TESTING THE NAIRU MODEL FOR THE UNITED STATES
Ray C. Fair*

Abstract—This paper tests, using U.S. data, the dynamics implied by the
NAIRU view of the relationship between inflation and the unemployment
rate. The results are somewhat sensitive to the measure of inflation used,
but they generally reject the dynamics. An alternative way of thinking
about the relationship between inflation and the unemployment rate is
suggested.

I. The NAIRU Model

he main purpose of this paper is to test the dynamics

implied by the NAIRU view of the relationship between
inflation and the unemployment rate. This view is that there
is a value of the unemployment rate (the NAIRU) below
which the price level forever accelerates and above which
the price level forever decelerates. The simplest version of
the NAIRU equation is
1

m = W = Blu, —u*) +ys, + €,
p <O, v >0,

where ¢ is the time period, 1, is the rate of inflation, i, is the
unemployment rate, s, is a cost shock variable, €, is an error
term, and u* is the NAIRU. If u, equals u* for all ¢, the rate
of inflation will not change over time aside from the
short-run effects of s, and €, (assuming s, and €, have zero
means). Otherwise, the rate of inflation will increase over
time (the price level will accelerate) if , is less than u* for
all ¢+ and will decrease over time (the price level will
decelerate) if u, is greater than u* for all z.
A more general version of the NAIRU specification is

n m
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For this specification the NAIRU is —a/3 ;. If the
unemployment rate is always equal to this value, the
inflation rate will be constant in the long run aside from the
short-run effects of s; and e,.

A key restriction in equation (2) is that the §; coefficients
sum to 1 (or in equation (1) that the coefficient of r,—, is 1).
This restriction is used in much of the recent literature. See,
for example, the equations in Akerlof et al. (1996, p. 38),
Fuhrer (1995, p. 46), Gordon (1997, p. 14), Layard et al.
(1991, p. 379), and Staiger et al. (1997, p. 35). The
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specification has even entered the macro textbook literature;
see, for example, Mankiw (1994, p. 305). Also, there seems
to be considerable support for the NAIRU view in the policy
literature. For example, Krugman (1996, p. 37) in an article
in the New York Times Magazine writes “the theory of the
Nairu has been highly successful in tracking inflation over
the last 20 years. Alan Blinder, the departing vice chairman
of the Fed, has described this as the ‘clean little secret of
macroeconomics’.”

The results in this paper, on the other hand, suggest that
equations like (2) are in general not good approximations of
the actual dynamics of the inflation process. The basic test
that is performed is the following. Let p, be the log of the
price level for period ¢, and let 17, be measured as p, — p,-;.
Using this notation, equation (1) and (2) can be written in
terms of p rather than 1. Equation (1), for example, becomes

Pt =2p-1 — P + B, — u*) + vs, + €, (3)
In other words, equation (1) can be written in terms of the
current and past two price levels,! with restrictions on the
coefficients of the past two price levels. Similarly, if in
equation (2) n is, say, 4, the equation can be written in terms
of the current and past five price levels, with two restrictions
on the coefficients of the five past price levels. (Denoting the
coefficients on the past five price levels as a; through as, the
two restrictions are a, =5 — 4a; — 3a, — 2a; and as =
—4 + 3a; + 2a; + a3.) The main test in this paper is of
these two restrictions. The restrictions are easy to test by
simply adding p,-; and p,—, to the NAIRU equation and
testing whether they are jointly significant.

An equivalent test is to add ,—; (that is, p,—; — p,—,) and
p—1 to equation (2). Adding 7, breaks the restriction that
the 3; coefficients sum to 1, and adding both m,—; and p,—,
breaks the summation restriction and the restriction that each
price level is subtracted from the previous price level before
entering the equation. This latter restriction can be thought
of as a first-derivative restriction, and the summation
restriction can be thought of as a second-derivative restric-
tion.

Under what theory would p,_, and p,—, (or 7,—; and p,—,)
be added to equation (2)? One such theory has been used to
guide the specification of the price and wage equations in my
macroeconometric model. This theory was first presented in
Fair (1974), and more recent discussions are in Fair (1984,
chapter 3; 1994, chapter 2). It is briefly outlined in the
appendix, along with another, simpler theory. There may,
however, be other theories than the two in the appendix that
lead to p,—; and p,—, being added to the NAIRU equation.
The main aim of this paper is to test the dynamics of the

1 “Price level” will be used describe p even though p is actually the log
of the price level.
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NAIRU speciﬁcatioﬁ, and not to argue strongly in favor of
one theory over another.

II. The Data and Unit Root Tests

Many estimates of equations like (2) use the GDP deflator
as the measure of the price level. Other popular measures are
the consumer price index (CPI) and the personal consump-
tion deflator (PCD). Gordon (1997), for example, uses all
three. If, however, the aim is to measure prices set by U.S.
firms, none of these measures seems very good. The GDP
deflator includes prices of government output and indirect
business taxes, for example, which are clearly not decision
variables of firms. The CPI and PCD are to some extent even
worse, because they include import prices in addition to
indirect business taxes.

