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Estimating and Testing
Single Equations

4.1 Notation

This chapter discusses the estimation and testing of single equations. The
notation that will be used is the same as that used in Section 1.2. The model
is written as

fi(yt , xt,αi) = uit , (i = 1, . . . , n), (t = 1, . . . , T ) (4.1)

whereyt is ann–dimensional vector of endogenous variables,xt is a vector
of predetermined variables (including lagged endogenous variables),αi is a
vector of unknown coefficients, anduit is the error term for equationi for
observationt . It will be assumed that the firstm equations are stochastic, with
the remaininguit (i = m + 1, . . . , n) identically zero for allt .

The following notation is also used.ui denotes theT –dimensional vec-
tor (ui1, . . . , uiT )′. G′

i denotes theki × T matrix whoset th column is
∂fi(yt , xt , αi)/∂αi , whereki is the dimension ofαi . α denotes the vector
of all the unknown coefficients in the model:α = (α′

1, . . . , α
′
m). The dimen-

sion ofα is k, wherek = ∑m
i=1 ki . Finally, Zi denotes aT × Ki matrix of

predetermined variables that are to be used as first stage regressors for the two
stage least squares technique.

It will sometimes be useful to consider the case in which the equation to be
estimated is linear in coefficients. In this case equationi in 4.1 will be written
as

yit = Xitαi + uit , (i = 1, . . . , n), (t = 1, . . . , T ) (4.2)
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64 4 ESTIMATING AND TESTING SINGLE EQUATIONS

whereyit is the left hand side variable andXit is a ki–dimensional vector
of explanatory variables in the equation.Xit includes both endogenous and
predetermined variables. Bothyit and the variables inXit can be nonlinear
functions of other variables, and thus 4.2 is more general than the standard
linear model. All that is required is that the equation be linear inαi . Note
from the definition ofG′

i above that for equation 4.2G′
i = X′

i , whereX′
i is

theki × T matrix whoset th column isXit .
Each equation in 4.1 is assumed to have been transformed to eliminate

any autoregressive properties of its error term. If the error term in the un-
transformed version, saywit in equationi, follows arth order autoregressive
process,wit = ρ1iwit−1 + . . . + ρriwit−r + uit , whereuit is iid, then equa-
tion i is assumed to have been transformed into one withuit on the right hand
side. The autoregressive coefficientsρ1i , . . . , ρri are incorporated into theαi

coefficient vector, and the additional lagged values that are involved in the
transformation are incorporated into thext vector. This transformation makes
the equation nonlinear in coefficients if it were not otherwise, but this adds no
further complications to the model because it is already allowed to be nonlin-
ear. It does result in the “loss” of the firstr observations, but this has no effect
on the asymptotic properties of the estimators.uit in 4.1 can thus be assumed
to be iid even though the original error term may follow an autoregressive
process.

Many nonlinear optimization problems in macroeconometrics can be
solved by general purpose algorithms like the Davidon-Fletcher-Powell (DFP)
algorithm. This algorithm is discussed in Fair (1984), Section 2.5, and this
discussion will not be repeated here. Problems for which the algorithm seems
to work well and those for which it does not are noted below.

Unless otherwise stated, the goodness of fit measures have not been ad-
justed for degrees of freedom. For the general model considered here (non-
linear, simultaneous, dynamic) only asymptotic results are available, and so
if any adjustments were made, they would have to be based on analogies to
simpler models. In many cases there are no obvious analogies, and so no ad-
justments were made. Fortunately, in most cases the number of observations
is fairly large relative to numbers that might be used in the subtraction, and so
the results are not likely to be sensitive to the current treatment.
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4.2 Two Stage Least Squares1

Probably the most widely used estimation technique for single equations that
produces consistent estimates is two stage least squares (2SLS).2 The 2SLS
estimate ofαi (denotedα̂i) is obtained by minimizing

Si = u′
iZi(Z

′
iZi)

−1Z′
iui = u′

iDiui (4.3)

with respect toαi . Zi can differ from equation to equation. An estimate of
the covariance matrix of̂αi (denotedV̂2ii) is

V̂2ii = σ̂ii(Ĝ
′
iDiĜi)

−1 (4.4)

whereĜi is Gi evaluated at̂αi , σ̂ii = T −1 ∑T
t=1 û2

it , andûit = fi(yt , xt , α̂i).
The 2SLS estimate of thek × k covariance matrix of all the coefficient

estimates in the model (denotedV̂2) is

V̂2 =


V̂211 . . . V̂21m

. .

. .

. .

V̂2m1 . . . V̂2mm

 (4.5)

where
V̂2ij = σ̂ij (Ĝ

′
iDiĜ

′
i )

−1(Ĝ′
iDiDj Ĝ

′
j )(Ĝ

′
jDj Ĝ

′
j )

−1 (4.6)

andσ̂ij = T −1 ∑T
t=1 ûit ûj t .

4.3 Estimation of Equations with Rational Expectations3

With only slight modifications, the 2SLS estimator can be used to estimate
equations that contain expectational variables in which the expectations are
formed rationally. As discussed later in this chapter, this estimation technique

1See Fair (1984), Section 6.3.2, for a more detailed discussion of the two stage least
squares estimator, especially for the case in which the equation is linear in coefficients and
has an autoregressive error.

