
ON THE ROBUST ESTIMATION OF ECONOMETRIC MODELS 

Most of the work that has been done on robust estimation techniques has been 
concerned with the estimation of a small number of parameters.’ This paper 
considers the use of such techniques for the estimation of econometric models. 
The computational aspects of obtaining robust estimates of a general nonlinear 
econometric model are described, and then some results of estimating a particular 
model are presented. The particular model, described in Fair [4], is nonlinear in 
both variables and parameters, and the version used here consists of 11 stochastic 
equations and has 61 unknown parameters to estimate. 

1. THE COMPUTATION OF ROBUST ESTIMATES OF ECONOMETRIC MODELS 

Write the g-th equation of the model to be estimated as: 

(1) ~l(Y,,,...,YC,.X,lr....XNt.Qg)=u*l 
(g = 1,. , G) 

(t= l,....T)’ 

where the yii are endogenous variables, the xi, are predetermined variables, & is 
a vector of unknown parameters; and IQ, is an error term. 

It will be useful to consider first the estimation ofthe model by full information 
maximum likelihood (FIML). The FIML estimates of the unknown parameters 
in (1) are obtained by maximizing 

with respect to the unknown parameters,’ where 

(3) g,h=l,..., G. 

If G - M ofthe G equations are identities, then S is M x 54, but J, remains G x G. 

* Research supported in pati by National Science Foundation Grant GJ-1154X2 to the National 
Bureau of Economic Research, Inc. The author is indebted to David Belsky, Gregory C&w, David 
Hoaglin, Paul Hollandzu~d Edwin Kuh ior helpful canments, and to David Jones and Rod Gretlin 
for research assistance. Computations reported hen were pwkxmed in pan on tb~ TROLL system. 

’ See, for example, the studies of Andrew et al. [Z], Andrew’8 [I], and Hughes [9]. 
1 See, for example, Chow [31. 

661 



The maximization of L in (2) is a computationally difficult problem, and few 
nonlinear models of any size have been estimated by FIML. There has, however, 
been recent progress in the development of algorithms for solving unconstrained 
optimization problems. Some of these algorithms were tested and compared in 
Fair [S] in the context of solving optimal control problems; the results indicate 
that large unconstrained optimization problems can be solved. One problem of 
239 unknown parameters was solved, and problems of 100 parameters were solved 
routinely. Another encouraging aspect of these results is that analytic derivatives 
were never used. If an algorithm required first or second derivatives, the derivatives 
were always obtained numerically. The advantage of not having to compute 
analytic derivatives is the human efiort saved. When numeric derivatives are used, 
the only human effort needed to set up the problem (other than acquiring the 
algorithm programs) is to write a program to compute the value of the objective 
function for a given vector of parameters.’ The three main algorithms considered 
in [S] were the 1964 algorithm of Powell [l 11, which does not require any deriva- 
tives ; a member of the class of gradient algorithms considered by Huang [8], which 
requires first derivatives ; and the quadratic hill-climbing algorithm of Goldfeld, 
Quandt, and Trotter 171, which requires both first and second derivatives. These 
are the algorithms that were used to obtain the FIML estimates for the results in 
Section 2. 

Consider next the estimation of a single equation of (I) by the least-absolute- 
residual (LAR) technique, a type of robust estimator. The LAR estimates are ob- 
rained by minimizing 

with respect to the unknown parameters. Since in general ust is a nonlinear function 
of the unknown parameters, Q cannot be minimized through the solution of a 
linear programming probleni. An attempt was first made in this study to minimize 
Q for the results in Section 2 by using the approach and algorithms discussed above, 
but this attempt failed. The algorithms were not in general successful in finding 
global optima. Often they converged to different answers from di&xent starting 
points, and many times different algorithms converged to different answers from 
the same starting point. 

