
10 Optimal Control Analysis 

10.1 Introduction 

Optimal control techniques have a number of potentially important uses in 
macroeconometrics. Solving optimal control problems for a particular model 
may yield insights about the model that one would not pick up from 
multiplier calculations. Depending on the objective function, the solutions of 
optimal control problems are sometimes extreme in that they result in the 
predicted values being considerably away from the historical values, and this 
sometimes conveys new information about the properties of the model. 
Optimal control techniques can also be used to evaluate past policies in the 
light of particular objective functions. The techniques may also be useful in 
the long run in helping to make actual policy decisions, depending on how 
good an approximation to the structure of the economy models eventually 
become. 

10.2 A Method for Solving Optimal Control Problems 

10.2.1 The Method 

Optimal control problems have historically been formulated in continuous 
time and have been looked upon as problems in choosingfiuxtions oftime to 
maximize an objective function. This is particularly true in the engineering 
literature. Fairly advanced mathematical techniques are required to solve 
these problems. For discrete time models, however, which include virtually 
all macroeconometric models, optimal control problems can also be looked 
upon as problems in choosing variables to maximize an objective function. 
The number of variables to be determined is equal to the number of control 
variables times the number oftime periods chosen for the problem. From this 
perspective. optimal control problems are straightforward maximization 
problems, and one can attempt to solve them using algorithms like the DFP 
algorithm discussed in Section 2.4. 

Let the model be represented by (6. I), which is repeated here: 

(6.1) KY,> x,5 ai) = K,, i=l , ,n. 
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The variables in the -\; vector include both exogenous and lagged endogenous 
variables. Among the exogenous variables are variables that are under the 
control of the government and variables that are not. It will be useful to 
redefine x, to include only noncontrolled exogenous variables. Let z, denote 
the vector of control variables, and let q,_, denote the vector of all lagged 
endogenous variables in the model, even variables lagged more than one 
period. Rewrite (6. I) to include these changes: 

(10.1) f;(~,,4~-I,.~,,~,,or,)=~~,, i=l,. ,n. 

In the following discussion the coefficients q are assumed to be known with 
certainty. 

The first step in setting up an optimal control problem is to postulate an 
objective function. Assume that the period of interest is t = 1, , T. A 
general specification of the objective function is 

(10.2) w= h(y,, ~ y,, x,, , $3 z,, , ZT). 

where lW7, a scalar, is the value of the objective function corresponding Io 
values of I;, x,, and z, (t = 1. , T). I n most applications the objective 
function is assumed to be additive across time, which means that ( 10.2) can be 
written 

(10.3) M’= i h,(Y,, x,, &)> 
*=I 

where h&:,, x,, z,) is the value of the objective function for period 1. The 
function h has a f subscript to note the fact that it may vary over time. This 
will be true, for example, if future periods are discounted. 

The optimal control problem is to choose values of z, , , iT so as to 
maximize the expected value of U’ in (10.2) subject to the model (10.1). 
Consider first the deterministic case where the error terms in (10.1) are all 
zero. Assume that z, is of dimension k, so that there are krcontrol values to 
determine, and let z be the kr-component vector denoting these values: 
z=(z,, , zT). For each value of z one can compute a value of Wby first 
solving the model (IO. I) for J+ , , yr and then using these values along 
with the values for x,, ~ x1. and z to compute Win (10.2). Stated this 
way, the optimal control problem is a problem in choosing variables (the 
elements of z) to maximize a” uncon.smin~d nonlinear function. By substi- 
tution, the constrained maximization problem is transformed into the prob- 
lem of maximizing an unconstrained function of the control variables: 

(10.4) M’= I$($. 
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where (b stands for the mapping z - z, )j,, , yr, xl, , xT - W. For 
nonlinear models it is generally not possible to express y, explicitly in terms of 
z, and x,, which means that it is generally not possible to write Win (10.2) 
explicitly as a function of z and x,, , xT. Nevertheless, given values for 
x, , , xT, values of W can be obtained numerically for different values 
of z. 

Given thissetup, the problem can be turned over to a nonlinear maximiza- 
tion algorithm like DFP. For each iteration, the derivatives of+ with respect 
to the elements of z, which are needed by the algorithm, can be computed 
numerically. Each iteration will thus require kTfunction evaluations for the 
derivatives plus a few more for the line search. Each function evaluation 
requires one solution (dynamic simulation) of the model for Tperiods plus 
the computation of R’in (10.2) after yl, , yr are determined. 