2Ordinary least squares is used a lot in practice in the estimation of commercial models
even when the estimator does not produce consistent estimates. This lack of care in the
estimation of such models is undoubtedly one of the reasons there has been so little academic
interest in them.

3The material in this section is taken from Fair (1993b), Section 3 and Appendix A.
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can be used to test the rational expectations hypothesis against other alterna-
tives. The modifications of the 2SLS estimator that are needed to handle the
rational expectations case are discussed in this section.

It will be useful to begin with an example. Assume that the equation to be
estimated is

yit = X1itα1i + Et−1X2it+jα2i + uit , (t = 1, . . . , T ) (4.7)

whereX1it is a vector of explanatory variables andEt−1X2it+j is the expec-
tation ofX2it+j based on information through periodt − 1. j is some fixed
positive integer. This example assumes that there is only one expectational
variable and only one value ofj , but this is only for illustration. The more
general case will be considered shortly.

A traditional assumption about expectations is that the expected future
values of a variable are a function of its current and past values. One might
postulate, for example, thatEt−1X2it+j depends onX2it andX2it−1, where
it assumed thatX2it (as well asX2it−1) is known at the time the expectation
is made. The equation could then be estimated withX2it andX2it−1 replac-
ing Et−1X2it+j in 4.7. Note that this treatment, which is common to many
macroeconometric models, is not inconsistent with the view that agents are
“forward looking.” Expected future values do affect current behavior. It’s just
that the expectations are formed in fairly simply ways—say by looking only
at the current and lagged values of the variable itself.

Assume instead thatEt−1X2it+j is rational and assume that there is an
observed vector of variables (observed by the econometrician), denoted here as
Zit , that is used in part by agents in forming their (rational) expectations. The
following method does not require for consistent estimates thatZit include all
the variables used by agents in forming their expectations.

Let the expectation error forEt−1X2it+j be

t−1εit+j = X2it+j − Et−1X2it+j (t = 1, . . . , T ) (4.8)

whereX2it+j is the actual value of the variable. Substituting 4.8 into 4.7
yields

yit = X1itα1i + X2it+jα2i + uit −t−1 εit+jα2i

= Xitαi + vit (t = 1, . . . , T ) (4.9)

whereXit = (X1it X2it+j ), αi = (α1i α2i )
′, andvit = uit −t−1 εit+jα2i .

Consider now the 2SLS estimation of 4.9, where the vector of first stage
regressors is the vectorZit used by agents in forming their expectations. A
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necessary condition for consistency is thatZit andvit be uncorrelated. This
will be true if bothuit andt−1εit+j are uncorrelated withZit . The assump-
tion that Zit and uit are uncorrelated is the usual 2SLS assumption. The
assumption thatZit andt−1εit+j are uncorrelated is the rational expectations
assumption. If expectations are formed rationally and if the variables inZit

are used (perhaps along with others) in forming the expectation ofX2it+j ,
thenZit andt−1εit+j are uncorrelated. Given this assumption (and the other
standard assumptions that are necessary for consistency), the 2SLS estimator
of αi in equation 4.9 is consistent.

The 2SLS estimator does not, however, account for the fact thatvit in 4.9
is a moving average error of orderj − 1, and so it loses some efficiency for
values ofj greater than 1. The modification of the 2SLS estimator to account
for the moving average process ofvit is Hansen’s (1982) generalized method
of moments (GMM) estimator, which will now be described.

Write 4.9 in matrix notation as

yi = Xiαi + vi (4.10)

whereXi is T × ki , αi is ki × 1, andyi andvi areT × 1. Also, letZi denote,
as above, theT × Ki matrix of first stage regressors. The assumption in 4.9
that there is only one expectational variable and only one value ofj can now
be relaxed. The matrixXi can include more than one expectational variable
and more than one value ofj per variable. In other words, there can be more
than one led value in this matrix.

The 2SLS estimate ofαi in 4.10 is

α̂i = [X′
iZi(Z

′
iZi)

−1Z′
iXi ]

−1X′
iZi(Z

′
iZi)

−1Z′
iyi (4.11)

This use of the 2SLS estimator for models with rational expectations is due to
McCallum (1976).

As just noted, this use of the 2SLS estimator does not account for the
moving average process ofvit , and so it loses efficiency if there is at least
one value ofj greater than 1. Also, the standard formula for the covariance
matrix of α̂i is not correct when at least one value ofj is greater than 1. If,
for example,j is 3 in 4.9, an unanticipated shock in periodt + 1 will affect

t−1εit+3, t−2εit+2, and t−3εit+1, and sovit will be a second order moving
average. Hansen’s GMM estimator accounts for this moving average process.
The GMM estimate in the present case (denotedα̃i) is

α̃i = (X′
iZiM

−1
i Z′

iXi)
−1X′

iZiM
−1
i Z′

iyi (4.12)
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whereMi is some consistent estimate of limT −1E(Z′
iviv

′
iZi). The estimated

covariance matrix of̃αi is

T (X′
iZiM

−1
i Z′

iXi)
−1 (4.13)

