0114 \mathrm{PIM}_{-1}}+\underset{(4.64)}{.0393 \mathrm{PX}}-1$

$$
\begin{aligned}
& -\underset{(2.59)}{.00126} \mathrm{DMA}_{-1}-\underset{(2.18),}{.00654} \mathrm{D} 651+\underset{(1.17)}{.00356 \mathrm{D})} \underset{(3.65)}{.0109 \mathrm{D})} \mathrm{D91} \\
& +\underset{(5.42)}{.0166} \mathrm{D} 692-\underset{(2.64)}{.00798} \mathrm{D} 714+\underset{(4.10)}{.0123} \mathrm{D721}
\end{aligned}
$$

Squ government sector:

[unemployment insurance benefits]
Federal government sector

$+.0818 \log \mathrm{RB}$ (2.18)
[interest payments, g]
30. $\mathrm{RS}: \quad \mathrm{RS}=\underset{(2.99)(2 \mathrm{~S} .55)}{-9.46} \underset{-1}{ }+\underset{(2.11)}{.068} \mathrm{RS}_{-1}+\underset{(2.99)}{.0296} \mathrm{JJ} * \underset{(2.92)}{.0597} \mathrm{GNPR}$

$$
+\underset{(1.71)}{.032 \mathrm{Mi}_{-1}}+\underset{(4.20)}{.131 \mathrm{DD793} \cdot \mathrm{Mi}_{-1}}
$$

Identities
31. $\mathrm{PX}=\frac{\mathrm{P}_{\mathrm{f}}(\mathrm{X}-\mathrm{FA})+\mathrm{PFA} \cdot \mathrm{FA}}{\mathrm{X}}$
32. $\operatorname{PEX}=\psi_{1} P X$
33. $\mathrm{PD}=\frac{\mathrm{PX} \cdot \mathrm{X}-\mathrm{PEX} \cdot \mathrm{EX}+\mathrm{PEM}+\mathrm{IM}}{\mathrm{X}-\mathrm{EX}+\mathrm{IM}}$
34. $P_{h}=P D+\frac{I B T}{\mathrm{~g}_{\mathrm{g}}+I B T_{s}} \underset{\mathrm{X}-\mathrm{EX}+\mathrm{IM}}{ }$
35. $\operatorname{PCS}=\psi_{2}\left(1+d_{3 g}+d_{3 s}\right) P D$
36. $\mathrm{PCN}=\psi_{3}\left(1+\mathrm{d}_{3 \mathrm{~g}}+\mathrm{d}_{3 \mathrm{~s}}\right) \mathrm{PD}$
37. $P C D=\varphi_{4}\left(1+d_{3 g}+d_{3 s}\right) P D$
38. $\mathrm{PIH}=\psi_{5} \mathrm{PD}$
39. $\mathrm{PIK}=\phi_{6} \mathrm{PD}$
40. $\mathrm{P}_{\mathrm{g}}=\psi_{7} \mathrm{PD}$
41. $P_{s}=\psi_{8} P D$
42. $\mathrm{PIV}=\psi_{9} \mathrm{PD}$
43. $W_{h}=100 \frac{W_{f} f_{f}(H N+1.5 H O)+W_{g} J_{g} H_{g}+W_{m} J_{r m} H_{m}+W_{s} J_{s} H_{s}}{J_{f}(H N+1.5 H 0)+J_{g} H_{g}+J_{m} H_{m}+J_{s} H_{s}}$
44. $W_{g}=\varphi_{10} W_{f}$
45. $W_{m}=\psi_{11} W_{E}$
46. $W_{s}=\psi_{12} W_{f}$
47. $\mathrm{T}_{\mathrm{hg}}=\left[\mathrm{d}_{1 \mathrm{~g}}+\frac{\gamma_{\mathrm{g}} \mathrm{YT}}{\mathrm{POP}}\right]_{\mathrm{YT}}$
48. $\mathrm{T}_{\mathrm{hs}}=\left[\mathrm{d}_{1 \mathrm{~s}}+\frac{\mathrm{r}_{\mathrm{s}} \mathrm{YT}}{\mathrm{POP}}\right] \mathrm{YT}$
49. $\mathrm{T}_{\mathrm{fg}}=\mathrm{d}_{2 \mathrm{~g}}{ }^{\mathrm{f}} \mathrm{f}$
50. $T_{f s}=d_{2 s} \pi_{f}$
51. IBT $_{\mathrm{g}}=\frac{\mathrm{d}_{3 \mathrm{~g}}}{\mathrm{I}+\mathrm{d}_{3 \mathrm{~g}}}\left(\mathrm{PCS} \cdot \mathrm{CS}+\mathrm{PCN} \cdot \mathrm{CN}+\mathrm{PCD} \cdot \mathrm{CD}-\mathrm{IBT}_{\mathrm{s}}\right)$
52. $\mathrm{IBT}_{\mathrm{s}}=\frac{\mathrm{d}_{3 \mathrm{~s}}}{1+\mathrm{d}_{3 \mathrm{~s}}}\left(\mathrm{PCS} \cdot \mathrm{CS}+\mathrm{PCN} \cdot \mathrm{CN}+\mathrm{PCD} \cdot \mathrm{CD}-\mathrm{IBT}_{g}\right)$
53. $\mathrm{SI}_{\mathrm{hg}}=\mathrm{d}_{4 \mathrm{~g}} \mathrm{H}_{\mathrm{f}} \mathrm{f}_{\mathrm{f}}(\mathrm{HN}+1.5 \mathrm{HO})$
[price deflator for X]
[price deflator for EX]
[price deflator for domestic sales]
[price deflator for domestic sales exclusive of indirect business taxes)
[price deflator for CS]
[price deflator for CN]
[price deflator for CD]
[price deflator for housing investment]
[price deflator for plant and equipment. investnent]