There is one important cost-saving feature regarding the method that 
should be noted. Assume that there are two control variables and that the 
length of the period is 30. The number of unknowns is thus 60. and therefore 
60 function evaluations will have to be done per iteration to get the numerical 
first derivatives. In perturbing the control values to get the derivatives, one 
should start from the end of the control period and work backward. When the 
control values for period 30 are perturbed, the solution of the model for 
periods 1 through 29 remains unchanged from the base solution, so these 
calculations can be skipped. The model only needs to be resolved for period 
30. Similarly, when the control values for period 29 are perturbed, the model 
only needs to be resolved for periods 29 and 30, and so on. This cuts the cost of 
computing the derivatives roughly in half. 

10.2.2 Stochastic Simulation Option 

Consider now the stochastic case where the error terms in (IO. 1) are not zero. 
It is possible to convert this case into the deterministic case by simply setting 
the error terms to their expected values (usually zero). The problem can then 
be solved as above. In the nonlinear case this does not lead to the exact answer 
because the values of W that are computed numerically in the process of 
solving the problem are not the expected values. In order to compute the 
expected values correctly, stochastic simulation would have to be done. In 
this case each function evaluation (that is, each evaluation of the expected 
value of W for a given value of z) would consist of the following. 

1. A set of values of the U, error terms in (IO. I) would be drawn from an 
estimated distribution. 
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2. Given the values of the error terms, the model would be solved for 
y,, , y7and the vaIues of Wcorresponding to this solution would be 
computed from (10.2). Let l&v denote this value. 

3. Steps I and 2 would be repeated J times, where J is the number of trials. 
4. Given the J values of l@ (j = 1, , J), the expected value of Wwould 

be taken to be the mean of these values. 

(10.4) 6= +,! &. 

This procedure increases the cost ofsolving the control problem by roughly 
a factor of J, since the maximization algorithm spends most of its time doing 
function evaluations. It is probably not worth the extra cost for most applica- 
tions. It was seen in Chapter 7 that the bias in predicting the endogenous 
variables that results from using deterministic rather than stochastic simula- 
tion seems to be small for most models, and thus the bias in computing the 
expected value of JV is also likely to be small. At any rate, the stochastic 
simulation option is always open if computer time is no constraint. 

102.3 Comparison of the Method to Other Procedures 

There are two main advantages ofthe method just described. One is that it can 
handle very general objective functions; the objective function need not be 
quadratic and need not even be additive across time. The second is that the 
method is extremely easy to use. Assuming that a program is available for 
solving the model, which is almost always the case, all that needs to be 
supplied is a subroutine that computes Win (10.2) for a given set of RHS 
values. In a program that is structured like the Fair-Parke program in 
Appendix C1 which allows one to move automatically from estimation to 
solution. this is an important advantage. Given a subroutine that computes 
W, one can mow automatically from estimation to solving control problems. 
There are thus virtually no extra setup costs involved in using the method. 

The method described above is “open-loop.” The alternative type of 
method is “closed-loop,” where closed-loop feedback control equations are 
derived. A feedback control equation is one that relates the current value ofa 
control variable to the lagged values of the endogenous variables. In the case 
of a linear model and a quadratic objective function, it is relatively easy to 
compute the feedback equations. (Chow 1975 is a good reference for this.) 
One of the advantages of obtaining feedback equations is that they can be 
used to compute the optimal control values for all future periods without 



356 Macroeconometric Models 

having to solve any further problems. Given the realizations of the endoge- 
nous variables for a given period, the optimal control values for the next 
period can simply be computed from the feedback equations. For open-loop 
methods, on the other hand, a new optimization problem has to be solved 
after each period’s realization. Consider, for example, the problem presented 
above, where optimal values for periods I through Twere computed. If this 
solution were used in practice, the optimal values for period I would be used, 
but the values for periods 2 through Twould not. The latter values are needed 
only to compute the period 1 values, After the realization in period I, where in 
general the endogenous variable values will not equal the values that were 
expected at the time the control problem was solved, a new control problem 
would have to be solved to get the optimal values for period 2. 