There are different versions ofα̃i depending on howMi is computed. To
computeMi , one first needs an estimate of the residual vectorvi . The residuals
can be estimated using the 2SLS estimateα̂i :

v̂i = yi − Xiα̂i (4.14)

A general way of computingMi is as follows. Letfit = v̂it ⊗ Zit ,
where v̂it is the t th element ofv̂i . Let Rip = (T − p)−1 ∑T

t=p fitf
′
it−p,

p = 0, 1, . . . , P , whereP is the order of the moving average.Mi is then
(Ri0 + Ri1 + R′

i1 + . . . + RiP + R′
iP ). In many cases computingMi in this

way does not result in a positive definite matrix, and soα̃i cannot be computed.
I have never had much success in obtaining a positive definite matrix forMi

computed in this way.
There are, however, other ways of computingMi . One way, which is

discussed in Hansen (1982) and Cumby, Huizinga, and Obstfeld (1983) but
is not pursued here, is to computeMi based on an estimate of the spectral
density matrix ofZ′

it vit evaluated at frequency zero. An alternative way,
which is pursued here, is to computeMi under the following assumption:

E(vitvis | Zit , Zit−1, . . .) = E(visvis) , t ≥ s (4.15)

which says that the contemporaneous and serial correlations invi do not de-
pend onZi . This assumption is implied by the assumption thatE(vitvis) =
0, t ≥ s, if normality is also assumed. Under this assumptionMi can be
computed as follows. Letaip = (T − p)−1 ∑T

t=p v̂it v̂it−p and Bip =
(T − p)−1 ∑T

t=p ZitZ
′
it−p, p = 0, 1, . . . , P . Mi is then(ai0Bi0 + ai1Bi1 +

ai1B
′
i1 + . . . + aiP BiP + aiP B ′

iP ). In practice, this way of computingMi

usually results in a positive definite matrix.

The Case of an Autoregressive Structural Error

Since many macroeconometric equations have autoregressive error terms, it
is useful to consider how the above estimator is modified to cover this case.
Return for the moment to the example in 4.7 and assume that the error term
uit in the equation follows a first order autoregressive process:

uit = ρ1iuit−1 + ηit (4.16)
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Lagging equation 4.7 one period, multiplying through byρ1i , and subtracting
the resulting expression from 4.7 yields

yit = ρ1iyit−1 + X1itα1i − X1it−1α1iρ1i + Et−1X2it+jα2i

− Et−2X2it+j−1α2iρ1i + ηit (4.17)

Note that this transformation yields a new viewpoint date,t − 2. Let the
expectation error forEt−2X2it+j−1 be

t−2εit+j−1 = X2it+j−1 − Et−2X2it+j−1 (4.18)

Substituting 4.8 and 4.18 into 4.17 yields

yit = ρ1iyit−1 + X1itα1i − X1it−1α1iρ1i + X2it+jα2i − X2it+j−1α2iρ1i

+ηit −t−1 εit+jα2i +t−2 εit+j−1α2iρ1i

= ρ1iyit−1 + Xitαi − Xit−1αiρ1i + vit (4.19)

whereXit and αi are defined after 4.9 and nowvit = ηit −t−1εit+jα2i

+t−2εit+j−1α2iρ1i . Equation 4.19 is nonlinear in coefficients because of
the introduction ofρ1i . Again, Xit can in general include more than one
expectational variable and more than one value ofj per variable.

Given a set of first stage regressors, equation 4.19 can be estimated by
2SLS. The estimates are obtained by minimizing

Si = v′
iZi(Z

′
iZi)

−1Z′
ivi = v′

iDivi (4.20)

4.20 is just 4.3 rewritten for the error term in 4.19. A necessary condition for
consistency is that Zit andvit be uncorrelated, which means thatZit must be
uncorrelated withηit , t−1εit+j , and t−2εit+j−1. In order to insure thatZit

and t−2εit+j−1 are uncorrelated,Zit must not include any variables that are
not known as of the beginning of periodt − 1. This is an important additional
restriction in the autoregressive case.4

In the general nonlinear case 4.20 (or 4.3) can be minimized using a gen-
eral purpose optimization algorithm. In the particular case considered here,
however, a simple iterative procedure can be used, where one iterates between

4There is a possibly confusing statement in Cumby, Huizinga, and Obstfeld (1983),
p. 341, regarding the movement of the instrument set backward in time. The instrument set
must be moved backward in time as the order of the autoregressive process increases. It
need not be moved backward as the order of the moving average process increases due to
an increase inj .
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estimates ofαi andρ1i . Minimizing v′
iDivi with respect toαi andρ1i results

in the following first order conditions:

α̂i = [(Xi −Xi−1ρ̂1i )
′Di(Xi −Xi−1ρ̂1i )]

−1(Xi −Xi−1ρ̂1i )
′Di(yi −yi−1ρ̂1i )

(4.21)

ρ̂1i = (yi−1 − Xi−1α̂i)
′Di(yi − Xiα̂i)

