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1. INTRODUCTION 

ALTHOUGH TKE DEVELOPMENT OF MACROECONOMK MODELS has reached a stage 
where a number of models are now being used on a regular basis for forecasting 
purposes, many models do not appear to be capable as yet of producing accurate 
forecasts without the extensive use of constant-term adjustments and other “fine- 
tuning” procedures.’ Part of the need for constant-term adjustments in many 
models appears to be due to serial correlation of the error terms in the models. 
Adjusting the constant term in an equation to make the last estimated residual 
zero can be considered to be a crude way of accounting for serial corrlation. 
There are, of course, more formal ways of accounting for serial correlation than 
by adjusting constant terms, and when a more formal approach was taken for 
the model developed in [5], the model appeared capable of generating good 
forecasts in a tnechanical way without the need for any constant-term adjust- 
ments or other line-tuning procedures. In the estimation of the model in [5], 
account was taken of both simultaneous-equations bias and first-order serial cor- 
relation of t,be error terms, and the estimates of the serial correlation coefficients 
were used in the generation of the forecasts from the model. 

The results obtained in [5] thus indicate that considerable gain in forecasting 
accuracy may be achieved by the use of more advanced estimation techniques, 
but no formal comparison of the forecasting accuracy of alternative estimators 
was made in [S]. The purpose of this paper is to make such a comparison. 
Ten estimators are considered. Each estimator is first used to estimate the 
seven stochastic expenditure equations of the model developed in [S]. The re- 
duced form of the model is then solved for each set of estimates, and within- 
sample predictions (both static and dynamic) of the endogenous variables of the 
model are generated over the sample period. The estimators are compared in 
terms of the accuracy of the within-sample predictions. Seven of the estimators 
account for first-order serial correlation of the error terms, three of the estima- 

* Manuscript received March 30, 1972; revised July 19, 1972. 
1 Evans, Haitovsky, and Treyz 141 in their study of the Wharton and OBE models, for ex- 

ample, concluded that: “From the previous results it should be obvious that econometric models 
c8mmt generate good forecasts if they are used only in a mechanical fashion. The art of fore- 
casting still requires that a great deal of fine tuning be used with zmy econometric model pres- 
ently in existence.” 
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tors also account for second-order serial correlation, three of the estimators are 
two-stage least squares estimators, three of the estimators are full-information 
maximum likelihood estimators, and one of the estimators attempts to account 
for the fact that values of the lagged endogenous variables are not known be- 
yond the one-period-ahead forecast. 

Parts of this study would not have been possible without the recent advances 
that have been made in numerical analysis and computer technology. Work by 
Goldfeld, Quandt, and Trotter [7] and others on nonlinear estimation techniques, 
for example, has greatly increased the feasibility of estimating equations that 
are nonlinear in coetIicients, and recent work by Chow [Z] and Chow and Fair 
[3] has increased the feasibility of estimating linear economic models by full- 
information maximum likelihood. Advances in computer technology have 
increased the feasibility of handling larger models and more complicated pro- 
blems. For the work in this study, the technique described in Chow [Z] was 
used lo obtain the full-information maximum likelihood estimates under the 
assumption of no serial correlation, and the technique described in Chow and 
Fair [3] was used to obtain the full-information maximum likelihood estimates 
under the assumptions of first- and second-order serial correlation. The quadra- 
tic hill-climbing technique of Goldfeld, Quandt, and Trotter [7] was used to 
obtain the estimates that accounted for the fact that values of the lagged endo- 
genous variables are not known beyond the one-period-ahead forecast. 

It should be noted at the outset that this study is not a comparison of esti- 
mators in terms of the standard properties of unbiasedness, efficiency, and con- 
sistency. Rather, this study is an attempt to determine, using an actual model 
of the United States economy, which estimators lead to the most accurate multi- 
period predictions. The methodology of the study is thus similar to that of 
Klein’s study [9], where four sets of estimates of the Klein-Goldberger model 
were compared in terms of the accuracy of the within-sample predictions from 
the model and in terms of the accuracy of one-year-ahead outside-sample pre- 
dictions. In the present study only within-sample predictions are considered. 

This study is based on the premise that the basic properties of macroeconomic 
models are similar enough so that the conclusions obtained from the use of one 
model can be generalized to other models. The model used in this study is small, 
linear, and was designed primarily for short-run forecasting purposes. Three 
of the variables treated as exogenous in the model-an index of consumer senti- 
ment, plant and equipment investment expectations, and housing starts-are 
really not exogenous beyond about the two-quarter-ahead predictions. It is an 
open question as to how restrictive the linearity property is in allowing one to 
generalize the results of this study to nonlinear models, and it is also an open 
question as to whether different results would be obtained if one used a much 
larger and more disaggregated model that relied less heavily on exogenous ex- 
pectational variables. Until more work and experimentation has been done on 
large-scale nonlinear models, the results in this paper are put forth as indicating 
what might be the case for such models. The results do indicate that serious 
attempts should be made to estimate models by techniques other than simple 
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ordinary least squares or two-stage least squares. 

3.1. The general model. The general model to be estimated is 

(1) AY+BX= U, 

where Y is an h x T matrix of endogenous variables, X is k x T matrix of prede- 
termined (both exogenous and lagged endogenous) variables, Uis an h x T matrix 
of error terms, and A and B are hx h and hx k coefficient matrices respectively. 
T is the number of observations. The itch equation of the model will be written 
as 

(2) y;=-AiY,-BiX,+uj, i=1,2 ,..., h, 

where yi is a 1 x T vector of values of fir, Y, is an hi x T matrix of endogenous 
variables (other than yi) included in the i-th equation, A’, is a ki x T matrix of 
predetermined variables included in the i-th equation, ui is a 1 x Tvector of error 
terms, and Ai and B, are I x hi and 1 x ki vectors of coefficients corresponding 
to the relevant elements of A and B respectively. 

