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Estimating and Testing
Single Equations

4.1 Notation

This chapter discusses the estimation and testing of single equations. The
notation that will be used is the same as that used in Section 1.2. The model
is written as

fie, xp i) =uj, (G=1,...,n), @=1....T) (4.2)

wherey; is ann—dimensional vector of endogenous variabkgss a vector
of predetermined variables (including lagged endogenous variablews) a
vector of unknown coefficients, and, is the error term for equatiohfor
observation. It will be assumed that the firgt equations are stochastic, with
the remainings;; (i = m + 1, ..., n) identically zero for alk.

The following notation is also used:; denotes th&@—dimensional vec-
tor (u;1,...,u;7)’. G, denotes the; x T matrix whoserth column is
afi (v, xt, ;) /0a;, Wherek; is the dimension ofy;. « denotes the vector
of all the unknown coefficients in the model: = (o/l, ..., a,,). The dimen-
sion of« is k, wherek = "7, k;. Finally, Z; denotes & x K; matrix of
predetermined variables that are to be used as first stage regressors for the two
stage least squares technique.

It will sometimes be useful to consider the case in which the equation to be
estimated is linear in coefficients. In this case equatiord.1 will be written
as

vii = Xippat; +ujy, (=1,...,n), @¢=1,...,7T) 4.2)
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64 4 ESTIMATING AND TESTING SINGLE EQUATIONS

wherey;; is the left hand side variable anxi; is a k;—dimensional vector

of explanatory variables in the equatioH;; includes both endogenous and
predetermined variables. Boik and the variables iX;; can be nonlinear
functions of other variables, and thus 4.2 is more general than the standard
linear model. All that is required is that the equation be linea;in Note

from the definition ofG; above that for equation 4@, = X/, whereX’ is

thek; x T matrix whoseth column isX;;.

Each equation in 4.1 is assumed to have been transformed to eliminate
any autoregressive properties of its error term. If the error term in the un-
transformed version, say;, in equation, follows arth order autoregressive
processw;; = p1iWi;—1 + ...+ priwir—r + u;r, Whereu;; isiid, then equa-
tioni is assumed to have been transformed into one wyjtbn the right hand
side. The autoregressive coefficiepts, ..., p,; are incorporated into the
coefficient vector, and the additional lagged values that are involved in the
transformation are incorporated into thevector. This transformation makes
the equation nonlinear in coefficients if it were not otherwise, but this adds no
further complications to the model because it is already allowed to be nonlin-
ear. It does resultin the “loss” of the firsbbservations, but this has no effect
on the asymptotic properties of the estimators.in 4.1 can thus be assumed
to beiid even though the original error term may follow an autoregressive
process.

Many nonlinear optimization problems in macroeconometrics can be
solved by general purpose algorithms like the Davidon-Fletcher-Powell (DFP)
algorithm. This algorithm is discussed in Fair (1984), Section 2.5, and this
discussion will not be repeated here. Problems for which the algorithm seems
to work well and those for which it does not are noted below.

Unless otherwise stated, the goodness of fit measures have not been ad-
justed for degrees of freedom. For the general model considered here (non-
linear, simultaneous, dynamic) only asymptotic results are available, and so
if any adjustments were made, they would have to be based on analogies to
simpler models. In many cases there are no obvious analogies, and so no ad-
justments were made. Fortunately, in most cases the number of observations
is fairly large relative to numbers that might be used in the subtraction, and so
the results are not likely to be sensitive to the current treatment.



4.2 TWO STAGE LEAST SQUARES 65

4.2 Two Stage Least Squarés

Probably the most widely used estimation technique for single equations that
produces consistent estimates is two stage least squares 2Fh8)2SLS
estimate ofy; (denotedy;) is obtained by minimizing

Si = uiZi(ZZ)) " Zlu; = u Diu; (4.3)

with respect tay;. Z; can differ from equation to equation. An estimate of
the covariance matrix af; (denotedVy;;) is

Voii = 6i:(GiD; G ™1 (4.4)

whereG; is G, evaluated a;, &;; = T~ Y1, 42, andi;; = f; (v, x, Q).
The 2SLS estimate of thie x k covariance matrix of all the coefficient
estimates in the model (denot&d) is

‘7211 . . . ‘,}21}71
Vo = . . (4.5)
VZml e Vme
where
Vaij = 6i;(G;D;G) "G D; D;G))(G;D;G)) ™t (4.6)

~ 1T A~ ~
andoij =T Zt:l UjtUjr.

4.3 Estimation of Equations with Rational Expectations

With only slight modifications, the 2SLS estimator can be used to estimate
equations that contain expectational variables in which the expectations are
formed rationally. As discussed later in this chapter, this estimation technique

1See Fair (1984), Section 6.3.2, for a more detailed discussion of the two stage least
squares estimator, especially for the case in which the equation is linear in coefficients and
has an autoregressive error.

