Lecture 4

Chapter 8

- Introduce notation and basic concepts about modeling – not in book
- Brief discussion of least squares not in book
- Simple consumption function
- Equilibrium condition
- Derive multiplier
- Next lecture add government to the model –
 Chapter 9

NOTATION

- Endogenous Variables
- Exogenous Variables
- Behavioral Equations
- Identities (≡)
- Equilibrium Conditions
- Parameters or Coefficients
- Reduced Form Equations

THE MULTIPLIER MODEL

- Y aggregate output or income
- ullet C aggregate consumption
- I planned aggregate investment
- S aggregate saving
- Y = C + I Equilibrium condition
- C = a + bY Behavioral
- $S \equiv Y C$ Definition
- $\frac{\Delta C}{\Delta Y} \equiv MPC \equiv b$
- $\Delta S \equiv \Delta Y \Delta C$
- $\frac{\Delta S}{\Delta Y} \equiv MPS \equiv \frac{\Delta Y \Delta C}{\Delta Y} \equiv 1 \frac{\Delta C}{\Delta Y} \equiv 1 MPC$

SUM = d1 + d2 + ... + d10

LEAST SQUARES: Pich a and b such that SUM is the smallest.

EQUILIBRIUM

- I^a actual aggregate investment
- $Y \equiv C + I^a$ Definition (always true in the data)

If Y = C + I, then $I^a = I$

If Y > C + I, then $I^a > I$ (too much inventory investment)

If Y < C + I, then $I^a < I$ (too little inventory investment)

SOLUTION OF THE MULTIPLIER **MODEL**

$$C = a + bY$$
 Behavioral

$$Y = C + I$$
 Equilibrium Condition

$$Y = a + bY + I$$

$$Y - bY = a + I$$

$$Y = \frac{a}{1-b} + \frac{1}{1-b}I$$
 Reduced Form Equation

$$C = a + b(C + I)$$

$$C - bC = a + bI$$

$$C = \frac{a}{1-b} + \frac{b}{1-b}I$$

 $C = \frac{a}{1-b} + \frac{b}{1-b}I$ Reduced Form Equation