(yi−1 − Xi−1α̂i)′Di(yi−1 − Xi−1α̂i)
(4.22)

where the−1 subscript denotes the vector or matrix of observations lagged
one period. Equations 4.21 and 4.22 can easily be solved iteratively. Given
the estimateŝαi andρ̂1i that solve 4.21 and 4.22, one can compute the 2SLS
estimate ofvi , which is

v̂i = yi − yi−1ρ̂1i − Xiα̂i + Xi−1α̂i ρ̂1i (4.23)

Regarding Hansen’s estimator, givenv̂i , one can computeMi in one of the
number of possible ways. These calculations simply involvev̂i andZi . Given
Mi , Hansen’s estimates ofαi andρ1i are obtained by minimizing5

SSi = v′
iZiM

−1
i Z′

ivi = v′
iCivi (4.24)

Minimizing 4.24 with respect toαi andρ1i results in the first order conditions
4.21 and 4.22 withCi replacingDi . The estimated covariance matrix is

T (G′
iCiGi)

−1 (4.25)

whereG = (Xi − Xi−1ρ̂1i yi−1 − Xi−1α̂i).
To summarize, Hansen’s method in the case of a first order autoregressive

structural error consists of: 1) choosingZit so that it does not include any
variables not known as of the beginning of periodt − 1, 2) solving 4.21 and
4.22, 3) computinĝvi from 4.23, 4) computingMi in one of the number of
possible ways usinĝvi andZi , and 5) solving 4.21 and 4.22 withCi replacing
Di .

4.4 Two Stage Least Absolute Deviations6

Another single equation estimator that is of interest to consider is two stage
least absolute deviations (2SLAD). This estimator is used for comparison
purposes in Chapter 8. The following is a brief review of it.

5The estimator that is based on the minimization of 4.24 is also the 2S2SLS estimator
of Cumby, Huizinga, and Obstfeld (1983).

6See Fair (1984), Sections 6.3.6 and 6.5.4, for a more detailed discussion of the two
stage least absolute deviations estimator.
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It is assumed for the 2SLAD estimator that the model in 4.1 can be written:

yit = hi(yt , xt , αi) + uit , (i = 1, . . . , n), (t = 1, . . . , T ) (4.26)

where in theith equationyit appears only on the left hand side.
Let ŷi = Diyi and ĥi = Dihi , where, as above,Di = Zi(Z

′
iZi)

−1Z′
i ,

whereZi is a matrix of first stage regressors. There are two ways of looking
at the 2SLAD estimator. One is that it minimizes

T∑
t=1

∣∣∣ŷit − ĥit

∣∣∣ (4.27)

and the other is that it minimizes

T∑
t=1

∣∣∣yit − ĥit

∣∣∣ (4.28)

Amemiya (1982) has proposed minimizing

T∑
t=1

∣∣∣qyit + (1 − q)ŷit − ĥit

∣∣∣ (4.29)

whereq is chosen ahead of time by the investigator. The estimator that is based
on minimizing 4.29 will be called the 2SLAD estimator. For the computational
results in Chapter 8,q = .5 has been used.

The 2SLAD estimator weights large outliers less than does 2SLS, and so
it is less sensitive to these outliers. It is a robust estimator in the sense that its
properties are less sensitive to deviations of the distributions of the error terms
from normality than are the properties of 2SLS.

4.5 Chi-Square Tests

Many single equation tests are simply of the form of adding a variable or a
set of variables to an equation and testing whether the addition is statistically
significant. LetS∗∗

i denote the value of the minimand before the addition,
let S∗

i denote the value after the addition, and letσ̂ii denote the estimated
variance of the error term after the addition. Under fairly general conditions,
as discussed in Andrews and Fair (1988),(S∗∗

i − S∗
i )/σ̂ii is distributed asχ2

with k degrees of freedom, wherek is the number of variables added. For the
2SLS estimator the minimand is defined in equation 4.3, i.e.,Si = u

′
iDiui .
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For Hansen’s estimator the minimand is defined in equation 4.24, i.e.,
SSi = v

′
iCivi . In this case(SS∗∗

i − SS∗
i )/T is distributed asχ2, whereT

is the number of observations. When performing this test theMi matrix that
is used in the construction ofCi must be the same for both estimates. For
the results in Chapter 5,Mi was always estimated using the residuals for the
unrestricted case (i.e., using the residuals from the equation with the additions).

The following is a list of tests of single equations that can be made by
adding various things to the equations and performingχ2 tests.

Dynamic Specification

Many macroeconomic equations include the lagged dependent variable and
other lagged endogenous variables among the explanatory variables. A test
of the dynamic specification of a particular equation is to addfurther lagged
values to the equation and see if they are significant. For equation 4.2, for
example, one could add the lagged value ofyi if the lagged value is not already
included inXi and the lagged values of the variables inXi . (If the lagged value
of yi is in Xi , then the value ofyi lagged twice would be added for the test.)
Hendry, Pagan, and Sargan (1984) show that adding these lagged values is quite
general in that it encompasses many different types of dynamic specifications.
Therefore, adding the lagged values and testing for their significance is a test
against a fairly general dynamic specification.