2Ordinary least squares is used a lot in practice in the estimation of commercial models
even when the estimator does not produce consistent estimates. This lack of care in the
estimation of such models is undoubtedly one of the reasons there has been so little academic
interest in them.

3The material in this section is taken from Fair (1993b), Section 3 and Appendix A.
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can be used to test the rational expectations hypothesis against other alterna-
tives. The modifications of the 2SLS estimator that are needed to handle the
rational expectations case are discussed in this section.

It will be useful to begin with an example. Assume that the equation to be
estimated is

yir = Xirayi + Er—1 X4 jozi +uje, (t=1,...,T) (4.7)

whereXy;; is a vector of explanatory variables afg_; X5, ; is the expec-
tation of X;; ; based on information through period- 1. j is some fixed
positive integer. This example assumes that there is only one expectational
variable and only one value gf but this is only for illustration. The more
general case will be considered shortly.

A traditional assumption about expectations is that the expected future
values of a variable are a function of its current and past values. One might
postulate, for example, thd; _1 X5, ; depends ork;; and Xp;;_1, where
it assumed thakKy;; (as well asXy;;_1) is known at the time the expectation
is made. The equation could then be estimated With and X»;; 1 replac-
ing E;_1X2i;+; in 4.7. Note that this treatment, which is common to many
macroeconometric models, is not inconsistent with the view that agents are
“forward looking.” Expected future values do affect current behavior. It’s just
that the expectations are formed in fairly simply ways—say by looking only
at the current and lagged values of the variable itself.

Assume instead thaf;_1X»;;,; is rational and assume that there is an
observed vector of variables (observed by the econometrician), denoted here as
Zis, thatis used in part by agents in forming their (rational) expectations. The
following method does not require for consistent estimatesAhanclude all
the variables used by agents in forming their expectations.

Let the expectation error faf;,_1 Xo;;1; be

1—1€i1+j = Xoir+j — E—1Xoipj; (t=1,...,T) (4.8)

where X»;; 1 ; is the actual value of the variable. Substituting 4.8 into 4.7
yields
Vit = X1ir01; + X2ir4 o2 + Uip —¢—1 €jr4j002;
=Xpa;+viy @=1,...,T) (4.9)

whereX;; = (X1 X2ii+j), @i = (oy; a2;), andvy; = wj; —1—1 €14 j2;.
Consider now the 2SLS estimation of 4.9, where the vector of first stage
regressors is the vectd;; used by agents in forming their expectations. A
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necessary condition for consistency is t@at andv;; be uncorrelated. This
will be true if bothu;, and,_1¢;,4 ; are uncorrelated witlz;,. The assump-
tion that Z;; andu;,; are uncorrelated is the usual 2SLS assumption. The
assumption thaZ;; and,_j¢;,; are uncorrelated is the rational expectations
assumption. If expectations are formed rationally and if the variabl&s,in
are used (perhaps along with others) in forming the expectatiotyef ;,
thenZ;; and,_1¢;,4 ; are uncorrelated. Given this assumption (and the other
standard assumptions that are necessary for consistency), the 2SLS estimator
of «; in equation 4.9 is consistent.

The 2SLS estimator does not, however, account for the facvthet 4.9
is a moving average error of ordgr— 1, and so it loses some efficiency for
values ofj greater than 1. The modification of the 2SLS estimator to account
for the moving average processgf is Hansen’s (1982) generalized method
of moments (GMM) estimator, which will now be described.

Write 4.9 in matrix notation as

yi = Xia + v (4.10)

whereX; isT x k;, «; isk; x 1, andy; andv; areT x 1. Also, letZ; denote,
as above, th&@ x K; matrix of first stage regressors. The assumption in 4.9
that there is only one expectational variable and only one valyecah now
be relaxed. The matriX; can include more than one expectational variable
and more than one value gfper variable. In other words, there can be more
than one led value in this matrix.

The 2SLS estimate af; in 4.10 is

& =[X/Z(Z, 2712 X7 IX1 2:(Z) 2) 1 2]y (4.11)

This use of the 2SLS estimator for models with rational expectations is due to
McCallum (1976).

As just noted, this use of the 2SLS estimator does not account for the
moving average process of;, and so it loses efficiency if there is at least
one value ofj greater than 1. Also, the standard formula for the covariance
matrix of @; is not correct when at least one valuejois greater than 1. If,
for example,j is 3 in 4.9, an unanticipated shock in period 1 will affect
(—1€i1+3, 1—2€i1+2, and,_ze€;;+1, and sov;; will be a second order moving
average. Hansen’s GMM estimator accounts for this moving average process.
The GMM estimate in the present case (denatgds

& = X\ ZiM Z[ X)X Zi M7 2Ly, (4.12)
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whereM; is some consistent estimate of IiFrTlE(Zlfvi v/ Z;). The estimated
covariance matrix of; is

T(X!ZiM 1z} X))t (4.13)

There are different versions af depending on how/; is computed. To
computeM;, one first needs an estimate of the residual vegtof he residuals
can be estimated using the 2SLS estindate

v =y — X;q; (4.14)

A general way of computing/; is as follows. Letf;; = 0;; ® Z;s,
where;, is thesth element off;. LetR;, = (T — p) 1Y, it By py
p =201 ..., P, whereP is the order of the moving average(; is then
(Rio+ Ri1+ R/;+ ...+ Rip + Rp). In many cases computiny; in this
way does not result in a positive definite matrix, andsoannot be computed.
| have never had much success in obtaining a positive definite matrid for
computed in this way.