The error terms in U are assumed to follow a second-order auto-regressive 
process? 

(3) U = R”‘U_, + R”‘U_‘_, + E, 

where the R matrices are h x h co&&n t matrices, E is an h x ‘T matrix of error 
terms, and the subscripts denote lagged values of the terms of U. The error terms 
in E are assumed to have zero expected values, to be contemporaneously cor- 
related but not serially correlated, and to be uncorrelated in the limit with the 
predetermined, lagged predetermined, and lagged endogenous variables. 

2.2. Ordinary leasr squares (OLS). The first estimator considered is ordinary 
least squares applied to each equation of (2). Ordinary least squares does not, 
of course, produce consistent estimates of the coefficients of the model. The 
estimates are inconsistent both because of the correlation between II, and Y, in 
(2) and because of the correlation between ui and the lagged endogenous varia- 
bles in Xi in (2).’ 

2.3: Two-stage least squnres (TSLS). The second estimator considered is 
two-stage least squares applied to each equation of (2). Two-stage least squares 
produces consistent estimates if the error term u, in (2) is not serially correlated 

2 The procen in (3) can easily be generalized to higher-order processes, but that will nal be 
done here since only processes up to second order are considered in the empirical work. 

3 Although, 8s mentioned above, the estimators considered in this study are not compared in 
terms of propertie like consistency and eR&ncy, some of these properties will be noted in the 
discussion of the estimators. This is done in part so that the ranking of the &imatarn in terms 
of forecasting accuracy can be compared with tie ranking of the estimators in terms of pro- 
p&es like consistency and efficiency. 
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or if there are no lagged endogenous variables in X; otherwise not. With a 
large enough sample, all of the variables in X should be used as regressors in 
the first-stage regression for each equation. In practice, however, it is usually 
necessary to use only a subset of variables in Xas regressors or to use only certain 
linear combinations of all of the variables in .X as regressors. A necessary con- 
dition for TSLS to produce consistent estimates is that the included predetermined 
variables in the equation being estimated be in the set of regressors. Otherwise 
there is no guarantee that TSLS will produce consistent estimates even if the 
error term is not serially correlated or if there are no lagged endogenous varia- 
bles among the predetermined variables. 1 For the work below, therefore, the 
variables in X; were always included in the set of regressors when the ith equa- 
tion of (2) was estimated by TSLS. The other regressors that were used will be 
discussed in Section 3. 

2.4. Ordinary least squares plus first-order serial correlation (OLSAUTOI). 
The third estimator considered accounts for first-order serial correlation of the 
error term u, in (2), but not for simultaneous-equations bias. The estimator is 
based on the assumption that the error term in each equation is first-order 
serially correlated: 

(4) ui = r;:‘ui_, + ei , i=1,2 (..., h, 

which means that R”) in (3) is assumed to be a diagonal matrix and R”’ in (3) to 
be zero. Under this assumption, equations (2) and (4) can be combined to yield: 

(5) yi = ~;!‘JQ_, - ,4,Y, + r$AiYi_, - BiX, + rj:‘B&, + ej, 

i=l,2 ,..., h. 

Ignoring the fact that Y, and ei are correlated, equation (5) is a simple nonlinear 
equation in the coefficients r$Y, A,, and Lit and can be estimated by a variety 
of techniques. Two of the most common techniques are the Cochrane-Orcutt 
iterative technique and the Hildreth-Lu scanning technique, but any standard 
technique for estimating nonlinear equations can be used.5 The technique used 
for the work below was the Cochrane-Orcutt technique. 

2.5. Two-stage least squares plus first-order serial correlation (TSLSAUTOI). 
The fourth estimator considered is two-stage least squares applied to each equa- 
tion of (5). This estimator accounts for both first-order serial correlation and 
simultaneous-equations bias and produces consistent estimates if R”’ is dirigonal 

4 Two-stages least squares is taken here to mean the technique of replacing in the second- 
stage regressions the actual values of the right-band-side variables with their predicted values 
from the first-stage regressions. The above discussion of the necessity of including certain 
variables as regressors in the first-stage regressions is not relevant for the instrumental-variable 
estimator in which the predicted values from the first stage regressions merely serve as instru- 
ments for the right-hand-side endogenous variables. 

5 In partiwlar, the quadratic hill-climbing technique could be used. It is the author’sexwri- 
axe. however, that for the serial-correlation problem the Cachrane-Orcutt technique converts 
faster than does the quadratic hill-climbing technique. Sargan [IO] has shown that the Co& 
rsne_Orcutt technique converges to a stationary value. 
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and #*I is zero in (3). This estimator is discussed in [6], where it is shown that 
the following variables must be included as regressors in the first-stage regres- 
sions in order to insure consistent estimates of equation (5): y,_, , Yi_l, Xi, and 
X. l_l. For the work below, these variables were always included in the set of 
regressors. Any standard nonlinear technique can be used for the second-stage 
regression of equation (5). and the technique used in this study was the Cochrane- 
Orcutt technique. 

