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1 Introduction

HE purpose of this paper is to point out

how the efficient instrumental-variables
technique discussed by Brundy and Jorgenson
(1971) can be modified to take into account
auto-regressive properties of the error terms.
The limited-information and full-information
estimators proposed in this paper are consistent
and have the same asymptotic distributions as
the limited-information and full-information
maximum likelihood estimators, respectively.

The full-information estimation of simul-
taneous equations models with auto-regressive
errors has been discussed by Sargan (1961),
Hendry (1971), Chow and Fair (1973), and
Dhrymes (1971). Sargan originally proposed
the full-information maximum likelihood esti-
mation of such models, and Hendry and Chow
and Fair have recently developed computa-
tionally feasible methods for obtaining the
maximum likelihood estimates. Hendry con-
sidered only the case of completely unrestricted
auto-regressive coefficient matrices (i.e., no zero
elements), whereas Chow and Fair considered
the case of restricted auto-regressive coefficient
matrices as well. Dhrymes has recently pro-
posed the three-stage least squares estimator of
simultaneous equations models with auto-re-
gressive errors. Dhrymes also considered only
the case of completely unrestricted auto-re-
gressive coefficient matrices.

The limited-information estimation of simul-
taneous equations models with auto-regressive
errors has been discussed by Sargan (1961),
Amemiya (1966), and Fair (1970), among
others. Sargan proposed the limited-informa-
tion maximum likelihood estimation of such
models, and Amemiya and Fair considered
various two-stage least squares estimators of
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such models. Most of the work on limited-in-
formation estimators has been concerned with
the case of diagonal auto-regressive coefficient
matrices.

Brundy and Jorgenson’s criticism of the two-
and three-stage least squares estimators,
namely, that the first stage involves estimating
reduced form equations with a very large num-
ber of variables included in them, holds even
more so for models with auto-regressive errors.
For these models, the reduced form equations
include not only all of the predetermined vari-
ables in the system but also all of the lagged
endogenous and lagged predetermined vari-
ables. In fact, one of the main purposes of the
work by Fair (1970) was to suggest ways in
which the number of variables used in the first
stage regressions of two-stage least squares
might be decreased with perhaps small loss of
asymptotic efficiency. The advantage of the
instrumental-variables techniques proposed in
the Brundy-Jorgenson paper and in this paper
is that the first stage regressions need not be
run.

II The Model

The model to be estimated is *

Yr+XB =10, (1)
where ¥ is a # X p matrix of endogenous vari-
ables, X is a »# X g matrix of predetermined
variables, U is a # X p matrix of error terms,
and T and B are p X p and g X p coefficient
matrices, respectively. The X matrix may in-
clude lagged endogenous variables as well as
exogenous variables. # is the number of ob-
servations. As distinct from the Brundy-Jor-
genson paper, it is assumed here that the error
terms in U follow a m'™ order auto-regressive
process:

U=U_ RV 4+ .. .+ U_,R™ + E, (2)

1The notation here follows as closely as possible the
notation in Brundy and Jorgenson (1971).
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where the R‘® matrices are p X p coefficient
matrices, E is a # X p matrix of error terms,
and the subscripts denote lagged values of the
terms of U. Combining (1) and (2) yields

YT + XB = Y_,TR® 4 X _,BRW 4 . .
+ Y_,TR™ 4+ X_.BR™ 4+ E,

3)
From (3) the reduced form for ¥ is
Y = — XBr-1 4 Y_,TRO-1
4+ X_;BRMP-1 4 .
4+ Y_,TR(mp-1
+ X_,BR(m-1 + Er—l’
4)
or
Y =0Q0mm+V, (5)
where V=ETr-1!, Q=[XYV_,X_,...YV_,

X _n], and II is partitioned according to Q.