There are, however, other ways of computiéfg. One way, which is
discussed in Hansen (1982) and Cumby, Huizinga, and Obstfeld (1983) but
is not pursued here, is to comput& based on an estimate of the spectral
density matrix ofZ; v;, evaluated at frequency zero. An alternative way,
which is pursued here, is to computg under the following assumption:

Eivis | Zit, Ziz—1,...) = E(Uisvig) , t=>s (4.15)

which says that the contemporaneous and serial correlatiapsdim not de-
pend onZ;. This assumption is implied by the assumption tB&b;;v;s) =
0,r > s, if normality is also assumed. Under this assumptiéncan be
computed as follows. Let;, = (T — p) 1 Z,T:p Vi Vji—p and B;, =
(T—p) ¥, ZuZ,_, p=01...,P. M;isthen(ajoBio+ ai1Bi1+
ai1Bl; + ...+ a;pBip + a;pB!p). In practice, this way of computing;
usually results in a positive definite matrix.

The Case of an Autoregressive Structural Error

Since many macroeconometric equations have autoregressive error terms, it
is useful to consider how the above estimator is modified to cover this case.
Return for the moment to the example in 4.7 and assume that the error term
u;; in the equation follows a first order autoregressive process:

Uiy = PLiltjr—1 + Nir (4.16)
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Lagging equation 4.7 one period, multiplying throughday, and subtracting
the resulting expression from 4.7 yields

Yit = p1iYir—1 + X1ir@1i — X1ir—101; 015 + Er—1X2ir4 jor2i

— E;_2X2ir4j—1002i P1i + Nis (4.17)

Note that this transformation yields a new viewpoint date; 2. Let the
expectation error foE; _»X2;;4j—1 be

1—2€ir+j—1 = X2ir+j-1 — Er—2X2ir4j-1 (4.18)
Substituting 4.8 and 4.18 into 4.17 yields
Yit = p1iVir—1 + X1ir@1i — X1ir—1001; 01 + X2ir4 jo2i — X2ir4j—102i P1i

it —1—1 €it4 002 +1—2 €ir4j—1002i P1i
= p1iYit—1 + Xiri — Xir—10 p1; + vis (4.19)

where X;; ando; are defined after 4.9 and now; = ni; ——1€i14 02
+_2€ir4j—102;p1;- Equation 4.19 is nonlinear in coefficients because of
the introduction ofpy;. Again, X;; can in general include more than one
expectational variable and more than one valug pér variable.

Given a set of first stage regressors, equation 4.19 can be estimated by
2SLS. The estimates are obtained by minimizing

S; = v/ Zi(Z/Z:) " Z}v; = v/ Div; (4.20)

4.20 is just 4.3 rewritten for the error term in 4.19. A necessary condition for
consistency is that;Zandv;; be uncorrelated, which means tl#t must be
uncorrelated withy;;, ;—1€;s4j, and;_o€;;4 j_1. In order to insure thag;,
and;_pe;; 4 j—1 are uncorrelatedZ;, must not include any variables that are
not known as of the beginning of peried- 1. This is an important additional
restriction in the autoregressive cdse.

In the general nonlinear case 4.20 (or 4.3) can be minimized using a gen-
eral purpose optimization algorithm. In the particular case considered here,
however, a simple iterative procedure can be used, where one iterates between

4There is a possibly confusing statement in Cumby, Huizinga, and Obstfeld (1983),
p. 341, regarding the movement of the instrument set backward in time. The instrument set
must be moved backward in time as the order of the autoregressive process increases. It
need not be moved backward as the order of the moving average process increases due to
an increase in.
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estimates of; andpy;. Minimizing v; D;v; with respect tay; andpy; results
in the following first order conditions:

& = [(Xi — Xi—11) Di (Xi — Xi—161)] " H(Xi — Xi—1p1:) Di (i — Vi—1P11)
(4.21)
(yi-1— Xijl&i)/Di (vi — Xi&i)A (4.22)
(yi—1 — Xi—12)' Di (yi—1 — Xi—10;)
where the—1 subscript denotes the vector or matrix of observations lagged
one period. Equations 4.21 and 4.22 can easily be solved iteratively. Given
the estimate&; andp,; that solve 4.21 and 4.22, one can compute the 2SLS

estimate ofv;, which is

pL =

Ui = yi — yi—1p1 — Xidi + Xi—10i p1 (4.23)