The main price variable used in this paper is a business
nonfarm price deflator, denoted PNF. Let YY be nominal
business nonfarm output (NIPA table 1.7, line 3), let IBT be
total indirect business taxes (NIPA table 3.1, line 4), and let
Y be business nonfarm output in 1992 dollars (NIPA table
1.8, line 3). Then PNF is defined to be (YY — IBT)/Y. PNF is
net of indirect business taxes, farm output, government
output, and imports.

The civilian unemployment rate is used for the unemploy-
ment rate. The import price deflator—the ratio of nominal
imports (NIPA table 1.1, line 17) to imports in 1992 dollars
(NIPA table 1.2, line 17)—is used as the cost shock variable.

In what follows p will denote the log of PNF; u will
denote the unemployment rate; and pm will denote the log of
the import price deflator. The data are quarterly and were
collected for the 1952:1-1998:1 period.

Using a variety of tests, p, u, and pm were all tested for
unit roots, and the null hypothesis of a unit root was not
rejected for any of them. In addition, the null hypothesis of a
unit root was not rejected for Ap. For an example, consider u
and the augmented Dickey-Fuller (ADF) test using a con-
stant, time trend, and four lags. The equation estimated for
the test is

Au, = + opt + a3Au,_l + (!4Au,_2 + 0L5Au,._3

@
+ aglu, g + ogug + &,
The null hypothesis of a unit root is the hypothesis that a7 =
0. This equation was estimated for the 1955:3-1998:1 period
(the same period used for the tests in the next section), and
the estimate of o; was —0.0416 with a z-statistic of —2.41.
The 5% and 1% critical values from MacKinnon (1991) are
—3.37 and —4.21, respectively, and so the null hypothesis is
not rejected.
To check whether the MacKinnon critical values are
accurate, the following experiment was done

1) Equation (4) without u,, included was estimated.
This equation was taken as the “base” equation, and

TaBLE 1.—UNrT Root TESTS
Ay, = oy + agt + azAy,—| + @Ay + asAy,-3 + ceAy-4

+oy1 + &
Computed Power Using
Critical Critical
y (o 1-Stat. 5% 1% 5% 1%
u —.0416 —241 -3.37 —4.21 .306 .051
p —.0049 —-1.94 —3.53 —-4.11 142 .039
Ap —-.1045 —2.34 —-3.42 —-4.13 .250 048
pm —.0066 -1.19 —341 —4.13 .086 .016
Apm —.2787 —4.13 —341 —4.03 962 755

Estimation period: 1955:3-1998:1.

the error term was assumed to be normally distributed
with mean zero and variance equal to the estimated
variance.

2) Using the normality assumption and the estimated
variance, a value of the error term was drawn for each
quarter of the estimation period. These error terms
were added to the base equation, and the equation was
solved dynamically to generate new data for u. Given
the new data for u, equation (4) was estimated, and the
t-statistic for the estimate of a7 was recorded.

3) The procedure in step 2 was done 1,000 times,
producing 1,000 ¢-statistics.

4) The t-statistics were sorted by size. Five percent of the
t-statistics were below —3.37 and one percent were
below —4.21. These two values compare closely to
the MacKinnon values of —3.44 and —4.01, and the
same conclusion is reached using these values as was
reached using the MacKinnon values, namely that the
unit root hypothesis is not rejected.

A similar experiment was then performed to estimate the
power of the test. In this case equation (4) with u,—, included
was estimated and taken to be the base equation. (The truth
is now that u does not have a unit root.) Again, the error term
was assumed to be normally distributed with mean zero and
variance equal to the estimated variance. For each trial, a
value of the error term was drawn for each quarter, and these
error terms were added to the base equation. The equation
was solved dynamically to generate new data for u. Given
the new data for u, equation (4) was estimated, and the
t-statistic for the estimate of o7 was recorded. This was done
1,000 times, and the 1,000 z-statistics were sorted by size. Of
these t-statistics, 30.6% were below —3.44, the above-
estimated 5% critical value, and 5.1% were below —4.01,
the above-estimated 1% critical value. The hypothesis that
a; equals zero was thus rejected only 30.6 (or 5.1%) of the
time, depending on the critical value used, even though it is
in fact false. The power of the test is thus quite low.

This same overall procedure was followed for p, Ap, pm,
and Apm. The results are shown in table 1, including the
results for u. Table 1 shows that, except for Apm, the
hypothesis of a unit root for the variable is not rejected, and
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the power of the test is low. All the computed critical values
are close to the MacKinnon values.

The five variables in table 1 were also tested for a unit root
using the DF-GLS test in Elliott et al. (1996). The DF-GLS
values for u,p, Ap,pm, and Apm were —2.51, —1.67,
—2.17, —1.30, and —3.98, respectively. The 5% and 1%
critical values are —2.96 and —3.49, respectively.2 The
hypothesis of a unit root is thus not rejected except for Apm,
the same conclusion that was reached using the ADF test. No
attempt was made to estimate the power of this test, although
the results from Elliott et al. suggest that the power is likely
to be higher than that for the ADF test.