2.6. Ordinary least squares plus jrst- and second-order serial correlation 
(OLSXUTO2). The fifth estimator considered accounts for first- and second- 
order serial correlation of the error term tii in (Z), but not for simultaneous- 
equations bias. The estimator is based on the assumption that the error term 
in each equation is determined as: 

(6) ui = &_, + $‘u;_, -I- e; , i = 1, 2, , h, 

which means that R(” and W’ in (3) are assumed to be diagonal matrices. 
Under this assumption, equations (2) and (6) can be combined to yield: 

(7) yi = ‘;:‘yj_l + r$& - AiYi + ‘;:‘AJ-, + $&Yr_, 

- &X, + rj:‘L?J_, + rH’BJ_, + ej , i = 1, 2, . , h. 

Again, ignoring the fact that Yi and ej are correlated, equation (7) is a simple 
nonlinear equation in the coefficients ?I\‘, #, Ai, and Bi and can be estimated 
by a variety of techniques. The Cochrane-Orcutt technique can be extended in 
an obvious nay to the second-order case, and the extended Cochrane-Orcutt 
technique was the one used in this study. The technique converged quite rapidly 
in almost all cases. 

2.7. Two-stage least squares plus first- and second-order serial correlation 
(TSLSA UTOZ). The sixth estimator considered is two-stage least squares applied 
to each equation of (7). This estimator is an extension of the estimator discussed 
in [6] to the second-order case and produces consistent estimates if R”’ and JVz’ 
are diagonal in (3). It is easy to show, following the analysis in [6], that the 
following variables must be included as regressors in the first-stage regressions 
in order to insure consistent estimates of equation (7): yi_>, y,_>, Yi_, , Yi_*, Xi, 
Xi_, , and Xi_i. For the work below, these variables were always included in 
the set of regressors. The nonlinear technique used for the second-stage regres- 
sions was the extension of the Cochrane-Orcutt technique to the second-order 
case. 

2.8. Full-information maximum likelihood (FLWL). The seventh estimator 
considered is full-information maximum likelihood applied to (l), where R”’ 
and R”’ in (3) are assumed to be zero. This estimator takes into account the 
contemporaneous correlations of the error terms E in (3), and if R”’ and R”’ 
are zero in (3), it produces consistent and asymptotically etficient estimates. 

2.9. Full-information maximum likelihood plus first-order serial correlation 
(FIMLAUTOI). The eighth estimator considered is full-information maximum 
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likelihood applied to (l), where R (‘) in (3) is assumed to be a diagonal matrix 
and where R(*) in (3) is assumed to be zero. If R”’ is diagonal and RC2’ is zero 
in (3), this estimator produces consistent and asymptotically efficient estimates. 

2.10. Full-information maximum likelihood plus jirst- and second-order serial 
correlation (FIMLAUT02). The ninth estimator considered is full information 
maximum likelihood applied to (I), where R”’ and R”’ in (3) are assumed to 
be diagonal matrices. If R”’ and R’*’ are diagonal matrices, this estimator prod- 
uces consistent and asymptotically efficient estimates. 

A practical method of estimating the model (1) by full-information maximum 
likelihood under the assumption of no serial correlation has been developed by 
Chow [Z]. This method was extended in Chow and Fair [3] to cover the case of 
first- and higher-order auto-regressive properties of the err01 terms. This basic 
method was the one that was used to obtain the FIML, FIMLAUTOI, and 
FIMLAUTOZ estimates in the present study. For FIML there were 32 coefficients 
in A and B to be estimated simultaneously; for FIMLAUTOl there were 40 
coefficients to be estimated simultaneously-33 coefficients in A and 5 and 7 
coeificients in R”‘; and for FIMLAUT02 there were 47 coefficients to be esti- 
mated simultaneously-33 coefficients in A and B, 7 coefficients in R”‘, and 7 
coefficients in R’*‘. The method worked quite well in these three cases, and in 
none of the cases were any problems of convergence encountered. The method 
even succeeded in converging when all of the imial coefficient values were set 
equal t* zero. 

2.11. Accounling for the dynamic nature of the model (DYN). All of the 
estimators considered so far are based on the assumption that the values of the 
lagged endogeneous variables are known. This assumptions is, of course, not 
true in an actual forecasting situation, where values of the lagged endogenous 
variables are only known for the one-period-ahead forecast. After the one-period- 
ahead forecast, generated values of the lagged endogenous variables must be 
used. One way of trying to account for this dynamic nature of the model in the 
estimation of the coefficients of each equation is the following. Assume that 
the equation to be estimated is 

(8) Yrr = aI + alYl,-, + azx,, + 61, 2 t=1,2 ,..., 2”’ 

and assume that one is interested in minimizing the two-period-ahead forecast 
error. Then the two-period-ahead forecast error can be minimized by solving 
for yl* in terms of ylt_? and the exogenous x1 variable: 

(9) Y*, = (a0 + al%) + &,,_, + all,, + (Ylalx’rI&* + Eli + alEli&, I 

r-1,2 ,..., T, 

and choosing those values of aO, a,, snd a2 that minimize the sum of squared 
errors+ 

6 The suggestion that it might be useful to estimate dynamic models by minimizing the sum 
of multi-period forecast errors can be found in Klein, [S, (56)I. 
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(10) SSE = 5 [y,, - (010 + qno) - cY;y,,_, - a$,, - qagc,l-,y. 
I=, 

Since equation (9) is nonlinear in the coefficients, the minimization of (10) 
requires that a nonlinear technique be used. 

In a similar manner. if one is interested in minimizing the three-period-ahead 
forecast error, then y,, can be solved in terms of Y,,_? and the exogenous n, 
variable and the resulting sum of squared errors minimized. This procedure 
can be followed for any n-period-ahead forecast error. For large values of n, of 
course, the equation .for y,, becomes somewhat cumbersome. It is also neces- 
sary to have extra observations at the beginning of the sample period in order 
to use this procedure or else to shorten the sample size accordingly. It also should 
be noted that even though the error term in equation (8) may not be serially 
correlated, the error term in equation (9) is likely to be serially correlated. 
This is not of direct concern for the DYN procedure, however, since the pro- 
cedure is concerned only with minimizing the n-period-ahead forecast error and 
not with accounting for the particular properties that the error terms may have. 