Regarding Hansen's estimator, givignone can comput#f; in one of the
number of possible ways. These calculations simply invohandZ;. Given
M;, Hansen’s estimates af andpy; are obtained by minimiziry

SS; = U;ZiMi_lZl{v,' = U;Civj (4.24)

Minimizing 4.24 with respect ta; andpy; results in the first order conditions
4.21 and 4.22 witlC; replacingD;. The estimated covariance matrix is

T(G,C;G)™t (4.25)

whereG = (X; — X;_1p1  yi-1— Xi—14;).

To summarize, Hansen’s method in the case of a first order autoregressive
structural error consists of: 1) choosidg, so that it does not include any
variables not known as of the beginning of period 1, 2) solving 4.21 and
4.22, 3) computing); from 4.23, 4) computing/; in one of the number of
possible ways usinfy andZ;, and 5) solving 4.21 and 4.22 witfy replacing
D;.

4.4 Two Stage Least Absolute Deviatiorfs

Another single equation estimator that is of interest to consider is two stage
least absolute deviations (2SLAD). This estimator is used for comparison
purposes in Chapter 8. The following is a brief review of it.

5The estimator that is based on the minimization of 4.24 is also the 2S2SLS estimator
of Cumby, Huizinga, and Obstfeld (1983).

6See Fair (1984), Sections 6.3.6 and 6.5.4, for a more detailed discussion of the two
stage least absolute deviations estimator.
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Itis assumed for the 2SLAD estimator that the model in 4.1 can be written:
Yil=hi(yt,xt’ai)+uit’ (i:17"'7n)7 (t:177T) (426)

where in theth equationy;; appears only on the left hand side.

Let §; = D;y; andh; = D;h;, where, as above); = Z;(Z]Z;)~1Z],
whereZ; is a matrix of first stage regressors. There are two ways of looking
at the 2SLAD estimator. One is that it minimizes

T A
> Bir — his (4.27)
t=1
and the other is that it minimizes
T A
> it — his (4.28)
t=1
Amemiya (1982) has proposed minimizing
T ~
> Javie + A= @i — i (4.29)

=1

whereg is chosen ahead of time by the investigator. The estimator thatis based
on minimizing 4.29 will be called the 2SLAD estimator. For the computational
results in Chapter & = .5 has been used.

The 2SLAD estimator weights large outliers less than does 2SLS, and so
it is less sensitive to these outliers. It is a robust estimator in the sense that its
properties are less sensitive to deviations of the distributions of the error terms
from normality than are the properties of 2SLS.

4.5 Chi-Square Tests

Many single equation tests are simply of the form of adding a variable or a
set of variables to an equation and testing whether the addition is statistically
significant. LetS** denote the value of the minimand before the addition,
let S* denote the value after the addition, and dgt denote the estimated
variance of the error term after the addition. Under fairly general conditions,
as discussed in Andrews and Fair (1988}," — S)/4;; is distributed a2

with k degrees of freedom, whekds the number of variables added. For the
2SLS estimator the minimand is defined in equation 4.3,5;e= u;Diui.
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For Hansen’s estimator the minimand is defined in equation 4.24, i.e.,
SS; = v;C,-v,-. In this case(SS™ — §S7)/T is distributed as(2, whereT
is the number of observations. When performing this testhenatrix that
is used in the construction @f; must be the same for both estimates. For
the results in Chapter 3¢; was always estimated using the residuals for the
unrestricted case (i.e., using the residuals from the equation with the additions).
The following is a list of tests of single equations that can be made by
adding various things to the equations and performiAdests.

Dynamic Specification

Many macroeconomic equations include the lagged dependent variable and
other lagged endogenous variables among the explanatory variables. A test
of the dynamic specification of a particular equation is to adther lagged
values to the equation and see if they are significant. For equation 4.2, for
example, one could add the lagged valug;dfthe lagged value is not already
included inX; and the lagged values of the variableXin (If the lagged value

of y; is in X;, then the value of; lagged twice would be added for the test.)
Hendry, Pagan, and Sargan (1984) show that adding these lagged values is quite
general in that it encompasses many different types of dynamic specifications.
Therefore, adding the lagged values and testing for their significance is a test
against a fairly general dynamic specification.

Time Trend

Long before units roots and cointegration became popular, model builders wor-
ried about picking up spurious correlation from common trending variables.
One check on whether the correlation might be spurious is to add a time trend
to the equation. If adding a time trend to the equation substantially changes
some of the coefficient estimates, this is cause for concern. A simple testis to
add the time trend to the equation and test if this addition is significant.

