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SOLUTION AND MAXIMUM LIKELIHOOD ESTIMATION OF 
DYNAMIC NONLINEAR RATIONAL EXPECTATIONS MODELS 

BY RAY C. FAIR AND JOHN B. TAYLOR’ 

A s0Iulim method and an esrimation method for nmlinear mimal expectations 
models are presented in thin paper. The solution method can be used in forecasting and 
policy applications and can handle models with serial correlation and mulriplc viewpoint 
dates. When applied to l&u models, the solution method yieids fix .s.vne ies~lts as tbnsr 
obtained from currently available methods thar aye designed specifically for linear models. 
It is, however, more flexible and general than these methods. The estimation method is 
based on the maximum likelihood principal. It is. as far as we know, the only method 
available for obtaining maximum b!elihood estimates for nonlinear rational expectations 
models. The method has the advantage of being applicable 10 a wide range of models, 
including, as a special case, linear models. The method can also handie different assump- 
tions about the expectations of the exogenous variables, something which is not true of 
currently available approaches to linear models. 

1. INTRODUCTION 

CONSIDER THE DYNAMIC RATIONAL expectations model given by 

(i= 1 1..., n), 

where y( is an n-dimensional vector of endogenous variables at time r, n, is a 
vector of exogenous variables at time I, E,_, is the conditional expectations 
operator based on the model and on information through period f - 1, ai is a 
vector of parameters, and uj, is a stationary scalar random variable which has 
mean zero and which may be correlated across equations (Eui,uj, f 0 for i #j) 
and wer time (Eu,,u, i 0 for t # s). The model is nonlinear in that the functionf, 
may be nonlinear in the variables, parameters, and expectations, although we will 
require certain regularity conditions on these functions and their derivatives with 
respect to yI and ai. It is a r&ma/ expecratiom model in that expectations of 
future endogenous variables are conditional forecasts based on the model itself, 
and it is dynamic in ~that the lags and expected leads of the endogenous variables 
appear in the equatimx2 The main objectives of this paper are to describe and 

‘The research described in this paper was financed by Grants SOC77-03274 and SE.79.26724 
from the National Science Foundation. The authors are indebted to .A& Dagli for computaional 
assistance. 

‘Several properties of the general form represented in model (1 j should be noted. By appropriate 
conswuction. the model ran include expeclo~ions of nonlinear *unctions of the endogenaus variables. 
For example. if ,vir = yb, then the appearance of Et_, yli in one of the equations indicates that the 
agents are concerned with the conditionally expected variance of y,,. Also, the model permits 
nonlinear restrictions on the a, paramews both within and across equations. However, the model 
does Dot explioitly include expectations based on current period (f) inform&x. The i*coqxneion of 
such variables does not cause difficulties far the solution of the model (as we describe below), but it 
does cause difficulties for estimation since the Jacobian of the transformatian from the us to they, is 
altered. 
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investigate numerically (i) a method for solving the model for the vector ,v~ in 
terms of its past values and the values of the exogenous variables x, and (ii) a 
method for obtaining the maximum likelihood estimates of the parameters a, and 
the covariance structure of the ui, given a series of observations on y, and x,, 
1=1,...,T. 

The solution method is an extension of the iterative technique used in Fair [3]. 
In addition to dealing with serial correlation and multiple viewpoint dates, the 
extension involves an iterative procedure (called Type III in the following 
discussion) designed to insure numerical convergence to the rational expectations 
solution. 

The estimation method is an extension to the nonlinear case of full informa- 
tion maximum likelihood techniques designed for linear rational expectations 
models, as described by Wallis [15] and Hansen and Sargent [7, 81.’ Applications 
to particular economic problems are found in Sargent 1121 and Taylor [14]. Full 
information estimation techniques are particularly useful for rational expecta- 
tions models because of the importance of cross equations restrictions, where 
most of the testable implications of the rational expectations hypothesis lie. For 
linear models one can explicitly calculate a reduced form of model (l), in which 
the expectations variables are eliminated and nonlinear restrictions are placed on 
the parameters. Under the assumption that the ui, are normally distributed this 
restricted reduced form can be used to evaluate the likelihood function in terms 
of the structural parameters. The maximum of the likelihood function with 
respect to the structural parameters is found using numerical nonlinear tnaximi- 
zation routines. 

For nonlinear models the reduced form cannot be calculated explicitly, but it 
can be calculated numerically. Our estimation strategy is to replace the calcula- 
tion of the restricted reduced form in linear models with the numerical solution 
in nonlinear models. This permits one to evaluate the likelihood function in 
terms of the unknown structural parameters, much like in the linear case. 