It is not clear what to make of the unit root results, given
the lower power of at least the ADF test. Since it may be that
some of the variables have unit roots, it is probably unwise
to rely on standard asymptotic distributions in hypothesis
testing using these variables. Fortunately, it is straightfor-
ward to estimate “‘exact” distributions for the tests in the
next section, and this has been done. The procedure for
doing this is similar to what has just been done for the unit
root tests.

III.  The Test Results

The specification of equation (2) that was used for the
tests is

12 3
™ =09+ Zl dm,_; + 21 Bitdy—i
12 ®)

>5=1

i=1

3
+ 2 Yist-i t €,

i=1

where s, is postulated to be pm, — 19 — Ty¢, the deviation of
pm from a trend line. A fairly general specification was
chosen to lessen the chances of the results being due to a
particular choice of lags. The lag length on the past inflation
rates was taken to be twelve, and three lags each of the
unemployment rate and cost shock variable were used, with
each of the two variables taken to begin in period ¢ — 1.
Equation (5) was estimated in the following form:

11 3
Am =N+ Mt + X 0AT, . + > Bty
i=1 =1
. (6)
+ 21 Yipmy—; t €,

where Ag = ag + (y1 + v2 + ¥3)70 + (v1 + 272 + 3y3)m
and \; = (y; + 2 + ¥3)7T1. ap and T, are not identified in
equation (6), but, for purposes of the tests, this does not
matter. If, however, one wanted to compute the NAIRU (that

2 Interpolated for 171 observations from table 1, part C, in Elliott et al.
(1996).

TABLE 2.—ESTIMATES OF EQUATION (6) AND (7)

Equation (6) Equation (7)

Variable Estimate t-Stat. Estimate t-Stat.
cnst .0052 1.34 -.0176 -2.69
t —.000002 -0.12 000155 3.94
Uy -.274 -3.04 —.248 —-2.96
Upz 262 1.67 2717 1.91
[T -.079 —0.85 —.162 -1.87
pm—y .061 4.14 072 5.11
pmy— —.043 -1.56 —.042 —1.68
pmy—3 —.018 -1.14 —.004 -0.23
A,y -.752 -9.85 -.280 -2.51
Am,_, —.554 —5.97 —.204 -1.90
A3 -.326 -3.30 -.072 -0.71
Amy —.282 —-2.99 —.084 —0.88
Am,_s -.237 —2.66 —.086 -0.97
Am¢ -.297 -3.60 -.174 -2.13
Am—4 —.208 —2.56 —-.108 -1.35
Am,_g -213 -2.70 -.115 -1.49
Am,—g -.175 -2.23 —-.091 -1.18
Am—yo —.226 —2.98 —-.156 -2.14
Am—yy -.079 -1.17 —.041 —0.65
-1 —.593 —5.45
DPi-1 —.041 —4.82
SE 0.00296 0.00273

X2 26.28

Estimation period: 1955:3-1998:1.
Note: When p,-, and p,, are added in place of m,—; and p,—;, the respective coefficient estimates are
—0.634 and 0.593 with ¢-statistics of —5.47 and 5.45. All else is the same.

is, —a/Z2_,B;), one would need a separate estimate of T, in
order to estimate o.>

For reference, it will be useful to write equation (6) with
,—; and p,—; added:

11 3
A'ﬂ't = XO + )\lt + 2 Bl'A’ﬂ"_i + 2 Biu,_,'
; i=1 i=1 (7)
+ 2 Yipmy—; + $ym—y + bypy t €,

i=1

A. )P Tests Using PNF

The estimation period for the tests was 1955:3-1998:1.
The results of estimating equation (6) and (7) are presented
in table 2. With 1r,—, and p,—; added, the standard error of the
equation falls from 0.00296 to 0.00273. The #-statistics for
the two variables are —5.45 and —4.82, respectively, and the
X2 value for the hypothesis that the coefficients of both
variables are zero is 26.28.4

3 The present specification assumes that the NAIRU is constant, al-
though, if the NAIRU had a trend, this would be absorbed in the estimate
of the coefficient of the time trend in equation (6) and would change the
interpretation of \,. In recent work, Gordon (1997) has argued that the
NAIRU may be time varying, and in future work it may be interesting to
consider this case as well as other cases in which the NAIRU is postulated
to change over time.

4 Note that there is a large change in the estimate of the coefficient of the
time trend when m,_, and p,-, are added. This is to be expected from the
discussion in the appendix. To some extent, the time trend is serving a
similar role in equation (7) as the constant term is in equation (6).
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The 5% critical x2 value for two degrees of freedom is
5.99 and the 1% critical value is 9.21. If the x? distribution is
a good approximation to the actual distribution, the two
variables are highly significant and thus the NAIRU dynam-
ics strongly rejected. If, however, equation (6) is in fact the
way the price data are generated, the x? distribution may not
be a good approximation for the test.> To check this, the
“exact” distribution was computed using a procedure simi-
lar to that in the previous section.

