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Results of estimating a large-scale, nonlinear macroeconometric model by full-information
maximum-likelihood, nonlinear three-stage least squares, and nonlinear two-stage least squares
are reported in this paper. The computation of the estimates is first discussed, and then the
differences among the estimates are examined.

1. Introduction

The purpose of this paper is to report on results of estimating the model in
Fair (1976) by full-information maximum likelihood (FIML), nonlinear
three-stage least squares (3SLS), and nonlinear two-stage least squares
(2SLS). Ordinary least squares (OLS) estimates are also presented for
comparison. Although it has not been possible in the past to compute FIML
and 3SLS estimates of large-scale nonlinear models,' an algorithm has
recently been developed by one of the authors [Parke (forthcoming)] that

“now makes this feasible. The computation of these estimates is discussed in
the first part of the paper.

*The research described in this paper was financed by grant SOC77-03274 from the National
Science Foundation. The authors are indebted to Takeshi Amemiya and Jerry Hausman for
helpful comments.

!We know of no previously successful attempts to estimate a nonlinear model of the size
considered in this study by FIML or 3SLS. An attempt was made in Fair (1976, ch. 3), using
traditional algorithms, to estimate the present model by FIML, but the ‘FIML’ estimates
presented there are not the true FIML estimates. Since these numbers were published, a much
larger value of the likelihood function for this problem (and different coefficient estimates) has
been obtained using the algorithm considered in this paper. In Fair (1974) a 19-equation model
(11 stochastic equations) with 61 unknown coefficients was estimated by FIML using traditional
algorithms. This model is not, however, in the category of a large-scale model, and only the
recursive part of it is nonlinear. Further results of estimating this model by FIML and 3SLS,
again using traditional algorithms, are presented in Belsley forthcoming. This is the largest
model considered by Belsley [see also Belsley (1979)]. The algorithm presented in Dagenais
(1978) appears capable of estimating only medium-size nonlinear models (about 50 coefficients)
by FIML. The algorithm in Parke (forthcoming) is fundamentally different from the algorithms
used by Belsley and Dagenais and by Fair (1974, 1976). Unlike most other FIML algorithms,
it does not require any derivatives of the likelihood function. It instead takes advantage of
certain features of the model’s structural equations.
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There are a number of ways in which one can examine the differences
among the four sets of estimates once they have been obtained, and the
second part of the paper is concerned with this topic. On a strictly statistical
level, one can compare the 3SLS and FIML estimates via the Hausman
(1978) test to test the hypothesis that the error terms are normally
distributed. In the same vein, one can compare the 2SLS and FIML
estimates via the Hausman test to test the hypothesis that the model is
correctly specified. There are, however, as will be discussed, some practical
" problems that arise when trying to use the Hausman test in the present
context, and the current application of the test has only been partly
successful. On a more informal level, one can examine the sensitivity of the
dynamic prediction accuracy of the model and the sensitivity of policy effects
in the model to the alternative estimates. The results of these comparisons
are also presented below.

The model and estimation techniques are described in section 2, and the
computation of the estimates is discussed in section 3. The coefficient
estimates are then presented and discussed in section 4. The results of the
Hausman tests are also discussed in section 4, and the prediction and policy
results are presented in sections 5 and 6, respectively. Section 7 contains a
summary of the main conclusions of this study.

2. The model and estimation techniques
2.1. The model

The model in Fair (1976) has been updated, and the version that has
been used in this study is presented in Fair (1978). This version consists of 97
equations, 29 of which are stochastic, and has 182 unknown coefficients to
estimate, including 12 first-order serial correlation coefficients. The estimation
period is 1954.1-1978.I1 (98 observations). The model is nonlinear in
variables and, as is discussed next, nonlinear in coefficients because of
correction for serial correlation of some of the error terms. There is also one
nonlinear restriction on the coefficients of two of the equations, which means
that there are only 181 freely estimated coefficients.

2.2, The treatment of serial correlation

By treating the serial correlation coefficient as a structural coefficient, it is
possible to transform an equation with a serially correlated error into an
equation without one. This introduces nonlinear restrictions on the coef-
ficients, but otherwise the equation is like any other equation with a non-
serially correlated error.? This transformation has been made in this study

?See, for example, the discussion in Fair (1976, ch. 3). This procedure results in the ‘loss’ of
the first observation, but this loss has no effect on the asymptotic properties of the estimators.
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for the relevant equations of the model, and so the model should be thought
of as one with nonlinear coefficient restrictions and no serially correlated
errors. All references to the covariance matrices of the coefficient estimates in
the following discussion are for the coefficient estimates inclusive of the
estimates of the serial correlation coefficients.

2.3. The notation

The notation in this paper follows closely the notation in Amemiya (1977).
Write the model as

[0 X, 00;) =14y, i=1,..,n, t=1,..,T, 1)

where y, is an n-dimensional vector of endogenous variables, x, is a vector of
predetermined variables, and «; is a vector of unknown coefficients. Assume
that the first m equations are stochastic, with the remaining u, (i=
m+1,...,n) identically zero for all t. Assume also that (u,,,...,u,,) is inde-
pendently and identically distributed as multivariate N(0,X). The other
assumptions regarding (1) are as in Amemiya (1977).

Let J, be the nxn Jacobian matrix whose ij element is 0f;/dy; (i,
=1,..,n), and let S be the mxm matrix whose ij element is s;;, where
sy=T 'Y uu;, (i,j=1,..,m). Also, let u be the T-dimensional
vector  (4;y,...,%7), and let u be the m-T-dimensional vector
(UggseeosUygs--esUpmys-- - Unr). Assume for now that there are no constraints
among the o;’s, and let a denote the k-dimensional vector (aj,...,ay,) of all
the unknown coefficients. (There are no unknown coefficients in the iden-
tities.) Finally, let G; be the k; x T matrix whose tth column is of;(y,, x,, &;)/0ct;,
where k; is the dimension of «;, and let G’ be the k x m - T matrix,

G, 0 0
0 G,
0 G,

Whel'e k = Z;’; 1 ki'

2.4. Two-stage least squares (2SLS)

2SLS estimates of o; (say d;) are obtained by minimizing

WZ(ZiZ,) ' Ziu;=uD; 2)
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with respect to «; where Z; is a TxK; matrix of predetermined variables. Z;
and K; can differ from equation to equation. An estimate of the covariance
matrix of &; (say Vs;) is

I72ii=&ii(G£DiGi)_l’ ] 3)

where G, is G, evaluated at &; and ¢;=T 'Y, 42, d,=f,(y,, X, &;). The 2SLS
estimator in this form is presented in Amemiya (1974).