While we feel that the nonlinear methods described will expand the range of 
empirical problems that can be approached using rational expectations, there is a 
limitation that may affect their general applicability. Because of computational 
costs it is necessary in some applications to approximate the conditional expecta- 
tions that appear in (1) by setting the future disturbances u,, equal to their 
conditional means in a deterministic simulation of the model. In nonlinear 
rational expectations models the conditional expectations will involve higher 
order moments of the I+, in addition to their means. (See Lucas and Prescott [lo], 
for example.) As we describe in the paper, it is possible to use stochastic 

jThe connection between our problem and the one considered by Hansen and Sargent appears in 
the I; functions, which would represent first-order conditions far the linear-quadratic optimization 
problem they consider. Chow 11, has proposed an alternative approach that leads lo the same 
functional relationship between the stmctural psrameten and the liielihmd function as does the 
Hansen and Sargent approach. 
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simulation to obtain the actual conditional forecasts, but this is computationally 
expensive. For some macroeconomic applications the deterministic approxima- 
tion may be fairly good. Some evidence that this is true is contained in Fair 141, 
where differences between forecasts using stochastic simulation and deterministic 
simulation are very small in a nonlinear model without rational expectations. For 
other applications, however, the approximation may be inaccurate, and the 
stochastic simulation procedure will need to be used, however expensive. 

2. A NUMERICAL METHOD FOR SOLVING NONLINEAR RATIONAL 
EXPECTATIONS MODELS 

In this section we consider the numerical solution of model (1) for a particular 
period s and for a given set of values of the ai parameters. The model without 
serial correlation of the errors is considered first, and then the modifications 
needed for the serial correlation case are discussed. 

In the following discussion E,_ I xlrj will be used to denote the expected value 
of x,+~ based on information through period f - 1. Both the actual realizations of 
x, and the expected values are assumed to be known. If there are any exogenous 
variables that are not known but can be described by a known stochastic process, 
then these are treated as endogenous and incorporated in they, vector. In this 
section, all simulations of the model are deterministic and are subject to the 
approxmmtion mentioned in the Introduction. 

2.1. Models without Serial Correlation: The Basic Method 

If one were given numerical values for the expected endogenous variables in 
model (1) for all periods from s on, then it would be straightforward to solve the 
model for period s using the Gauss-Seidel iterative technique. The numerical 
method described here entails a series of iterations that converge from an 
arbitrary initial path of values for these expectations to a path of rational 
expectations, consistent with the forecasts of the model itself. Let the initial set of 
values for the expected endogenous variables, E,_ I Y.~+~, be represented as g,, 
r=O,l,... Since in general the model will have no natural termination date, 
an infinite number of these values need to be specified in principle. In practice, 
however, only a finite number of these will be used in obtaining a solution with a 
given finite tolerance range. We require that the initial values be bounded: 
1 g,l < M for every I, where A4 is not a function of r. 

The solution method can be described in terms of 5 steps: 
(i) Choose an integer k, which is an initial guess at the number of periods 

beyond the horizon h for which expectations need to be computed in order to 
obtain a solution within a prescribed tolerance level 6. Set Es_, y$+, equal to g,, 
I = 0, 1, , k + 2h. For the purpose of describing the iterations, call these 
initial values e,(l, k), r = 0, 1, ,‘k + 2h; the values at later iterations will then 
be called e,(i, k), i > 1. 
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(ii) Obtain a new set of values for Es-I yr+_ r = 0, 1, , k + h, by solving 
the model dynamically for y$+,, I = 0,l. , k + h. This is done by setting 
the disturbances to their expected values (usually zero), using the values 

E,-,+. > L,.s+,+i in place of the actual x’s, and using the values e,( i, k) 
in place of Es_{ y,?+,. Call these new guesses e,(i + 1, k), I = 0, 1, , k + h. If 
the model is nonlinear, then the solution for each period requires a series of 
Gauss-S&de1 iterations. Call each of these a Type I iteration. 

(iii) Compute for each expectation variable and each period the absolute value 
of the difference between the new guess and the previous guess, i.e., compute the 
absolute value of the difference between each element of the e,(i + 1, k) vector 
and the corresponding element of the e,(i, k) vector for r = 0, 1, , h + k. If 
any of these differences are not less than a prescribed tolerance level (i.e., if 
convergence has not been achieved), increase i by 1 and return to step (ii). If 
convergence has been achieved, go to step (iv). Call this iteration (performing 
steps (ii) and (iii)) a Type II iteration.4 Let e,(k) be the vector of the convergent 
values of a series of Type II iterations (r = 0, 1, , k + h).5 

(iv) Repeat steps (i) through (iii), replacing k by k + 1.6 Compute the absolute 
value of the difference between each element of the e,(k + 1) vector and the 
corresponding element of the e,(k) vector_ r = O,l, , h. If any of these 
differences are not less than 8, increase k by 1 and repeat steps (i) through (iv). If 
convergence has been achieved, go to step (v). Call this iteration (performing 
steps (i) through (iv)) a Type III iteration. Let e, be the vector of the convergent 
values of a series of Type III iterations (r = 0, 1, , h). 