LAR estimates can, however, be obtained, at least approximately, by con- 
verting the problem into a weighted-least-squares problem. Rewrite Q as: 

The problem of minimizing Q in (5) is merely a weighted-least-squares problem 
if the denominator is known. An iterative procedure can thus be used to mini- 
mize Q. Initial estimates of the residuals are first obtained, say by ordinary least 

f For the FMI. problem, derivatives an, ofcourse, involved in computing J, in (2). in most eases 
of this type it is probably betta to obtain analytic expressions for the derivatives that are involved in 
the direct computation of de objective function, mtber than to compute these derivatives numerically 
as well. 
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squares, and are then used as weights to obtain new estimates of the parameters 
and residuals by weighted least squares. These new residual estimates are then used 
as n& weights to obtain new parameter and residual estimates, and so on. If uy, 
is a nonlinear function of the parameters, then a nonlinear optimization problem 
has to be solved to obtain the weighted-least-squares estimates for each iteration. 
This type of a nonlinear optimization problem is, however. usually easy to solve. In 
the iterative technique just described some account has to be taken of zero or near 
zero residual estimates.4 The easiest way to handle this is to set residual estimates 
that are less than some small number E in absolute value equal to E. For the work 
in Section 2, E was taken to be O.oooOl, and the program was allowed to run for 
four iterations. The estimates were usually changing only slightly after the first or 
second iteration following the initial ordinary-least-squares estimates. Because of 
the &-treatment of small residuals, the estimates obtained by the procedure just 
described will not be exactly LAR estimates, but for practical purposes they should 
be quite close. The estimates obtained by this procedure will be called WI&I 
estimates. 

Many other robust estimators can be considered as weighted-least-squares 
estimators; two of these were used for the work in Section 2. The first is a combina- 
tion of ordinary-least-squares for small residuals and LAR for large residuals. For 
this estimator the denominator in (5) was still taken to be I.$ if iu,,l 2 k, but was 
taken to be k if lugA < k. The value of k was taken to be a robust estimate of the 
standard error of the regression, namely #z/0.6745, where A is the median of the 
absolute value of the estimated residuals.’ The WLS-I estimates were used as 
starting points, and the program was allowed to run for four iterations. The median 
of the absolute value of the residual estimates was reestimated at each iteration, 
and the value of k was changed from iteration to iteration. This estimator will be 
called WLS-II. 

The second of the other weighted-least-squares estimators weights each 
residual as6 

[I-j~j’]’ iflzl%k, 

and 0 otherwise, where 

This estimator is attributed to John W. Tukey by Andrew [I], Values for k, of 
both 6 and 9 have been proposed, and the value of 6 was used for this study. The 
value of k, was taken to be &/0.6745, where again &is the median of the absolute 
value of the residuals. The WLS-I estimates were used as starting points, and the 
program was allowed to run for four iterations. The value of k, was changed from 
iteration to iteration. This estimator will be called WLS-III. 
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Both WLS-Hand WLS-IIIalsorequirethat anonlinear optimization problem 
be solved for each iteration if uat is a nonlinear function of the parameters: but 
again this type of problem is usually easy to solve. 

The robust estimators considered so far are single-equation estimators and 
do not take into account the problems associated with estimating systems of 
equations. Nevertheless, when robust estimators are considered as weighted-least- 
squares estimators, it is easy to modify, say, the FIML estimator to be a robust 
estimator. Consider, for example, the WLS-I estimator, which in the single- 
equation case weights each residual by I/&J. The natural extension to the FIML 
case is to consider maximizing 

(6) I!‘* = -+?Yog /s*\ + i log IJ,I, 
I=1 

where 

(7) s* = (s$); s$ = 1 i U&t 

T’=‘45J.J4’ 
g,h= l,..., G, 

and where J, is the same as in (3). Given an initial set of residual estimates to be 
used as weights, L* can be maximized with respect to the unknown parameters. 
In the maximization process each residual is weighted by one over the square root 
of the absolute value of the initial residual estimate. Weighting schemes other than 
the one used for WLS-I can, of course, aIso be used, which merely changes the 
computation of s,* in (7). One can also iterate, if desired, in the same manner as 
described above for the single-equation estimators. In this case, each iteration 
corresponds to the solution of one weighted FIML maximization problem. 

The same algorithms that were used to maximize L in (2) can be used to 
maximize L* in (6). The only change needed in the program that computes the 
objective function is to change the computation of Q,. The advantage of using 
computational procedures that do not require the use of analytic derivatives is 
obvious in the present case, where it would be laborious to modify the analytic 
derivatives for each new weighting scheme tried. For the results in the next section 
only the WLS-I weighting scheme was combined with FIML. The weights were 
taken from the WLS-I residua1 estimates, with residual estimates of less than 
O.oooOl being set equal to O.oooOl. Because of cost considerations, no it&tions on 
the weights were performed. In other words, L* was only maximized once, and the 
new residual estimates from this solution were not used to construct new weights 
to be used for a second maximization, and so on. This estimator will be called 
FIMLWLS-I. 