In the linear-quadratic case, open-loop methods with reoptimization after 
each realization and closed-loop methods lead to the same control values 
being used each period. This is the certainty equivalence theorem. In the 
general nonlinear case, analytic expressions for the feedback equations are 
not available. so there is no known closed-loop solution. An interesting 
question is whether the current open-loop method with stochastic simulation 
to eliminate the bias in computing the expected value of W and with 
reoptimization after each realization leads to the correct answer aside from 
errors introduced by the stochastic simulation procedure. The answer is no. 
Maximizing the expected value of IV simultaneously with respect to 
a1 , , zrfails to account for the fact that the optimal strategy is sequential 
rather than simultaneous. (See Chow 1975, pp. 295-296, for a discussion of 
this.) This is a subtle point, and it is an open question whether it is important 
quantitatively. 

Chow (1975. chap. 9) has proposed an alternative method for solving 
optimal control problems in the nonlinear case. He suggests obtaining a linear 
approximation to the model and a quadratic approximation to the objective 
function and then solving the resulting linear-quadratic problem by standard 
methods. One then iterates on the approximations. This method also does not 
lead to the correct answer, although for a different reason than in the case of 
the open-loop method. The linearization of the model must be around the 
solution path of the deterministic control problem (since the future values of 
the error terms are not known). and therefore the linearization is not quite 
right. The computed optimal values are thus not truly optimal. The method 
has the advantage that feedback equationsare obtained, although this is not as 
much of an advantage as it might at first appear. Even given the feedback 
equations, one may want to reoptimize after the realization for a given period 
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because the linearization will change. One will not get the same optimal 
values for the period using the old feedback equations as one would get by 
reoptimizing based on an updated linearization. 

From a computational point of view, Chow’s method is somewhat messy 
because of the linear approximations. These approximations require consid- 
erable storage space for the matrices, and it is not as easy to adjust for changes 
in the model because for each adjustment the linearization must also be 
adjusted. In addition, ifthe model is large, a large matrix must be inverted in 
calculating the optimal values. An advantage of the method over the open- 
loop method is that the computational costs only increase linearly in T, the 
length of the control period, whereas they increase roughly as the square of T 
for the open-loop method. (The cost for the open-loop method increases as 
the square of 7because an increase in Tincreases both the number ofcontrol 
values to determine and the cost of solving the model for a given function 
evaluation.) There are thus likely to be some applications for which Chow’s 
method is better and some for which the open-loop method is better. Whether 
one will end up dominating for most applications remains to be seen. 

The discussion so far has been based on the assumption that the coefficients 
are known with certainty. The question of how to handle coefficient uncer- 
tainty in the nonlinear case is difficult, and no exact solutions are available. 
This issue will be not be explored here; the interested reader is referred to 
Chow (1976), who presents an approximate solution. 

The discussion so far has also been based on the assumption that the model 
is not a rational expectations model. The solution of optimal control prob- 
lems for rational expectations models is discussed in Section 11.5. 

10.2.4 Steps that a Policymaker Would Follow 

For purposes of the discussion in the next section, it will be useful to review 
the steps that a policymaker would follow if he or she were setting policies by 
solving control problems. Assume that a policy decision is to be made at the 
beginning of period 1 and that at this time data for period 0 and all prior 
periods are available. Given the model (10. I) and, say, a horizon of length T, 
the steps that could be followed are: 

1. Estimate the coefficients of the model over the sample period ending in 0. 
2. Form expectations of the exogenous variables (other than the control 

variables) for periods I through T. 
3. Form expectations of the values of the error terms for periods 1 through T. 
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4. Decide on the objective function (10.2) to be maximized. 
5. Using some maximization algorithm (like DFF’), maximize (10.2) with 

respect to zl, z2, , zT. Let z:, z:, , z: denote the optimum 
values. 

6. Use z: as the vector of policy values for period 1. 

After the values for period 1 have been realized, steps l-6 can be repeated 
for period 2. As noted in Section 10.2.3, the optimal value of z, that is 
computed at this time is not in general equal to z: in step 5. The actual values 
of the endogenous variables for period 1 are in general different from what 
they were predicted to be, and therefore the initial conditions for the problem 
beginning in period 2 are different from what the solution at the beginning of 
period 1 implied that they would be. Also, the coefficient estimates will have 
changed because of the reestimation through period 1. The actual values of 
the exogenous variables for period 1 will in general be different from what 
they were expected to be, and the expectations for periods 2 and beyond are 
likely to have changed. 