If an equation is nonlinear in variables only, standard linear 2SLS
packages can be used to obtain &; by merely redefining the variables. If, on
the other hand, an equation is nonlinear in coefficients, then in general a
nonlinear optimization algorithm must be used to minimize (2). A special
case of coefficient nonlinearity occurs when the nonlinearity arises only
because of the presence of the first-order serial correlation coefficient. In this
case (2) can be minimized by an iterative technique like the Cochrane-Orcutt
(1949) technique. This technique is discussed in Fair (1970), and it is the
technique that has been used in this study to minimize (2) for those
equations that are estimated under the assumption of first-order serial
correlation of the error term.3

In the discussion of the Hausman tests in section 4 reference will be made
to the covariance matrix of all the 2SLS coefficient estimates, i.e., to the kx k
covariance matrix of & where a=(&,...,4,). For the standard
linear simultaneous equations model this covariance matrix is presented in
Theil (1971, pp. 499-500) for the case in which the same set of first-stage
regressors is used for each equation. For the case considered here, a
nonlinear model and a different set of first-stage regressors for each equation,

*In Fair (1970, p. 514) it was suggested that the covariance matrix of the coefficient estimates
inclusive of the estimate of the serial correlation coefficient be estimated by ignoring the
correlation between the latter estimate and the other coefficient estimates. Fisher, Cootner and
Baily (1972, p. 575, fn. 6), however, have pointed out that one need not ignore this correlation.
In terms of Fair’s notation, their suggested estimate of the covariance matrix is

¥oli A A -1
&11[ 0.0 Ql“l-,] ] )

A Ar A ~r
0 Uy,

It can be easily seen that this matrix is the same as V,; in (3). In other words, if in the first-
order serial correlation case one minimized (2) using some general purpose algorithm and then
computed V,;; in (3), the same numbers would be obtained (aside from rounding error) as would
be obtained if one used the iterative technique in Fair (1970) to get the estimates and then
computed the matrix in (i). [This is assuming that the exogenous, lagged exogenous, and lagged
endogenous variables in the equation being estimated are included in the Z; matrix. If this is not
done, then Fair’s technique leads to inconsistent estimates, whereas. minimizing (2) using some
general purpose algorithm still results in consistent estimates.] For the results in this study the
Fisher, Cootner and Baily suggestion was followed: the estimated covariance matrix in (i) was
used.
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it is straightforward to show that this matrix (say V,) is *

V211 s V21m

V2ml o V2mm

where

o1 -1
V2ii=oii|:phm7-.G;DiGi:| s (5)

1 e S | o1 -t
V2ij=aij[plim—7—,G§DiGi] [pllm?G,fD,-D}Gj][phm?G}DjGj] .

(6)
An estimate of V,;; is ¥,;; in (3). An estimate of V,ij (say f/w) is
V2,;=6,(GiD:G;)” (GID:D;G;)(GiD,G)) ™", (7)
where 6,;=T "' X[, 4.
2.5. Three-stage least squares (3SLS)
3SLS estimates of a (say &) are obtained by minimizing
u[ET'®Z(Z'Z) *ZJu=u'Du ®)

with respect to «, where 2 is a consistent estimate of ¥ and Z is a TxK
matrix of predetermined variables. An estimate of the covariance matrix of &
(say V3)is

7,=(G'DG) Y, ' )

where G is G evaluated at «. 2 is usually estimated from the 2SLS estimated
residuals. This estimator is presented in Jorgenson and Laffont (1974). See
also Amemiya (1977).

The 3SLS estimator in (8) uses the same Z matrix for each equation. In
small samples this can be a disadvantage of 3SLS relative to 2SLS. It is possible
to modify (8) to include the case of different Z; matrices for each equation, and

4The derivation in Theil can be easily modified to incorporate the case of different sets of first
state regressors. Nonlinearity can be handled as in Amemiya (1974, app. 1), i.e., by a Taylor
expansion of each equation. The formal proof that V, is as in (4), (5), and (6) is straightforward
but lengthy, and it is omitted here. Jorgenson and Laffont (1974, p. 363) incorrectly assert that
the off-diagonal blocks of V, are zero.
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although this modification was not used in this study, it is of interest fo
consider. This estimator is the one that minimizes

-1

Z, ... 0\[¢,2:2, ... émziZ,\"' |z, ... 0
u'|| : : : : DU
0 oo Zp|\6mZhZy . GunZiZu| \O ... Z,
=u'Du : ' (10)

with respect to & An estimate of the covariance matrix of this estimator is
(G'DG)™1. (10) reduces to (8) when Z,=...=Z,=2Z. The computational
problem with this estimator is that it requires inverting the middle matrix in
brackets. This matrix is of dimension K* =), K;, which is generally a large
number. In the present application K* is 350, and it did not appear feasible
to invert a matrix this large. In some applications, however, it may be
feasible to invert this matrix. This estimator has the advantage that it is the
natural full information extension of 2SLS when different sets of first-stage
regressors are used. This estimator is a special case of one of the 3SLS
estimators in Amemiya (1977, p. 963), namely the estimator determined by
his equation (5.4) where S, is the first matrix in brackets of (10) above.

2.6. Full-information maximum likelihood (FIML)

FIML estimates of « are obtained by maximizing
T T
L=~ log|s|+ . log|J] (11)
t=1

with respect to a. An estimate of the covariance matrix of these estimates

(say V) is
‘ " d*L\"1
V=2
4 <6a6a'> ’ (12)

where the derivatives are evaluated at the optimum. FIML is, of course, a
well-known estimator. See, for example, Chow (1973) for a recent discussion
in the nonlinear case.

2.7. Ordinary least squares (OLS)

OLS estimates of o; are obtained by minimizing (2) for D,=I. For
purposes of this study, the estimated covariance matrix of the OLS estimates
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was taken to be (3) for D;=1I. The discussion in the second paragraph of
subsection 2.4 is relevant here also. In particular, note that the Cochrane—
Orcutt iterative technique can be used to minimize (2) if the nonlinearity in
coefficients is due solely to the presence of the serial correlation coefficient.