Any other estimators of simultaneous equations models that are based on 
minimizing a function of the residuals can likewise be modified to be robust 
estimators by weighting the residuals in different ways. One obvious way to modify 
the two-stage least squares estimator, for example, is to run the first-stage regres- 
sions in the usual way, replace in the usual way the actual values of the right-hand- 
side endogenous variables in the structural equation being estimated with the 
resulting fitted values, and then run a weighted-least-squares regression for the 
second stage. One could iterate, if desired, in the same way as described above. 
Again, the availability of optimization procedures that do not require analytic 



derivatives should greatly increase the number of modifications of a particular 
estimator that it is feasible to consider. 

.2. AN EXAMPLE 

The model used for the results in this section is described in [4] and will not be 
discussed in any detail here. For present purposes, the monthly housing starts 
sector in the model has not been used, and housing starts have been taken to be 
exogenous. Imports were also taken to be exogenous. The period of estimation 
was 1960 II-1973 I, a total of 52 observations, Dummy variables were added to a 
few of the equations to adjust for the effects of two auto strikes.’ Adjusting for 
strikes in this way is, of course, already a form of robust estimation in the sense 
that one has adjusted for large residuals that occur because of the strikes. 

The model was estimated using six different estimators : ordinary least squares 
(OLS), FIML, WLS-I, WLS-II, WLS-III, and FIMLWLS-I. All but one of the 
equations were estimated under the assumption of first-order serial correlation of 
the error term. For each of the six estimators, first-order serial correlation was 
handled by transforming each equation into one with a non-serially correlated 
error term and then treating the resulting equation as nonlinear in the parameters. 
If, for example, the equation to be estimated is : 

(8) Y, = b, + b,x, + b,y,.. , + UC> 

where 

(9) u, = P-1 + s,, 

a, not being serially correlated, the equation can be written: 

(10) Y, = w-i + b,(l - P) + b,(x, - PX,-1) + b&-i - PY,-2) + 4, 

which is a standard nonlinear equation in the parameters. This is a convenient 
way of handling serial correlation in the present context, since the only complica- 
tion it introduces is to make what might otherwise be a linear equation in param- 
eters into a nonlinear one. 

The model has the computational advantage that it decomposes into two 
blocks : a linear, simultaneous block and a nonlinear, recursive block. This means 
that J, in (3) can be factored into two parts: one that is a function of some param- 
eters but not of time and one that is a function of time but not of any parameters. 
Consequently, in the computation of the FIML and FIMLWLS-I estimates, the 
determinant of J only had to be computed once per evaluation of L or L*, rather 
than the T times required for the more general case. In computing the FIML 
estimates, estimates were first obtained for the two blocks separately, using the 
ordinary least squares estimates as starting points, which required estimating 38 
and 23 parameters, respectively. FIML estimates of all 61 parameters were then 

’ Aside from treating housing starts and imports as exogenous and adding a few dummy variables, 
two other small changes were made to the model in [4]. The price equation was taken to be linear with 
a length of tag of 20, and in equation (9.12) E, was replaced by M, + MA, + MCG,. See Table 114 
in [4] for the original model. Dummy variables were not used ior the work in 141, and strike observations 
were merely excluded from the sample period. 
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obtained, using the FIML estimates of the two blocks as starting points. 
FIMLWLS-I estimates were obtained in a similar manner. In contrast to the 
work in [5], no systematic attempt was made in this study to compare the various 
optimization algorithms, and so no comparisons of alternative algorithms will be 
presented here. Powell’s no-derivative algorithm was usually used first to obtain 
an answer, and then this answer was checked by startingthe gradient andquadratic- 
hill-climbing algorithms from the answer to see if a larger value of the likelihood 
function could be found. In some cases a larger value was found using the other 
two algorithms, and in some cases the quadratic-hill-climbing algorithm found a 
larger value than did the gradient algorithm. In general it appeared that the 
FIML and FIMLWLS-I computational problems here were not as well behaved 
and as robust to the use of different algorithms as were the optimal control prob- 
lems in IS]. 