If stochastic simulation is used. step 3 is replaced by a step in which the 
distribution of the error terms is chosen. This distribution is then used in step 
5 in the manner discussed in Section 10.2.2. 

If Chow’s procedure is used to solve the control problem, step 5 is replaced 
with this procedure. It is still necessary in this case to form expectations of the 
error terms for periods 1 through T (step 3)_ because this is needed for the 
linearization. Also, as noted in Section 10.2.3, steps 1 through 6 would be 
performed again after the values for period 1 have taken place because these 
values affect the linearization and thus the feedback equations. The different 
coefficient estimates and exogenous variable values will also affect the lineari- 
zation. 

The reestimation ofthe model in step 1 means that the coefficient estimates 
are always based on the latest available data. This does not mean, however, 
that by doing this one has accounted for coefficient uncertainty in solving the 
optimal control problem. Nothing in this procedure informs the method in 
step 5 that the coefficient estimates are to be reestimated in the future, and so 
this information is not taken into account. 

10.3 Use of Optimal Control Analysis to Measure the Performance 
of Policymakers 

It is common practice in political discussions to hold policymakers account- 
able for the state of the economy that existed during their time in power. 



Optimal Control Analysis 359 

Policymakers are generally blamed for high unemployment, low real growth, 
and high inflation rates during their time in power and praised for the 
opposite. Although at first glance this may seem to be a reasonable way of 
evaluating the economic performances of policymakers, there are at least two 
serious problems with it. The first is that this kind ofevaluation does not take 
into account possible differences in the degree of difficulty of controlling the 
economy in different periods. The economy may be more difficult to control 
at one time than another either because of more unfavorable values of the 
uncontrolled exogenous variables or because of a more unfavorable initial 
state of the economy (or both). The second problem with the evaluation is 
that it ignores the effects of a policymaker’s actions on the state of the 
economy beyond its time in power. If, for example, a policymaker strongly 
stimulates the economy in the year of an election, in, say, the belief that this 
might improve its chances of staying in power, most of the inflationary effects 
of this policy might not be felt until after the election. Any evaluation of 
performance that was concerned only with the time before the election would 
not, of course, pick up these effects. 

A measure of performance is proposed in this section that takes account of 
these problems. It is based on the solutions of optimal control problems. This 
performance measure requires that a welfare function be postulated and that 
the economy be represented by an econometric model. The welfare function 
must be additive across time. It will be convenient to take the objective 
function to be a loss function to be minimized rather than a welfare function 
to be maximized. 

Let P denote either the entire period that policymakerp is in power or some 
subset of this period. The measure, denoted M, is as follows (low values of M 
are good): 

(10.5) M = expected loss in P given p’s actual behavior 
- expected loss in P ifa had behaved optimally 
+ expected loss beyond P given p’s actual behavior and 

given optimal behavior of future policymakers 
- expected loss beyond P if p had behaved optimally and 

given optimal behavior of future policymakers 
=a-b+c-d. 

The term a - b is the expected loss that could have been avoided during Pifp 
had behaved optimally. The term c - d is the potential expected loss to future 
policymakers from the fact that p did not behave optimally. If P is a subset of 
the entire period that D is in power, then “future policymakers” in the 
definition above may include p. 
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M takes account ofthe two problems mentioned earlier. lfthe economy is 
difficult to control for p, then b will be large, which will offset more than 
otherwise a large value ofa. The term c - d measures the effects ofa’s policies 
on the economy beyond period P, where these effects are measured under the 
assumption that future policymakers behave optimally. 

Ifa policymaker follows steps l-6 in Section 10.2.4, he or she will be said to 
behave optimally. Remember, however, that the policy choice z: in step 6 is 
not truly optimal because (I) the solution method is open-loop. (2) coefficient 
uncertainty has not been taken into account. and (3) deterministic rather than 
stochastic simulation has been used to compute the expected value of the 
objective function. As in (10.3), let h,&, x,, z,) denote the objective function 
for period t, but now assume that it is a loss function rather than a welfare 
function. The loss function for the control problem is thus XL, /Z,(J),, x,, 2,). 

In order to compute M, the period beyond P must be specilied. Let 1 be the 
first period of P, and let P’ be the length of P. The period beyond P will be 
assumed to run from P’ + 1 to T’. The symbol Twill continue to be used to 
denote the length of the horizon for the control problem. T is assumed to be 
larger than T’. It should be a number that is large enough so that further 
increases in Thave a negligible effect on the optimal values for the first period 
of the horizon. Since only the values for the first period ever get used, the only 
criterion that needs to be used in deciding on the length ofthe horizon is the 
effect of this choice on the first-period values. 