The procedure in the present case is as follows. First,
estimate equation (6) and record the coefficient estimates
and the estimated variance of the error term. Call this the
“base” equation. Assume that the error term is normally
distributed with mean zero and variance equal to the
estimated variance. Then:

1. Draw a value of the error term for each quarter. Add these
error terms to the base equation and solve it dynamically
to generate new data for p. Given the new data for p
and the data for ¥ and pm (which have not changed),
compute the x2 value as in table 2. Record this value.

2. Perform step 1 1,000 times to produce 1,000 x? values.
The distribution of these values is the ““exact” distribu-
tion.

3. Sort the x? values by size, and choose the value above
which 5% of the values lie and the value above which
1% of the values lie. These are the 5% and 1% critical
values, respectively.

These calculations were done, and the 5% critical value
was 18.10 and the 1% critical value was 24.91. These values
are considerably larger than the critical values from the
actual ¥2 distribution (which is as expected if equation (6) is
the actual data-generating process), but they are still smaller
than the computed value of 26.28. The two price variables
are thus significant at the 99%-confidence level even using
the alternative values.

The above procedure treats u and pm as exogenous, and it
may be that the estimated critical values are sensitive to this
treatment. To check for this, the following two equations
were postulated for u and pm:

pm, = a; + at + azpm,_, + aypm,_, + aspm;,_3

®
+ agpm,—4 + vy,
and
U = bl + bzt + b3u,_1 + b4u,_2 + b5u,_3 + bsu,_4
+ b;pm,_, + bgpm,_, + bgpm,_3 )

+ bopmy—4 + M

5 If the %2 distribution is not a good approximation, then the t-distribution
will not be either, and so the ¢-statistics in table 2 will not be reliable. The
following analysis focuses on correcting the x? critical values, and no use
of the -statistics is made.

TABLE 3.—RESULTS FOR EQUATION (7) x? TEST THAT ¢; = 0 AND ¢ = 0

1 2 3 4 5
PNF PNF GDPD CPI CPIC
n=12 n=24 n=12 n=12 n=12
-1 -0.593 —0.615 -0.317 —0.340 —0.388
(—5.45) (—4.97) (—4.23) (-3.37) (—4.28)
P11 —0.041 —0.045 —0.023 -0.022 —0.016
(—4.82) (—4.80) (—-3.54) (—2.89) (—2.66)
X2 26.28 21.94 16.06 10.74 16.32
x_g 15.01 12.41 12.48 12.13 14.05
Xi 19.19 17.30 17.55 18.23 18.86

PNF = business nonfarm price deflator.
GDPD = GDP deflator.
CPI = consumer price index.
CPIC = core CPL
¢-statistics are in parentheses.
2 is the computed 5% critical value.
X is the computed 1% critical value.
All the critical values were computed using 1,000 trials and equation (8) and (9) for pm and u.

These two equations, along with equation (6), were taken to
be the “model,” and they were estimated along with
equation (6) to get the “base” model. The error terms €, v,,
and v, were then assumed to be multivariate normal with
mean zero and covariance matrix equal to the estimated
covariance matrix (obtained from the estimated error terms).
Each trial then consisted of draws of the three error terms for
each quarter and a dynamic simulation of the model to
generate new data for p, pm, and u, from which the x? value
was computed. The computed critical values were not very
sensitive to this treatment of pm and u, and they actually fell
slightly. The 5% value was 15.01 compared to 18.10 above,
and the 1% value was 19.19 compared to 24.91 above. These
results are summarized in column 1 in table 3.

To examine the sensitivity of the results to the use of
twelve lags in equation (5), the test was run using 24 lags
rather than twelve. For this test, the estimation period began
in 1958:3 rather than 1955:3. As shown in column 2 in table
3, the x2 value was 21.94 with computed 5% and 1% critical
values of 12.41 and 17.30. (All the critical values reported in
this rest of this section were computed using 1,000 trials and
equation (8) and (9) for pm and u.) The results are thus not
sensitive to the use of more lags.

B. )@ Tests Using Other Price Measures

The results are somewhat sensitive to the use of other
price measures. When the GDP deflator was used (with
twelve lags), column 3 in table 3 shows that the x2 value was
16.06 with computed 5% and 1% critical values of 12.48 and
17.55. In this case, the two price variables are significant at
the 95% confidence level but not the 99% level. When the
overall CPI was used, column 4 in table 3 shows that the x?
value was 10.74 with computed 5% and 1% critical values of
12.13 and 18.23. In this case, the two price variables are not
significant at even the 95% level. Finally, when the CPI
excluding food and energy (the “core” CPI) was used,
column 5 in table 3 shows that the x? value was 16.32 with
computed 5% and 1% critical values of 14.05 and 18.86. In
this case, as in the case using the GDP deflator, the two price
variables are significant at the 95% but not the 99% level.
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The choice of the price measure is thus somewhat
important for purposes of the test. As argued in section II,
the business nonfarm price deflator has the advantage over
the GDP deflator of not including prices of government
output and indirect business taxes. It has the advantage over
the CPI of not including import prices and indirect business
taxes. It thus seems that much less weight should be put on
the results using the GDP deflator and the CPI, but, even for
these measures, the two price variables are significant at the
95% level except for the overall CPI.6