It is convenient to write the structural equa-
tions in (1) in the form:

Yi = Z8; + uj, j=1,2}"')P) (6)
where
Z;=[Y;X;], 8§ = [ZJ]
j

As in Brundy and Jorgenson (1971, p. 208), ¥;
is a vector of observations on the j* column of
Y whose structural coefficient has been nor-
malized to one, V; is a matrix of observations
on the other endogenous variables included in
the equation, X; is a matrix of observations on
the predetermined variables included directly in
the equation, #; is the j*® column of U, and v;
and B; are structural coefficient vectors cor-
responding to ¥; and X; respectively. The p
equations in (6) can be combined to yield

y=28+u, (7)
where
M Z;0 ..
V2 0 Zo..
y=| |, z=| " -
3 0 0

In order to implement the instrumental vari-
ables estimator in the auto-regressive case, it
is necessary to transform (7) so that the error
term on the right-hand side is e rather than #,
where

.0 317 21

.0 82 Uz
, 8= ) , U=

3p Up

.2,
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e; being the j* column of E. This transforma-
tion is:
y— (RW'xl)y_; —. ..
— (R™ xI)y_, = [Z — (RV'xI)Z_,
o — (R )INZ _,18 + e,
or
J=28+e¢ (9)
where 7 is an #z X 7 identity matrix and the sub-
scripts on y and Z denote lagged values.

(8)

II The Full-information Estimator

The basic idea of the Brundy-Jorgenson
paper is that if a set of instrumental variables
can be found that is based on a consistent esti-
mate of II, then using this set of instrumental
variables will result in asymptotically efficient
estimates (within the class of either limited-in-
formation or full-information methods). In
the present case, IT in (5) is a function of the
R® - matrices as well as of I' and B. Con-
sequently, if consistent estimates of T, B, and
the R® matrices are available, then a consis-
tent estimate of II in (5) is available. The
equations in (5) can then be used to generate
consistent predictions of the endogenous vari-
ables. Consistent estimates of I, B, and the
R® matrices can also be used to obtain a con-
sistent estimate of the variance-covariance
matrix, 3, of the error terms E in (3).

Assume, therefore, that initial consistent
estimates of T', B, and the R matrices are
available 2 so that a consistent estimate of II

21t will be seen in section VI how initial consistent
estimates of these matrices can be obtained.
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in (5) is available. The matrix Z consists of
current endogenous variables as well as of pre-
determined variables. Since a consistent esti-
mate of II is assumed to be available, (5) can
be used to generate consistent predictions of the
endogenous variables in the model. Let Z* de-
note the matrix Z except for the replacement of
the current endogenous variables in Z by their
predicted values from (5). Let y* and Z* de-
note the matrices y and Z, respectively, ex-
cept for the use of consistent estimates of the
R™ matrices rather than the actual matrices
to transform the variables. Also, let Z** denote
the matrix Z* except for the replacement of Z
by Z*, and let W = (3*~*xI) Z** where 3* is
a consistent estimate of 3. Then the “full-in-
formation instrumental variables efficient” 3
estimator in the auto-regressive case (say,
FIVER) can be defined to be:

d = (WZ*)—1W’'y*, (10)

It is easy to show that the FIVER estimator
is consistent. From (8) or (9) and the defini-
tion of y* and Z*, it follows that

y* = 2% + (R — R*Wxu_y

oo (R — REW)xD)u_,, + e,
(11)
where the R*® matrices are consistent esti-
mates of the R® matrices. Substituting (11)
into (10) yields:

d=38+ (WZ)'W[((RYV — R¥*M)xl)u_,

+. o (R — R¥)xu_ )

+ (W'Z*)—1W’e. (12)
Assuming that plim » (W’ Z*) ! exists and is
finite, it follows that plim d = §, since plim
n~1W’e = 0 because of the inclusion in W of
only predetermined variables or linear func-
tions of predetermined variables and since the
R™ matrices are consistently estimated.*

It is also easy to see that the FIVER esti-
mator is asymptotically efficient if the R*
matrices are known with certainty. In this case
the model in (9) is merely a standard simul-
taneous equations model in y and Z. Brundy
and Jorgenson have shown that the full-in-
formation instrumental-variables estimator
based on instruments generated from a con-
sistent estimate of the reduced form matrix II

®Brundy and Jorgenson (1971), p. 214.

*See Dhrymes (1971), Lemma 8, for a detailed proof
of the consistency of the three-stage least squares estimator
of the first-order auto-regressive model. A detailed proof in

the present case would proceed in a similar manner as
Dhrymes’ proof.
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and the three-stage least squares estimator
have the same asymptotic distribution. Now,
the formula for the FIVER estimator in (10)
is the instrumental-variables analogue to the
three-stage least squares formula (30) in
Dhrymes (1971).5 Therefore, since the
three-stage least squares estimator of the
standard simultaneous equations model is as-
ymptotically efficient, the FIVER estimator is
asymptotically efficient in the case of known
R™® matrices.