The six sets of estimates are available from the author on request. The two 
sets of FIML estimates tended to differ more from the other four sets of estimates 
than the other four sets of estimates differed from each other. There were no 
important cases of sign reversals among the different estimates of the same 
parameter. 

The six different sets of estimates are compared in Table 1 in terms of within- 
sample prediction accuracy. Each set of estimates was used to generate static and 
dynamic predictions of the endogenous variables. Root mean square errors and 
mean absolute errors for five variables are presented in Table 1 for each set of 
estimates. The comparison here is similar to the comparison in Fair [6], where 
ten estimators were analyzed. The study [6] dealt only with the eight-equation 
linear subset ofthe model in [4], however, while this paper considers the nonlinear 
part of the model as well. The results in 161 indicate that accounting for first-order 
serial correlation of the error terms is important, and for this reason all the esti- 
mators have been modified to account for serial correlation hema 

The five variables in Table 1 are GNP in current dollars (GNP,), the private 
output deflator (I’D,), GNP ip constant dollars (GNPR,), private nonfarm em- 
ployment (M,), and the level of the secondary labor force (LF,,). The errors for the 
six variables are not independent of one another in the sense that, for example, 
large errors in predicting GNP, are likely to lead to large errors in predicting the 
other variables. GNP, is determined in the linear, simultaneous-equations block 
of the model, and the other variables are determined in the nonlinear, recursive 
block. The four variables presented in Table 1 from the recursive block are the 
four most important variables in the block. The estimates of the serial correlation 
parameters were used in the generation of all the predictions from the model. 

The results in Table 1 are fairly s&expIanatory. Consider GNP, first. OLS is 
obviously the worst, being last on all grounds except the one- and two-quarter- 
ahead predictions, where it is better than FIMLWLS-I. WLS-I is better than 
WLS-II and WLS-III for the three-quarter-ahead predictionsand beyond, beating 
them on all counts, although not by much for the three-quarter-ahead prediction. 
For the one- and two-quarter-ahead predictions, the results are close. FIML does 
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well for all but the simulation over the entire period, where it falls down somewhat. 
FIMLWLS-I is the best for the simulation over the entire period, but is not 
particularly good for the other predictions. 

Consider PD, next. The two FIML estimators are the worst, which turns out 
to be caused in large part by different FIML and FIMLWLS-I estimates of the 
constant term in the PD, equation. The results for the other four estimators are 
close except for the simulation over the entire period, where the ranking is 
WLS-I, WLS-II, WLS-III, and OLS. This ranking is the same as that for GNP, 
for the simulation over the entire period, which is explained by the fact that for 
the simulation over the entire period the predictions of GNP, have an important 
effect on the predictions of PD,. 

For GNPR,, OLS is again the worst, being last on all grounds. WLS-l is 
better than WLS-II and WLS-III on all grounds. FIML does better than WLS-I 
for the one- and two-quarter-ahead predictions, even considering the poorer 
FEML predictions of PD,, which are used in the computation of the predictions 
of CNPR,, but the opposite is true for the three-quarter-ahead predictions and 
beyond. FIMLWLS-I is the best for the two- through five-quarter-ahead pre- 
dictions, but falls down slightly for the other two. 

For M,, the results are fairly close except for the simulation over the entire 
period, where the RMSE ranking is WLS-I, WLS-II, WLS-III, OLS, FIMLWLS-I, 
and FIML, and the MAE ranking is WLS-I, WLS-II, FIMLWLS-I, FIML, 
W&S-III, and OLS. For LF2,, the FIML estimators get worse as the period ahead 
lengthens. For the simulation over the entire period, OLS is best by a slight amount. 

The following is a tentative list of conclusions drawn from the results in 
Table 1. 

1. WLS-I appears better than WLS-II and WLS-III, and all three appear 
better than OLS. It is not just the treatment of large residuals that appears impor- 
tant, since WLS-II, which is a combination of OLS for small residuals and WLS-I 
for large residuals, does not do as well as WLS-I. The different treatment of small 
residuals by WLS-I compared with OLS appears also to be important. 