(v) Usee,forE,~,y,+,,r=0,l,...) h, and the actual values for n, to solve 
the model for period s. This gives the desired solution, say$$, and concludes the 
solution method. 

To summarize, the above method iterates on future paths of the expected 
endogenous variables E,_, y,+$. Starting from an initial guess at the path g,, 
r = 0,1,2, , k + Zh, the path is extended beyond k + 2h until further exten- 
sions do not affect the solution by more than S and convergence is obtained. 
Since we will need to refer to the procedure outlined in Steps (i) through (v) 
several times in the remainder of the paper, it will be convenient to use the 
shorthand terminology extended path (EP) method for this series of computa- 
tional steps. 

Computation costs for the EP method are determined by the total number of 
“passes” through the model required for convergence. A “pass” is simply a single 

4The Type 11 tolerance level should be smaller than 8. which is the overall tolerance icvel. 
Similarly, the Type I tolerance level should be smalkr than the Type II tolerance level. 

‘Note that in the process of achieving Type TI convergence the initial guesses e,(l, k), r = k + h + 
1, , k + 2h. never get changed. These guesses are needed to allow the model to be solved through 
periods + h + k. 

“When repeating steps(i) through (iii) fork + I, it may be possible lo speed convergence by using 
some information from iteration k. The most obvious thing to do is to use as initial guesses 
+(I, k + 1) = e,(k). I = 0. I, , k + h. The values g, would then be used for e,(1. k + 1 j_ I = k + 
h + I,. ~ k + 2h + 1. 
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evaluation of the “left hand side” endogenous variables in terms of the “right 
hand side” variables. Let N, be the number of Type I iterations required for 
convergence, and let N2 be the number of Type II iterations required for 
convergence. Then the number of passes through the model required for one 
Type III iteration is given by the product of the number of passes for one Type 
II iteration (N, X (h + k + 1)) and the number of Type II iterations required for 
convergence (N,). The total number of passes through the model to obtain Type 
III convergence is given by the sum of this expression from k to k + N, - 1, 
where N, is the number of Type III iterations required for convergence. In other 
words, Type III convergence requires C”,“Epe1[N2 x N, x (h + 4 + lj] passes 
through the model.’ 

Two points about the solution method should be noted. First, it can be easily 
modified to handle the case in which the expectations are based on information 
through period s rather than through period s - 1. Just replace c,_, by 6, 
everywhere. Second, if the expectations horizon is infinite (h = co), then it must 
be truncated first. For most models the error introduced by this truncation for 
reasonably large values of h is likely to be small. A large value of h means, of 
course, that a large number of calculations are required per Type 11 iteration, 
and so in practice there may be a tradeoff between truncation error and 
computational cost. 

For a genera1 nonlinear model there is no guarantee that any of the iterations 
will converge. If convergence is a problem, it is sometimes helpful to “damp” the 
successive solution values. This means to take the value of a variable at, say, the 
start of iteration n to be some fraction of the difference between the value 
actually computed on iteration n - 1 and the value used at the start of iteration 
n- 1. 

In special cases a problem may have terminal conditions. If, say, the values 

&,Y,+,, r = k + h + 1, . , k + 2h, are known, then the present method gives 
the correct answer after Type II convergence. No Type III convergence tests are 
needed because the values for periods s + k + h + 1 through s + k + 2h are 
known. Cases with terminal conditions are referred to as two-point boundary 
problems. They have been used to study rational expectations models when one 
can approximate the terminal conditions with steady state values, which may be 
derived in certain situations.’ The approximation that comes from equating the 
terminal conditions with the steady state values does not arise with the method 
used in this paper. Moreover, OUT method does not require that one compute 
steady state values beforehand. 
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2.2. Models with Serial Correlation: Forecasting and Policy Applications 

We focus on the case where the error terms can be described by the first order 
process: 

(2) Uil = p;rr,,_, + r,, (i= 1 ,,,., nh 

where the p, are serial correlation coefficients. In this section the EP method is 
modified for applications where there are enough data prior to the solution 
period s to permit calculation of the solution values with only a negligible effect 
of the errors prior to period s - 1. This situation is likely to occur in forecasting 
or policy applications, where a large sample. prior to the simulation period is 
usually available. In Section 2.3 the method is modified for estimation applica- 
tions, where sufficient prior data are generally not available. 