C. Recursive RMSE Tests

An alternative way to examine equation (6) and (7) is to
consider how well they predict outside sample. To do this,
the following root mean squared error (RMSE) test was
performed. Each equation was first estimated for the period
ending in 1969:4 (all estimation periods begin in 1955:3),
and a dynamic eight-quarter-ahead prediction was made
beginning in 1970:1. The equation was then estimated
through 1970:1, and a dynamic eight-quarter-ahead predic-
tion was made beginning in 1970:2. This process was
repeated through the estimation period ending in 1997:4.
Since observations were available through 1998:1, this
procedure generated 113 one-quarter-ahead predictions, 112
two-quarter-ahead predictions, through 106 eight-quarter-
ahead predictions, where all the predictions are outside
sample. RMSEs were computed using these predictions and
the actual values.

The actual values of u and pm were used for all these
predictions. The aim here is not to generate predictions that
could have in principle been made in real time, but to see
how good the dynamic predictions from each equation are
conditional on the actual values of u and pm.

The RMSEs are presented in table 4 for the one-, four-,
and eight-quarter-ahead predictions for p and Ap. (Ignore for
now the third set of results.) The one-quarter-ahead predic-
tion accuracy is about the same for the two equations (0.42
versus 0.40 percentage points), but by four-quarters-ahead
equation (7) is noticeably more accurate than equation (6).
For the eight-quarter-ahead predictions, the RMSEs are 4.13
versus 2.94 for p and 0.84 versus 0.57 for Ap, which are
sizable differences.

It is thus the case that the addition of mr,—; and p,—, has
considerably increased the accuracy of the predictions, and

6 This general rejection of the NAIRU dynamics may help explain two
results in the literature. Staiger et al. (1997), using a standard NAIRU
specification, estimate variances of NAIRU estimates and find them to be
very large. This is not surprising if the NAIRU specification is misspeci-
fied, as the present results suggest. Similarly, Eisner (1997) finds the
results of estimating NAIRU equations to be sensitive to various assump-
tions, particularly assumptions about whether the behavior of inflation is
symmetric for unemployment rates above and below the assumed NAIRU.
Again, this sensitivity is not surprising if the basic equations used are
misspecified. It is clear from Eisner’s paper that, although he is working
with NAIRU equations, he does not like the concept of the NAIRU. The
present results suggest that his doubts are well founded.

TABLE 4.—RECURSIVE RMSE RESULTS

p Ap
Quarters Ahead
1 4 8 4 8
Eq. (6) 042 1.58 4.13 0.59 0.84
Eq. (7) 0.40 1.38 2.94 0.50 0.57
Eq. (10), (11) 0.36 1.13 2.16 0.41 0.42
Prediction period: 1970:1-1998:1.
Errors are in percentage points.

so these variables are not only statistically significant but
also economically important in a predictive sense.

IV.

It turns out that a simple structural model of price and
wage determination leads to considerably lower RMSEs
than even those for equation (7). The model is

A Simple Structural Model

Pr=Bo t Bipi-1 + Bow; + Bspm,—y + By,

+ Bst + € (10)

Wy = Yo + YiWi—1 + YaPr + Y3Di—1 + Yalhe—y

11
+ Yst + u,, ( )

where the new variable is w, the log of the nominal wage
rate.” These two equations are identified in that w,_; is
excluded from equation (10) and pm,_, is excluded from
equation (11). The motivation for these equations is pre-
sented in the appendix.®

Equation (10) and (11) were estimated by two-stage least
squares (2SLS) using as first-stage regressors the constant, z,
Di~1, Wi—1, U;—1, and pm,_;. Equation (10) was estimated as
is, and the estimates of 3; and B, were used to impose a
coefficient constraint on equation (11) before it was esti-
mated. This constraint is to ensure that the implied real wage
equation from (10) and (11) does not have unreasonable

7 The nominal wage rate used is variable WF in Fair (1994). It is a total
compensation measure, including fringe benefits. It is available from the
website mentioned in the introductory footnote.

8 Equation (10) and (11) are simpler than the price and wage equations in
my U.S. macroeconometric model. See Fair (1994) or the website for these
equations. The main characteristics of equation (10) and (11) that carry
over to the equations in the model are that the cost shock variable appears
only in the price equation and that the current and lagged price levels
appear in the wage equation, but only the current wage appears in the price
equation. In addition, as will be seen in table 5, the demand-pressure
variable (in the present case, the unemployment rate) has much more
explanatory power in the price equation than in the wage equation, and the
estimate of the coefficient of the wage variable in the price equation is
fairly small. According to these equations, when there are cost shocks or
changes in demand pressure, price changes primarily lead wage changes.
For purposes of this paper, equation (10) and (11) have been made no more
complicated than necessary to make the main points. In this spirit, the price
measure used in this paper (PNF) is not the exact price measure used in the
model. Again, PNF was made no more complicated than necessary: It can
be easily computed from three variables in the NIPA tables.
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long-run properties. The implied real wage equation is