The DYN procedure as just described is a single-equation procedure and has 
not accounted for the fact that other endogenous or lagged endogenous variables 
may be included as explanatory variables in equation (8). It is easy to solve the 
general model in (1) so that, for example, no one-period-lagged endogenous 
variables are included among the predetermined variables. This can be seen by 
rewriting (1) as 

(11) AY+E*X*+CY_,= U, 

where X* includes only exogenous variables, and then solving for AY in terms 
of Y_1 and the exogenous variables: 

(12) AY + B*X* - CA-‘B*X‘C, - CAm’CY_, = U - CA-‘lJ_, . 

The generalization of the DYN procedure to the estimation of (12) would be 
to estimate the coefficient matrices A, B*, and C by the method of generalized 
least squares as discussed in Chow [l]. The coefficients C and A-’ in the error 
term would be ignored, and one would minimize 1 VV’l// AYY’AI. where V= AY 
+ B*X* - CA-‘5*X”, - CA-‘CY_>. Unfortun,ately, there appears to be no 
practical way to carry out this minimization, and so at the present time this 
approach does not appear to be particularly fruitful. For the work below, there- 
fore, the DYN procedure was merely used to estimate one equation at a time, 
with no account being taken of right-hand-side endogenous variables nor of 
legged endogenous variables other than the lagged dependent variable in the 
equation. 

It should be stressed that the single-equation DYN procedure is tested here 
not with the idea that the procedure should be used in practice, but to see if 
further work on this type of an estimator is warranted. If the results using the 
single-equation DYN procedure are good (it will be seen below that the results 
are in, fact quite good), then considerable gain in multi-period forecasting accu- 
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racy may be made if practical ways can be found to estimate models using f”uK 
information DYN procedures. 

The DYN procedure was actually used in this study to estimate each equation 
under the assumption of first-order serial correlation. For the two-period-ahead 
estimates, for example, equation (5) was solved, as in equation (9), so that yi_, 
was not among the explanatory variables,’ and tbe coefficients r$\‘, Ai, and B, 
were estimated by minimizing the sum of squared errors of this equation. Simi- 
larly, for the three-period-ahead estimates, equation (5) was solved so that y,_, 
and y,_% were not among the explanatory variables, and the coefficients rl:! A, 
Bi were estimated by minimizing the sum of squared errors of this equation. 
Four- and five-period-ahead estimates were obtained in a similar manner. Because 
of the high degree of first-order serial correlation in some of the equations, it 
seemed best to estimate each equation under the serial-correlation assumption. 
In practice, all the assumption of first-order serial correlation does is to increase 
the complexity of the nonlinear equation being estimated.R 

For the DYN estimates, the quadratic hill-climbing technique of Goldfeld, 
Quandt, and Trotter [7] was used. Even though the four- and five-quarter-ahead 
equations were quite nonlinear in the coefficients, no serious problems of any 
kind were encountered in minimizing the sum of squared errors of any of the 
equations. It turned out to be quite inexpensive to estimate the model by the 
DYN procedure using the quadratic hill-climbing technique. 

2.12. Conclusion. This concludes the discussion of the ten estimators. Other 
estimators could have been considered, but in order to limit the size and cost 
of this study, the above ten estimators were chosen as some of the more impor- 
tant ones to consider. The performance of each of the estimators will, of course, 
depend on the characteristics of the data to which they are applied, and it is 
hoped that the results of this study will give an in,dication of the quantitative 

importance of each of the estimators when applied to the estimation of quarterly 
macroeconomic models of the United States economy. 

3. ‘THE EIGHT-EQUATION MODEL 

The model used for the tests in this study is the simultaneous part of the 
forecasting model developed in [S]. The model is quarterly and consists of eight 
equations-seven equations explaining seven components of current dollar GNP 
and a GNP identity. The seven components are durable consumption, non- 
durable consumption, service consumption, plant and equipment investment, 

7 Remember that 7,-l map be included in the Xi matrix in addition to its being included 
directly in the equation bonause of the serial-correlaiion assumption. 

8 If Y,_~ is not in Xi in equation (5) (i.e., if YS_* enten as an explanatory variable in equation 
(5) only because of the serial-correlation assumption), then for the Tao- and four-period-ahead 
estimates, the estimate of rB’ is not identified between r(” ,, and -r;)‘. In other words, the 
procedure determines only (rjj)P or (rj)‘)r and does not determine whether r$:’ is positive or 
negative. In practice, the positive value war used if the OLSAUTOl estimate of r!i’ was posi- 
tive and negative if the OLSAUTOi estimate was negative. 



Dependent Variable 1 

1) CD CO”Sf. 
2) CN 
3) CS 
4) IP Const. 
5) IH CO”S,. 
6) V-V-, C0,1st. 
7) IMP Const. 