Time Trend

Long before units roots and cointegration became popular, model builders wor-
ried about picking up spurious correlation from common trending variables.
One check on whether the correlation might be spurious is to add a time trend
to the equation. If adding a time trend to the equation substantially changes
some of the coefficient estimates, this is cause for concern. A simple test is to
add the time trend to the equation and test if this addition is significant.

Serial Correlation of the Error Term

As noted in Section 4.1, if the error term in an equation follows an autore-
gressive process, the equation can be transformed and the coefficients of the
autoregressive process can be estimated along with the structural coefficients.
Even if, say, a first order process has been assumed and the first order co-
efficient estimated, it is still of interest to see if there is serial correlation of
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the (transformed) error term left. This can be done by assuming a more gen-
eral process for the error term and testing its significance. For the results in
Chapters 5 and 6 a fourth order process was used. If the addition of a fourth
order process over, say, a first order process results in a significant increase in
explanatory power, this is evidence that the serial correlation properties of the
error term have not been properly accounted for.

Other Explanatory Variables

Variables can obviously be added to an equation and their statistical signif-
icance tested. This is done for the equations in the next two chapters. If a
variable or set of variables that one does not expect from the theory to belong
in the equation is significant, this is evidence against the theory.

Variables can also be added that others have found to be important ex-
planatory variables in similar contexts. For example, Friedman and Kuttner
(1992), (1993) have found the spread between the six month commercial paper
rate and the six month Treasury bill rate is significant in explaining real GNP
in a vector autoregressive system. If the spread is significant in explaining real
GNP, then it should be in explaining some of the components of real GNP. It
is thus of interest to add the spread to equations explaining consumption and
investment to see if it has independent explanatory power. This is done in the
next chapter for some of the equations in the US model.7

Leads8

Adding values led one or more periods and using Hansen’s method for the
estimation is a way of testing the hypothesis that expectations are rational.
Consider the example in equation 4.7 above, and consider testing the RE
hypothesis against the simpler alternative thatEt−1X2it+j is only a function
of X2it andX2it−1, where both of these variables are assumed to be known
at the time the expectation is made. Under the simpler alternative,X2it and
X2it−1 are added as explanatory variables to 4.7. Under the RE alternative,
X2it+j is added as an explanatory variable, and the equation is estimated
using Hansen’s method. A test of the RE hypothesis is thus to addX2it+j

to the equation withX2it andX2it−1 included and test the hypothesis that

7The six month commercial paper rate and the six month Treasury bill rate are not
variables in the US model, and they are not presented in Appendix A. The data are available
from the Federal Reserve.

8The material in this subsection is taken from Fair (1993b), Section 3.
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the coefficient ofX2it+j is zero. TheZit vector used for Hansen’s method
should include the predetermined variables inX1it in 4.7—includingX2it and
X2it−1—plus other variables assumed to be in the agents’ information sets.9

The test is really whether these other variables matter. If agents do not use
more information than that contained in the predetermined variables inX1it

in forming their expectation ofX2t i+j , then the use of the variables inZit

as first stage regressors forX2it+j adds nothing not already contained in the
predetermined variables inX1it .

The test of the RE hypothesis is thus to add variable values led one or more
periods to an equation with only current and lagged values and estimate the
resulting equation using Hansen’s method. If the led values are not significant,
this is evidence against the RE hypothesis. It means essentially that the extra
variables inZit do not contribute significantly to the explanatory power of the
equation.

An implicit assumption behind this test is thatZit contains variables other
than the predetermined variables inX1it . If, say, the optimal predictor of
X2it+j were solely a function ofX2it andX2it−1, then the above test would
not be appropriate. In this case the traditional approach is consistent with the
RE hypothesis, and there is nothing to test. The assumption thatZit contains
many variables is consistent with the specification of most macroeconomet-
ric models, where the implicit reduced form equations for the endogenous
variables contain a large number of variables. This assumption is in effect
maintained throughout this book. The tests in Chapters 5 and 6 have nothing
to say about cases in which there is a very small number of variables inZit .

As an example of the test, consider the wage variableW in the consumption
equation 1.4 in Chapter 1. Assume thatWt is known, wheret is period 1. The
wage variables in equation 1.4 are thenWt , Et−1Wt+1, Et−1Wt+2, etc. If

9Remember thatX2it is assumed to be known at the time the expectations are made,
which is the reason for treating it as predetermined. In practice, a variable likeX2it is
sometimes taken to be endogenous, in which case it is not part of theZit vector. When a
variable likeX2it is taken to be endogenous, an interesting question is whether one can test
the hypothesis that agents know it at the time they make their expectations as opposed to
having only a rational expectation of it. It is not possible to test this if theZit vector used
for the 2SLS method is the same vector used by the agents in forming their expectations.
It would, however, be possible to test this hypothesis if there were some contemporaneous
exogenous variables in the model that agents forming rational expectations do not know at
the time they make their forecasts. These variables are appropriate first stage regressors for
2SLS (since they are exogenous), but they are not used by agents. In practice, however, this
is likely to be a small difference upon which to base a test, and no attempt is made here to
do so. The focus here is on values datedt + 1 and beyond.
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agents use only current and lagged values ofW in forming expectations of
future values ofW , then candidates for explanatory variables areWt , Wt−1,
Wt−2, etc. Under the RE hypothesis, on the other hand, agents useZit in
forming their expectations for periodst + 1 and beyond, and candidates for
explanatory variables areWt+1, Wt+2, etc., with Hansen’s method used for
the estimation. The test is to test for the joint significance of the led values.