Serial Correlation of the Error Term

As noted in Section 4.1, if the error term in an equation follows an autore-
gressive process, the equation can be transformed and the coefficients of the
autoregressive process can be estimated along with the structural coefficients.
Even if, say, a first order process has been assumed and the first order co-
efficient estimated, it is still of interest to see if there is serial correlation of
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the (transformed) error term left. This can be done by assuming a more gen-
eral process for the error term and testing its significance. For the results in
Chapters 5 a6 a fourth order process was used. If the addition of a fourth
order process over, say, a first order process results in a significant increase in
explanatory power, this is evidence that the serial correlation properties of the
error term have not been properly accounted for.

Other Explanatory Variables

Variables can obviously be added to an equation and their statistical signif-
icance tested. This is done for the equations in the next two chapters. If a
variable or set of variables that one does not expect from the theory to belong
in the equation is significant, this is evidence against the theory.

Variables can also be added that others have found to be important ex-
planatory variables in similar contexts. For example, Friedman and Kuttner
(1992), (1993) have found the spread between the six month commercial paper
rate and the six month Treasury bill rate is significant in explaining real GNP
in a vector autoregressive system. If the spread is significant in explaining real
GNP, then it should be in explaining some of the components of real GNP. It
is thus of interest to add the spread to equations explaining consumption and
investment to see if it has independent explanatory power. This is done in the
next chapter for some of the equations in the US médel.

Leads

Adding values led one or more periods and using Hansen’s method for the
estimation is a way of testing the hypothesis that expectations are rational.
Consider the example in equation 4.7 above, and consider testing the RE
hypothesis against the simpler alternative that; X»;;; is only a function

of Xo;; and X2;;,_1, where both of these variables are assumed to be known
at the time the expectation is made. Under the simpler alternafiye and
X»;;—1 are added as explanatory variables to 4.7. Under the RE alternative,
X2i1+j Is added as an explanatory variable, and the equation is estimated
using Hansen’'s method. A test of the RE hypothesis is thus taXagq ;

to the equation withXy;; and Xo;;,_1 included and test the hypothesis that

"The six month commercial paper rate and the six month Treasury bill rate are not
variables in the US model, and they are not presented in Appendix A. The data are available
from the Federal Reserve.

8The material in this subsection is taken from Fair (1993b), Section 3.
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the coefficient ofXy;, ; is zero. TheZ;; vector used for Hansen’s method
should include the predetermined variableXif, in 4.7—includingX»;; and
Xoi;—1—plus other variables assumed to be in the agents’ informatiorf sets.
The test is really whether these other variables matter. If agents do not use
more information than that contained in the predetermined variabl&g;jn

in forming their expectation ok, ;, then the use of the variables i),

as first stage regressors f&ip;; . ; adds nothing not already contained in the
predetermined variables Xy;;.

The test of the RE hypothesis is thus to add variable values led one or more
periods to an equation with only current and lagged values and estimate the
resulting equation using Hansen’s method. If the led values are not significant,
this is evidence against the RE hypothesis. It means essentially that the extra
variables inZ;; do not contribute significantly to the explanatory power of the
equation.

An implicit assumption behind this test is th&} contains variables other
than the predetermined variables Xh;;. If, say, the optimal predictor of
X2i:+j were solely a function ok;; and X»;; 1, then the above test would
not be appropriate. In this case the traditional approach is consistent with the
RE hypothesis, and there is nothing to test. The assumptioZthabntains
many variables is consistent with the specification of most macroeconomet-
ric models, where the implicit reduced form equations for the endogenous
variables contain a large number of variables. This assumption is in effect
maintained throughout this book. The tests in Chapters 5 and 6 have nothing
to say about cases in which there is a very small number of variablés.in

As an example ofthe test, consider the wage variéible the consumption
equation 1.4 in Chapter 1. Assume th#tis known, where is period 1. The
wage variables in equation 1.4 are théh, E,_1W, 1, E,_1W,12, etc. If

9Remember thak;, is assumed to be known at the time the expectations are made,
which is the reason for treating it as predetermined. In practice, a variable}ikds
sometimes taken to be endogenous, in which case it is not part & tvector. When a
variable likeX5;; is taken to be endogenous, an interesting question is whether one can test
the hypothesis that agents know it at the time they make their expectations as opposed to
having only a rational expectation of it. It is not possible to test this ifZhevector used
for the 2SLS method is the same vector used by the agents in forming their expectations.
It would, however, be possible to test this hypothesis if there were some contemporaneous
exogenous variables in the model that agents forming rational expectations do not know at
the time they make their forecasts. These variables are appropriate first stage regressors for
2SLS (since they are exogenous), but they are not used by agents. In practice, however, this
is likely to be a small difference upon which to base a test, and no attempt is made here to
do so. The focus here is on values dated1 and beyond.
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agents use only current and lagged valuedoin forming expectations of
future values oW, then candidates for explanatory variables &e W;_1,
W;_», etc. Under the RE hypothesis, on the other hand, agentZyse
forming their expectations for periods+ 1 and beyond, and candidates for
explanatory variables ar#, 1, W;.», etc., with Hansen’s method used for
the estimation. The test is to test for the joint significance of the led values.
The test proposed here is quite different from Hendry's (1988) test of
expectational mechanisms. Hendry's test requires one to postulate the ex-
pectation generation process, which is then examined for its constancy across
time. If the structural equation that contains the expectations is constant but
the expectations equations are not, this refutes the expectations equations. As
noted above, for the test proposed h&reneed not contain all the variables
used by agents in forming their expectations, and so the test does not require a
complete specification of the expectations generation process. The two main
requirements are only that, be correlated witkX 5, ; but not with; _1¢€;; ;.