Explanatory Variables 

GNP 

GNP 

GNP 

GNP 

GNP 

CD+CN 

GNP 

MOOD- I MOOD-2 
MOOD-2 CKI 
MOOD-2 CS.. , 
PE1 
HSQ HSQ-I 
CD-,iCN-, V-i 

HSQ-z 

8) GNP=CDiCN+CS+IP+IH+V-VV-I-IMP+EX+G 
Notation: 

CD = Durable-Consumption Expenditures 
CN = Non-Durable-Consumption Expenditures 
CS = Service-Consumption Expenditures 
IP = Plant and Equipment Investment 
IH = Nonfarm Housing Investment 

V - V-1 = Change in Total Business Inventories 
IMP = Imports 

GNP = Gross National Pmducr 
EX = Exports 

G = Gavernment Expenditures plus Farm Housing Investment 
MOOD = Michigan Survey Research Center Index of Consumer Sentiment 

PE2 = Two-quarter-ahead Expectation of Plant and Equipment Investment 
HSQ = Quarterly Nonfarm Housing Starts 

V = Stock of Total Business Inventories (arbitrary base perial value of L~TO in 1953IVJ 
Note: The Subscript -1 or -2 after a variable denotes the one-quarter or twa-quarter lagged 

value of the variable. 
Basic set of instrumental variables = 

1Const.,MOOD~i,PEZ,G,CD-I,CY-,,CS-,,VI,GNPIJ. 
Dummy variables D644 and DhSl added to CD ewation: dummv variables D.593. 4594. DW. 

and D651 added to V-V-, equalion, and dummy &iable; D644, D651, ti84, D89l and 
D692 added to IMP equatian. 

no&arm housing investment, inventory investment, and imports. Government 
spending, exports and farm housing investment are taken to be exogenous. The 
model is presented in Table 1. There are four lagged endogenous variables 
among the predetermined variables: lagged durable consumption enters the in- 
ventory equation, lagged non-durable consumption enters the non-durable-con- 
sumption equation and the inventory equation, lagged service consumption 
enters the service-consumption equation, and the lagged stock of inventories 
enters the inventory equation. A detailed description of the eight-equation 
model is presented in [s], along with a description of the overall forecasting 
model, and this description will not repeated here. 

For the work in [5], the model was estimated by TSLSAUTOI for the basic 
1956I-1969IV sample period. Observations for 1959111, 1959IV and 19601 were 
olnitted from the sample period because of the steel strike, and observations for 
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1964IV, 19651 and 196511 were omitted from the sample period because of 
the automobile strike. Observations for 1968IV, 19691, 196911, and 1969111 
were also omitted from the sample period for the import equation because of 
8 dock strike. In addition, for the non-durable-consumption and housing-invest- 
ment equations, the beginning of the sample period was taken to be 196011 
rather than 19561 because of an apparent structural shift in the non-durable- 
consumption equation around 1960 and because of lack of good data on housing 
starts before 1959. For the work here, no observations were omitted from the 
sample period because of strikes, but rather dummy variables were used in those 
equations most affected by the strikes. Two dummv variables-D644 and D651- 
were added to the durable-consumption equation; four dummy variables- 
D593, DS94, D644, and D651-were added to the inventory equation; and five 
dummy variables-D644, D651, D684, D691, and D692-were added to the 
import eqw&m9 

For the FIML, FIMLAUTOI and FIMLAUTO? estimators, the sample period 
was taken to be 196011-1970111, for a total of 42 observations. For the other 
estimators, the sample period for all of the equations except the non-durablc- 
consumption and housing-investment equations was taken to be 19561-1970111, 
for a total of 59 observations. For the non-durable-consumption and housing- 
investment equations the shorter 196011-l 970111 period was retained?” In addi,. 
tion, TSLSAUTOI estimates were obtained for all of the equations for the 
196011-1970111 period to allow a direct comparison between these estimates and 
the FIMLAUTOI estimates to be made. 

‘The 196011-1970111 period was used fox the predictions. Since only informa- 
tion within the 196011-1970111 period was used to compute the FIML, FIML- 
AUTOl, and FIMLAUTOZ estimates, there may be a bias in favor of these 
estimates relative to the others, but it will be seen below that this bias does not 
appear to be very large. The probable size of the bias can be determined by 
comparing the results obtained from the TSLSAUTOl estimates based on the 
19561-1970111 period with the results obtained from the TSLSAUTOl estimates 
based only on the 196011-1970111 period. 

The basic set of instrumental variables used for the two-stage least squares 
estimators is presented at the bottom of Table 1. In addition. as mentioned 
above, other variables were added to this basic set for each equation when their 
addition was a necessary condition for the estimates to be consistent. The 
variables that were added for each equation are listed in Table 2. For all of the 
stochastic equations of the model except the inventory equation, the endogenous 
variable on the right-hand-side of the equation is the GNP variable. For the 
inventory equation, the endogenous variable is the sum of durable and non- 

* D593 denotes a variable that takes an B vaiue of one in the third quarter of 1959 and zero 
otherwise; 0594 denotes a rariabie that taker on a value of one in the fourth qtxuter of 1959 
and zero otherwise; and so on. 

I0 For the DYN estimates of the housing-investment equation, the sample perk4 WBS taken 
to be 196OIV-1970111, for a total of 40 observations. This was done because of lack of data on 
housing starts before 1959, data that would have been needed for the four- and five-quarter. 
ahead DYN estimates had the sample period begun in 196011. 