First note that (1) and (2) can be combined to yield: 

(3) f;(Yt,Y,-,,...,Y,-p,Yi-p-I,rE,Y,,tEIY,+I >..‘,, F*Y,+,, 

(i = 1, , n), 

where the p, can be thought of as structural coefficients. For solution purposes 
the important difference between (1) and (3) is the addition in (3) of an extra 
viewpoint date (I - 2). This requires an additional type of iteration denoted 
Type IV. 

If one were given values for the expectations with viewpoint date s - 2, then 
model (3) could be solved using the EP method in Section 2.1. These expecta- 
tions could be obtained by solving the model one period earlier at time s - 1, but 
this in turn would require values for the expectations with viewpoint date s - 3, 
and so on. By working backwards in this way, however, it is possible to insure 
that these initial values have negligible influence on the current period s. 

The procedure is as follows: (a) Choose an integerj, which is an initial guess at 
the number of periods before period s for which the model needs to be solved in 
order to achieve the prescribed tolerance level. Set Er_j_2ys_j_l+r, r = 0, 
1, , h, to an initial set of values. (As with the basic method, we require that 
the initial guesses be bounded.) 

(b) Given the values from (a), solve the model for period s -j using the EP 
method. For this solution the viewpoint date for the expectations for x9-i and 
beyond is s -j - 1. Actual values are used for .x_~_~. The solution yields values 
for Ex-j-, Y~-~+,, I = O,l, , h. 

(c) Given the expectations with viewpoint date s -j - 1 from (b), solve the 
model for period s - j + 1 using the EP method. For this solution the viewpoint 
date for the expectations for .x_~+( and beyond is s -j. Actual values are used 
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for x,_~_ ,. This solution yields values for E,_iyr_j+,+,, I = 0, 1, , h. Con- 
tinue this procedure (using the EP method to solve for the next period, given the 
solved-for expectations from the previous period) through period s. The solution 
for period s yields values for E,_ I yz+,, r = 0, , h. 

(d) Increase j by 1 and repeat (a) through (c). This yields new values for 
E,_I y>+,, r = 0, 1, , h. Compare these values to the values obtained by using 
the smallerj. If any new value is not within the prescribed tolerance level9 of the 
old value, increase j by 1 and repeat steps (a) through (c). Keep doing this until 
convergence is reached. Call this iteration (performing steps (a) through (c)) a 
Type IV iteration. 

(e) After Type IV convergence, one has final values of E,_, Y,~+, and 
E,_,y,_,+,,r=O,l,..., h. Use these values and the actual values of x3 and 
x~_ i to solve the model for period s. 

Each Type IV iteration requires solving the model forj + 1 starting points (i.e., 
achieving Type III convergence j + 1 times). The serial correlation case is thus 
considerably more expensive than the nonserial correlation case when solving the 
model for one period. However, no additional Type IV iterations are required for 
solving the model for periods later than s, once the solution for period s has been 
obtained. The predictions with viewpoint date s - 1 are known after solving for 
period s, for example, and they can be used in solving for period s + 1. 

It should be emphasized that Type IV iterations can handle problems more 
general than the case of first-order autoregressive emm. In particular, the 
expectations variables with viewpoint dates t - 2 need not arise solely from the 
presence of autoregressive errors, and there can be more than two viewpoint 
dates. If, say, viewpoint date f - 3 were also included in the model, the only 
change in the procedure would be the addition of initial guesses for E,_j_3 
values in step (a). One would merely need to keep track of three sets of 
expectations instead of two as the solutions proceeded from period s-j to 
period s. 

2.3. Models with Serial Cormlotion: Estimation Applications 

The Type IV iterations discussed in Section 2.2 require sufficient data prior to 
the solution period so that the initial guesses have a negligible effect on the 
solution. In most estimation problems one would not want to lose as many 
observations from the beginning of the sample as would be required for Type IV 
convergence. Fortunately, there is a way around this problem, which is based on 
an assumption that is usually made when estimating multiple equation models 
with moving average residuals. This assumption is that the last presample 
uncorrelated errm is zero, in particular that Q_, = 0 in equation (2) when solving 
for period s. As before, we focus on the case of first-order autoregressive errors; 
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generalization to higher orders is fairly straightforward. The method requires 
data” for period s - 1. Rather than first transforming model (1) into the form of 
model (3), the method works directly with equation (I), treating the error process 
(2) as another equation. 

If u~*_~ were known, then model (I) could be solved for period s - 1 and 
all subsequent periods using the EP method and the fact that Es_pis+, = 
p!‘+2’ ~ u+~. In other words, in the dynamic simulations that underly the EP 
method, one would use &+“)z+-~ on the right-hand side of (1). The problem 
then becomes one of choosing an appropriate value for I+_~. This is where the 
assumption about cism I comes in. The idea is to choose utim2 so that when the 
model is solved for period s - 1, it generates a value of cis_ I = 0; that is, 
I+,_, = p,u,_,. The rationale for this choice is simply that 0 is the unconditional 
mean of cjs_ 1 and so the actual value is likely to be relatively close to this value. 