For the case in which the R‘® matrices are
unknown and must be estimated, Dhrymes
(1971) has shown for the three-stage least
squares estimator that if one iterates back and
forth between estimates of & and estimates of
the R‘® matrices and if convergence is reached,
then asymptotically, the set of equations that is
solved by this procedure is the same set of
equations that the full-information maximum
likelihood estimator satisfies. This conclusion
also holds for the FIVER estimator, because
asymptotically formula (10) for the FIVER
estimator is the same as Dhrymes’ formula
(30) for the three-stage least squares esti-
mator. Therefore, the FIVER estimator, based
on iterating back and forth between estimates
of & and estimates of the R matrices ¢ until
convergence is reached, has the same asymp-
totic distribution as the full-information maxi-
mum likelihood estimator.

®Dhrymes actually considered only the case of a first-
order auto-regressive process, but it is easy to generalize
his arguments and formulas to higher-order processes. Like-
wise, although Dhrymes considered only the case of com-
pletely unrestricted auto-regressive coefficient matrices, his
formula (30) is valid for the case of restricted matrices as
well.

In the notation of this paper, Dhrymes’ formula (30)
generalized to higher-order auto-regressive processes is

d = (W'Z¥*)" W'j*,
where Z** (which is also included in the definition of W)
for the three-stage least squares case differs from the Z**
for the instrumental-variables case in that the predictions
of the endogenous variables, which are a part of Z**, are
based on first-stage, reduced-form regressions rather than
on generated predictions from (5) using any consistent
estimate of w. It can be seen, using the fact that both the
three-stage least squares estimator and the instrumental-
variables estimator are based on consistent estimates of =
and the fact that the predicted values of the reduced-form
error terms for the three-stage least squares estimator are
orthogonal to all of the predetermined variables in the
model, that formula (10) and Dhrymes’ formula (30) are
asymptotically the same.

® The estimation of the R™ matrices is discussed in sec-
tion V.
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Ignoring the stochastic nature of the esti-
mates of the R® matrices, the asymptotic vari-
ance-covariance matrix of the FIVER esti-
mator is:

asy-var-cov d = »~1 plim »

(W’Z*) W’ eeW (Z¥W) 1. (13)
From the fact that 3* is a consistent estimate of
S, that Z** differs from Z* merely by the re-
placement of the endogenous variables in Z*
by predictions of the endogenous variables
based on a consistent estimate of II in (5), that
the variance-covariance matrix of e is 3x/,
and that W = (3*~1xI)Z** (13) reduces to
n~! plim » (W’'Z*)~'. The asymptotic vari-
ance-covariance matrix of d can thus be esti-
mated as (W’Z*)~!, although this estimate
ignores the stochastic nature of the estimates
of the R‘® matrices.

IV The Limited-information Estimator

In this section the limited-information case
will be analyzed under the assumption that the
R™ matrices are diagonal. A brief descrip-
tion of how one can estimate models with non-
diagonal R® matrices by limited-information
techniques is presented in section VII.

If the R® matrices are diagonal, then equa-
tion (6) can be transformed as:

Yi— Py — . ..
= 15 Yjm = (Zj — 1M Zi o —
- rjf(m)ZI—M)si +e,j=12,...,p
or

¥i = 28 + e, (15)
where the subscripts on y; and Z; denote lagged
values and where 7;;/* is the j* diagonal ele-
ment of R (k=1,...,m). Let Z*; de-
note the matrix Z; except for the replacement
of the current endogenous variables in Z; by
their predicted values from (5). Let y*; and
Z*; denote the matrices ¥; and Z; respec-
tively, except for the use of consistent esti-
mates of the 7,,# coefficients rather than the
actual coefficients to transform the variables.
Also, let W; denote the matrix Z*; except for
the replacement of Z; by Z*, Then the
“limited-information instrumental variables
efficient” 7 estimator in the auto-regressive case
(say, LIVER) is:

(14)