3. The computation of the estimates

As noted in the previous section, the iterative procedure in Fair (1970) was
used for the 2SLS estimates of the equations that were estimated under the
assumption of first-order serial correlation of the error terms. Otherwise, a
standard 2SLS package was used.> The 2SLS technique has been the primary
method used to estimate the successively updated versions of the model, and
the estimates of the 182 coefficients of the current version presented in Fair
(1978) are 2SLS estimates. This set of estimates is the starting point for the
present study. For this set a different Z; matrix was used for each of the 26
equations estimated by 2SLS. (Three of the 29 stochastic equations have no
right-hand-side endogenous variables and so were estimated by OLS.) The
variables used for each Z; matrix are presented in Table 2-5 in Fair (1978).
The number of variables in a given matrix varies from 11 to 31.

Although there are 182 unknown coefficients in the model, only 107 were
estimated by 3SLS and FIML in this study. The other 75 coefficients were
set equal to their 2SLS estimates. This was done because it seemed unlikely
that 98 observations were enough to estimate all 182 coefficients by FIML.®
The choice of the coefficients to exclude from estimation is arbitrary. We
chose to exclude coefficients that seemed (in a loose sense) to be the least
important in the overall model. The 75 excluded coefficients were all the
coefficients in 13 equations and the coefficients of strike dummy variables in
5 of the remaining 16 equations.

With respect to the treatment of the 75 coefficients, it should be noted that
even though the structural coefficients of 13 equations were not estimated by
3SLS and FIML, these equations were not dropped from the model. For

5The TSCORC and INST options in the TSP regression program were used for these
estimates. It should be noted, however, that the TSCORC option was modified to use formula
(i) in footnote 3 to compute the covariance matrix. The standard TSCORC option assumes that
Q,#) _, is zero when computing the covariance matrix. Also, both the TSCORC and INST
options divide the sum of squared residuals by T—k; when computing the estimated variance,
where k;, is the number of coefficients estimated, whereas for present purposes all sums of
squares have been divided by T.

SFor a linear model Sargan (1975) has proved Klein’s (1971) conjecture that the FIML
estimator is unidentified if the number of observations is less than the number of endogenous
plus predetermined variables. In the present model there are 140 different endogenous plus
predetermined variables in the 29 stochastic equations (counting different nonlinear functional
forms of the same variable as different variables). Although the exact conditions for identifi-
cation are not known for nonlinear models, the difference between 140 and 98 was large enough
to lead us to doubt that the FIML estimator is identified for the whole model.
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example, X and S were still taken to be 29 x29 matrices, and J, was still
taken to be 97 x 97. This procedure allows the correlations between the error
terms in the 13 non-estimated equations and the error terms in the 16
estimated equations to have an effect on the coefficients estimates of the

16 estimated equations.’ ‘

" The 3SLS estimates were obtained using the algorithm described in Parke
(forthcoming). 58 variables were chosen for the Z matrix. This set of
variables was chosen to correspond roughly to the union of the sets of
variables in the 16 relevant Z; matrices, although not every variable in this
union was chosen. (Had every variable in the union been chosen, the number
of variables in the Z matrix would have been close to the total number of
observations.) A list of these variables is available from the authors upon
request. The 2SLS residuals were used to compute 5.

The matrix D in (8) is 2842 x 2842 (m - T=29 - 98 =2842), and so computing
u'Du once for a given value of a requires a large number of calculations.
Fortunately, however, only a small fraction of these calculations need to be
performed most of the time that the algorithm requires a new value of the
objective function corresponding to a new value of «. In particular, most of
the time the algorithm is changing the coefficients of only one equation
between evaluations of the objective function, and recomputing u'Du when
only one equation has been affected requires many fewer calculations than
are needed when all equations have been affected.

The results of computing the 107 3SLS estimates are presented in the first
half of table 1. The cost of computing u'Du once varies from 0.40 seconds
when only one equation has been affected to 2.94 seconds when all equations
have been affected. The approximate number of function evaluations per
iteration only one coefficient changed by more than 10 percent of its
starting from the 2SLS estimates, and took about 106 minutes on the IBM
370-158 at Yale. By the 28th iteration, the objective function was changing
by only a small fraction of the changes on earlier iterations, and on this
iteration only one coefficient changed by more than 10 percent of its
sample standard error. Balancing the cost of further iterations against the

"Two further points about the calculation of the estimates should be noted here. First, in
order to make the OLS results comparable to the 3SLS and FIML results, only the 107
coefficients were estimated by OLS. Second, the one cross-equation nonlinear restriction in the
model reduced the dimension of the optimization problems for 3SLS and FIML from 107 to
106. For 3SLS and FIML the restriction is straightforward to handle, but this is not true for
OLS and 2SLS because the restriction is across two equations. For OLS and 2SLS it was
handled by first estimating one of the equations (the price equation) unrestricted and then using
these coefficient estimates and the restriction to eliminate one of the coefficients from the other
equation (the wage equation). This way of accounting for the restriction, which is discussed in
more detail in Fair (1978, pp. 11-13), affects only the coefficient estimates of the wage
equation. In computing the covariance matrices for all four estimators, the 75 non-estimated
coefficients were taken as fixed, and so all four estimated covariance matrices had dimension 106
x 106.
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desired accuracy, we decided to take the estimates at this point to be the
3SLS estimates.

With respect to the 3SLS covariance matrix, the algorithm does not
compute G, and so extra work is involved at the end to obtain the
covariance matrix. For present purposes the derivatives that make up G were
computed numerically, and then (G'DG)”! was obtained. The total time
involved in these calculations was about 3.2 minutes.