An iterative procedure for choosing uir_2 so that q-, = 0 can be described as 
follows (note that each calculation is performed for each equation i = 1, , n): 

(i) Guess values for the error terms I+_~. 
(ii) Given the values from (i), solve the model for period s - 1 using the EP 

method. Note that Es_+,+, is set to p/‘*%~,_~ in calculating the predicted 
values. 

(iii) Given the predicted value of u~~_,($~_,) from step (ii), calculate ?is,l 
w~;,~:,-~ -gj,_, and t&_, = p,~,_~ + &,, where I+_~ is the initial guess. If t’$-, 
is not within a prescribed tolerance level of 0, then convergence has not been 
reached (i.e., the solution is not consistent with the assumption that q_, = 0). 

(iv) If convergence is not reached in (iii), set the new value of L+_~ equal to 
Qi,_,/p, and do (ii) and (iii) over for these new values. Repeat this until 
convergence is reached. 

(v) Using the converged iterate u,_,, compute l$_, = pu,_,. Given these 
values, solve for period s using the EP method, where in this case Es-, us+, 
= p,“““U,_, is used in calculating the predicted values. This completes the 
solution for period s. 

As was the case for the iterative procedure in Section 2.2, once the solution for 
period s has been obtained, the solutions for periods s + 1 and beyond do not 
require further iterations from those used by the EP method. Again, this is 
because the forecasts with viewpoint date s - 1 are known after solving for 
period s. 

2.4. An Example 

In order to see how the method worked for a large-scale nonlinear model, it 
was applied to two modified versions of the model described in Fair 12, 51. This 
model is nonlinear in variables and coefficients, has 97 equations, 29 of which 

“Data before period I - 1 will be needed if there are lagged endogenous or exogenous variables in 
the model. It is implicitly assumed here that sufficient data for the lagged variables are available for 
the solution for periods - I. 



RATIONAL EXPECTATlONS 1177 

are stochastic, and has first-order serial correlation in 12 of the stochastic 
equations. The regular version of the model does not have any rational expecta- 
tions variables in it. For the first modified version four equations were changed: 
one consumption equation and three labor supply equations. The explanatory 
price and wage variables in these equations, which enter with no lags, were 
replaced with the one-period-ahead expected values of the variables. The same 
coefficients were used for the expectations variables as were used for the 
non-expectations variables in the regular version. Serial correlation was not 
present in any of the four equations, so no Type IV iterations were needed.” The 
expected values of all the exogenous variables in the model were assumed to be 
the actual values. For the second modified version two additional equations were 
changed: another consumption equation and an output equation. Both of these 
equations have first-order serially correlated errors. Again, the explanatory price 
and wage variables in the consumption equation were replaced with one-period- 
ahead expected values. The current sales variable in the output equation was 
replaced with the one-period-ahead expected value of sales. In both equations the 
same coefficients were used for the expectations variables as were used for the 
variables in the regular version. 

It should be stressed that the two modified versions are not meant to be 
sensible alterations of the basic model. They are merely used to test the method. 
The method worked well for both versions. For the first version k was taken to 
be 8. (h is 1 in both versions.) Three Type II iterations were needed for the first 
Type III iteration. This required about 150 passes through the model (10 periods 
X 3 Type II iterations X about 5 Type I iterations per period).” Three Type II 
iterations were also needed for convergence for the second Type III iteration, 
which required about 165 passes through the model (11 periods X 3 Type II X 
about 5 Type I per period). Type III convergence was reached after two 
iterations using a tolerance level of 0.003 per cent. 

For the second version k was taken to be 8 and j was taken to be 6. This 
,requtied solutions for seven different starting points for the first Type IV 
iteration and eight different starting points for the second Type IV iteration. 
Each solution required two Type III iterations and about five Type II iterations 
per Type III iteration. Type IV convergence was reached after two iterations 
using a tolerance level of 0.004 per cent. The total number of passes through the 
model for the overall solution was about 7875. 

3. CONVERGENCE CONDITIONS IN A LINEAR EXAMPLE 

In this section we examine the conditions under which the solution method 
will converge from an arbitrary set of initial guesses to the rational expectations 

“The approximate time For one pass through the model on the Yale IBM370.158 is 0.05 seconds. 
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solution in a linear scalar example. The aim is to motivate the numerical method 
and to relate it to analytic techniques that have been used in previous research 
for solving and estimating rational expectations models. 

