
7 Solution 

7.1 Definition of Terms 

Once the stochastic equations of a model have been estimated and the 
identities have been written down, the next step is to solve the model. There 
are various meanings to the word “solve,” and it will be useful to begin this 
discussion with some definitions. “Solve” and “simulate” mean the same 
thing. A “static” solution or simulation is one in which the actual values ofthe 
predetermined variables are used for the solution each period. Predetermined 
variables include both exogenous and lagged endogenous variables. A “dy- 
namic” simulation is one in which the predicted values of the endogenous 
variables from the solutions for the previous periods are used for the values of 
the lagged endogenous variables for the solution for the current period. 

“Forecast” and “prediction” are generally used to mean the same thing, 
and they are so used here. They mean the same thing as solution and 
simulation. An “outside-sample” forecast or prediction is one for a period 
that is not included within the estimation perioa otherwise the forecast is 
“within-sample.” An “ex post” forecast is one in which the actual values of 
the exogenous variables are used. An ex post forecast can be outside sample, 
but it must be within the period for which there are data on the exogenous 
variables. An “ex ante” forecast is made for a period beyond the period for 
which data exist; it is a forecast in which guessed values of the exogenous 
variables are used. In other words, ex ante forecasts are for a period that is 
truly unknown. Ex ante forecasts must be outside sample and (if the forecast 
is for more than one period ahead) dynamic. The forecasts must be dynamic 
because the values of the lagged endogenous variables are only known for the 
initial period. 

In order to solve a model some assumption must be made about the error 
terms in the stochastic equations. If only one set of values of the error terms is 
used, the simulation is said to be “deterministic.” The expected values of 
most error terms in most models are zero, and for most deterministic 
simulations the error terms are set to zero. For linear models the procedure of 
setting the error terms equal to their expected values and solving the model 
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results in the predicted values ofthe endogenous variables being equal to their 
expected values. This is not the case, however. for nonlinear models (see, for 
example, Howrey and Kelejian 1971) which is simply due to the fact that a 
nonlinear function of expected values is not equal to the expected value ofthe 
nonlinear function. A “stochastic” simulation is one in which many draws of 
the error terms are made in the process of solving the model. This procedure is 
discussed in Section 7.3. Aside from sampling error and a few other approxi- 
mations, solving a nonlinear model by means of stochastic simulation does 
result in the predicted values being equal to the expected values. As will be 
seen in Chapters 8 and 9, stochastic simulation is useful for other purposes as 
well. 

7.2 The Gauss-Seidel Technique 

Most macroeconometric models are solved using the Gauss-Seidel technique. 
It is a remarkably simple technique and in most cases works remarkably well. 
This technique is used for all of the main procedures discussed in the rest of 
this book. The vast majority of computer time used for any of these proce- 
dures is spent solving the model using the Gauss-Seidel technique, and thus 
the technique is obviously of crucial importance. The technique is easiest to 
describe by means of an example. 

Assume that the model (6.1) consists of three equations, and let x, denote 
the vector of predetermined variables in equation i. The model is as follows: 

(7.1) j;(Y,,, Y2,> I%,> Xl,> o,) = % 

(7.2) f,(Y,,> I+,> I%,> .?!I> o2) = %,> 

(7.3) f,(Yi,> Y2,, Y3,> x3,. %) = %, 

where yii, y,,, and y,, are scalars. The technique requires that the equations be 
rewritten with each endogenous variable on the LHS of one equation. This is 
usually quite easy for macroeconometric models, since most equations have 
an obvious LHS variable. If, say, the LHS variable for (7.2) is log (y,J.vs,). then 
y,, can be written on the LHS by taking exponents and multiplying the 
resulting expression by J’~,. The technique does not require that each endoge- 
nous variable be isolated on the LHS; the LHS variable can also appear on the 
RHS. It is almost always possible in macroeconometric work, however, to 
isolate the variable, and this will be assumed in the following example. 