The FIML estimates were obtained using the same algorithm. Computing
L in (11) once for a given value of o also requires a large number of
calculations, but there are again cost savings that can be made. These
savings are as follows. First, when the coefficients of only one equation are
changed by the algorithm, which is most of the time, only one row and one
column of S are affected. The average cost of computing S is thus much less
than it would be if all the rows and columns had to be computed anew each
time a new value of L was needed. Second, the Jabobian matrix J, is very
sparse (333 non-zero elements out of 9409), and so considerable saving can
be achieved by using a sparse matrix routine to take its determinant. Third,
it turns out, as reported in Fair (1976, ch. 3), that a fairly good approxi-
mation to Y7, log|J,| is (T/2)(log|J,|+log|J|). This approximation ob-
viously saves an enormous amount of time, since only 2 determinants have

Table 1

The cost of the 3SLS and FIML estimates; 107 coefficients estimated, 1 nonlinear restriction
across 2 equations, 16 stochastic equations estimated, 13 stochastic equations not estimated, 58
identities (97 total equations), 98 quarterly observations (1954.1-1978.11).*

3SLS: F=u'Duin (8)
F at start (2SLS estimates) =1898.63

F after 28 iterations =1850.30
Total AF =—48.33
Iter. Iter. Iter.
no. |4F| #>1% no. |4F| #>1% no. |4F| #>1%
1 21.90 67 11 0.72 32 21 0.20 16
2 9.52 63 12 0.55 29 22 0.19 17
3 3.79 56 13 0.56 28 23 0.21 10
4 1.89 51 14 0.37 23 24 0.20 18
5 1.85 47 15 0.39 20 25 0.22 10
6 0.86 38 16 0.27 20 26 0.25 10
7 0.63 31 17 0.36 21 27 0.09 6
8 1.11 34 18 0.23 14 28 0.14 10
9 0.72 25 19 0.25 27
10 0.63 30 20 0.23 15

Approx. no. of function evaluations per iteration=432,
Approx. cost per function evaluation =0.40—-2.94 sec,
Approx. total cost of 28 iterations =106 min.
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Table 1 (continued)

FIML: L=Lin (11)
L at start (2SLS estimates) =2465.95,° 2569.73¢

L after 28 iterations =2508.16,° 2613.09°
L after 43 iterations =2508.67,° 2614.14°
Total AL = 4272 4441°
Two Jacobians Two Jacobians Six Jacobians
Iter. Iter. Iter.
no. AL #>1% no. AL #>1% no. AL #>1%
1 19.66 74 15 0.17 21 29 0.22 23
2 8.16 66 16 0.07 26 30 0.08 22
3 331 58 17 0.16 30 31 0.04 19
4 191 58 18 0.19 33 32 0.04 17
5 1.11 57 19 0.21 32 33 0.04 21
6 1.56 65 20 0.13 36 34 0.06 31
7 091 58 21 0.13 32 .35 0.08 36
8 0.90 68 22 0.14 35 36 0.07 24
9 0.65 60 23 0.10 30 37 0.07 26
10 0.50 50 24 0.06 22 38 0.07 36
11 0.79 58 25 0.04 22 39 0.06 31
12 0.61 63 26 0.05 21 40 0.06 23
13 0.36 40 27 0.03 17 41 0.05 23
14 0.25 35 28 0.05 19 42 0.03 16
43 0.04 14
Approx. no. of function evaluations per iteration =432,
Approx. cost per function evaluation =0.20-0.64 sec,”
: =0.37-0.85 sec,’
Approx. total cost of 43 iterations =121 min.

*# >1% =number of coefficients that changed by more than 1.0 percent from the previous
iteration; approximate cost of one minute=_$12.48 without discounts; 80% discount given for
large overnight jobs.

®Two Jacobians.

°Six Jacobians.

to be computed instead of 98. Unlike the first two savings, however, this
third saving does require that an approximation be made. The exact value of
Lis not being computed by the algorithm, and the hope is that the error
involved in this approximation is nearly constant for different sets of
coefficient values. As will be discussed, this seems to be the case for the
present results.

The results of computing the FIML estimates are presented in the second
half of table 1. For the first 28 iterations two Jacobians (J, and Jog) were
computed per evaluation of L, and for the remaining 15 iterations six
Jacobians (Jy,J50,J30,J50,J78,Jog) Were computed. When six Jacobians
were computed, )7, log|J,| was approximated by first computing the six
values of log|J,|, t=1,20,39,59,78,98, and then interpolating linearly be-
tween pairs. When two Jacobians are used, the cost of computing L once
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varies from 0.20 seconds when only one equation has been affected to 0.64
seconds when all equations have been affected. When six Jacobians are used,
the corresponding numbers are 0.37 seconds and 0.85 seconds. The total time
for the 43 iterations was about 121 minutes. On the 43rd iteration no
coefficient changed by more than 10 percent of its sample standard error,
and the change in the objective function was very small. Again, balancing the
cost of further iterations against the desired accuracy, we decided to take the
estimates at this point to be the FIML estimates.

With respect to the Jacobians, the results of switching from two to six
Jacobians after iteration 28 suggest that little is lost by using only two. The
change in Lwhen the six-Jacobian approximation replaced the two-Jacobian
approximation, while about 100 points, merely reflects a different bias of the -
six-Jacobian approximation. The stability of the bias is ‘more important
than its absolute value because adding a constant bias has no effect on the
likelihood maximization. The close agreement of the two- and six-Jacobian
results can be seen in the small change (only 0.22 points) on iteration 29, the
first using six Jacobians. If the change to six Jacobians were important, the
likelihood change would have been larger and the coefficients would have
changed much more.® _

The second derivatives that are needed for the FIML covariance matrix in
(12) were computed numerically. The total time involved in this was about
52.6 minutes. Some serious problems were encountered in computing this
matrix, but for present purposes it is unnecessary to go into this. The exact
way that this matrix was finally obtained is explained in Parke
(forthcoming).

4. The coefficient estimates and the Hausman tests

The estimates of the 106 unrestricted coefficients and their estimated
standard errors are presented in table 2. The coefficient estimates in table 2
are not in themselves very useful for descriptive purposes because they
require knowledge of the model, and an explanation of the model is beyond
the scope of this paper. Of more interest for present purposes are the last
three columns in table 2, and these will be discussed along with the
discussion of the Hausman tests.