WimPS T (A = Bviwi

+[(1 = B2)ys — (1 — ¥2)B1lpi-1
= (1 =v)Bo+ (1 — B2)vo

+ [=(1 = ¥2)Bs + (1 — B2)valu—
= (1 = v2)Bspmy—,

+ [=(1 = v2)Bs + (1 — Bo)ysle

= (1 = v)& + (1 — Bu):

12)

Unless the coefficient of w,—; equals the negative of the
coefficient of p,—;, equation (12) implies that, in the long
run, the real wage depends on the level of p, which is not
sensible. Consequently, the restriction that the two coeffi-
cients are equal in absolute value and of opposite signs is
imposed in the estimation. The restriction on the structural
coefficients is

B
73—1_32

Equation (11) was estimated by 2SLS using this restriction,
where the values used for B; and B, were the estimated
values from equation (10).

The coefficient estimates are presented in table 5. The
estimation period began in 1954:1 instead of 1955:3 because
fewer initial observations were needed for the lags. The
unemployment rate has a large absolute ¢-value in the price
equation, but a very small one in the wage equation. The
coefficient estimate of w, in the price equation is fairly small,
which means that the price equation is not a ‘“wage push”
equation. Instead, cost shocks and demand-pressure changes
affect the price equation, and the wage equation is primarily
a “price push” equation.

The same RMSE experiment was performed using equa-
tion (10) and (11) as was performed in the previous section.
The equations were estimated (by 2SLS) 113 times, and 113
one-quarter-ahead predictions were generated, 112 two-
quarter-ahead predictions, and so on. The results are pre-
sented in table 4. They show that the structural model is
considerably more accurate in terms of outside sample
prediction accuracy than even equation (7). For the eight-
quarter-ahead prediction, for example, the RMSE for p is
2.16 versus 2.96 and 4.15, and the RMSE for Ap is 0.42
versus 0.57 and 0.85.

In the early 1980s, there began a movement away from the
estimation of structural price and wage equations to the estima-
tion of reduced-form price equations like equation (6).° The
current results call into question this practice in that considerable
predictive accuracy seems to be lost when this is done.

Td=v)— - (13)

9 See, for example, Gordon (1980) and Gordon and King (1982).

TABLE 5.—ESTIMATES OF EQUATION (10) AND (11)

P = Bo+ Bi1pi-1 + Bow, + Bapme—y + Bas—1 + Bst + €
wi= Yo+ Yiwi-1 + Y2pr + Y3Pr—1 + Yall—y + yst g

Estimate t-Stat. Estimate t-Stat.
Bo 0.0778 1.65 Yo —0.0709 -1.60
B1 0.9225 284.47 o7 0.9887 109.53
B2 0.0200 2.51 Y2 0.7513 8.86
Bs 0.0403 13.61 Ya —0.0104 -0.28
Bs —0.1795 —8.51 ¥s 0.000181 2.61
Bs 0.000088 1.01 Y3 —0.7546 a
SE 0.00294 SE 0.00817

@ Coefficient constrained.

Estimation period: 1954:1-1998:1.

Estimation method: 2SLS.

First-stage regressors: constant, ¢, py—, Wy, l—y, Pf—y.

V. Properties

Coming back to equation (6) versus (7), it has so far been
shown that the two added variables in equation (7) are
statistically significant and that equation (7) predicts better
outside sample. The last question considered here is how the
properties of the two equations compare. If, say, the
unemployment rate were permanently lowered by one
percentage point, what would the two equations say the price
consequences of this are?

To answer this, the following experiment was performed
for each equation. A dynamic simulation was run beginning
in 1998:2 using the actual values of all the variables from
1998:1 back. The values of u from 1998:2 on were taken to
be the actual value for 1998:1. pm was assumed to grow at a
2% annual rate from 1998:2 on. Call this simulation the
“base” simulation. A second dynamic simulation was then
run in which the only change was that the unemployment
rate was decreased permanently by one percentage point
from 1998:2 on. The difference between the predicted value
of p from this simulation and that from the base simulation
for a given quarter is the estimated effect of the change in u
onp.10

For comparison purposes, two other sets of results were
obtained. For the first set, equation (7) was estimated with
only m,_; added, which means that the summation (second-
derivative) restriction is broken but not the first-derivative
restriction. For this estimated equation, the §; coefficients
summed to 0.846.!! The above experiment was then per-
formed for this equation.

10 Because the equations are linear, it actually does mot matter what
values are used for pm as long as the same values are used for both
simulations. Similarly, it does not matter what values are used for u as long
as each value for the second simulation is one percentage point higher than
the corresponding value for the base simulation.