A scalar linear version of model (1) with serial correlation is given by 

(4) Yt=a,E,Y,+i+YtE,x,+ui,, 

(5) x, = bn,-, + ‘zr , 

(6) %, = PU,,- I + e,z 2 

where a, y, A, and p are scalar parameters and (cI,,z2J is a serially uncorrelated 
vector. We assume that IAl < 1 and IpI < 1. Equations (4) and (5) correspond to 
(1) when the exogenous variable x, is assumed to follow a known stochastic 
process, and equation (6) corresponds directly to the autoregressive error assump- 
tion made in equation (2). 

The rational expectations solution of equations (4) through (6) in period s is 
given byL3 

m CC 
(7) $E, Y$= c a%‘+$_,+ 2 aip’+‘tQ_, 

i=o i-o 

YA 
= =%I+ P 

1 - ap %-I 

Note that the last equality in (7) requires that /ahI < I and /opl < 1, which will 
be satisfied if Ial < 1. Our objective is to show that the numerical solution 
method generates the same solution value as that given in (7). For now take u,.~_, 
as given. A procedure for calculating u,$-~ is described subsequently. Recall that 
e,(i,k) is the guess of .!?_,Y,+, on Type II iteration i and Type III iteration k. 
We start each Type III iteration with an initial set of guesses e,(l, k), I = 0, 
1, , k + 2 (h = 1 in this example). We want to show that lim. I,*-m 0 3 e(i k) 
equals the right hand side of (7). 

For a fised k, the Type II iterations can be described by the set of equations 

(8) e,(i+l,k)=ae,+,(i,k)+yX’x,~i+p’ul,_,, 

r-0,1,..., k + 1. By repeated substitution we obtain 

(9 
k+l k+l 

e,(k +3-k) = (u)k+2e,+z(l,k) + YX 2 (a+,,-,+ P c (w)%-13 
h-l k=l 

which is the converged iterate of the Type II iterations for a fixed k. Equation (9) 
is not equal to the right hand side of (7). However, if /aI < 1, then the limit of 
e,(k + 3, k) as k + cc is equal to the right hand side of (7). This motivates our 

13An analytic solution method is discussed in Hansen and Sargent [8] and Taylor [M]. 
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requirement that the initial values e,+a(l,k) E &+a are bounded, and it shows 
that Type III iterations converge to the rational expectations solutionI 

Note that the condition for this convergence (]a] < 1) is identical to the 
condition needed to obtain a unique solution in rational expectations models (see 
Taylor [13]). This suggests that the numerical method will converge in the class of 
rational expectations models for which the uniqueness conditions hold, although 
a general proof is still open. 

We now use the example to illustrate the relationship between the procedure 
described in Section 2.3 (designed to choose initial conditions for estimation 
;pllztions) and the conditional maximum likelihood estimates of linear ARMA 

Substituting (7) into (4) results in 

Subtracting the lagged value of (10) multiplied by p from (10) results in the 
“quasi-differenced” expression 

which when combined with (5) gives a two-dimensional vector ARMA (2,1) 
model with nonlinear constraints on the parameters. For estimation of the 
parameters of this ARMA model it is necessary to calculate the residuals (e,,,~,) 
in terms of the data and the parameters. For “conditional” maximum likelihood 
estimates, this calculation is started by setting tlr_ t = 0 and taking _y_, , x,_, , 
and .x_~ as given, where s is the beginning of the estimation period. The residual 
en is then computed by subtracting (11) with these values from the actual 
observationy,. The residuals for later periods are calculated recursively using this 
computed residual cln. 

The procedure described in Section 2.3 is designed to calculate these “con- 
ditional” residuals numerically for linear as well as nonliiear models. This can be 
illustrated by showing that 

when the value ntr_, in (7) is chosen according to the procedure outlined in steps 
(i) through (v) in Section 2.3. We know from (7) that the basic numerical solution 
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method will generate 

when applied in period s - 1, as indicated in step (ii). Iterating steps (iii) and (iv) 
will yield a converged iterate of u,~_~ that has the property that y*_, -gr_, 
E zls_, = 0 to within the tolerance level. From (13) this value of uls_* is given by 

and therefore 

Substituting (15) into (7) yields (12), which is what is to be shown. Note that 
when analytic techniques can be used, it is trivial to choose u,.~_~ according to 
(14), but when the solutions are calculated numerically, it is necessary to search 
for the value u,~_~ that gives elr_, = 0. 