The model (7.1)-(7.3) will be written 
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In order to solve the model, values of the coefficients and the error terms are 
needed. It is unimportant for now what values are used, as long as some values 
are available. Given these values and given values of the predetermined 
variables. the solution proceeds as follows. Initial values of the endogenous 
variables are guessed. These are usually either actual values or predicted 
values from the previous period. Given these values, (7.1)‘-(7.3)’ can be 
solved for a new set of values. This requires one “pass” through the model: 
each equation is solved once. One pass through the model is also called an 
“iteration.” Given this new set of values, the model can be solved again to get 
another set. and so on. Convergence is reached if for each endogenous 
variable the values on successive iterations are within some prescribed toler- 
ance level. 

There are two main options that can be used when passing through the 
model. One is to use the values from the previous iteration for all the 
computations for the current iteration. and the other is to use, whenever 
possible, the values from the current iteration in solving the remaining 
equations. Following the second option in the example just given would mean 
using the current solution for Ylr in the solution of pzl and Y3, and using the 
current solutions for J+, and Yzt in the solution of y,, In most cases conver- 
gence is somewhat faster using the second option. Ifthe second option is used, 
the order of the equations obviously matters in terms of the likely speed of 
convergence. The first option is sometimes called the Jacobi technique rather 
than the Gauss-Seidel technique, but for present purposes both options will 

be referred to as the Gauss-Seidel technique. 
There is no guarantee that the Gauss-Seidel technique will converge. It is 

easy to construct examples in which it does not, and I have seen many 
examples in practice where it did not. The advantage of the technique, 
however. is that it can usually be made to converge (assuming an actual 
solution exists) with sufficient damping. By “damping” is meant the follow- 
ing. Let pz-” denote the solution value ofY,, for iteration n - I (orthe initial 
value if n is I), and let fi:’ denote the value computed by solving (7.1) on 
iteration n. Instead of using $,:’ as the solution value for iteration n, one can 
instead adjust .CE-” only partway toward 3;‘: 
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If A is 1. there is no damping, but otherwise there is. Damping can be done for 
any or all ofthe endogenous variables, and different values ofi. can be used for 
different variables. 

My experience is that one can usually make 1 small enough to achieve 
convergence. The cost of damping is, of course, slow convergence. In some 
cases I have seen values as low as .05 needed. In the vast majority of the 
problems that I have solved, however, no damping at all was needed. Two 
other ways in which one can deal with problems of convergence are to try 
different starting values and to reorder the equations. This involves, however, 
more work than merely rerunning the problem with lower values ofA, and I 
have generally not found it necessary to experiment with starting values and 
the order of the equations. 

Note that nothing is changed in the foregoing discussion if, say, yr, is also on 
the RHS of (7.1)‘. One still passes though the model in the same way. This 
generally means, however, that it takes longer to converge, and more damp- 
ing may be required than if yII is only on the LHS; thus it is better to isolate 
variables on the LHS whenever possible. 

The question of what to use for a stopping rule is not as easy at it might 
sound. The stopping rule can either be in absolute or percentage terms. In 
absolute terms it is 

(7.5) I@;’ - pi;-“1 < Ei 

and in percentage terms it is 

where l i is the tolerance criterion for variable i. (If damping is used, $$’ in 
(7.5) and (7.6) should be replaced with ji;‘.) 

The problem comes in choosing the values for ei. It is inconvenient to have 
to choose different values of the tolerance criterion for different variables, and 
one would like to use just one value of< throughout. This is not, however, a 
sensible procedure if the units of the variables differ and if the absolute 
criterion is used. Setting the value of6 small enough for the required accuracy 
of the variable with the smallest units is likely to lead to an excess number of 
iterations, since a large number of iterations are likely to be needed to satisfy 
the criterion for the variables with the largest units. Setting E greater than this 
value, on the other hand, runs the risk of not achieving the desired accuracy 
for some variables. This problem is lessened ifthe percentage criterion is used, 
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but in this case one must be concerned with variables, like the level of savings 
of a sector, that can be zero or close to zero. 