11 When only 7, is added, the x? value is 5.21 with computed (as in
table 3) 5% and 1% critical values of 9.18 and 14.11, respectively. m,, is
thus not significant at even the 5% level, even though the sum seems
substantially less than 1. When p,_; is added to the equation with ,_,
already added, the ¥ value is 20.40 with computed 5% and 1% critical
values of 13.56 and 18.21, respectively. p,, is thus highly significant when
added to the equation with m,—, already added. Recursive RMSE results as
in table 4 were also obtained for the equation with only r,_, added. The
five RMSEs corresponding to those in table 4 are 0.42, 1.49, 3.20, 0.53,
and 0.61. These are in-between those for equation (6) and equation (7).
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TABLE 6.—EFFECTS OF A ONE PERCENTAGE POINT FALL IN U

Equation (6) Equation (7) Equation (7) ¢, = 0 Eq. (10), (11)
Quar. Prew - pbase Apnew_Apbase Prew - pbase Apnew_Apbase Pprew - pbase Apnew_Apbase Pprew . pbase Apnew_Aphase
1 1.0000 0.00 1.6000 0.00 1.0000 0.00 1.0000 0.00
2 1.0027 1.10 1.0025 0.99 1.0025 0.99 1.0018 0.73
3 1.0036 0.32 1.0024 -0.03 1.0030 0.20 1.0035 0.68
4 1.0052 0.66 1.0038 0.57 1.0043 0.51 1.0052 0.64
5 1.0073 0.84 1.0055 0.67 1.0059 0.65 1.0067 0.60
6 1.0094 0.83 1.0069 0.56 1.0074 0.61 1.0081 0.56
7 1.0118 0.95 1.0085 0.62 1.0092 0.70 1.0094 0.53
8 1.0142 0.93 1.0098 0.51 1.0109 0.66 1.0107 0.50
9 1.0170 1.12 1.0113 0.62 1.0129 0.81 1.0118 0.46
10 1.0198 1.10 1.0125 0.48 1.0149 0.77 1.0129 043
11 1.0229 1.20 1.0138 0.50 1.0170 0.84 1.0140 0.41
12 1.0259 1.20 1.0148 0.41 1.0191 0.80 1.0149 0.38
40 1.2238 3.65 1.0320 0.06 1.1174 1.59 1.0265 0.05
L © L 1.0330 0.00 o 1.95 1.0248 0.00

P = price level, p = 400 log P.

For the other comparison set, the above experiment was
performed for equation (10) and (11), in which the value
used for w for 1998:1 (which is needed for experiment) was
taken to be the actual value.

Before looking at the results, it should be stressed that this
experiment is not meant to be realistic. For example, it is
unlikely that the Fed would allow a permanent fall in u to
take place as p rose. This experiment is simply meant to help
illustrate how the equations differ in a particular dimension.

The results for the four experiments are presented in table
6. Consider the very long-run properties first. For equation
(6), the new price level grows without bounds relative to the
base price level, and the new inflation rate grows without
bounds relative to the base inflation rate. For equation (7)
with only m,—; added, the new price level grows without
bounds relative to the base, but the inflation rate does not. It
is 1.95 percentage points higher in the long run. For equation
(7) with both m,—; and p,—, added, the new price level is
higher by 3.20% in the limit, and the new inflation rate is
back to the base. Similarly, for equation (10) and (11), the
new price level is higher by 2.48% in the limit, and the new
inflation rate is back to the base.

The long-run properties are thus vastly different, as is, of
course, obvious from the specifications. What is interesting,
however, is that the effects are fairly close for the first few
quarters. One would be hard pressed to choose among the
equations on the basis of which short-run implications seem
more “reasonable.” Instead, one needs tests of the kind
performed in this paper.

V1. An Alternative View

The x? tests in section III generally reject the dynamics
implied by the NAIRU specification, and the RMSE results
in table 4 show that the NAIRU specification has poor
predictive power relative to the equation with ,—; and p,—,
included and relative to a simple structural price and wage
model. It would be easy in future work for others to test
NAIRU specifications in the manner done in this paper. The
main test is simply to add the log of the price levels lagged

one and two periods to the equation and to examine their
significance.

If the NAIRU specification is rejected, this changes the
way one thinks about the relationship between inflation and
unemployment. One should not think that there is some
unemployment rate below which the price level forever
accelerates and above which it forever decelerates. On the
other hand, neither equation (7) nor equation (10) and (11)
seems to be a sensible alternative. Both these specifications
imply that a lowering of the unemployment rate has only a
modest long-run effect on the price level, regardless of how
low the initial value of the unemployment rate is. For
example, the results in table 6 for these two specifications
are independent of the initial value of the unemployment
rate.

A weakness of all four of the specifications examined in
table 6 (in my view) is the linearity assumption regarding the
effects of u on p. It seems likely that there is a strongly
nonlinear relationship between the price level and the
unemployment rate at low levels of the unemployment rate.
One possible specification, for example, would be to replace
u in, say, equation (10) with 1/(u — 0.02). In this case, as u
approaches 0.02, the estimated effects on p become larger
and larger. I have experimented with a variety of functional
forms like this in estimating price equations like (10) to see
if the data can pick up a nonlinear relationship. Unfortu-
nately, there are so few observations of very low unemploy-
ment rates that the data do not appear capable of discriminat-
ing among functional forms. A variety of functional forms,
including the linear form, lead to very similar results. This
does not mean, however, that the true functional form is
linear, only that the data are insufficient for estimating the
true functional form.