Dependent 
Variable 

CD 

CN 

CS 

IP 

1” 

v-v-, 

IMP 

Estimator 

TSLS 
TSLSAUTOI 
TSLSAUTOZ 

TSLS 
TSSLSAUTOI 
TSLSAUT02 

TSLS 
TSLSAUTOl 
TSLSAUTOZ 

TSLS 
TSLSAUTOl 
TSLSAUTOZ 

TSLS 
TSLSA”TOl 
TSLSA”T02 

TSLS 
TSLSAUTOI 

TSLSAUTOZ 

TSLS 
TSLSAUT02 

TSLSAUTOZ 

Additional Inrtrumental Variables 

MOOD-,, D644, 11651 
MOOD-, MOODe3, 0644, D651, D64‘-, 
CD-z, GNP-s MOOD-->. MOOD-,, MOOD-#, ~644, 
D651, D644-,, D644-2 

none 

none 
CS-1, MOOD-, 
CS-I, CS-I, GNP-z, MOOD-,, MOODed 

HSB HSQ-i, HSQ-I 
HSQ, HSQ-I, HSQ-2, HSQ-,, IH-~ 
;$HSQ-I> HSQ-2. HSQ-i, HSQ-4, IH-2, 1~2, 

2 

D593, D594, D644, D651, MOOD-, 
D593=, D594=, D644, D651, D593’-,, D644-,, Vm2> 
CD-z, CN-2, MOOD-,, MOODml 
D593, D594, D644,0651, D593-1, D593_>, D644_f, 
D644-2, V-z, V-,, CD->; CD-I, CN-I, Ch’-,, 
MOOD-,, MOOD-,, MOOD-. 

D644, D651, D684, D691, D692 
D644, D651, 0684, D691, D692, D644_~, D684-,, 
IMP-, 
D644, 0651, D684, D691, D692, D644-,, D644,mr 
D6tsm1, D684-a, IMP_>; IMP-2, GNPml 

e Not used as an instrument for TSLSAUTOI, 42 observations. 

durable consumption. Because the MOOD variable is important in determining 
durable and non-durable consumption, extra lagged values of this variable were 
used as instruments in the estimation of the inventory equation. Otherwise, the 
only variables added to the basic set of instruments for each equation were the 
ones necessary for consistency. ” Some of the work in [6] indicates that the 
small sample properties of two-stage least squares estimators may be adversely 
atfected by the use of a large number of instrumental variables in the lint stage 
regressions, and thus an attempt was made in this study to keep the basic set of 
instrumental variables fairly small. The reaxm that G in Table 1 was used as 

I’ rt should be noted when examining the additional instrumental variables used that, for 
erampie, D644 and D651 -I are the same variable and so are obviously not both included in the 
list of instruments. 
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a basic instrument rather than G + EX is because of the pronounced effect 
that the dock strike in, 1968 and 1969 has on exports. 

4. THE RESULTS 

4.1. The coefiicient estimates. The results of estimating the seven stochastic 
equations of the model are available from the author on request. First-order 
serial correlation tended to be fairly pronounced in most of the equations, 
whereas second-order serial correlation tended to be much less pronounced. The 
FIMLAUTOl and FIMLAUT02 estimates tended to differ from the other esti- 
mates more than the other estimates tended to differ from each other. The 
service-consumption equation was the equation in which the estimates differed 
the least from each other, and the inventory-investment equation was the equ- 
ation in which the estimates differed the most from each other. 

4.2. The within-sample predictions. Given a set of estimates of the A, B, and 
R matrices in (1) and (2), one can solve for the reduced form for Y. From (1) 
and (3) the reduced form for Y is 

(13) Y = --A-‘BX + APR”‘AY_, + A-‘R”)Bx_, 

+ A-‘R’2’AY_, + A-LR’Z’BX_, + A-‘E. 

For each of the sets of estimates, within-sample predictions of the eight endo- 
genous variables in Y were generated for the 196011-1970111 period using (13) 
and the assumption that E is zero. One- through five-quarter-ahead predictions 
were generated, as well as one prediction over the whole sample period.” For 
each variable, there were 42 one-quarter-ahead predictions generated, 41 two- 
quartet-ahead predictions, 40 three-quarter-ahead predictions, 39 four-quarter- 
ahead predictions, and 38 five-quarter-ahead predictions. The one prediction 
over the whole sample period began in 196011 and consisted of 42 observations. 
For all of the predictions, generated values of the lagged endogenous variables 
were used after the one-quarter-ahead prediction.” 

Two error tneasu~es were computed for each set of predictions: the root mean 
square error in terms of levels, 

13 For ihe DYN estimates, only TWO- through five-quarter-ahead predictions were generated 
since these were the only r&want predictions far the &mates. ‘Rx two-quarter-ahead DYN 
estimates were used for the two-quarter-ahead predictions, the three-quarler-ahead DYN esti- 
mates were used for the three-quarter-ahead predictions, and so on. It should be noted that, 
for example. the wequarter-ahead predictions bawd on the two-quarter-ahead DYN estimates 
were not used as inputs for the three- quarter-ahead predictions. The latter were generated 
using only the three-quarter-ahead DYN estimates. 

14 For the one-quarter-ahead prediction, unrestricted reduced-from estimates of each equation 
in (13) would by the property of least squares yield the smallest sum of squared errors for each 
equation. This is not necesariiy trnr for the two-quarter-ahead predictions and beyond, how- 
ever, and in general unrestricted reduced-form estimation is not of much interest, since for 
models only slightly larger than the model considered in this study, there arc likely to be more 
rariabies on the right-hand-side of (13) than there are observations, which would make unre- 
stricted reduced-farm estimation impossible. 