My experience is that the number of iterations needed for convergence is 
quite sensitive to the stopping rule. It does not seem to be the case, for 
example, that once one has converged for most variables, one or two addi- 
tional iterations increase the accuracy for the remaining variables very much. 
There is no real answer to this problem. One must do some initial experimen- 
tation to decide how many different values of e are needed and whether to use 
the absolute or percentage criterion for a given variable. 

7.3 Stochastic Simulation 

7.3.1 The Basic Procedure 

Stochastic simulation can be either with respect to the error terms or the 
coefficient estimates, or both. It requires that an assumption be made about 
the distributions of the error terms and/or coefficient estimates. In practice 
these distributions are almost always assumed to be normal, although in 
principle other assumptions can be made. For the present discussion the 
normality assumption will be used. In particular, it is assumed that 
uI = (Us,, , u,,)’ is independently and identically distributed as multi- 
variate N(0, S). This is the Same assumption that was used for the FIML 
estimates in Chapter 6. Given an estimation technique and the data, one can 
estimate the coefficients, the covariance matrix of the coefficient estimates, 
and the covariance matrix ofthe error terms. Denote the estimates of the two 
covariance matrices pand s^ respectively. The dimension of $is m X M, and 

the dimension of P is k X k. s can be computed as h(i@, where 0 is the 

RI X T matrix of values of the estimated error terms. The computation of p 
depends on the particular estimation technique used. Given Pand given the 
normality assumption, an estimate of the distribution of the coefficient 
estimates is N(&, $). where iu is the k X 1 vector of coefficient estimates. 

,Let u: denote a particular draw of the WI error terms for period t from the 
N(0, 3) distribution, and let LY* denote a particular draw of the k coefficients 
from the N(&, P) distribution. Given u: for each period t of the simulation 
and given (Y*, one can solve the model. This is merely a deterministic 
simulation for the given values of the error terms and coefficients. Call this 
simulation a “trial.” Another trial can be made by drawing a new set of values 
of u: for each period t and a new set of values ofol*. This can be done as many 
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times as desired. From each trial one obtains a prediction of each endogenous 
variable for each period. Let & denote the value on the jth trial of the 
k-period-ahead prediction of variable i from a simulation beginning in period 
1. For Jtrials, the estimate of the expected value of the variable, denoted $i,k, is 

Let & denote the variance of the forecast error for a k-period-ahead 
forecast of variable i from a simulation beginning in period t. Given the J 
trials, a stochastic-simulation estimate of & (denoted &J is 

where j’,, is determined in (7.7). 
It is also possible to treat the coefficients as known and draw only from the 

distribution of the error terms. For a one-period-ahead forecast and known 
coefficients, the estimated variance is merely the estimated variance of the 
reduced form error term. 

It should be stressed that these stochastic-simulation estimates ofthe means 
and variances are not exact. There are two reasons for this. The first is that the 
true distributions ofthe error terms and coefficient estimates are not known; 
one must always draw from estimated distributions. The second is sampling 
error that results from taking only a finite number of draws. 

7.3.2 The Possible Nonexistence of Moments 

It may be the case that the forecast means and variances do not exist, and this 
problem requires some discussion. For linear models Sargan (1976) has 
shown that for most overidentified models the 2SLS and 3SLS reduced form 
estimators have no moments of positive integral order. (A general theorem 
regarding the nonexistence of moments is given in Phillips 1984, theorem 
3.9.1.) For linear models Sargan (1973) has also shown that the FIML reduced 
form estimates have finite moments of up to order T-K-G, where T is the 
number of observations, Kis the number ofexogenous variables in the model. 
and G is the number of endogenous variables in the model. 

In practice, the possible nonexistence of moments is generally ignored: 
means and variances are estimated as if they always exist. One reason the 
nonexistence of moments does not appear to arise in practice is that extreme 
draws of the error terms and coefficient estimates are generally not used. By 
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“extreme“ in this case is meant a draw that results in the failure of the 
Gauss-Seidel technique to find a solution ofthe model. In many ofthese cases 
it may be that with further damping and experimenting with the technique 
the solution could be found, but in some cases it may be that a solution truly 
does not exist. By throwing away the extreme draws. one is effectively 
sampling from truncated distributions, where the moments are likely to exist. 