The procedure for computing M is as follows. (Steps 1 - 6 always refer to the 
steps in Section 10.2.4) 

(i) Perform steps I-6 for period I. This requires choosing values for the 
expectations of the exogenous variables and error terms for periods I through 
T. These values should be estimates ofwhat the policymaker actually knew at 
the beginning ofperiod 1. The optimal values z:. z* z, , z: minimize the 
expected value of XL, h,(y,, x,, z,), where the expected value is computed by 
means ofdeterministic simulation. Let 6: denote the first term in the optimal 
sum, let x7 denote the values chosen for the expectations of the exogenous 
variables for period 1, and let u; denote the values chosen for the expectations 
ofthe errorterms for period 1. hy iscomputed by solving the model forperiod 
I using z:, x;, u:, and CJ, and then using these solution values (denoted 9:) 
plus x; and z: to compute /I:. The vector q, is the vector ofinitial conditions. 
/;f is h, evaluatedat $:,x;, and 2:. It isthe part ofbin( 10.5) that corresponds 
to period I. 
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(ii) Let z, denote the actual value of the control vector for period I, Given 
z,, x7, u;. and %, solve the model for period 1 and then use these solution 
values (denoted?,) plusx; and z, to compute the value ofthe loss function for 
period 1 (denoted h^,). /;, is h, evaluted at j$ , s;, and 2,. It is the part of a in 
(10.5) that corresponds to period 1. 

(iii) Let u, denote the actual values ofthe error terms for period I, and let x, 
denote the actual values ofthe exogenous variables for period I. Given z:, x, , 
ul, and Q,, solve the model for period 1. These solution values (denoted y:) 
are estimates of what would have been observed in period 1 had the policy- 
maker behaved optimally. Let q: denote the vector that includes y:. (Ifthere 
are lagged control variables in the model, then these variables should also be 
in qr-, in Eq. 10.1. In this case z: is in qf.) 

(iv) Perform steps 1-6 for period 2 using q: as the vector of initial 
conditions. This will in general require choosing new values for the expecta- 
tions of the exogenous variables. Given if, x5, Ir; , and q:, solve the model for 
.if and then compute 6:. 6: is the part of b in (10.5) that corresponds to 
period 2. 

(v) Given zz, xi, g, and ql, solve the model for period 2 and then compute 
t$ q1 is the vector of actual values ofthe initial conditions. r$ is the part ofa in 
(10.5) that corresponds to period 2. 

(vi) Repeat steps (iii), (iv), and (v) for periods 3 thrugh P’. 
(vii) a in (10.5) is equal to XL,&, and b is equal to ZfL,li:. 
(viii) Given the optimal values for period P’ from step (vi), z& and given 

xp,, u,. ~ and q$- , , solve the model for period P’. Denote the solution values 
y$., and let qp*: denote the vector that includes y$. 

(ix) Perform steps I-6 for period P’ + 1 using qp*; as the vector of initial 
conditions. Given z$+, , x5.+, , tppp+, , and q$, solve the model for j$+, and 
then compute Fi* p,+, I@,+~ is the part ofdin (10.5) that corresponds to period 
P’ + I. This step is the same as step (iv) except for a different period. 

(x) Repeat step (viii) for period P’ + 1, and then repeat step (ix) for period 
P’ + 2. Keep repeating through period T’. din (10.5) is equal to Z&+I h:. 

(xi) Perform steps 1 - 6 for period P’ + 1 using the actual value of qp as the 
vector of initial conditions. To distinguish these optimal values from the 
optimal values computed in step (ix), let z,ZcI rather than z,%+ I denote them. 
Given z,Z$,, x&+,. u$+~, and qpr, solve the model for $5, and then 
compute /3** pS+, /?,Zt, is the part of c in (10.5) that corresponds to period 
P’i 1. 

(xii) Given zFt*+ I, ++, , up+, , and + , solve the model for period P’ + I. 
** Denote the solution values J)$:, , and let qpl+, denote the vector that includes 

J$:, 
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(xiii) Perform steps I - 6 for period P’ + 2 using qp*;*t I as the vector of initial 
conditions. Given z$~, x&+>, zP,.+,, and qp*;:,, solve the model for 9$.Tz 
and then compute I$!+,. 