Iprice deflator for C_{g}]
[price deflator for C_{s}]
[price deflator for inventory investment]
[average hourly earnings excluding overtine of all workers]
[average hourly earnings of civilian workers in $g]$
[average hourly earnings of military workers]
[average hourly earnings of workers in s]
[personal income taxes, h to g]
[personal income taxes, h to s]
[corporate profits taxes, f to g$]$
[corporate profits taxes, f to $s]$
[indirect business taxes, g]
[indirect business taxes, s]
[social insurance contributions, h to $g]$
54. $\mathrm{SI}_{\mathrm{hs}}=\mathrm{d}_{4 \mathrm{~s}}{ }^{H} \mathrm{f}^{J} \mathrm{f}^{\mathrm{J}}(\mathrm{HN}+1.5 \mathrm{HO})$
55. $\mathrm{SI}_{\mathrm{fg}}=\mathrm{d}_{5 \mathrm{~g}} \mathrm{M}_{\mathrm{f}} \mathrm{J}_{\mathrm{f}}(\mathrm{HN}+1.5 \mathrm{HO})$
56. $\mathrm{SI}_{\mathrm{fs}}=\mathrm{d}_{5 \mathrm{~s}} \mathrm{f}_{\mathrm{f}} \mathrm{f}_{\mathrm{f}}(\mathrm{HN}+1.5 \mathrm{HO})$
57. $\mathrm{BR}=-\mathrm{g}_{1} \mathrm{M}_{\mathrm{b}}$
58. $K D=\left(1-\delta_{D}\right) \mathrm{KD}_{-1}+\mathrm{CD}$
59. $\mathrm{KH}=\left(1-\delta_{\mathrm{H}}\right) \mathrm{KH}_{-1}+\mathrm{IH}_{\mathrm{K}}$
60. $X=C S+C N+C D+\mathrm{IH}_{\mathrm{h}}+\mathrm{IK}_{\mathrm{f}}+\mathrm{EX}-\mathrm{IM}+\mathrm{C}_{\mathrm{g}}+\mathrm{C}_{\mathrm{s}}+\mathrm{IK}_{\mathrm{h}}+\mathrm{IK}_{\mathrm{b}}+\mathrm{IH}_{\mathrm{E}}$ $+I H_{b}+I V_{h}-\pi_{b}-C C_{b}$
61. $\mathrm{XX}=\mathrm{PCS} \cdot \mathrm{CS}+\mathrm{PCN} \cdot \mathrm{CN}+\mathrm{PCD} \cdot \mathrm{CD}+\mathrm{PIH} \cdot \mathrm{IH}_{\mathrm{h}}+\mathrm{PIK} \cdot \mathrm{IK}_{\mathrm{f}}+\mathrm{PEX} \cdot E X-\mathrm{PIM} \cdot \mathrm{IM}$

$$
\begin{aligned}
& +\mathrm{P}_{g} C_{g}+\mathrm{P}_{\mathrm{s}} C_{s}+\operatorname{PIK}\left(I K_{h}+I K_{b}\right)+\operatorname{PIH}\left(I H_{f}+I H_{b}\right)+\operatorname{PIV}+I V_{h} \\
& -\operatorname{PX}\left(\mathrm{I}_{b}+C C_{b}\right)-I B T_{g}-I B T_{s}
\end{aligned}
$$