4.6 Stability Tests

One of the most important issues to examine about an equation is whether its
coefficients change over time, i.e., whether the structure is stable over time.
A common test of structural stability is to pick a date at which the structure
is hypothesized to have changed and then test the hypothesis that a change
occurred at this date. In the standard linear regression model this is an F test,
usually called the Chow test. More general settings are considered in Andrews
and Fair (1988).

One test in the more general setting is simply #fetest discussed in the
previous section, wherg™ is the value of the minimand under the assumption
of no structural change arff is the value of the minimand under the assump-
tion that the change occurred at the specified date. Assume, for example, that
the estimation period is from 1 throughand that the specified date of the
structural change i*. Assume also that the equation is estimated by 2SLS.
Computing thex 2 value in this case requires estimating the equation for three
periods: 1 throughr*, T* + 1 through?, and 1 througl?'. Let Si(l) be the

value of the minimand in 4.3 for the first estimation period, andeé{ be
the value for the second estimation period. Til¢n= Si(l) + Sl.(z). S is
the value of the minimand in 4.3 that is obtained when the equation is esti-
mated over the full estimation period. When estimating over the full period,
the Z; matrix used for the full period must be the union of the matrices used
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for the two subperiods in order to malkg* comparable té;. This means

that for each first stage regress@y,;, two variables must be used &} for

the full estimation period, one that is equal@®; for the first subperiod and
zero otherwise and one that is equaldg for the second subperiod and zero
otherwise. If this is done, then the? value iS(S;* — §¥)/6ii, whereo;; is

equal to the sum of the sums of squared residuals from the first and second
estimation periods divided by — 2k;, wherek; is the number of estimated
coefficients in the equation.

Recently, Andrews and Ploberger (1994) have proposed a class of tests that
does notrequire that the date of the structural change be chpsiemi. Letthe
overall sample period be 1 throu@h The hypothesis tested is that a structural
change occurred between observatidnandT,, whereT; is an observation
close to 1 andl» is an observation close tB. If the time of the change (if
there is one) is completely unknown, Andrews and Ploberger suggest taking
T1 very close to 1 and» very close tol'. This puts little restriction on the
time of the change. If, on the other hand, the time of the change is known to
lie in a narrower interval, the narrower interval should be used to maximize
power. One of the main advantages of the Andrews-Ploberger tests is that they
have nontrivial power asymptotically and have been designed to have certain
optimality properties.

The particular Andrews-Ploberger test used here is easy to compute. The
test is carried out as follows:

1. Compute the¢? value for the hypothesis that the change occurred at
observationT;. This requires estimating the equation three times—
once each for the estimation periods 1 throdgh- 1, Ty throughT,
and 1 through'. Denote this value ag21 10

2. Repeat step 1 for the hypothesis that the change occurred at observation
T1 + 1. Denote thisy? value asy2@. Keep doing this through the
hypothesis that the change occurred at observaiorThis results in
N = T> — T1 + 1 x? values being computedx2D, ..., 2N,

3. The Andrews-Ploberger test statistic (denote®)) is
AP =log[(e2?™” 1 ...+ e22*™)/N] (4.30)

In words, theA P statistic is a weighted average of thévalues, where
there is one; 2 value for each possible splitin the sample period between
observationg; and75.

10This %2 value is computed in the regular way as discussed above.
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Table 4.1
Critical Values for the AP Statistic
for A =275

No.of No.of

coefs. 5% 1% coefs. 5% 1%
1 201 3.36 8 8.22 10.23
2 3.07 4.69 9 9.01 11.20
3 400 b5.62 10 9.55 1214
4 495 7.00 11 10.33 12.73
5 580 7.65 12 11.03 13.43
6 6.59 8.72 13 11.62 14.47
7 7.31 9.50 14 12.37 15.20

Asymptotic critical values forA P are presented in Tables | and Il in
Andrews and Ploberger (1994). The critical values depend on the number
of coefficients in the equation and on a parameétewhere in the present
contextA = [m2(1 — m1)]/[71(1 — 72)] , wherer; = (T1 — .5)/T and
m= (T —.95)/T.