81t should be stressed that the present success of the Jacobian approximation is an empirical
result, not a theoretical one. It is clearly possible to make up models in which this type of
approximation is quite poor. In practice, one can examine the accuracy of the approximation
before proceeding with the estimation by (1) choosing, say, 3 or 4 sets of coefficient values, (2)
computing for each set the entire sum of the log|J,| terms and the approximation, and (3)
examining whether the difference between the sum and the approximation is roughly constant
across the coefficient sets. One can keep adding terms to the approximation until the difference
is fairly constant. It is also possible, of course, to run the last few iterations of the algorithm
using the entire sum of the log|J,| terms to verify that the use of the approximation has not
seriously affected the coefficient estimates.



280 Ray C. Fair and William R. Parke, Estimates of a nonlinear macroeconometric model

The Hausman m-statistic provides a useful way of examining the differ-
ences among the estimates, although, as will be seen, there are some
problems with applying the Hausman tests in practice. Consider two
estimators, f, and f,, where under some null hypothesis both estimators are
consistent, but only f, attains the asymptotic Cramer-Rao bound, while
under the alternative hypothesis only j, is consistent. Let §=J, — B, and let
V5 and ¥, denote consistent estimates of the asymptotic covariance matrices
(V0 and V;) of B, and B, respectively. Hausman’s m-statistic 1s q
—¥,)7 14, and he has shown that it is asymptotlcally distributed as x2 w1th k
degrees of freedom, where k is the dimension of 4. Note that under the null
hypothesis, V; —V, is positive definite.

Consider now comparing the FIML and 3SLS estimates. Under the null
hypothesis of correct specification and normally distributed errors, both
estimates are consistent, but only the FIML estimates attain the asymptotic
Cramer-Rao bound, while under the alternative hypothesis of correct
specification and nonnormality, only the 3SLS estimates are consistent. [See
Amemiya (1977).] Let a® and a denote the 3SLS and FIML estimates of o
respectlvely, and let §=4®—4g“. The m-statistic in this case is §'(¥;
—V,)" 4, where the estimated covariance matrices V, and 7, are defined in
(9) and (12), respectively. In principle, therefore, the hypothesis of normahty
can be tested by computing m and comparing it to, say, the critical x value
at the 95 percent confidence level. In the present case, however, ¥; — 7, is not
positive definite. This can be easily seen from the second to last column in
table 2. Each number in this column is the square root of the ratio of a
diagonal element of 7, to the corresponding diagonal element of v, A
necessary condition for ¥;—¥, to be positive definite is that all these
numbers be greater than one, and this is clearly not the case. In fact, only 5 of
the 106 numbers are greater than one, with the average value of all the
numbers being 0.83. In other words, on average the 3SLS standard errors are
less than the FIML standard errors.

One possible reason for the fact that the estimated 3SLS standard errors
are generally smaller than the estimated FIML standard errors is the
following. As noted above, 58 variables were used in the Z matrix for the
3SLS estimates, which with only 98 observations means that quite good fits
are obtained in the first-stage regressions. In other words, the predicted values
of the endogenous variables from the first-stage regressions are quite close to
the actual values. In the case of the FIML estimates, on the other hand, we
know from Hausman’s (1975) interpretation of the FIML estimator as an
instrumental variables estimator that FIML takes into account the nonlinear
restrictions on the reduced-form coefficients in forming the instruments. This
means that in small samples the instruments that FIML forms are likely to
be based on worse first-stage fits of the endogenous variables than are the
instruments that 3SLS forms. In a loose sense this situation is analogous to
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the fact that in the 2SLS case the more variables that are used in the first-
stage regressions the better is the fit in the second-stage regression. If this
explanation is true, then the present results indicate that many more
observations are needed before the 3SLS and FIML estimates can be used to
test the normality hypothesis.®

Consider next comparing the FIML and 2SLS estimates. Under the null
hypothesis of normally distributed errors and correct specification, both .
estimates are consistent, but only the FIML estimates attain the asymptotic
Cramer-Rao bound. Under the alternative hypothesis of normality and
incorrect specification of some subset of all the equations, all the FIML
estimates are inconsistent, but only the 2SLS estimates of the incorrectly
specified subset are inconsistent. The Hausman test can thus be applied to one
or more equations at a time to test the hypothesis that the rest of the model
is correctly specified. If for some subset of the equations the m-statistic
exceeds the critical value, then the test would indicate that there is
misspecification somewhere in the rest of the model. Unfortunately, however,
in the present case many diagonal blocks of ¥, — ¥, are not positive definite,
as can be seen from table 2, where many of the 2SLS standard errors are less
than the corresponding FIML standard errors. It is thus not possible to use
the Hausman test in this case.

The situation is more favorable for comparing the 3SLS and 2SLS
estimates, where every diagonal element of ¥, is greater than the correspond-
ing diagonal element of ¥;. This can be most easily seen from the third-to-
last column in table 2. In this case, however, because of the use by 2SLS of
some first-stage regressors not used by 3SLS, 3SLS is not necessarily
asymptotically more efficient than 2SLS. The Hausman test is thus not,
strictly speaking, applicable, and in fact ¥, — ¥, is not positive definite in the
present case. For 4 of the 16 estimated equations, the relevant diagonal block
of V,—V, is not positive definite, and so the entire matrix is obviously not
positive definite.

In spite of the above problem, we have used the 2SLS and 3SLS estimates
to compute the m-statistic for each of the 106 coefficients one at a time and
for each of the 12 equations for which the diagonal block of V,—V, is
positive definite.!'® The m-values for the 106 coefficients are presented in the
last column of table 2. The critical x? value at the 95 percent confidence level

9We are not the first to find the FIML standard errors on average larger than the 3SLS
standard errors. Although Hausman does not discuss this, for 10 of the 12 estimated coefficients
of Klein’s Model I in Table 1 in Hausman (1974, p. 649), the FIML standard error is larger
than the corresponding 3SLS standard error.

10Note that none of these tests require that the off-diagonal blocks of Vz be computed. Since
we knew from examining the diagonal blocks alone that ¥,— ¥, and ¥,— 7V, were not pomwe
definite, no purpose would have been served by computing the entire V, matrix in (4).
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. Table 2
The four sets of coefficient estimates [number of equations and coefficients from Fair (1978)].

2SLS 3SLS FIML OLS . SE, SE, (Coef, — Coef3)?