(xiv) Repeat step (xii) for period P’ + 2, where qp*;:, is used as the vector of 
initial conditions, and then repeat (xiii) for period P’ + 3. Keep repeating 
through period T’. c in (10.5) is equal to Zgp,+, I;:*. 

This completes the computational steps. M is equal to a-b+ c- d, 
where a and bare defined in step (vii), c is defined in step (xiv), and dis defined 
in step (x), The only difference between the steps involved in computing c and 
those involved in computing d is that for d the series of control problems 
begins from the initial conditions that would have prevailed had optimal 
policies been followed during P, whereas for c the series of control problems 
begins from the initial conditions that actually prevailed. 

It is clear that the work involved in computing M is substantial. Assume, 
for example, that one is interested in measuring the performance of a 
presidential administration in the United States during its four-year period in 
office. If the model is quarterly, then 16 control problems need to be solved to 
compute b in (10.5). If the period beyond P is taken to be, say, 24 quarters, 
then 24 control problems need to be solved to compute c and 24 need to be 
solved to compute d. Computing .&f thus involves solving 16 + 24 + 24 = 64 
control problems, each oflength T, where Tshould probably be some number 
like 40 (a 1 O-year horizon). Each of the 16 problems and each pair of the 24 
problems require choosing values of the expectations of the exogenous 
variables. Even though this is a substantial amount of work, it is not com- 
pletely out ofthe question. It might not be unreasonable to use autoregressive 
equations to generate the expectations of at least some of the exogenous 
variables, which would mechanize this part of the problem. The cost then 
would merely be the computer time to solve the 64 control problems. 
Although it is not feasible to do this for the results in this book. it should be 
possible in the future with faster and cheaper computers. 

Since the first step of steps 1 - 6 is to estimate the coefficients over the latest 
available data, computing JW also requires that the model be estimated a 
number of times. The model was estimated a number of times for the results 
in Chapter 8, and this is not that expensive. Note with respect to steps (iv), 
(ix)? (xi), and (xiii) that the estimation must be over the actual data, not the 
data that would have existed had the policymaker behaved optimally. This is 
one unavoidable difference between what a policymaker could do in practice 
and what can be done after the fact in measuring performance. Note also that 
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reestimation can occur right before steps (iii), (viii), (x), and (xii) rather than 
right after them. In other words, the model can be reestimated before the 
“actual” values of the error terms are computed. If this were done, 11~ in step 
(iii) would be based on the model estimated through period 1 rather than 
through period 0. 

The problem of data revisions that was discussed in Section 8.2 regarding 
the evaluation ofex ante forecasts is also a problem here. A policymaker must 
make decisions on the basis of preliminary data. not the latest revised data 
that are generally used in econometric work. One possible solution to this 
would be to construct separate data sets for each starting point (that is, for the 
solution of each control problem), where each data set contains the prelimi- 
nary data that were used as initial conditions and estimated data for the future 
periods that are consistent with the preliminary data. This is, however, a very 
tedious task, and it is unlikely to be done very often in practice. Most often it 
will merely be assumed that the latest revised data are good approximations to 
the data that the policymakers actually used. 

Chow (1978) has proposed a measure of performance that is almost identical 
to M if the model is linear and P consists of only one period. If the length of P 
is greater than one period, the two measures differ more. For P length 2, 
Chow’s measure in words is as follows. 

(10.6) M’ = expected loss in period 1 given p’s actual behavior in period 1 
- expected loss in period I if p had behaved optimally in 

period 1 
+ expected loss in periods 2 and beyond given p’s actual 

behavior in period 1 and given optimal behavior in pe- 
riods 2 and beyond 

- expected loss in periods 2 and beyond if p had behaved 
optimally in period I and given optimal behavior in pe- 
riods 2 and beyond 

+ expected loss in period 2 given p’s actual behavior in 
periods 1 and 2 

- expected loss in period 2 if p had behaved optimally in 
period 2 but not in period I 

+ expected loss in periods 3 and beyond given p’s actual 
behavior in periods I and 2 and given optimal behavior in 
periods 3 and beyond 
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- expected loss in periods 3 and beyond if a had behaved 
optimally in period 2 but not in period I and given optimal 
behavior in periods 3 and beyond. 