Ifthe A P value is significant, it may be of interest to examine the individual
x2 values to see where the maximum value occurred. This is likely to give
one a general idea of where the structural change occurred even though the
AP test does not reveal this in any rigorous way.

Since theA P test is used in the next two chapters, it will be useful to give
a few critical values. For the work in the next chapter the basic sample period
is 1954:1-1993:2, and for the stability te$iswas taken to be 1970:1 arfd
was taken to be 1979:4. This choice yields a valué of 2.75. Table 4.1
presents the 5 percent and 1 percent asymptotic critical values for this value of
A and various values of the number of estimated coefficients in the equations.
These values are interpolated from Table | in Andrews and Ploberger (1994).

Although the values in Table 4.1 are for just one particular valug of
(namely, 2.75), Andrews and Ploberger’s Table | shows that the critical values
are not very sensitive to different values\ofThe above critical values are thus
approximately correct for different choices Bf and 7> than the one made
here.
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4.7 Tests of Age Distribution Effects?

A striking feature of post war U.S. society has been the baby boom of the
late 1940s and the 1950s and the subsequent falling off of the birth rate in the
1960s. The number of births in the United States rose from 2.5 million in 1945
to 4.2 million in 1961 and then fell back to 3.1 million in 1974. This birth
pattern implies large changes in the percentage of prime age (25-54) people in
the working age (16+) population. In 1952 this percentage was 57.9, whereas
by 1977 it had fallen to 49.5. Since 1980 the percentage of prime aged workers
has risen sharply as the baby boomers have begun to pass the age of 25.

As noted in Chapter 1, an important issue in macroeconomics is whether
the coefficients of macroeconomic equations change over time as other things
change. The Lucas critique focuses on policy changes, but other possible
changes are changes in the age distribution of the population. This section
discusses a procedure for examining the effects of the changes in the U.S.
population age distribution on macroeconomic equations. The procedure is as
follows.

Divide the population intd age groups. LeD1;, be 1 if individualx is
in age group 1 in periodand 0 otherwise; leD2;,; be 1 if individual# is in
age group 2 in period and 0 otherwise; and so on throu@tv;;. Consider
equationi in 4.2, an equation that is linear in coefficients. Let equatitor
individual i be:

Yhit = Xpiroti + Boi + PLiDlp + ...+ BriDJIps + upis

(h=1,...,N), (t=1,...,T) (4.31)

whereyy;; is the value of variable in period: for individual # (e.g., con-

sumption of individuakh in periodt), X;;; is a vector of explanatory variables

excluding the constant; is a vector of coefficients, ang,;; is the error term.

The constant term in the equationdg + 8;; for an individual in age group

j in periodz. Ny is the total number of people in the population in period
Equation 4.31 is restrictive because it assumesdahat the same across

all individuals, but it is less restrictive than a typical macroeconomic equation,

which also assumes that the constanttermis the same across individuals. Given

Xnit» ynir 1S allowed to vary across age groups in equation 4.31. Because most

macroeconomic variables are not disaggregated by age groups, one cannot test

for age sensitivey;'s. For example, suppose that one of the variable¥;in

1The material in this section is taken from Fair and Dominguez (1991).
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is Yy, the income of individuak in period:. If the coefficient ofYy; is the
same across individuals, sgy, thenyy; Yy, enters the equation, and it can be
summed in the manner discussed in the next paragraph. If, on the other hand,
the coefficient differs across age groups, then the term entering the equation is
11 D1y Yy + ...+ y17i DJn: Y. The sum of a variable lik®1;,Y,, across
individuals is the total income of individuals in age group 1, for which data
are not generally available. One is thus restricted to assuming that age group
differences are reflected in different constant terms in equation 4.31.

Let N;; be the total number of people in age groium periodtz, let y;,
be the sum o¥;,, let X;; be the vector whose elements are the sums of the
corresponding elements Xy,;;, and letu;; be the sum oft;;. (All sums are
forh =1,..., N;.) Given this notation, summing equation 4.31 yields:

Vit = Xitoti +Boi Nt +BriNy+. . . +ByiNj+uy, =1,...,T) (4.32)

If equation 4.32 is divided through hy;, it is converted into an equation in
per capita terms. Leb;; = N;;/N;, and reinterpreb;,, the variables inX;,,
andu;; as being the original values divided By. Equation 4.32 in per capita
terms can then be written:

vir = Xiri + Boi + Bripy + ...+ Bripse +uir, @=1,...,T) (4.33)

A test of whether age distribution matters is simply a test of whether
the B4, ..., Byi coefficients in equation 4.33 are significantly different from
zerol? |f the coefficients are zero, one is back to a standard macroeconomic
equation. Otherwise, giveXj;;, y;; varies as the age distribution varies. Since
the sumofp;; acrosg is one and there is a constant in the equation, arestriction
on thep;; coefficients must be imposed for estimation. In the estimation work
below, the age group coefficients are restricted to sum to E]Ho_;l Bji = 0.