Eq. Coef. —_— m= T enze
no. no. Coef, SE, Coefy SE, Coef, SE, Coef, SE, SE; SE, (SE;—SE})
1 2 0.9761 0.0273 0.9709 0.0217 0.9617 0.0266 0.9689 0.0267 126 0.82 -0.10

1 3 0.01493 0.00898 0.01529 0.00740 0.01753 0.00902 0.01341 0.00878 121 082 0.00

1 6 0.02114 0.01368 0.02300 0.01087 0.02735 0.01288 0.02289 0.01340 126 084 0.05

1 7 —0.008177 0.006024 —0.009434 0.004818 —0.008162 0.006071 —0.007532 0.005746 125 0.79 0.12

1 8  —0.007056 0.002167 —0.005478 0.001702 —0.005760 0.002051 —0.005046 0.002003 1.27 083 1.38

1 9 0.04045 0.02963 0.02569 0.02379 0.02746 0.03281 0.03050 0.02782 125 073 0.70

1 1 0.08526 0.09583 0.06206 0.07606 0.03387 0.09352 0.03405 0.09262 126 081 0.16

2 11 0.4678 0.0894 0.4851 0.0628 0.5111 0.0724 0.3419 0.0783 142 0.87 0.07

2 12 0.07293 0.02585 0.06464 0.02015 0.06469 0.02735 0.05137 0.02449 128 0.74 0.26

2 13 -0.1321 0.0534 —0.1263 0.0377 —0.1152 0.0492 —0.2165 0.0465 142 0.77 0.02

2 14 0.1672 0.0560 0.1719 0.0393 0.1862 0.0545 0.2513 0.0491 142 072 0.01

2 15 0.02145 0.02370 0.02704 0.01740 0.05602 0.02193 0.03444 0.02232 136 0.79 0.12

2 16 0.02352 0.02607 0.01038 0.01945 —0.03087 0.02768 0.01210 0.02478 1.34 0.70 0.57

2 17 0.1890 0.0911 0.2224 0.0711 0.3308 0.0930 0.2294 0.0879 128 0.76 0.34

2 18 0.2981 0.0692 0.2969 0.0508 0.2720 0.0588 0.3711 0.0594 1.36 0.86 0.00

2 167  —0.003556 0.003143 —0.003061 0.002322 —0.004077 0.002575 —0.000250 0.002785 135 090 0.05

2 10 —3.553 0.722 —3.513 0.502 —3.402 0.599 —4.690 0.626 144 0.84 0.01

3 20 0.9702 0.0296 0.9704 0.0229 0.9796 0.0256 0.9550 0.0283 1.29 0.89 0.00

3 21 —0.04037 0.01863 —0.02871 0.01385 —0.01116 0.01453 —0.03382 0.01505 135 095 0.87

3 22 0.05463 0.02134 0.04901 0.01602 0.03661 0.01758 0.05829 0.01840 133 091 0.16

3 24 —0.02697 0.00506 —0.02892 0.00387 —0.02983 0.00508 —0.02029 ° 0.00458 131 076 0.36

3 25 0.1382 0.0274 0.1304 0.0188 0.1076 0.0261 0.1333 0.0216 145 072 0.15

3 182 0.007849 0.007031 0.009893 0.005545 0.015904 0.006437 0.009826 0.006349 127 086 0.22

3 183 0.04311 0.03853 0.03740 0.03059 0.04053 0.03850 0.05578 0.03883 126 0.79 0.06

3 30 0.6132 0.0860 0.6630 0.0697 0.6586 0.0863 0.6761 0.0917 1.23 081 0.98

3 19  —0.1408 0.2243 -0.1219 0.1682 —0.0238 0.1866 —0.2384 0.2039 1.33 090 0.02
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0.00378
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0.003451
0.000880
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0.9431
—0.004101
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—0.006389
—0.004142
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0.004538

0.8279
—0.2765

0.5970

0.01269
—0.005630

0.08155
—0.05765

0.8796
—0.03991

0.05883

0.1402
—0.3187

0.7959
—0.01620

0.2945
—0.002143

0.7330

0.8323
0.06112

0.06013

0.008249
—0.003249
—0.005211

0.1760
—0.1498

0.0265
0.006797
0.01083
0.002875
0.002568
0.01071
0.2527
0.003833
0.0641
0.1490

0.0871
0.00816
0.005020
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0.05220

0.0425
0.01449
0.01970
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0.1088

0.0545
0.00484
0.0825
0.000744
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0.0194
0.00474
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0.004893
0.001278
0.001027
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1.67
1.33

1.35
1.35
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1.28
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1.64

1.22
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1.19
1.19
1.19

1.68
1.75
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1.52
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1.23
1.26
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1.13
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0.08
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0.41
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2.29
0.10
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0.03
0.02

0.02

1.25
2.15
1.58
0.94
1.89

0.13
0.12
0.01
0.12
0.56

0.51
1.09

1.10
0.56
1.82
0.84
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Table 2 (cont.)

. 2SLS 3SLS FIML 0LS \ SE, SE, (Coefz—COeﬁ)z
Eq. Coef. . — ==
nc?. no. Coef, SE, Coef, SE, Coef, SE, Coef, SE, SE; SE, (SE3—SE3)
10 69 0.2393 0.0769 0.2398 0.0402 0.2520 0.0465 0.2337 0.0490 191 086 0.00

10 70 0.8811 0.0832 0.9060 0.0436 0.8848 0.0514 0.8874 0.0505 191 0385 0.12

10 71 —0.1476 0.0259 —0.1796 0.0222 —0.1680 0.0318 —0.1484 0.0248 1.17 0.70 5.71

10 75 0.3961 0.1143 0.4319 0.0811 0.4049 0.1133 0.4001 0.1012 141 072 0.20

10 68 0.1693 0.0358 0.2086 0.0316 0.1934 0.0405 0.1700 0.0351 .13 0.78 5.42

11 76  —0.005246 0.001770 —0.005301 0.001499 —0.005319 0.001668 —0.006424 0.001629 1.18 0.90 0.00

11 77 0.08609 0.02057 0.10261 0.01378 0.09850 0.01736 0.11382 0.01434 149 0.79 1.17

1 78 0.04443 0.01655 0.05466 0.01344 0.05871 0.01748 0.03294 0.01514 1.23 077 1.12

11 79 0.05132 0.01592 0.04251 0.01361 0.04287 0.01813 0.04888 0.01557 117 0.75 1.14