The test proposed here is quite different from Hendry’s (1988) test of
expectational mechanisms. Hendry’s test requires one to postulate the ex-
pectation generation process, which is then examined for its constancy across
time. If the structural equation that contains the expectations is constant but
the expectations equations are not, this refutes the expectations equations. As
noted above, for the test proposed hereZit need not contain all the variables
used by agents in forming their expectations, and so the test does not require a
complete specification of the expectations generation process. The two main
requirements are only thatZit be correlated withX2it+j but not witht−1εit+j .

4.6 Stability Tests

One of the most important issues to examine about an equation is whether its
coefficients change over time, i.e., whether the structure is stable over time.
A common test of structural stability is to pick a date at which the structure
is hypothesized to have changed and then test the hypothesis that a change
occurred at this date. In the standard linear regression model this is an F test,
usually called the Chow test. More general settings are considered in Andrews
and Fair (1988).

One test in the more general setting is simply theχ2 test discussed in the
previous section, whereS∗∗

i is the value of the minimand under the assumption
of no structural change andS∗

i is the value of the minimand under the assump-
tion that the change occurred at the specified date. Assume, for example, that
the estimation period is from 1 throughT and that the specified date of the
structural change isT ∗. Assume also that the equation is estimated by 2SLS.
Computing theχ2 value in this case requires estimating the equation for three
periods: 1 throughT ∗, T ∗ + 1 throughT , and 1 throughT . Let S(1)

i be the

value of the minimand in 4.3 for the first estimation period, and letS
(2)
i be

the value for the second estimation period. ThenS∗
i = S

(1)
i + S

(2)
i . S∗∗

i is
the value of the minimand in 4.3 that is obtained when the equation is esti-
mated over the full estimation period. When estimating over the full period,
theZi matrix used for the full period must be the union of the matrices used
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for the two subperiods in order to makeS∗∗
i comparable toS∗

i . This means
that for each first stage regressorQit , two variables must be used inZi for
the full estimation period, one that is equal toQit for the first subperiod and
zero otherwise and one that is equal toQit for the second subperiod and zero
otherwise. If this is done, then theχ2 value is(S∗∗

i − S∗
i )/σ̂ii , whereσ̂ii is

equal to the sum of the sums of squared residuals from the first and second
estimation periods divided byT − 2ki , whereki is the number of estimated
coefficients in the equation.

Recently, Andrews and Ploberger (1994) have proposed a class of tests that
does not require that the date of the structural change be chosena priori. Let the
overall sample period be 1 throughT . The hypothesis tested is that a structural
change occurred between observationsT1 andT2, whereT1 is an observation
close to 1 andT2 is an observation close toT . If the time of the change (if
there is one) is completely unknown, Andrews and Ploberger suggest taking
T1 very close to 1 andT2 very close toT . This puts little restriction on the
time of the change. If, on the other hand, the time of the change is known to
lie in a narrower interval, the narrower interval should be used to maximize
power. One of the main advantages of the Andrews-Ploberger tests is that they
have nontrivial power asymptotically and have been designed to have certain
optimality properties.

The particular Andrews-Ploberger test used here is easy to compute. The
test is carried out as follows:

1. Compute theχ2 value for the hypothesis that the change occurred at
observationT1. This requires estimating the equation three times—
once each for the estimation periods 1 throughT1 − 1, T1 throughT ,
and 1 throughT . Denote this value asχ2(1).10

2. Repeat step 1 for the hypothesis that the change occurred at observation
T1 + 1. Denote thisχ2 value asχ2(2). Keep doing this through the
hypothesis that the change occurred at observationT2. This results in
N = T2 − T1 + 1 χ2 values being computed—χ2(1), . . . , χ2(N).

3. The Andrews-Ploberger test statistic (denotedAP ) is

AP = log[(e
1
2χ2(1) + . . . + e

1
2χ2(N)

)/N ] (4.30)

In words, theAP statistic is a weighted average of theχ2 values, where
there is oneχ2 value for each possible split in the sample period between
observationsT1 andT2.

10Thisχ2 value is computed in the regular way as discussed above.
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Table 4.1
Critical Values for the AP Statistic

for λ = 2.75

No.of No.of
coefs. 5% 1% coefs. 5% 1%

1 2.01 3.36 8 8.22 10.23
2 3.07 4.69 9 9.01 11.20
3 4.00 5.62 10 9.55 12.14
4 4.95 7.00 11 10.33 12.73
5 5.80 7.65 12 11.03 13.43
6 6.59 8.72 13 11.62 14.47
7 7.31 9.50 14 12.37 15.20

Asymptotic critical values forAP are presented in Tables I and II in
Andrews and Ploberger (1994). The critical values depend on the number
of coefficients in the equation and on a parameterλ, where in the present
contextλ = [π2(1 − π1)]/[π1(1 − π2)] , whereπ1 = (T1 − .5)/T and
π2 = (T2 − .5)/T .