This means that if the distributional variables do not matter, then adding them
to the equation will not affect the constant term.

The Age Distribution Data

The age distribution data that are used in the next chapter are from the U.S.
Bureau of the Censu€urrent Population ReportSeries P-25. The data from

12stoker (1986) characterizes this test (that all proportion coefficients are zero) as a test of
microeconomic linearity or homogeneity (that all marginal reactions of individual agents are
identical). He shows that individual differences or more general behavioral nonlinearities
will coincide with the presence of distributional effects in macroeconomic equations.
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the census surveys, which are taken every ten years, are updated yearly using
data provided by the National Center for Health Statistics, the Department
of Defense, and the Immigration and Naturalization Service. The data are
estimates of the total population of the United States, including armed forces
overseas, in each of 86 age groups. Age group 1 consists of individuals less
than 1 year old, age group 2 consists of individuals between 1 and 2 years of
age, and so on through age group 86, which consists of individuals 85 years
old and over. The published data are annual (July 1 of each year). Because the
equations estimated below are quarterly, quarterly population data have been
constructed by linearly interpolating between the yearly points.

Fifty five age groups are considered: ages1®..., 69, and 70+. The
“total” population,V;, is taken to be the population 16+. In terms of the above
notation, 55p;, variables(j = 1, ..., 55) have been constructed, where the
55 variables sum to one for a given

Constraints on the Age Coefficients

Since there are 5B;; coefficients to estimate, some constraints must be im-
posed on them if there is any hope of obtaining sensible estimates. One
constraint is that the coefficients sum to zero. Another constraint, which was
used in Fair and Dominguez (1991), is that the coefficients lie on a second
degree polynomial. The second degree polynomial constraint allows enough
flexibility to see if the prime age groups behave differently from the young and
old groups while keeping the number of unconstrained coefficients small. A
second degree polynomial in which the coefficients sum to zero is determined
by two coefficients, and so there are two unconstrained coefficients to estimate
per equation. The two variables that are associated with two unconstrained
coefficients will be denoted GE1; andAG Eo;.

The variablesAGE1; andAG E»; are as follows. First, the age variables
enter equatior asy">>) ;i pj:, wherey_>°,; B;; = 0. The polynomial con-
straint is

Bi=ro+vii+ri® . (G=1...,55 (4.34)

whereyo, y1, andy» are coefficients to be determinédl.The zero sum con-
straint on theg;;’s implies that

:_VI—Z] — Y2 ZJ (4.35)

3For ease of notation, niosubscripts are used for thecoefficients.
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The way in which the age variables enter the estimated equation is then

V1AGE1y + y2AGEy,

where
55 1 55 55
AGEu =} jpit = g2 DQ_ pjn) (4.36)
j=1 j=1 j=1
and 55 1 55 55
AGEy =3 %pji — 523 i pin) (4.37)
j=1 =1 j=1

Given the estimates gf, andy,, the 558;; coefficients can be computed.
This technique is simply Almon’s (1965) polynomial distributed lag tech-
nigue, where the coefficients that are constrained are the coefficients of the
pj: variables(j = 1, ..., 55) rather than coefficients of the lagged values of
some variable.

One test of whether age distribution matters is thus to 4dd,, and
AG E; to the equation and test if the two variables are jointly significant.

For the work in the next chapter a different set of constraints was imposed
on thep;; coefficients. The population 16+ was divided into four groups (16—
25, 26-55, 56-65, and 66+) and it was assumed that the coefficients are the
same within each group. Given the constraint that the coefficients sum to zero,
this leaves three unconstrained coefficients to estimatePIL625 denote the
percent of the 16+ population aged 16—-25, and similarlyA2655, P5665,
andP66+. Letygdenote the coefficient d?1625in the estimated equation,
the coefficient ofP 2655,y the coefficient ofP 5665, and/; the coefficient of
P66+, whereyg+y1+y2+y3 = 0. The summation constraint can be imposed
by entering three variablesin the estimated equatiofil = P2655- P1625,

AG2 = P5665— P1625, andAG3 = (P66+) — P1625. AG1, AG2, and
AG3 are variables in the US model. The coefficientad1 in an equation
is Y1 — yo, the coefficient ofAG2 is y» — yp, and the coefficient oAG3 is

y3 — yp. From the estimated coefficients farG1, AG2, andAG3 and the
summation constraint, one can calculate the fogoefficients.

Imposing the constraints in the manner just described has an advantage
over imposing the quadratic constraint of allowing more flexibility in the sense
that three unconstrained coefficients are estimated instead of two. Also, | have
found that the quadratic constraint sometimes leads to extreme valje $awf
the very young and very old ages. The disadvantage of the present approach
over the quadratic approach is that the coefficients are not allowed to change
within the four age ranges.