OLS 6.54 6.90 1.18 7.51 7.69 8.45 &lo 4.12 4.13 4.17 4.14 
TSLS 6.92 6.56 6.81 ‘I.21 7.43 8.07 4.96 4.59 4.61 4.66 4.60 
FML 4.97 4.84 5.13 5.34 5.62 7.38 3.59 3.57 3.63 3.66 3.62 
OLSA”TOl 3.19 4.82 5.80 6.44 6.94 8.61 3.48 3.53 3.48 3.54 3.69 
TSLSAUTOI 3.27 4.95 5.86 6.42 6.75 8.27 3.48 3.54 3.49 3.60 3.73 
TSLSAUTOI’ 3.16 4.85 5.92 6.66 1.18 7.88 3.46 3.50 3.41 3.48 3.59 
FIMLAUTO, 2.48 3.10 3.96 4.79 5.87 6.55 3.20 3.45 3.56 3.56 3.60 
OLSAUTOZ 3.08 4.62 5.54 6.14 6.61 8.40 3.36 3.43 3.38 3.51 3.70 

TSLSAUTOZ 3.03 4.53 5.37 5.90 6.28 7.78 3.31 3.39 3.35 3.48 3.64 
FIMLAUTOZ 2.30 3.01 4.02 4.95 6.39 6.99 3.22 3.55 3.69 3.70 3.79 
DYN b 4.57 4.92 5.31 5.43 c 3.37 3.58 3.67 3.65 c 

a Based on 42 observations only. 
D Same as OLSAUTOI 
‘ No1 rclevmt since DYN estimates only computed up to five-quarter-ahead predictions. 

RMSE = J+ $, (Y, -A)’ 

and the IOOL mean square error in terms of changes, 

RMSEA = J l ,:. r F,[(Y~ -~,a) - (A --JLI)]~ 

where y, denotes the actual value of J’ for quarter f and $C denotes the predicted 
value of y for quarter b. RMSEA is a measure of how well the model has ex- 
plained the change in the endogenous variable. For the one-quarter-ahead pre- 
diction, RMSE and RMSEA are the same. 

Tlx root mean square errors for the GNP variable are presented in Table 3 
for each set of estimates. The errors are in billions of dollars. The results in 
the table are fairly self-explanatory, and only a brief description of them will 
be presented here. The most striking feature of the RMSE results is perhaps 
the increased accuracy obtained from the FIMLAUTOI and FIMLAUT02 esti- 
mates for all but the five-quarter-ahead prediction. This increased accuracy does 
not appear attributable to the use of the shorter sample period to compute the 
FIMLAUTOl and FIMLAUTO?. estimates since the results from the two sets of 
TSLSAUTOl estimates are quite close. For the live-quarter-ahead prediction, 
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FIMLAUTOl and FIMLAUTOZ perform well, but they do not completely 
dominate the field as they do for the other predictions. 

For the RMSE results the DYN estimates perform consistently well and always 
do better than the OLSAUTOl estimates, to which they are comparable in terms 
of accounting for first-order serial correlation but not for the simultaneous nature 
of the model. For the three- and four-quarter-ahead predictions, the DYN esti- 
mator outperforms all estimators except FIMLAUTOl and FlMLAUT02, and 
for the five-quarter-ahead prediction, the DYN estimator outperforms even 
FIMLAUTOl and FIMLALJTOZ. 

The RMSE results in Table 3 also show that the two-stage least squares esti- 
mators perform on average better than their ordinary least squares counterparts, 
that the full-information maximum likelihood estimators perform on avetage 
better than their two-stage least squares counterparts, that the AUTO1 estimators 
perform on average better than their no-serial-correlation counterparts, and that 
the AUTO2 estimators perform on average better than their AUTO1 counter- 
parts: TSLS is better than OLS except for the one-period-ahead prediction, 
TSLSAUTOl is better than OLSAUTOl for the four-quarter-ahead prediction 
and beyond, and TSLSAUT02 is always better than OLSAUTO?: FIML is al- 
ways better than TSLS, FlMLAUTOl is always better than TSLSAUTOI, and 
FIMLAUT02 is better than TSLSAUTOZ except for the five-qunrter-ahead 
prediction; OLSAUTOl is better than OLS except for the prediction over the 
whole sample period, TSLSAUTOl is better than TSLS except for the prediction 
over the whole sample period, and FlMLAUTOl is better than FIML except for 
the five-quarter-ahead prediction; OLSAUTOZ is always better than OLSAUTOI. 
TSLSAUTOZ is always better than TSLSAUTOI, and FIMLAUTOZ is better 
than FIMLAUTOl for the one- and two-quarter-ahead predictions. 

With respect to the quantitative importance of the various estimators, the 
gain in going from an ordinary least squares estimator to a two-stage least squares 
estimator appears to be less than the gain in going from a two-stage least squares 
estimator to G full-information maximum likelihood estimator, and the gain in 
going from an AUTO1 estimator to an AUTO2 estimator appears to be less than 
the gain in going from a no-serial-correlation estimator to an AUTO1 estimator. 
Also, the gain in going from OLS to TSLS appears to be less than the gain in 
going from OLS to OLSALJTOI, so that if one had a choice between TSLS and 
OLSAUTOI, but not TSLSAUTOI, then OLSAUTOl would appear to be the 
estimator to use. The gain in going from a no-serial-correlation estimator to an 
AUTO1 or AUTO2 estimator generally lessens as the period to be predicted 
mwes further away from the starting point. Finally, the gain in using the full- 
information maximum likelihood estimators or the DYN estimator appears to 
be quite large.” 