4. MAXIMUM LIKELIHOOD ESTIMATION 

Assume that the first m equations of the model (1) are stochastic, with the 
remaining u,,(i = m + 1, , n) identically zero for all f. Given the model (1), let 
J, be then X n Jacobian matrix whose ij element is af;/$, (i, j = 1, , n), and 
let S be the m X m matrix whose ij element is (l/T)C:_, uj,uj, (;, j = 1, , m). 
Also, let 1y denote the vector of all the unknown coefficients in the model. If the 
u;, are normally and independently distributed, then the full information maxi- 
mum likelihood (FIML) estimates of a are obtained by maximizing 

(16) L = - +gls/ + 5 loglJ,I 
I=, 

with respect to a. An estimate of the covariance matrix of these estimates (say P) 
is 

(17) 8= -(&$ 

where the derivatives are evaluated at the optimum. If the uir are correlated 
according to the relation ui, = p,u,_ I + q,, where the 4, are normally and 
independently distributed, then the FIML estimates are obtained by maximizing 
(16) with S replaced by the matrix whose ij element is (l/T)C:=, ei,vt. The 
maximization is then with respect to a and p = (p,, , pm), and the derivatives 

are taken with respect to a and p in estimating I? 
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4.1. Evaluating and Maximizing the Likelihood Function 

Given the solution method in Section 2, it is straightfonvard to compute L for 
a given value of a for rational expectations models. If there is no serial 
correlation, then for a given value of a one can solve for E,_, Y$, E,-( 

Y s+,‘. , E,_, ys+,, for s = 1,2, , T using the EP method. These values can 
then be used in conjunction with the Y and x data to compute values of uC* 
(s = 1,2, , T) and thus the matrix S. The Jacobian determinants can also be 
computed, thereby completing the determination of L in (16). ,The extra work 
involved in the calculation of L for rational expectations models thus consists of 
using the solution model to compute the expected values for each of the T 
viewpoint dates. For models without rational expectations none of these calcula- 
tions are needed. Given this extra work, however, FIML estimates can be 
obtained in the usual way by maximizing L numeri~ally’~ with respect to 1~. 

When the u,, follow a first-order autoregression process, only one main change 
to the above procedure is necessary. In this case steps (i) through (iv) in Section 
2.3 are needed to calculate the expected values for the first sample point (say, 
period 2). Given these expected values, which have a viewpoint date 1, the 
expected values for period 3 can then be obtained using the EP method. These 
expected values can then be used in the calculation of the expected values for 
period 4, and so on through the end of the sample point. The only extra work in 
the serial correlation case pertains to the first sample period. As noted above, 
numerical maximization in this case is with respect to a and p. 

4.2. An Example 

We have experimented with the method using a small linear model. This 
model, which can also be estimated using existing linear techniques, is a version 
of a wage contracting model estimated in Taylor [14]. It can be represented as 

(19) Yzr = %lYl, + %ZYI,+I + %Y,,-2 + %. 

with the restrictions 01,~ = a13 = l/3, a12 = a14 = l/b, (Y,~ = 01,~ = a,,, a11 = az2 
= Q. There are thus two free parameters to estimate, a,S and a>,. The data for 
this model were generated by simulating the model using normally distributed 
serially independent errors with zero correlation between equations. Values of CC,~ 
and a*, of .0333333 and - .333333 were used for this purpose. 50 observations 
were generated. 
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Tbe likelihood function was evaluated in two ways. The first used the tech- 
nique described in Taylor [14], which is based on a factorization procedure that 
calculates a restricted ARMA version of the model, and the second used the 
method of this paper. When evaluated at the same parameter values, both 
methods gave the same value of the likelihood function. A total of about 27,750 
passes through the model was required for one evaluation of the likelihood 
function, which is estimated’6 to take about 1 second on an IBM360/91. This 
compares to 034 seconds for the linear technique, and so the present method is 
about 250 times slower than the linear technique. The DFP algorithm was used 
to maximize the likelihood function, which required 90 function evaluations. 

We also evaluated the likelihood function for the case where ulr in (19) follows 
a first-order autoregressive process, with pI = 0.7. Steps (i) through (v) in Section 
2.3 were used with a damping factor of 0.25 to solve for the first observation, 
with the EP method used thereafter. Again, for the same set of parameter values 
the same likelihood value was obtained using both the factorization technique 
and the method proposed in this paper. The total number of passes in this case 
was about 37,563, which is about 35 per cent greater than the number for the 
model without serial correlation. 

4.3. A Less Expensive Method for Maximizing the Likelihood Function 

We also experimented with a less expensive method, which is of interest to 
mention briefly. The basic method is expensive because many evaluations of L 
are needed for each estimation problem and the model must be solved T times 
for each evaluation of L. The less expensive method avoids most of the solutions 
of the model by obtaining a linear approximation to the relationship between the 
expectations variables and the coefficients. This is done by numerically evaluat- 
ing the derivatives of the expectations variables with respect to the coefficients at 
the starting values and then maximizing the likelihood function as if this were the 
true relationship. This worked very well for the first example. Three solutions of 
the model were needed to get the derivatives (a base solution and one solution 
for each of the two coefficient perturbations). The DFP algorithm was then used 
to maximize L. This required 84 function evaluations,” but no extra solutions of 
the model. The maximum was obtained, and further tests showed that the use of 
the derivatives in the calculation of L provided a very close approximation to the 
actual value (i.e. the value obtained by solving the model). For the serially 
correlated example, on the other hand, the approximation did not work.” The 

‘%ese computation times were estimated in order to compare the two approaches. The actual 
iterations were computed on an TBM370-158. Because of the usual difficulties with such comparisons, 
these estimates should he viewed as approximate. 