If theAP value is significant, it may be of interest to examine the individual
χ2 values to see where the maximum value occurred. This is likely to give
one a general idea of where the structural change occurred even though the
AP test does not reveal this in any rigorous way.

Since theAP test is used in the next two chapters, it will be useful to give
a few critical values. For the work in the next chapter the basic sample period
is 1954:1–1993:2, and for the stability testsT1 was taken to be 1970:1 andT2

was taken to be 1979:4. This choice yields a value ofλ of 2.75. Table 4.1
presents the 5 percent and 1 percent asymptotic critical values for this value of
λ and various values of the number of estimated coefficients in the equations.
These values are interpolated from Table I in Andrews and Ploberger (1994).

Although the values in Table 4.1 are for just one particular value ofλ

(namely, 2.75), Andrews and Ploberger’s Table I shows that the critical values
are not very sensitive to different values ofλ. The above critical values are thus
approximately correct for different choices ofT1 andT2 than the one made
here.
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4.7 Tests of Age Distribution Effects11

A striking feature of post war U.S. society has been the baby boom of the
late 1940s and the 1950s and the subsequent falling off of the birth rate in the
1960s. The number of births in the United States rose from 2.5 million in 1945
to 4.2 million in 1961 and then fell back to 3.1 million in 1974. This birth
pattern implies large changes in the percentage of prime age (25–54) people in
the working age (16+) population. In 1952 this percentage was 57.9, whereas
by 1977 it had fallen to 49.5. Since 1980 the percentage of prime aged workers
has risen sharply as the baby boomers have begun to pass the age of 25.

As noted in Chapter 1, an important issue in macroeconomics is whether
the coefficients of macroeconomic equations change over time as other things
change. The Lucas critique focuses on policy changes, but other possible
changes are changes in the age distribution of the population. This section
discusses a procedure for examining the effects of the changes in the U.S.
population age distribution on macroeconomic equations. The procedure is as
follows.

Divide the population intoJ age groups. LetD1ht be 1 if individualh is
in age group 1 in periodt and 0 otherwise; letD2ht be 1 if individualh is in
age group 2 in periodt and 0 otherwise; and so on throughDJht . Consider
equationi in 4.2, an equation that is linear in coefficients. Let equationi for
individualh be:

yhit = Xhitαi + β0i + β1iD1ht + . . . + βJ iDJht + uhit

(h = 1, . . . , Nt ), (t = 1, . . . , T ) (4.31)

whereyhit is the value of variablei in period t for individual h (e.g., con-
sumption of individualh in periodt), Xhit is a vector of explanatory variables
excluding the constant,αi is a vector of coefficients, anduhit is the error term.
The constant term in the equation isβ0i + βji for an individual in age group
j in periodt . Nt is the total number of people in the population in periodt .

Equation 4.31 is restrictive because it assumes thatαi is the same across
all individuals, but it is less restrictive than a typical macroeconomic equation,
which also assumes that the constant term is the same across individuals. Given
Xhit , yhit is allowed to vary across age groups in equation 4.31. Because most
macroeconomic variables are not disaggregated by age groups, one cannot test
for age sensitiveαi ’s. For example, suppose that one of the variables inXhit

11The material in this section is taken from Fair and Dominguez (1991).
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is Yht , the income of individualh in periodt . If the coefficient ofYht is the
same across individuals, sayγ1i , thenγ1iYht enters the equation, and it can be
summed in the manner discussed in the next paragraph. If, on the other hand,
the coefficient differs across age groups, then the term entering the equation is
γ11iD1htYht + . . .+ γ1J iDJhtYht . The sum of a variable likeD1htYht across
individuals is the total income of individuals in age group 1, for which data
are not generally available. One is thus restricted to assuming that age group
differences are reflected in different constant terms in equation 4.31.

Let Njt be the total number of people in age groupj in periodt , let yit

be the sum ofyhit , let Xit be the vector whose elements are the sums of the
corresponding elements inXhit , and letuit be the sum ofuhit . (All sums are
for h = 1, . . . , Nt .) Given this notation, summing equation 4.31 yields:

yit = Xitαi +β0iNt +β1iN1t +. . .+βJ iNJ t +uit , (t = 1, . . . , T ) (4.32)

If equation 4.32 is divided through byNt , it is converted into an equation in
per capita terms. Letpjt = Njt/Nt , and reinterpretyit , the variables inXit ,
anduit as being the original values divided byNt . Equation 4.32 in per capita
terms can then be written:

yit = Xitαi + β0i + β1ip1t + . . . + βJ ipJ t + uit , (t = 1, . . . , T ) (4.33)

A test of whether age distribution matters is simply a test of whether
theβ1i , . . . , βJ i coefficients in equation 4.33 are significantly different from
zero.12 If the coefficients are zero, one is back to a standard macroeconomic
equation. Otherwise, givenXit , yit varies as the age distribution varies. Since
the sum ofpjt acrossj is one and there is a constant in the equation, a restriction
on theβji coefficients must be imposed for estimation. In the estimation work
below, the age group coefficients are restricted to sum to zero:

∑J
j=1 βji = 0.