It is possible to compute more robust measures of central tendency and 
dispersion. such as the median, range. and interquartile range, and for some 
of the results in Chapter 8 I have reported measures like this. The measure of 
dispersion that I have used (denoted 6,) is the following: 

FF,~ is the value for which 34.135 percent of the Jtrial values lie above it and 
below the median, and $$ is the value for which 34. I35 percent of the Jtrial 
values lie below it and above the median. For the normal distribution sUk 
equals &except for sampling error, and thus the size of&,, is something that 
one may have some feeling for. Its size is similar to the size of the square root 
ofthe variance ifthe variance exists and if the ttue error distribution is close to 
being normal. Another way of looking at S,, is that it is like, say, the 
interquartile range except that pix - 4’~~ encompasses 68.270 percent of the 
values rather than 50.0 percent ofthe values. Ifthe variance does not exist for 
a particular problem and if the number of trials is large. one might expect airk 
to be considerably larger than a,,,. Therefore, by computing both measures 
one has at least a loose check on the possible nonexistence of moments. 

Another approach to the problem ofthe possible nonexistence ofmoments 
is to modify an estimator in such a way that it is guaranteed to have moments. 
For linear models, for example, Maasoumi (1978) has proposed an estimator 
of the reduced form coefficients that is a weighted average of the unrestricted 
least squares estimator and the 3SLS estimator. The weight on the least 
squares estimator, which has finite moments, is nonzero when the two sets of 
estimates are far from each other according to a certain criterion. This way of 
truncating the 3SLS estimator is enough to ensure that the modified version 
has fmite moments of up to order T-K-G, where Tis the number of observa- 
tions, K is the number of exogenous variables, and G is the number of 
endogenous variables. 

It is not clear whether an approach like Maasoumi’s can be extended to 
nonlinear models and whether it will be practical ifit can. It may be that the 
main way in which this problem is dealt with in practice for large nonlinear 
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models is merely to truncate the distributions by not using extreme draws that 
occur during the stochastic simulations. 

7.3.3 Numerical Procedures for Drawing Values 

A standard way of drawing values of a * from the N(&, P) distribution is to ( 1) 
factor numerically (using a subroutine package) pinto PP’, (2) draw (again 
using a subroutine package) k values of a standard normal random variable 
with mean 0 and variance 1, and (3) compute (Y* as & + Pe, where e is the 
kX 1 vector of the standard normal draws. Since Eee’ = I, then 
E(o* - &)(a* - &)’ = EPee’P’ = p, which is as desired for the distribution 
of o1*. A similar procedure can be used to draw values of u: from the hT(O, 3) 
distribution: 3 is factored into PP’, and u: is computed as PC, where e is a 
m X I vector of standard normal draws. 

An alternative procedure for drawing values of the error terms, derived 
from McCarthy ( 1972) has also been used in practice. For this procedure one 
begins with them X Tmatrix ofestimated error terms, 6’. Tstandard normal 
random variables are then drawn, and U: is computed as T*&, where e is a 
TX 1 vector of the standard normal draws. It is easy to show that the 

covariance matrix of u: is ,?, where, as earlier, 3 is $?crf. 

An alternative procedure is also available for drawing values of the coeffi- 
cients. Given the estimation period (say, I through T) and given 2, one can 
draw T values of U: (t = 1, , T). One can then add these errors to the 
model and solve the model over the estimation period (static simulation, 
using the original values of the coefficient estimates). The predicted values of 
the endogenous variables from this solution can be taken to be a new data 
base, from which a new set of coefficients can be estimated. This set can then 
be taken to be one draw of the coefficients. This procedure is more expensive 
than drawing from the l\i(S, fi distribution, since reestimation is required for 
each draw, but it has the advantage of not being based on a fixed estimate of 
the distribution of the coefficient estimates, It is, of course, based on a fixed 
value of 2 and a fixed set of original coefficient estimates. 