13 Klein, in his study [9] using the (annual) Klein-Goidberger model, compared the accuracy 
ofordinary least squares. two-stage least squares using four and eight principal components, 
and full-information maximum likelihood. None of the estimators accounted for serial correla- 
Con. Klein found that the full-information estimator gave on average slightly better results for 

(Continued on next pap) 



Estimator 
p,yr- ~$:r- Cgr 

ahead ahead ahead 
42obs 4,obs 40obs 

OLS 3.82 3.78 3.75 3.63 3.50 4.09 3.63 3.73 3.68 3.72 3.63 

TSLS 4.12 3.64 3.58 3.49 3.40 3.85 4.22 3.90 3.87 3.91 3.79 

FIML 3.89 3.63 3.60 3.4, 3.34 3.90 3.70 3.79 3.75 3.79 3.69 

OLSAUTOI 2.59 3.34 3.49 3.40 3.28 4.17 3.49 3.67 3.69 3.6R 3.66 

TSLSAUTOI 2.62 3.38 3.53 3.43 3.31 4.23 3.46 3.65 3.67 3.65 3.65 

TSLSA”TOI’ 2.62 3.31 3.48 3.45 3.36 4.10 3.46 3.67 3.67 3.67 3.65 

FIMLAUTOI 2.77 3.00 3.10 3.11 3.18 3.54 3.56 3.77 3.79 3.85 3.12 

OLSAUTOZ 2.65 3.34 3.49 3.38 3.23 4.26 3.48 3.70 3.73 3.69 3.73 

TSLSAUTOZ 2.64 3.30 3.44 3.34 3.18 4.13 3.46 3.70 3.72 3.69 3.71 

FlMLAUTOZ 2.74 2.90 3.07 3.10 3.26 3.61 3.66 3.81 3.82 3.Yl 3.79 

DYN b 3.28 3.38 3.30 3.24 c 3.49 3.81 3.86 3.90 c 

a Based on 42 observations only. 
h Same as OLSAUTOI. 
/ Not reiwant since DYN estimates only computed up to five-quarter-ahead predictions. 

For the RMSEA error measure in Table 3, the results of the various estimators 
are clwx. The OLS and TSLS estimators continue to perform poorly relative 
to the others, but for the other eight estimators the RMSEA results are quite 
close, and no one estimator can be considered as dominating all of the rest. The 
closeness of the RMSEA results can probably be explained by the fact that none 
of the estimators is explicitly designed to minimize the errors in terms of changes. 
The full-informati,on maximum likelihood estimators, for example, maximize 
the likelihood function in terms of the levels of the endogenous variables and 
not in terms of their changes. It is thus not too surprising that the conclusions 
reached from examining the RMSE results do not carry over completely to the 
RMSEA results. 

In Table 4 the root mean square errors for inventory investment are presented 
for each set of estimates. Generally, the basic conclusions reached for the GNP 
results also hold for the inventory results, although the inventory results tend to 
be somewhat closer. It is interesting to note that for the RMSE results the full- 

(Continued) 
the one-period-ahead prediction, but considerably pwrer results for the prediction overthewhole 
period. The results in the present study are thus much mwe optimistic than Klein’s results 
regarding the gain that can bc achieved using full-information estimators. I have been infor- 
med. hoacver, that at lenst part of the paor results for the prediction over the whole sample 
period from the F&in-Goidberger model was due to a computing: error. 
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information maximum likelihood estimators do not dominate their two-stage 
least squares counterparts as much for inventory investment as they did for 
GNP. This general pattern was true for the other six GNP components as well. 
The large gain from using the full-information maximum likelihood estimators 
comes in terms of predicting GNP and not in terms of predicting the individual 
components of GNP. This result can probably be explained by the fact that the 
Cull-information maximum likelihood estimators are the only estimators that 
take into account the covariance of the error terms in the Ematrix in (3). Since 
GNP is merely the sum of its individual components, one would expect that 
the full-information maximum likelihood estimators, by not merely minimizing 
the sum of the individual error variances, would perform best in terms of 
predicting GNP. 

There were no unusual features of the results for the other components of 
GNP, other than the one just cited about the full-information maximum like- 
lihood estimators, and so these results will not be presented here. 

4.3. Conclusion. The results in this section indicate that considerable gain 
in forecasting accuracy can be achieved by the use of more advanced estimation 
techniques. Certainly, accounting for first-order serial correlation is important, 
and even more gain appears possible by accounting for second-order serial cor- 
relation and by using a two-stage least squares technique as opposed to its 
ordinary least squares counterpart. The results also indicate that considerable 
gain can be achieved by using full-information maximum likelihood estimators 
and by accounting for the fact that values of lagged endogenous variables are 
not known after the one-quarter-ahead forecast. Given the success of the single- 
equation DYN procedure and of the full-information maximum likelihood esti- 
mators, if practical ways can be found to implement full-information DYN 
procedures, a significant increase in forecasting accuracy may result. 

As mentioned in the Introduction, the conclusions of this study are based 
heavily on the premise that the basic properties of macroeconomic models are 
similar and that the particular model used is a good representative of macro- 
economic modeIs.16 To the extent that this premise is valid, the results give 
an indication of the relative usefulness of the various estimators for multi-period 
forecasting purposes. More work on larger models is needed, however, before 
too much Force should be put on the detailed conclusions of this study. Further 
work is also needed to see if any of the conclusions need modification when 
outside-sample predictions are considered. I7 In general, however, the results do 
indicate that considerable forecasting accuracy can be achieved by using more 
complicated techniques than simple ordinary least squares or two-stage least 
squares to estimate macroeconomic models. Because of the increased feasibility 

16 The mot mean square errors presented in Table 3 are quite low relative to the results from 
previous models (see, for example, Evans, Haitovsky, and Treyz 141 or the results for the 
Klein-Goidberger modei in Klein 1911, which in itself is encoursging but cannot be used in any 
rigorous way to argue ibat the present model is a good representative model. 

1’ Some preliminary work in comparing within-sample and outside-sampleprediciions can be 
found in L5, (Chapters 1 I-1311. 



of using mxe advanced estimation techniques, there is now less need for model 
builders to limit themselves to simpler techniques if mme advanced techniques 
lead to improved results. 
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