62. $\mathrm{HN}=\mathrm{H}_{\mathrm{f}}-\mathrm{HO}^{-}$
63. $V=V_{-1}+Y-X$
64. $Y T=W_{f} J_{f}(H N+1.5 H O)+W_{g} J_{g} H_{g}+W_{m i n} J_{m} H_{m}+W_{s} J_{s} H_{s}+D_{f}+D_{b}-D R_{s}$ $+\mathrm{INT}_{f}+\mathrm{INT}_{g}-\mathrm{INT}_{\mathrm{gr}}+\mathrm{INT}_{\mathrm{s}}+\mathrm{RNT}+\mathrm{TR}_{\mathrm{fh}}+\mathrm{H}_{\mathrm{h}}+\mathrm{SI}_{\mathrm{hg}}+\mathrm{SI}_{\mathrm{hs}}$
65. $\mathrm{S}_{\mathrm{h}}=\mathrm{YT}-\mathrm{SI}_{\mathrm{hg}}-\mathrm{SI}_{\mathrm{hs}}+\mathrm{CC}_{\mathrm{h}}-\mathrm{PCS} \cdot \mathrm{CS}-\mathrm{PCN} \cdot \mathrm{CN}-\mathrm{PCD} \cdot \mathrm{CD}-\mathrm{PIH} \cdot \mathrm{IH}_{\mathrm{h}}$ $-P I K \cdot I K_{h}-P I V \cdot I V_{h}-T R_{h r}-T_{h g}-S_{h g}+T_{g h}-T_{h s}-S_{h S}$
$+\mathrm{TR}_{\mathrm{Sh}}+\mathrm{UR}+\mathrm{INS}+\mathrm{RET}$
66. $0=S_{h}-\Delta A_{h}-\Delta M_{h}+C G-$ DIS $_{h}$
67. $\pi_{f}=X X+\operatorname{PIV}\left(V-V_{-1}\right)-W_{f}\left(1+d_{S_{g}}+d_{5 s}\right) J_{f}(H N+1.5 H O)-R N T-T R_{f h}$ $-\pi_{h}-C_{h}+S U B_{g}+S U B_{s}-I N T_{f}-C_{f}-I V A-W L D_{f}-S T A T$
68. $\mathrm{CF}=\mathrm{XX}-\mathrm{W}_{\mathrm{f}}\left(1+\mathrm{d}_{5 \mathrm{~g}}+\mathrm{d}_{5 s}\right) \mathrm{J}_{\mathrm{f}}(\mathrm{HN}+1.5 \mathrm{HO})-\mathrm{RNT}-\mathrm{TR}_{f \mathrm{~h}}-\pi_{\mathrm{h}}-\mathrm{CC}_{\mathrm{h}}$ $+S U B_{g}+\mathrm{SUB}_{\mathrm{s}}-\mathrm{INT}_{\dot{f}}-\mathrm{PIK} \cdot \mathrm{IK}_{f}-\mathrm{PH} \cdot \mathrm{IH}_{f}-\mathrm{MRS}$
69. $\mathrm{S}_{\mathrm{f}}=\mathrm{CF}-\mathrm{T}_{\mathrm{fg}}-\mathrm{T}_{\mathrm{fs}}-\mathrm{D}_{\mathrm{f}}$
70. $0=S_{f}-\Delta A_{f}-\Delta M_{f}-D I S_{f}-W L D_{f}-S T A T$
71. $0=\Delta M_{b}+\Delta M_{h}+\Delta M_{f}+\Delta M_{r}+\Delta M_{g}+\Delta M_{s}-\Delta C U R$
72. $S_{b}=P X\left(\pi_{b}+C C_{b}\right)-P I K \cdot I K_{b}-P I H \cdot I H_{b}-D_{b}-\tau_{b g}-T_{b s}-S U R$
73. $0=S_{b}-\Delta A_{b}-\Delta A_{b}-\Delta(B R-B O)-D I S_{b}$
74. $S_{r}=P I M \cdot I M+T R_{h r}+\mathrm{TR}_{\mathrm{gr}}+\mathrm{INT}_{\mathrm{gr}}-\mathrm{PEX} \cdot \mathrm{EX}$
[social insurance contributions, h to 5]
[social insurance contributions, f to g]
[social insurance contributions, $£$ to 5$]$
[total bank reserves]
[stock of durable goods]
[stock of housing, h]
[total sales, f]
[total nominal sales, f]
[average number of non overtime hours paid per job, f]
[stock of inventories, f]
[taxable income, h]
[savings, h]
[budget constraint, h : deternines A_{h}]
[before tax profits, f]
[cash flow, f]
[savings, f]
[budget constraint, f: determines A_{f}]
[demand deposit identity: determines M]
[savings, b]
[budget constraint, b: determines A_{b}]
[savings, r]