“A different DFP program was used for this problem from the one used in conjunction with the 
factorization procedure, and so the two uses of the DFP algorithm are not strictly comparable. Both 
uses ied lo the same answer (within the prescribed tolerance level), which is a useful check on the 
methods. 

“For sake of completeness it should be noted tha: in the serial correlation case one must also 
caMate numerically the derivative of C,,_, with respect to each coefficient. where s is the first 
sample point. 
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expectations did not appear to be smooth functions of the coefficients. The 
results are thus mixed, and more experimentation with alternative models is 
needed before determining the likely usefulness of the less expensive method. 
Note that the less expensive method cau always be checked by switching to the 
basic method after convergence has been achieved using the less expensive 
method. 

5. SOLUTION AND ESTIMATION WITH STOCHASTIC SIMULATIONS 

In this section we briefly describe how the EP method can be used to obtain 
more accurate solutions and estimates of rational expectations models by sto- 
chastic, rather than deterministic, simulations. Through stochastic simulations it 
is possible to avoid the approximation of taking expectations through nonlinear 
functions, though with a significant increase in computation costs. For the 
purposes of this presentation we focus entirely on the model presented in 
equation (1) without serial correlation. 

Consider first the problem of solving a rational expectations model. Suppose 
that in addition to the OL parameters in model (1) we also know 2, the covariance 
matrix of the disturbances z+,. Assume that the t+,, are normally distributed. The 
solutions procedure is modified as follows. First, the expected values computed 
in step (ii)--E,_ I y$+,, I‘ = 41, , k + h-are computed by stochastic rather 
than deterministic simulations. Instead of setting the disturbances to their ex- 
pected values and solving once, the model is solved for many different trials. 
Each trial consists of a set of draws of the disturbances t+$+,, I = 0, 1, , k + 
h, from the N(O,Z) distribution (assuming the expected values of all the distur- 
bances are zero). Each expected value is computed as the average across all the 
trials. Second, the final solution value gs computed in step (v) is also computed 
by a stochastic rather than a deterministic simulation. In this case only draws of 
the disturbances for period s are needed. 

This method can be used to obtain maximum likelihood estimates of the 
parameters of model (1). Unlike in the deterministic case, however, the likelihood 
function cannot be “concentrated” as it is in equation (19). In the fully stochastic 
case, changes in Z: affect the solution of the model and thereby the computed 
residuals. Instead, we work directly with the “unconcentrated” (log) likelihood 
function, which except for a constant can be written 

(20) .L* = 5 loglJ,l- $log~X.i - + 5 u:r’u,, 
,=I ,-I 

where u, = (u,, , , urn,)‘. The maximum likelihood estimates can be obtained 
by maximizing the function L* with respect to the parameters (oi,Z). Each 
evaluation of L* requires computing the expected values, E,_,y,+,, I = 0, 
1, . , k + h, by stochastic simulation for f = 1, , 7’ using draws from the 
N(O,X) distribution. This allows u, to be computed for each 1. The determinants 
of the J, can be obtained, and so the function L* can be evaluated in terms of 
the parameters (LX,~). Nonlinear maximization routines can then be used to 
maximize L*. 
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Because this estimation procedure requires maximization over the (n + l)n/2 
independent elements of Z: in addition to the elements of a and because of the 
stochastic simulation costs, the method is likely to be extremely expensive in 
practice. Given this, experiments with the method on small representative nonlin- 
ear models would be useful to try to gauge how much accuracy is likely to be 
gained by using stochastic simulation. 

6. CONCLUSION 

A numerical solution method and an estimation method for nonlinear rational 
expectations models have been presented in this paper. Our calculations indicate 
that, when applied to linear models, the solution m&cd yields the same results 
as those obtained from currently available methods that are designed specifically 
for linear models. It is, however, more flexible and general than these methods. 
For large nonlinear models the experimental results in this paper indicate that 
the solution method works quite well. 

The estimation method is based on the maximum likelihood technique. Al- 
though the method can be expensive, it is, as far as we know, the only method 
available for obtaining maximum likelihood estimates for nonliiear rational 
expectations models. The main advantage of the method is that it is applicable to 
a wide range of models. The method can also handle a wider range of assump- 
tions about the expectations of the exogenous variables than is possible with 
currently available approaches to linear models. 
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