7.3.4 Previous Studies and Results 

Stochastic simulation has not been widely used in practice, but a few studies 
do exist. Studies in which only draws from the distribution ofthe error terms 
have been made include Nagar (1969); Evans, Klein, and Saito (1972); 
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Fromm, Klein, and Schink (1972); Green, Leibenberg, and Hirsch (1972); 
Cooper and Fischer (1972); Sowey (1973); Cooper (1974); Garbade (1975); 
Bianchi, Calzolati. and Corsi (1976); and CaIzolari and Corsi (1977). Studies 
in which draws from both the distribution of the error terms and the distribu- 
tion of the coefficient estimates have been made include S&ink (1971), 
(1974); Haitovsky and Wallace (1972); Cooper and Fischer (1974); Muench, 
Rolnick, Wallace. and Weiler (1974); and Fair (1980a). 

One important empirical conclusion that can be drawn from these stochas- 
tic simulation studies is that the values computed from deterministic simula- 
tions are quite close to the mean predicted values computed from stochastic 
simulations, In other words, the bias that results from using deterministic 
simulation to solve nonlinear models appears to be small. This conclusion has 
been reached by Nagar ( 1969); Sowey (1973): Cooper (1974); Bianchi, Calzo- 
lari, and Corsi (1976); and Calzolari and Corsi (1977) for stochastic simula- 
tion with respect to the error terms only and by Fair (1980a) for stochastic 
simulation with respect to both error terms and coefficients. The results 
reported in Section 7.5.1 for the US model also confirm this conclusion. 

7.4 Subjective Adjustment of Models 

In actual forecasting situations most models are “subjectively adjusted” 
before the forecasts are computed. The adjustments take the form of either 
using values other than zero for the future error terms or using values other 
than the estimated values for the coefficients. Different values of the same 
coefficient are sometimes used for different periods. Adjusting the values of 
constant terms is equivalent to adjusting the values of the error terms, given 
that a different value of the constant term can be used each period. Adjust- 
ments of this type are sometimes called “add factors.” One interpretation of 
add factors, which is stressed by Intriligator (1978, p. 5 16), is that they are the 
user’s estimates of the future values of the error terms. With enough add 
factors it is possible to have the forecasts from a model be whatever the user 
wants, subject to the restriction that the identities must be satisfied. Most add 
factors are subjective in that the procedure by which they were chosen cannot 
be replicated by others. A few add factors are objective; for example, the 
procedure of setting the future values ofthe error terms equal to the average of 
the past two estimated values is an objective one. This procedure, along with 
another type of mechanical adjustment procedure, is used for some of the 
results in Haitovsky, Treyz, and Su (1974). (See Green, Liebenberg, and 
Hirsch 1972 for other examples.) 
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7.5 Computational Results 

7.5.1 The US Model 

The US model consists of 30 stochastic equations, 169 unrestricted coeffi- 
cients, and 98 identities. The covariance matrix ofthe error terms (SJ is thus 
30 X 30. and the covariance matrix of the coefficient estimates (Vj is 
169 X 169. 

For the solution of the model, the stopping rule for the Gauss-Seidel 
technique was taken to be in percentage terms and the tolerance value was 
chosen to be .OOl percent. The first 30 equations, which are the stochastic 
equations, were used for the convergence check. If each of the successive 
predictions of the first 30 variables were within the tolerance value. conver- 
gence was taken to be achieved. Not checking the identities avoided the 
problem that some of the values of the variables determined by identities are 
close to zero. Experimentation with alternative (and more precise) stopping 
rules indicated that the procedure of checking only the first 30 variables 
provided sufficient accuracy. The number of iterations needed for conver- 
gence varied between about 7 and 13 for a typical job. The time taken to solve 
the model for one quarter was about .2 seconds on the IBM 4341 and about 
1.5 seconds on the VAX. No damping was used for any ofthe variables for the 
Gauss-Seidel technique. 

