Lecture 9

Chapter 11: The AS/AD Model

- Derivation of AD curve from IS curve and Fed rule
- AS and AD together
- Shape of AS curve and the effects on policy responses
- Reduced form equation for AS/AD modeloptional

NOTATION

- Y output or income
- C consumption
- I investment
- G government purchases of goods and services-exogenous
- $T R$ government spending on transfer payments (a negative tax)-exogenous
- t tax rate-exogenous
- TAX taxes
- T net taxes ($T A X-T R$)
- Y_{d} disposable income $(Y-T)$
- r interest rate
- P price level
- $P M$ price of imports (cost variable)exogenous
- Z "Z" variables in Fed rule-exogenous

AS/AD MODEL

- $Y_{d} \equiv Y-T \quad$ Definition
- $C=a+b Y_{d} \quad$ Behavioral (households)
- $I=d-e \cdot r \quad$ Behavioral (firms)
- $Y=C+I+G \quad$ Equilibrium condition
- $T A X=t Y \quad$ Behavioral (government)
- $T \equiv T A X-T R \quad$ Definition
- $P=\delta+\epsilon Y+\zeta P M$ Behavioral (AS curve, firms)
- $r=\alpha Y+\beta P+\gamma Z \quad$ Behavioral (Fed rule)

Derivation of AD curve

ρ
So when Pr, Y \downarrow-- AD curve

$$
A D
$$

$$
A S / A D
$$

SHAPE OF AS curve

SOLUTION of AS/AD MODEL

$Y=C+I+G$
$=a+b(Y-t Y+T R)+d$

$$
-e \cdot(\alpha Y+\beta[\delta+\epsilon Y+\zeta P M]+\gamma Z)+G
$$

Let $q=1-b+b t+e \alpha+e \beta \epsilon$.
Reduced form equation is:

$$
=\frac{a}{q}+\frac{b}{q} T R+\frac{d}{q}-\frac{e \beta \delta}{q}-\frac{e \beta \zeta}{q} P M-\frac{e \gamma}{q} Z+\frac{1}{q} G
$$

If $b=.75, t=1 / 3, \alpha=.3, e=.3, \epsilon=.3, \beta=$.3 , then $q=0.617$, so $\frac{1}{q}=1.62$. This compares to $\frac{1}{1-b+b t}=2.0$.
Why is the government spending multiplier smaller when the AS curve and/or the Fed rule are added to the model?