“Brundy and Jorgenson (1971), p. 211.
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dj = (W;Z%;) ='W’ i3%;. (16)
The discussion of the asymptotic properties

of the LIVER estimator is similar to the dis-

cussion of the asymptotic properties of the

FIVER estimator and need only be briefly

elaborated on here. The LIVER estimator is

consistent, and within the class of limited-in-
formation estimators, the estimator is asymptot-
ically efficient if the 7;® coefficients are
known with certainty. For the case in which
the 7% coefficients are unknown and must be
estimated, Amemiya (1966) in equations (19)
and (20) has presented the two-stage least
squares analogue of the limited-information
maximum likelihood estimator and has shown
that the two estimators have the same asymp-
totic distribution. Equations (19) and (20) in

Amemiya (1966) can be solved by iterating

back and forth between estimates of the struc-

tural coefficients and estimates of the auto-re-
gressive coefficient.® Asymptotically, formula

(16) for the LIVER estimator is the same as

Amemiya’s formula (19) for the two-stage least

squares estimator.? Therefore, the LIVER esti-

mator, based on iterating back and forth be-

tween estimates of §; and estimates of the 7%

coefficients ** until convergence is reached, has

the same asymptotic distribution as the limited-
information maximum likelihood estimator.

Ignoring the stochastic nature of the estimates

of the 7, coefficients, the asymptotic vari-

ance-covariance matrix of the LIVER esti-
mator is #~'oj; plim n(W’;Z*;)~*, which can
be estimated as o*;;(W’,Z*;)~', where o*}; is

the j** diagonal element of 3*.

V Estimates of the R(* Matrices

Given consistent estimates of the I' and B
matrices, consistent estimates of the error

® The scanning and iterative procedures discussed in Fair
(1970) are two ways of solving equations (19) and (20) in
Amemiya (1966), although the basic estimator discussed in
Fair (1970) is equivalent to Amemiya’s two-stage least
squares analogue of the limited-information maximum like-
lihood estimator only if all of the predetermined, lagged
predetermined, and lagged endogenous variables are used as
regressors in the first stage regressions. Otherwise, efficiency
is lost if not all of these variables are used as regressors in
the first stage regressions.

® Amemiya considered the case of a first-order auto-
regressive process, but it is easy to generalize his formulas
to higher order processes.

The estimation of the r;;™ coefficients is discussed in
section V.
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matrices U, U_,, . . . , U_,, can be obtained
from the current and lagged versions of (1).
Let U* denote any consistent estimate of U, and
let U* denote any consistent estimate of U,
where U= (U_, ... U_,). Also, let R' =
(RM . . . R™") and write (2) as

U=UR+E. (17)
Now, for known values of U and U, (17) can
be interpreted as a Zellner “seemingly unre-
lated regression” model unless the R matrix is
completely unrestricted, in which case (17) is
merely the standard multivariate linear regres-
sion model. Since consistent estimates of U
and U are available, for the full-information
case R can be estimated as

ﬁ* — (ﬁ*’z—lﬁ*)—lﬁ*’z*l—[]*, (18)
where 3* is a consistent estimate of 3. For the
case in which R is completely unrestricted, the
full-information estimator is merely (0%
U*)~1 ¥ U*. This later case is the case ana-
lyzed by Hendry (1971) and Dhrymes (1971).
For the limited-information case, the (diagonal)
elements of the R® matrices can be estimated
by merely regressing each column of U* on the
corresponding columns of U*_,, . . ., U*_,.
For the limited-information case, information
about 3* is ignored.

If one iterates back and forth between esti-
mates of the structural coefficients and esti-
mates of the R‘® matrices and if convergence
is reached, then, as discussed above, the limited-
information and full-information estimators of
the R® matrices have the same asymptotic
distributions as the limited-information and
full-information maximum likelihood esti-
mators respectively. Convergence is, of course,
not guaranteed from iterating. It is interesting
to note that for the full-information maximum
likelihood case, iterating back and forth be-
tween the estimates of the structural coeffi-
cients and the estimates of the R‘® matrices is
guaranteed to converge provided that the
separate maximization problems can be solved
— see Chow and Fair (1973).

Ignoring the stochastic nature of the esti-
mates of the structural coefficients, the asymp-
totic variance-covariance matrix of R* can be
estimated as (U*'3*~10U*) 1, or as (¥ T*) 1
if R is completely unrestricted. In the limited
information case, an estimate of the variance-
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covariance matrix of the 7,;/* coefficient esti-
mates can be taken to be the estimate of the
variance-covariance matrix computed from
each of the least squares regressions.