11 80 0.05555 0.01607 0.05329 0.01352 0.03986 0.01833 0.04976 0.01549 .19 0.74 0.07

11 81  —0.02291 0.01298 —0.02790 0.01133 —0.02266 0.01364 —0.01931 0.01261 1.15 0383 0.62

12 85  —0.09550 0.03535 —0.06001 0.02053 —0.05265 0.02019 —0.09710 0.03567 172 1.02 1.52

12 86 0.0001700 0.0000522 0.0001283 0.0000321 0.0001153 0.0000310 0.0001721 0.0000527 1.62 1.04 1.03

12 87 0.2919 0.0499 0.2795 0.0209 0.2225 0.0292 0.3033 0.0353 238 0.72 0.07

12 88 0.1776 0.0420 0.1835 0.0231 0.1747 0.0309 0.1767 0.0419 1.82 0.75 0.03

12 89 0.04297 0.03810 0.04208 0.02035 0.04449 0.03040 0.04178 0.03800 1.87 0.67 0.00

12 92 0.4187 0.1066 0.3809 0.0580 0.2685 0.0914 0.4248 0.1057 1.84 0.63 - 0.18

12 84  —0.6013 0.2212 —0.3792 0.1285 —0.3324 0.1263 —0.6114 0.2232 172 1.02 1.52

13 94  —-0.2770 0.0695 —0.2957 0.0356 —-0.3193 0.0417 —-0.3177 0.0711 195 0.85 0.10

13 95  —0.05756 0.01849 —0.06238 0.00945 —0.06677 0.01113 —0.07002 0.01842 196 085 0.09

13 96  —0.0002309 0.0000579  —0.0002420 0.0000310  —0.0002621 0.0000361  —0.0002591 0.0000597 1.87 0.86 0.05

13 97 0.1552 0.0288 0.1580 0.0124 0.1499 0.0166 0.1119 0.0225 232 075 0.01

13 98 —0.2999 0.1121 —-0.3172 0.0553 . —03309 . 0.0663 —0.2589 0.1181 203 083 0.03

13 93 1.379 0.344 1.466 0.182 1.586 0.212 "1.556 0.355 1.89 0.86 0.09
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for these numbers (one degree of freedom) is 3.84, and as can be seen from
the table, only two of the numbers exceed this value. The null hypothesis of
correct specification is thus accepted in 104 of the 106 cases. (Remember that
the alternative hypothesis in each of these cases is that there is mis-
specification somewhere in the model other than in the particular equation
that includes the coefficient.) Similar results were achieved when the test was
applied one equation at a time (rather than one coefficient at a time). In
none of the 12 cases was the m-value greater than the critical x> value at the
95 percent confidence level. These results are thus encouraging regarding the
specification of the model, but because of the above problem, they must be
interpreted with considerable caution. It appears that many more obser-
vations are needed before the Hausman test can be used with much
confidence for models like the present one.

5. Dynamic prediction accuracy"

Since macroeconometric models are used to make predictions more than
one period ahead, it is of some interest to examine the sensitivity of the
dynamic prediction accuracy of the model to the four sets of estimates. This
is particularly true of the 3SLS and FIML estimates, since they have never
been computed for a model of this type before. For present purposes both
static and dynamic predictions for the four sets were made for two periods,
the estimation period (1954.1-1978.II) and the last 10 quarters of the
estimation period (1976.1-1978.11).!! The root mean squared errors (RMSEs)
from these predictions for 6 selected variables are presented in table 3.2 As
can be seen from the table, the results differ very little across estimators for
the static predictions. The results are also fairly close for the 'dynamic
predictions, although there is somewhat more variance across estimators in
this case. Even in this case, however, there is no obviously superior
estimator. )

The fact that the results in table 3 do not discriminate between the 2SLS
and 3SLS estimates is consistent with the Hausman test results discussed in
the previous section. The one perhaps surprising result in table 3 is that the

!1Because of the possible small-sample problem for the FIML estimator discussed in section
3, no observations were excluded from the estimation period to be used for outside-sample
predictions. Therefore, all the RMSEs in table 3 are for within-sample predictions.

12In Fair (1980a) an alternative procedure to the RMSE procedure is proposed for estimating
the predictive accuracy of a model. This procedure has certain advantages over the RMSE
procedure, such as accounting for the fact that variances of forecast errors are not constant
across time, but because it requires successive re-estimation of the model, it was not used in this
study. This procedure also provides a quite different way of examining the effects of
misspecification than does the Hausman test, and given the problems encountered in this study
in applying the Hausman test, the Fair procedure may turn out to be more practical.



Ray C. Fair and William R. Parke, Estimates of a nonlinear macroeconometric model 287

OLS RMSEs are so close to the others. In spite of some fairly large
differences between the OLS coefficient estimates and the others in table 2,
this has little effect on the errors in table 3. The main conclusion from this
exercise thus appears to be that RMSE results like those in table 3 are not
good at discriminating among alternative estimators.

Table 3

Root mean squared errors.?

GNPR GNPD UR RBILL M1 WFF

1954.1-1978.11 (98 obs.)
Static: 2SLS 0.64 0.31 0.27 0.45 0.84 0.58
3SLS 0.66 0.31 0.27 0.44 0.84 0.58
FIML  0.66 0.32 0.27 0.45 0.85 0.59
OLs 0.66 0.31 0.28 0.44 0.85 0.58

Dynamic: 2SLS 2.05 1.62 1.19 0.92 -3.41 213
3SLS 2.16 1.61 1.19 0.93 3.69 2.12
FIML 207 1.53 1.13 0.95 3.49 2.09
OLS 2.02 1.77 1.24 0.95 342 2.26

1976.1-1978.11 (10 obs.)

Static: 2SLS 0.70 0.39 0.36 0.21 0.78 0.38
3SLS 0.73 0.43 0.35 0.21 0.73 0.40
FIML  0.68 0.45 0.33 0.21 0.72 0.40
OLS 0.70 0.39 0.37 0.21 0.81 0.38

Dynamic: 2SLS 1.38 0.57 0.57 0.65 1.68 - 0.51
3SLS 1.53 0.65 0.46 0.56 1.51 0.71
FIML 132 0.70 0.48 0.52 1.29 0.72
OLS 1.57 0.58 0.58 0.67 1.30 0.53

*The RMSEs for GNPR (real GNP), GNPD (GNP deflator), M1 (money supply), and
WFF (wage rate) were computed from percentage errors. A percentage error for a given
quarter is defined to be the absolute error divided by the actual value of the variable.