2. For the predictions of GNP,, FIML is obviously batter than OLS, which 
is the same conclusion reached in [6]. For the other variables, which are not 
determined simultaneously, FIML is not always better. In other words, more 
gain appears likely from using FIML over OLS when the model is simultaneous 
than when it is recursive. 

3. Among WLS-I, FIML, and FIMLWLS-I there is no obvious winner since 
the rankings differ depending on the variable predicted and the number of periods 
ahead for which the prediction is made. Overall, however, WLS-I probably has 
an edge, especially if emphasis is put on the results for the variables in the recursive 
block, where FIML and FIMLWLS-1 do not in general do particularly well. 

4. For the one-quarter-ahead (static)predictions, the results are all fairly close, 
which means that if one is only interested in static predictions, the choice of an 
estimator may not be too important (assuming the estimator accounts for first- 
order serial correlation). 

Predictions were also generated based on WLS-I estimates obtained after the 
first iteration from ordinary least squares (rather than after the fourth iteration as 
above). The results were better than the OLS results, but not as good as the 
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TABLE 1 

Estimator 

GNP, 

Pnso,crrorr ERRORS wxi GNP,, PD,, GNPR,, M,, AN” LF,, 
RMSE = Root Mean Square Errors NAE = Mea” Absolute Errors ~_-- __.__~. _.-.._..--.._ 

RMSE MAE 
Number of Quarters Ahead Number of Quarters Ahead 

Entire Entire 
1 2 3 4 5 Period I 2 3 4 5 Period 

52 ohs. 51 obs. 5” ohs. 49 obs. 48 ohs, 52 obs. 52 oh. 51 ObS. 50 obs. 49 obs. 48 ohs. 52 obs. 
- 

OLS 
FIML 
WLS-I 
FIMLWLS-I 

3.64 6.08 
3.50 5.*5 
3.59 5.88 
3.89 6.21 
3.56 5.83 
3.60 5.a 

14.00 2.84 4.89 637 7.73 8.82 11.78 
9.02 13.32 2.80 4.72 5.72 6.56 7.20 10.16 
PP6 962 ,R? 4% 5.7% 6.46 6.93 7.73 

7.78 9.11 lK!h 
7.28 8.21 
7.27 R.21 “.“” ,.“.. -.-- 
7.63 860 9.39 9.37 3.22 4.75 5.72 i.2; 6.64 7.33 
7.30 8.35 9.20 11.99 2.74 4.62 5.84 6.92 7.66 9.67 
7.43 8.61 9.65 13.68 2.76 4.69 6.01 7.19 8.10 11.24 

WLS-II 
WLS-III 

PD, 
OLS 
FIML 
WLS-I 
FIMLWLS-I 
WLS-II 
WLS-III 

0.29 0.45 
0.32 0.52 
0.29 0.45 
0.33 0.53 
0.29 0.45 
0.29 0.45 

0.56 0.67 0.77 299 0.22 0.35 0.43 0.50 0.58 2.57 
0.70 0.87 LO5 3.19 0.26 0.44 0.61 0.77 0.95 2.54 
0.56 0.67 0.77 2.16 0.22 0.35 0.43 0.50 0.58 1.97 
0.70 0.88 f.“R 275 0.25 0.43 0.60 0.76 0.96 2.21 
0.56 0.67 0.77 2.29 0.22 0.35 0.43 0.50 “.57 2.07 
0.56 0.66 0.77 2.60 0.22 0.35 0.43 0.50 0.57 2.28 



GNPR, 
OLS 3.05 
FIML 2.87 
WLS-I 2.94 
FIMLWLS-I 2.99 
WLS-II 298 
WLS-III 3.02 

M, 
OLS 166 
FIML 168 
WLS-I 167 
FIMLWLS-I 168 

2 WLS-II WLS-III 166 165 

LFn 
OLS 218 
FIML 220 
WLS-I 220 
FIMLWLS-I 220 
WLS-II 220 
WLS-III 219 

5.06 6.59 7.79 8.87 20.39 2.39 4.08 5.46 6.56 7.71 17.32 
4.72 6.08 7.16 8.28 20.20 234 3.68 4.89 5.92 6.78 15.04 
4.78 6.01 6.84 7.50 15.03 236 3.79 4.62 5.31 5.98 13.24 
4.65 5.70 6.46 7.25 18.15 2.44 3.55 4.40 5.21 6.14 13.81 
A83 6.16 7.16 8.02 17.01 2.37 3.88 4.99 5.86 6.72 14.84 
4.89 6.30 7.43 847 18.91 2.37 3.93 5.16 6.17 7.14 16.14 