VI Obtaining Initial Consistent Estimates

There are many ways in which initial con-
sistent estimates of I', B, and the R‘® matrices
can be obtained. One general technique is as
follows: Treat all lagged endogenous variables
(as well as endogenous variables) as endoge-
nous, and estimate each equation of (1) by in-
strumental variables ignoring the auto-regres-
sive properties of the error terms. This will
result in consistent estimates of ' and B as
long as only exogenous and lagged exogenous
variables are used as instruments. Use these
consistent estimates to compute consistent esti-
mates of the residuals U, U_,, . .., U_,.
Then for each equation, regress the unlagged
estimated residuals on the appropriate lagged
estimated residuals. The set of lagged esti-
mated residuals will, in general, include both
lagged estimated residuals of the particular
equation being estimated as well as lagged esti-
mated residuals of other equations of the
model. This procedure will yield consistent
estimates of the R* matrices since the resid-
uals are consistently estimated. In special
cases (such as diagonal R matrices) there
are, of course, other techniques that can be used
to obtain initial consistent estimates. For ex-
ample, in the first-order case with a diagonal
R™ matrix, the technique described in Fair
(1970) can be used.’*

“Dhrymes, Berner, and Cummins (1970) have also
considered the estimation of the first-order auto-regressive
model with a diagonal R® matrix. The estimator that they
propose is similar to, but is not, a LIVER estimator.
Dhrymes, Berner, and Cummins first obtain consistent esti-
mates of T' and B in (1) by an instrumental-variables tech-
nique treating lagged endogenous variables as endoge-
nous. They then use these estimates in the reduced form of
(1) —ignoring the auto-regressive process of U —and ob-
tain a set of instrumental variables by dynamic simulation
(ie., using generated values of the lagged endogenous
variables as opposed to the actual values). They also use
the estimates of I' and B to estimate U and U_; and from
the estimates of U and U., to obtain estimates of the
diagonal elements of R® by ordinary least squares. They
then use the set of instrumental variables and the estimates
of the elements of R™ to obtain new estimates of I' and
B. Johnston has shown that the estimator is not asympto-

tically efficient within the class of limited-information
estimators.
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VII Limited-information Estimation of
Models with Nondiagonal R* Matrices

In this section it will be shown how limited
information techniques can be used to estimate
models with nondiagonal R®* matrices. As-
sume without the loss of generality that the
following equation is to be estimated:

Vi = Z9; + uj, (19)
where
Z;=[Y;Xj], 8 = [Ej] y =1 Pu_y

+ 7 Dui_1 + ¢,
r;* and 7;*) being elements of R™. Equa-
tion (19) can be rewritten as
yi— ryPu_y = Z8i+ 7P uj_1 + ¢;
=Z8; + rVyi—1 — 1V 25185 + ¢
(20)
or
¥i = Z%i + e, (21)
where
¥i= 9 — ryPuwiy— ry Py,
Zj=2Z;—ryWZ_.
Equation (21) is in a form like (15) except
for the inclusion of the — 7;;Vu,_; term in ;.
If consistent estimates of 7; and the residual
vector #,_, are available, however, then the
estimation of (21) by the LIVER technique
can proceed like the estimation of (15). All
that has been done is the subtraction of a con-
sistent estimate of 7;Vu;_, from ¥; in (15).

VIII Conclusion

One of the main advantages of the estimators
proposed in this paper is that first-stage, re-
duced-form regressions do not have to be run.
For the single-equation case, a disadvantage is
that an entire model must be specified and con-
sistently estimated in order to obtain efficient
estimates of any single equation. In at least
some practical applications this may be a
serious disadvantage, and for these cases one
might wish to resort to a less efficient estimator
like the two-stage least squares estimator pro-
posed in Fair (1970), which does not require
the specification and estimation of the entire
model and does not require that all of the pre-
determined, lagged predetermined, and lagged
endogenous variables be used regressors in the
first stage regressions.

Since in the full-information case it is now
feasible to estimate models with auto-regres-
sive errors by the maximum likelihood method,
it might be desirable to attempt to estimate a
model by full-information maximum likeli-
hood (FIML) before resorting to the FIVER
estimator. As discussed in Chow (1964), there
are some methodological reasons for preferring
the FIML estimator over other asymptotically
efficient estimators. It is possible, however,
that the FIVER estimator will be able to handle
larger models than will the FIML estimator.
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