This means that if the distributional variables do not matter, then adding them
to the equation will not affect the constant term.

The Age Distribution Data

The age distribution data that are used in the next chapter are from the U.S.
Bureau of the Census,Current Population Reports, Series P-25. The data from

12Stoker (1986) characterizes this test (that all proportion coefficients are zero) as a test of
microeconomic linearity or homogeneity (that all marginal reactions of individual agents are
identical). He shows that individual differences or more general behavioral nonlinearities
will coincide with the presence of distributional effects in macroeconomic equations.
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the census surveys, which are taken every ten years, are updated yearly using
data provided by the National Center for Health Statistics, the Department
of Defense, and the Immigration and Naturalization Service. The data are
estimates of the total population of the United States, including armed forces
overseas, in each of 86 age groups. Age group 1 consists of individuals less
than 1 year old, age group 2 consists of individuals between 1 and 2 years of
age, and so on through age group 86, which consists of individuals 85 years
old and over. The published data are annual (July 1 of each year). Because the
equations estimated below are quarterly, quarterly population data have been
constructed by linearly interpolating between the yearly points.

Fifty five age groups are considered: ages 16, 17, . . . , 69, and 70+. The
“total” population,Nt , is taken to be the population 16+. In terms of the above
notation, 55pjt variables(j = 1, . . . , 55) have been constructed, where the
55 variables sum to one for a givent .

Constraints on the Age Coefficients

Since there are 55βji coefficients to estimate, some constraints must be im-
posed on them if there is any hope of obtaining sensible estimates. One
constraint is that the coefficients sum to zero. Another constraint, which was
used in Fair and Dominguez (1991), is that the coefficients lie on a second
degree polynomial. The second degree polynomial constraint allows enough
flexibility to see if the prime age groups behave differently from the young and
old groups while keeping the number of unconstrained coefficients small. A
second degree polynomial in which the coefficients sum to zero is determined
by two coefficients, and so there are two unconstrained coefficients to estimate
per equation. The two variables that are associated with two unconstrained
coefficients will be denotedAGE1t andAGE2t .

The variablesAGE1t andAGE2t are as follows. First, the age variables
enter equationi as

∑55
j=1 βjipjt , where

∑55
j=1 βji = 0. The polynomial con-

straint is
βji = γ0 + γ1j + γ2j

2 , (j = 1, . . . , 55) (4.34)

whereγ0, γ1, andγ2 are coefficients to be determined.13 The zero sum con-
straint on theβji ’s implies that

γ0 = − γ1
1

55

55∑
j=1

j − γ2
1

55

55∑
j=1

j2 (4.35)

13For ease of notation, noi subscripts are used for theγ coefficients.
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The way in which the age variables enter the estimated equation is then

γ1AGE1t + γ2AGE2t

where

AGE1t =
55∑

j=1

jpjt − 1

55
(

55∑
j=1

j)(

55∑
j=1

pjt ) (4.36)

and

AGE2t =
55∑

j=1

j2pjt − 1

55
(

55∑
j=1

j2)(

55∑
j=1

pjt ) (4.37)

Given the estimates ofγ1 andγ2, the 55βji coefficients can be computed.
This technique is simply Almon’s (1965) polynomial distributed lag tech-
nique, where the coefficients that are constrained are the coefficients of the
pjt variables(j = 1, . . . , 55) rather than coefficients of the lagged values of
some variable.

One test of whether age distribution matters is thus to addAGE1t and
AGE2t to the equation and test if the two variables are jointly significant.

For the work in the next chapter a different set of constraints was imposed
on theβji coefficients. The population 16+ was divided into four groups (16–
25, 26–55, 56–65, and 66+) and it was assumed that the coefficients are the
same within each group. Given the constraint that the coefficients sum to zero,
this leaves three unconstrained coefficients to estimate. LetP1625 denote the
percent of the 16+ population aged 16–25, and similarly forP2655,P5665,
andP66+. Letγ0 denote the coefficient ofP1625 in the estimated equation,γ1

the coefficient ofP2655,γ2 the coefficient ofP5665, andγ3 the coefficient of
P66+, whereγ0+γ1+γ2+γ3 = 0. The summation constraint can be imposed
by entering three variables in the estimated equation:AG1 = P2655−P1625,
AG2 = P5665− P1625, andAG3 = (P66+) − P1625. AG1, AG2, and
AG3 are variables in the US model. The coefficient ofAG1 in an equation
is γ1 − γ0, the coefficient ofAG2 is γ2 − γ0, and the coefficient ofAG3 is
γ3 − γ0. From the estimated coefficients forAG1, AG2, andAG3 and the
summation constraint, one can calculate the fourγ coefficients.

Imposing the constraints in the manner just described has an advantage
over imposing the quadratic constraint of allowing more flexibility in the sense
that three unconstrained coefficients are estimated instead of two. Also, I have
found that the quadratic constraint sometimes leads to extreme values ofβji for
the very young and very old ages. The disadvantage of the present approach
over the quadratic approach is that the coefficients are not allowed to change
within the four age ranges.