The results of solving the model for the 197X1- 19791V period are pre- 
sented in Table 7-1. The 2SLS estimates were used for these results. The 
values in the 0 rows are predicted values from a deterministic simulation, 
where the error terms have been set equal to zero. The time for this simulation 
was about 1.6 seconds on the IBM 4341 (.2 seconds X 8 quarters) and about 
12 seconds on the VAX (1.5 seconds X 8 quarters). The values in the a rows 
are predicted values from a stochastic simulation in which only error terms 
are drawn. Each trial for this simulation consists of 8 draws of 30 values each 
from the N(0, s) distribution. A total of250 trials were made. The cost of each 
trial is roughly the cost of solving the model once for the eight quarters. The 
total cost for the 250 trials, as noted at the bottom of Table 7- 1, was about 6.7 
minutes on the IBM 4341 and 49 minutes on the VAX. 

The values in the b and b’ rows are predicted values from a stochastic 
simulation in which draws of both error terms and coefficients are made. The 
results in the two rows are based on the same simulation. The b-row values are 
mean values, and the b’-row values are median values. Each trial for this 
simulation consists of eight draws of 30 values each from the N(0, 3) 
distribution and one draw of 169 values from the N(&, P) distribution. A total 
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of 250 trials were also made for this simulation. The total cost for the 250 
trials was about the same as the cost ofthe 250 trials for the a-row simulation. 

The main conclusion to be drawn from the results in Table 7-1 is that the 
predicted values from the deterministic simulation are quite close to the 
corresponding predicted values from the stochastic simulations. This, as 
noted in Section 7.3, is a common result. The bias that results from solving 
nonlinear models deterministically appears to be small for most models. 

The other important conclusion from the results is that the median values 
are quite close to the corresponding mean values. In other words, the results 
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are not sensitive to the use of a more robust measure of central tendency. For 
none of the draws for the results in the table did the Gauss-Seidel technique 
fail to find a solution, and therefore no draws had to be discarded as being too 
extreme. 

7.5.2 The MC Model 

The solution of the MC model is a fairly large computational problem. For 
each of the 42 countries for which there are estimated equations (not counting 
the United States), there are up to 11 stochastic equations and 9 identities. In 
addition. there are 2,388 estimated trade share equations. The model is solved 
in the following way. 

I. Given exports, X75$,, and the import price index, PM,, country i’s 
model is solved using the Gauss-Seidel technique. Each model consists of all 
or some subset of the 20 equations in Table B-3 (Appendix B). 

2. Given the solution ofeach country’s model, the calculationsin Table B-4 
(Appendix B), including the calculations of the trade shares, are performed. 
Table B-4 takes from each country the predicted value of imports, M75$.4,, 
the predicted value ofthe export price index, P,I’;. and the predicted value of 
the exchange rate, e,. It returns to each country the predicted value of its 
exports. X75$, the predicted value of its import price index, P.Wi, and the 
predicted value of the world price index, PW$,. 

3. Given X75$! and PIWj from step 2, each country’s model is solved again. 
The Table B-4 calculations are then performed again. This process is repeated 
until the successive predicted values from one iteration to the next are within 
some prescribed tolerance level. 

This procedure consists of two types of iterations. The first is the standard 
Gauss-Seidel type for each country’s model separately (step 1). and the second 
is the iteration between Tables B-3 and B-4 (step 3). The tolerance criterion 
for the second type of iteration should be greater than that for the first, since 
otherwise sufficient accuracy may not be achieved for the first type of iteration 
to achieve the required accuracy for the second. 

This procedure worked quite well for the MC model. The average number 
of iterations for each country’s model was usually less than 10, and the 
number of iterations ofthe second type varied between about 3 and 15. The 
total time taken to solve the model for one quarter varied between about 20 
and 40 seconds on the IBM 434 1 and about 2 and 4 minutes on the VAX. As 
noted earlier, the times for the US model for one quarter are .2 seconds on the 
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IBM 4341 and 1.5 seconds on the VAX. The MC model is thus considerably 
more expensive to solve than the US model. For this reason, no stochastic 
simulation experiments were performed for the MC model. Deterministic 
simulations were used to examine both the model’s predictive accuracy and 
its properties. The accuracy is examined in Section 8.6, and the properties are 
discussed in Section 9.5. 