The alternative view put forth here about the relationship
between inflation and the unemployment rate can thus be
summarized by the following two points. First, the NAIRU
dynamics, namely the first- and second-derivative restric-
tions, are not accurate. Second, the relationship between the
price level and the unemployment rate is nonlinear at low
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values of the unemployment rate. The data generally support
the first point and have little to say about the second point.
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APPENDIX

As noted in section I, the theory that has guided the specification of the price
and wage equations in my macroeconometric model was first presented in Fair
(1974), with more recent discussions in Fair (1984, chapter 3; 1994, chapter 2).
The following is a brief outline of this theory. Firms are assumed to solve
multiperiod profit-maximization problems in which prices, wages, investment,
employment, and output are decision variables. The maximization problem
requires that a firm form expectations of various variables before the problem is
solved. A firm’s market share is a function of its price relative to the prices of
other firms. A firm expects that it will gain (lose) customers if it lowers (raises)
its price relative to the expected prices of other firms. Similarly, a firm expects
that it will gain (lose) workers if it raises (lowers) its wage rate relative to the
wage rates of other firms. The properties of the theoretical model are examined
via simulation runs. Two of the properties that are relevant for present purposes
are

1. A change in the expected prices (wages) of other firms leads the given
firm to change its own price (wage) in the same direction.

2. A firm responds to a decrease in demand by lowering its price and
contracting output, and vice versa for an increase in demand.

In this setup, the natural decision variable is the price level. The objective
of a firm is to choose its price-level path (along with the paths of the other
decision variables) that maximizes the multiperiod objective function.

Another, simpler, model in which the price level is the natural decision
variable is a duopoly game with asymmetric information discussed in
Tirole (1988, section 9.1.1). The duopolists (firms 1 and 2) sell differenti-
ated products, and firm 2 has incomplete information about firm 1’s cost.
The demand curves are symmetric and linear:

D{p.p)=a—bp;+dp, 0<d<b. (14)
Both firms have constant marginal costs, ¢, and c,, respectively, where ¢, is
common knowledge, but only firm 1 knows c,. Tirole shows that firm 2’s
profit-maximizing price is

P2 = (a + dp§ + bcy)/2b, (15)
where pf is firm 2’s expectation of firm 1’s price. p{ depends, among other
things, on firm 2’s expectation of firm 1’s marginal cost. Equation (15) says
that firm 2’s price is a function of the demand parameter a, firms 2’s
marginal cost ¢,, and firm 2’s expectation of firm 1’s price p5.

The transition from theory to econometric specifications in macroeco-
nomics is usually crude, and this is true in the present context in moving
from the above theory to the specification of equation (10) and (11) in the
text. The lagged price level in equation (10) can be thought of as picking up
expectational effects, which are in both theoretical models mentioned
above, represented, for example, by p; in equation (15) in the duopoly
model. The wage variable and the import price variable can be thought of
as picking up cost effects, which are also in both models, represented by ¢,
in equation (15). Finally, the unemployment rate picks up demand effects,
which are in both models, represented by a in equation (15). The time trend
in equation (10) is meant to pick up any trend effects on the price level not
captured by the other variables. Adding the time trend to an equation like
(10) is similar to adding the constant term to an equation specified in terms
of changes rather than levels.

In the wage equation, equation (11), the wage rate is a function of the
lagged wage rate, the current and lagged price levels, the unemployment
rate, and the time trend. Given that the unemployment rate is not
significant in the equation, the wage equation is one in which the wage rate
simply adjusts to the price level over time.

Equation (10) and (11) can be used to justify adding p,-, and p,-; to the
NAIRU specification. From equation (10) and (11), the final form of the
price equation can be derived by lagging equation (10) one period,
multiplying through by v, , subtracting this expression from equation (10),
and then using equation (11) to substitute out the wage rate. The final form
of the price equation is:!?

p= [(Bo + B2Yo — BoY1 + BsY1)

1 -8,
+ (B1 + B2vs + YOP-1 — Brvipe-2

+ Bapm—y — Bavipm—z + (Ba + B2va)u-
= Bavis—2 + (Bs — Bsyr + Bays)kt

+ (& — Vi1 + Bl

(16)

Py and p,_, appear as separate explanatory variables in this equation. The
NAIRU equation (6) differs from equation (16) in having more lagged
price levels, but with the first- and second-derivative restrictions imposed
on the price levels. If equation (6) is correctly specified, p,-, and p,—, do
not appear separately in the price equation, whereas if equation (10) and
(11) are correctly specified, the variables do. A test is thus to add p,—, and
P2 to equation (6) and see if they are jointly significant.

12 ] am indebted to Phil Howrey for suggesting the use of the final form
price equation in the present context.