;zt 
290 
291 
295 
293 

416 516 602 1618 
397 483 566 1718 
395 475 540 1106 
396 477 549 1707 
414 508 588 1374 
408 304 587 14!xl 

138 245 
137 235 
134 239 
135 239 
137 242 
137 241 

327 422 479 1423 
325 393 459 1267 
324 403 460 943 
324 402 472 ,259 
331 422 478 1188 
323 415 468 1298 

272 
281 
273 
282 
272 
270 

295 313 
314 341 
298 315 
316 347 
292 304 
291 305 

- 

321 
357 
321 
374 
303 
307 

357 
501 
365 
559 
380 

171 
172 
171 
174 
169 
170 

230 
244 
233 
244 
227 
227 

245 246 269 271 
270 280 302 410 
249 251 266 287 
273 286 312 506 
240 234 248 288 
239 236 252 272 



TABLE 2 

O”nroBS*MnE PbxurcrRm ERRORS 

Estimation Period 1960 II-1964 IV Prediction Period: 1969 I-1973 I 
(Error measures for the simulation aver the entire prediction period only) 
RMSE = Root Mean square Errors MAE = Mean Absolute Errors 

RMSE MAE 

OLS WLS-I OLS WLS-I 

GNP, 13.48 9.84 10.76 a22 
PQ 0.85 0.82 0.72 0.69 
GNP& 8.23 7.46 6.64 5.81 
MC 42t. 468. 355. 429. 
LF,, 2276. 2230. 2109. 2067. 

WLS-I results based on four iterations. Iterating more than once clearly improved 
the prediction accuracy of the estimator. 

One final comparison was made here to see if the superiority of WLSI over 
OLS also held for outside-sample predictions. The model was reestimated by 
WLS-I and OLS only through 1968 IV. Predictions for the 1969 I-1973 I period 
were then generated based on these two sets ofestimates. In Table 2, error measures 
for the simulation over the entire prediction period (17 observations) are presented 
for the same five variables presented in Table 1. For GNP,, WLS-I outperforms 
OLS. Of the other four variables, which are determined in the recursive block, 
WLS-I is better for all but one (M,). Overall, WLS-I appears to outperform OLS,’ 
although the superiority of WLS-I here does not appear as pronounced as it was 
for the within-sample comparisons. This same conclusion also emerged from 
examining in more detail the predictions for the period 1969 I-1973 I (e.g., by the 
number of periods ahead predicted) and from examining predictions for the 
period 1970 III&1973 I based on estimates through 1970 11. 

3. CoNCLUsroN 

The purpose of this paper has been to discuss the computational aspects of 
robust estimates of econometric models and to present a few results of estimating 
a particular model. When robust estimators are considered as weighted-least- 
squares estimators, robust estimates can be obtained by a combination of solving 
unconstrained optimization problems and iterating. The unconstrained optimiza- 
tion problem for unweighted or weighted FIML estimates is likely to be by far the 
most expensive to solve for a given model, but even in this case it now appears 
feasible to estimate models of up to about 50 parameters. Certainly the computa- 
tions involved in obtaining robust, single-equation estimates appear feasible for 
any model. Also, by using optimization algorithms that do not require derivatives 
or for which derivatives are obtained numericaliy, one greatly decreases the human 
effort involved in considering alternative estimators. 

‘) This conclusion is consistent with the results of Meyer and Glauber [IO], who found the LAR 
estimator to be an improvement over ordinary least squares in terms of outside-sample, sin&-equation 
prediction accuracy. 
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The conclusions in Section 2 are clearly tentative. The comparisons among 
the estimators are based only on the criterion of prediction accuracy, and the 
model used for the comparisons has some special features that are not character- 
istic of other models. Nevertheless, the robust estimators do predict well, and the 
results should at least provide encouragement to further work in this area. 

Yale University and NBER Computer Research Center 
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