The RMSE:s for UR (unemployment rate) and RBILL (bill rate) are in the natural units
of the variables (percentage points).

The simulations were deterministic, with all error terms set equal to zero.

6. Policy effects

Since macroeconometric models are also used for policy purposes, it is of
interest to examine the sensitivity of policy effects in the model to the four
sets of estimates. Results that pertain to this issue are presented in table 4.
The numbers in this table were constructed for each set of estimates as
follows. First, a base forecast was made for the 1978.1V-1982.IV period, with
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guessed values used for the exogenous variables. The same exogenous values
were used for each set of estimates. From this base path the real value of
government purchases of goods (XG) was increased by 10 billion dollars at
an annual rate and a new forecast was generated. The effects of this change
. on two variables, real GNP and the GNP deflator, are presented in table 4.
Each number in the table is the difference between the predicted value of the
variable after the change and-the predicted value before the change.3

The OLS results for real GNP in table 4 are more expansionary than are
the results for the other three estimators. The sum of the real GNP increases
over the 17 quarters is 41.5 billion dollars for OLS, compared to 36.0, 36.0,
and 37.9 for 2SLS, 3SLS, and FIML, respectively.!* The OLS estimates of
the real GNP multipliers are thus larger than the others, a conclusion that is
consistent with simple textbook examples of the simultaneity bias of OLS
estimates. Although not shown in the table, a similar result shows up for the
predictions of the money supply (M1). The sum of the M1 increases over the
17 quarters was 42.8 for OLS, compared to 23.3, 19.2, and 22.5 for 2SLS,
3SLS, and FIML, respectively. With respect to the results for the GNP
deflator in table 4, the OLS results are slightly more inflationary than are the
others. A

Since the OLS estimators are the only inconsistent estimates of the four
sets (assuming correct specification and normality of the error terms), it is
encouraging that the policy effects from the OLS estimates differ more from
the others than do the others from themselves. In other words, the results in
table 4 do. appear to discriminate against OLS, something which was not
true of the RMSE results in table 3.

7. Summary and conclusion

This study has demonstrated that it is feasible to obtain full information
estimates of a fairly large nonlinear model. As can be seen from table 1, these
estimates are still not cheap, but the algorithm that has been used in this
study does appear to have greatly increased their computational feasibility.

Due possibly to small sample problems the present attempt to use the
Hausman test to examine the differences among the 2SLS, 3SLS, and FIML
estimates was at best only partly successful. Neither the difference between

*3See Fair (1980b) for a more detailed discussion of this experiment. The 2SLS results in table
4 are the same as the XG results in Table 2 in Fair (1980b), except that those results are based
on stochastic rather than (as in table 4) deterministic simulation of the model. It should also be
noted that although the simulation period used for these results is outside of the estimation
period, this need not have been the case. The experiment in table 4 could have used a within-
sample period. )

It would be possible, using the procedure discussed in Fair (1980b), to estimate, say, the
standard error of the FIML sum. This would then help in appraising the multiplier differences.
These computations are, however, beyond the scope of the present study.



Table 4

Effects of a permanent increase in XG of 10.0 billion dollars at an annual rate.®

1978 1979 1980 1981 1982 . Sum over
E - the 17
v 1 1I 111 v 1 11 111 IV 1 nm I v I 11 111 v quarters

GNPR (real GNP) (billions of 1972 dollars at an annual rate)

2SLS 94 12.2 129 13.0 12.3 114 10.3 9.2 83 7.4 6.7 6.1 5.6 5.2 49 4.7 45 36.0
y 3SLS 9.8 12.8 134 13.2 123 111 99 8.8 7.8 7.1 6.4 59 5.5 5.2 5.0 4.8 4.6 36.0
©  FIML9.5 12.6 13.3 13.2 124 114 10.3 9.4 8.6 7.9 73 6.8 6.4 6.1 5.8 5.5 53 379
OLS 9.9 129 13.8 14.1 13.6 12.7 11.7 10.7 9.8 9.0 8.3 7.6 7.1 6.7 6.3 6.0 5.7 41.5

GNPD (GNP deflator) (1972 =100)

2SLS 0.069 0.129 0.183 0.231 0271 0305 0330 0350 0362 0372 0378 0382 0383 0384 0383 0383 0.381
3SLS 0.068 0.125 0.174 0218 0.255 0.287 0313 0334 0250 0363 0374 0384 0391 0397 0403 0408 0412
FIML0.060 0.107 0.147 0.183 0.214 0242 0266 0286 0303 0318 0332 0334 0354 0364 0373 0381 0.389
OLS 0070 0.134 0.194 0248 0292 0330 0.361 0384 0401 0414 0424 0430 0434 0437 0438 0439 0438

“Each number is the difference between the predicted value of the variable after the change and the predicted value before the change. The number in the last column
for GNPR for each row is the sum of the other numbers in the row divided by 4.
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the 3SLS and FIML estimated covariance matrices nor the difference
between the 2SLS and 3SLS estimated covariance matrices was positive
definite. The former result was possibly due to better first-stage fits for 3SLS
than for FIML. The latter result was due to the fact that the sample size
prevented all the variables that were used in the first-stage regressions for the
2SLS estimates from being included in the one regressor matrix (the Z
matrix) for the 3SLS estimates. It is possible, as noted in section 2, to modify
the 3SLS estimator to use a different set of regressors for each equation, but
for the present model this estimator was not computationally feasible. It thus
appears that more observations are needed before the Hausman tests can be
applied with much confidence in situations like the present one.

The RMSE results in table 3 did not reveal important differences between
the OLS estimates and the others, but the policy results in table 4 did.
Judging from the results in table 4, the OLS estimates do appear to show
some simultaneity bias.

We hope that the results in this study will encourage further work on the
full-information estimation of models. Given the recent theoretical interest in
nonlinear full-information estimators and the computational results in this
paper, the time for full-information estimators may have finally arrived.
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