The first four terms in (10.6) are the sameasthose in (10.5) ifPis oflength 1, 
and therefore in this case M and M’ are identical if the expected losses are 
computed in the same way. In fact, however, Chow bases his computations of 
expected loss on the closed-loop approach, whereas the computations for M 
are based on the open-loop approach with reoptimization. This means that 
the expected losses are computed slightly differently even in the linear-qua- 
dratic case. This difference is fairly subtle, and it is not likely to be of much 
practical importance. 

For P length of 2 it is clear that M and M’ differ more than merely in how 
the expected losses are computed. Although there is no right or wrong answer 
regarding which measure is better, the question that M’ answers does not 
seem to be as relevant for policy evaluation as the question that .W answers. 
Consider a presidential administration and a lhquarter period. nlcompares 
the administration’s actual behavior over the 16 quarters to the behavior that 
it would have followed had it optimized over the 16 quarters. M’ compares 
first the administration’s actual behavior in quarter I to the behavior that it 
would have followed in quarter I had it optimized, then its actual behavior in 
quarter 2 to the behavior that it would have followed had it started optimizing 
in quarter 2, then its actual behavior in quarter 3 to the behavior that it would 
have followed had it started optimizing in quarter 3, and so on through 
quarter 16. M seems more relevant for policy evaluation since it simply 
compares how well an administration did to how well it could have done had 
it optimized from the beginning. The question that M’ answers is more 
complicated and also seems to resemble less the kinds of questions that are 
asked in practice about an administration’s performance. 

10.4 Solution of an Optimal Control Problem for the US Model 

This section contains an example of solving an optimal control problem for 
the US model. The example is not realistic in the sense that the postulated loss 
function is too simple to approximate well the preferences of policymakers. 
The example is primarily meant to illustrate the properties of the model 
regarding the trade-off between real output and inflation. 
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10.4.1 The Loss Function and the Experiments 

The period considered is 19731- 1977IV, and the loss function is 

This loss function is additive across periods and is quadratic. The first term is 
the square of the percentage deviation of real GNP from the high-activity- 
level GIVPR *, and the second term is the square of the percentage change in 
the GNP deflator at an annual rate. GNPR* is defined in Table A-4 in 
Appendix A. The parameter I. is the weight attached to inflation in the loss 
function. 

One control variable was used: CR, federal government purchases of goods. 
Monetary policy was assumed to be accommodating in the sense that the bill 
rate was taken to be exogenous and equal to its actual value each quarter. This 
means that the interest rate reaction function is not used. The Fed, for 
example, does not respond to any fiscal policy stimulus by raising short-term 
interest rates. Actual values for rhe exogenous variables and zero values for 
the error terms were used. 

The objective is to choose C, to minimize L subject to the US model. There 
are 20 values of C, to determine, one per quarter. The problem was solved 
using the DFP algorithm. Actual values of C, were used as starting values. 
Two problems were solved, one for J, = 1 and one for A = 2. The results are 
presented in Table IO- 1. 

10.4.2 The Results 

The first column in Table IO-1 presents the actual values of C,, and the next 
two columns present the predicted values of the output gap and the rate of 
inflation that are based on the use of the actual C, values. The predicted 
values are not equal to the actual values because zero error terms have been 
used. The l974- 1975 period was one of low output and high inflation, and 
the predicted values in the table are consistent with this. 

The first set of optimal values is for ;i = 1. The value ofthe loss function was 
lowered from .1470 to 141 I. The output part of the loss was lowered from 
.0179 to .0069. and the inflation part was raised from .I291 to .1342. The 
optimal values of the output gap (the numbers in the a columns) are smaller 
than the base values for the 1974- 1976 period, and the optimal inflation 
values arc larger except for 19741 and 1976IV. The optimal values of C,are 



larger for this period except for 1976IV. The overall results thus say that given 
the particular loss function and model, the optimal policy would have been 
for more stimulus in 1974- 1976 than actually existed. 

The optimal C, values in the last two or three quarters are not to be taken 
seriously because they are trading on the fact that there is no tomorrow after 
the end of the horizon. These values have very little effect on the optimal 
value for C, for the first quarter, which is the only quarter that matters for 
carrying out actual policy. 