$$
\text { 75. } 0=S_{x}-\Delta A_{r}-\Delta M_{r}+\Delta Q-D I S_{r}
$$

[budget constraint, r : determines A_{r}]
[savings, g]
[budget constraint, g: determines A_{g} unless equation 30 is not included in the model]

[savings, s]

[budget constraint, s: determines A_{s}]
[asset identity:
redundant equation]
[money supply]
[nominal GNP, annual rate]
[real GNP, annual rate]
[GNP deflator]
[total employment, civilian and military]
[number of people unemployed]
[civilian unemployment rate]
88. $Y N=\left(1-d_{1 g}-d_{1 s}-\frac{\left(\gamma_{g}+\gamma_{s}\right) Y T}{P O P}\right)\left(D_{f}+D_{b}-D R_{s}+I N T_{f}+I N T_{g}-I N T_{g r}\right.$

$$
\left.+\mathrm{INT}_{\mathrm{s}}+\mathrm{RNT}+\mathrm{TR}_{\mathrm{fh}}+\pi_{\mathrm{h}}\right)+\mathrm{TR}_{\mathrm{gh}}+\mathrm{TR}_{\mathrm{sh}}+U B
$$

89. $A A=\frac{A_{h}+M_{h}}{P_{h}}+K H$
90. $d_{1 g}^{M}=d_{1 g}+\frac{2 \gamma_{g} Y T}{P O P}$
91. $d_{1 S}^{M}=d_{1 s}+\frac{2_{Y} Y T}{\text { POP }}$
92. $\mathrm{KK}=\left(1-\delta_{\mathrm{K}}\right) \mathrm{KK}_{\mathrm{ml}}+\mathrm{IK}_{\mathrm{f}}$
93. $\operatorname{KKMIN}=\frac{Y}{\mu \bar{H}}$
94. $\mathrm{JHMLN}=\frac{Y}{\lambda}$

95. $\mathrm{IV}_{f}=V-V_{-1}$
[inventory investment, f]
96. $\operatorname{PROD}=\frac{Y}{J_{f}{ }^{H} f}$
97. $W R=\frac{W_{f}}{P X}$
98. $\mathrm{POP}=\mathrm{POP1}+\mathrm{POP} 2+\mathrm{POP} 3$
99. $\operatorname{SHR} \pi=\frac{\left(1-d_{2 g}-d_{2 s}\right) \pi_{f}}{W_{f} J_{f}(\mathrm{HN}+1.5 \mathrm{HO})}$
100. $\operatorname{PCGNPR}=100\left[\left(\frac{\mathrm{GNPR}}{\mathrm{GNPR}_{-1}}\right)^{4}-1\right]$
101. $\operatorname{PCGNPD}=100\left[\left(\frac{\mathrm{GNPD}}{\mathrm{GNPD}_{-1}}\right)^{4}-1\right]$
102. $\mathrm{PCM1}=100\left[\left(\frac{\mathrm{ML}}{\mathrm{ML}_{-1}}\right)^{4}-1\right]$
103. $U B R=B R-B O$
104. $W A=W_{h}\left(1-d_{1 g}^{M}-d_{1 s}^{N}-d_{4 g}-d_{4 s}\right)$
105. $\operatorname{RSA}=\operatorname{RS}\left(1-\mathrm{d}_{1 \mathrm{~g}}^{\mathrm{M}}-\mathrm{d}_{15}^{\mathrm{M}}\right)$
106. $R M A=R M\left(1-d_{1 g}^{M}-d_{1 s}^{M}\right)$
[output per paid for worker hour:
'productivity"]
[real wage rate of workers in f]
[noninstitutional population 16 and over]
[ratio of after tax profits to the wage bill net of employer social security taxes]
[percentage change in GNPR]
[percentage change in GNPD]
[percentage change in M1]
[unborrowed reserves]
[after tax wage rate]
[after tax bill rate]
[after tax mortgage rate]