The optimal C, values show fairly large fluctuations from quarter to 
quarter, and this is one ofthe reasons the example is not realistic. In practice 
there are constraints on the degree to which fiscal policy variables can be 
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changed. The way in which this would be handled in the present context 
would be to add a term like HC, - C,-I)* to the loss function. This would 
penalize large quarter-to-quarter changes in C,. If this were done, other fiscal 
policy variables might also be taken as control variables (with similar penal- 
ties in the loss function) to increase the ability to minimize the loss with 
respect to the basic target variables. With no penalties on the control variables 
in the loss function, little is gained by using more than one control variable. 
The fiscal policy variabies work roughly the same way with respect to their 
effects on output and inflation, and thus the use of one to minimize a loss 
function in output and inflation does about as well as the use of many. In this 
sense the control variables are collinear ifthere are no penalties on them in the 
loss function. 

The second set of optimal values is for A= 2, which is a higher weight on 
inflation in the loss function. The value ofthe loss function was lowered from 
.2761 to.2692. Theoutput partoftheloss wasraisedfrom .0179 to .0244, and 
the inflation part was lowered from .2582 to .2448. On average the optimal 
values ofthe output gap for 1974 and 1975 are not much different from those 
for the base run. The second loss function is thus one for which the optimal 
policy is not for more stimulus than actually existed in these two years. 
Overall. the optimal policy is for less stimulus, since the output part ofthe loss 
increases from the base solution to the optimal solution. The comments made 
above about the fluctuations in C, pertain to both sets ofoptimal values, as do 
the comments about the values at the end of the horizon. 

It should be stressed again that this example is not realistic, not only 
because no penalty on C, fluctuations was imposed, but also because of the 
use of the actual values of the exogenous variables. If one were trying to 
approximate what could have been done during this period, estimated values 
should be used. In addition, the model should be estimated only up to the 
beginning of the control period, and separate control problems should be 
solved at the beginning of each quarter. In other words, this example is not 
what would be done if one were trying to compute the measure of perform- 
ance discussed in Section 10.3. 

10.4.3 Computational Experience 

The program that I wrote for the DFP algorithm. which is discussed in Section 
2.5, was used to solve the optimal control problem. The accuracy of the 
answer depends on the tolerance criteria used for the Gauss-Seidel technique 
in solving the model. The criteria that are discussed in Section 7.5.1 were 
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used. Given this, the DFP algorithm essentially converged after six iterations 
for the i; = I problem. The use of two-sided derivatives resulted in a value of 
the loss function of .141150 after six iterations. Further iterations did not 
lower this value. The use of one-sided derivatives resulted in a value ofthe loss 
function of .141175 after six iterations, and further iterations did not lower 
this value. The use oftwo-sided derivatives thus gave a slightly more accurate 
answer. Each iteration required about 50 function evaluations when two- 
sided derivatives were used, 40 for the derivatives and 10 for the line search. 
The number of function evaluations was 20 less per iteration when one-sided 
derivatives were used. 

The procedure that was discussed at the end of Section 10.2.1 for saving 
computer time was not used for the present results, which means that each 
function evaluation required solving the model for 20 periods. Although the 
cost-saving procedure was not used, the problem was programmed in such a 
way that the starting values for the Gauss-Seidel algorithm were always the 
solution values from the previous function evaluation. These are generally 
very good starting values in the sense of being close to the final answer. 
(When, for example, the derivative with respect to the control value for 
quarter 10 is being computed. with the derivative with respect to the quarter 9 
control value having been computed in the previous function evaluation. the 
number of passes through the model per quarter for the hrst 8 quarters is 
merely one, since the solution for the first 8 quarters is the same for both 
derivatives.) As a result, the Gauss-Seidel technique required on average 
fewer passes through the model to achieve convergence for a given quarter 
than are required for other problems. The average cost per solution per 
quarter for the control problem was about. 1 seconds on the IBM 434 I. which 
compares to about .2 seconds for other problems. The cost per function 
evaiuation was thus about .l seconds X 20 quarters = 2 seconds, and so the 
cost per iteration of the DFP algorithm when two-sided derivatives were used 
was about 2 seconds X 50 function evaluations = 1.67 minutes. 

The BFGS algorithm was also used to solve the control problem, and the 
results were almost identical to those for the DFP algorithm. The BFGS 
algorithm also converged to the allowed accuracy after six iterations. 

The computational experience for the L = 2 problem was almost identical 
to that for the A = I problem. The only notable difference is that seven rather 
than six iterations were needed for convergence. 


