
Chapter Three 

Econometric Issues 

3.1 INTRODUCTION 

Most of the econometric issues that pertain to this study are discussed in 
this chapter. The three main issues that are discussed are the treatment of 
serial correlation problems, the computation of the two stage least squares 
(TSLS) estimates, and the computation of the full information maximum 
likelihood (FIML) estimates. The model is nonlinear in both variables and 
parameters, and so one cannot rely directly on the standard textbook proce- 
dures for estimating linear models in computing the TSLS and FIML esti- 
mates of the model. 

The following notation will be used for the discussion in this 
chapter. Let G denote the total number of equations in the model, M the 
number of stochastic equations, N the total number of predetermined 
(exogenous and lagged endogenous) variables, and T the number of observa- 
tions. Write the gth equation of the model as: 

$$&,, , Ycr, XI*?. , XNl, &)=u,,,(g=I ,... *G),(r=l,..., r), (3.1) 
F 

where the .JJ~$ are the endogenous variables, the xi! are the predetermined 
variables, /3, is the vector of unknown coefficients in equation g, and u8, is 
the error term corresponding to equation g. For identities, Us, is zero for all 
f. It will be assumed without loss of generality that the stochastic equations 
occur first in the model. The first A4 equations in the model are thus stochastic, 
with the remaining G - M equations being identities. For the model as 
presented in the last chapter, M is 26 and G is 83. The basic period of estima- 
tion is 1954-1974111 which gives a value of T of 82. 

Counting the strike dummies, there are 78 exogenous variables 
in the model plus the constant term. There are also a number of lagged 
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endogenous and lagged exogenous variables that appear as explanatory 
variables in the stochastic equations and in the identities. The value of N for 
the model is thus some number greater than 78. The error terms in some of 
the equations show evidence of first order serial correlation, and, as mentioned 
in section 1.1, the serial correlation assumption was retained for 12 of the 26 
stochastic equations. There are 166 unknown coefficients to estimate in the 
26 stochastic equations, counting the serial correlation coefficients, but not 
counting the variances and covariances of the error terms. 

It will be useful in the following discussion to consider a particu- 
lar example of one of the equations in (3.1). Assume that the first equation is: 

log et = B,‘ + p,2 logYE + Pi, logJ)21+ a,4 logY,r + &,x2, + Ulf. 

(3.2) 

where 

Ulf = P,,U,,e, t-El,. (t=I,...,T). (3.3) 

The functional form of Equation (3.2) is common to a number of the sto- 
chastic equations in the model. Equation (3.2) is nonlinear in variables, but 
linear in the unknown coefficients. The first order serial correlation assump- 
tion in (3.3) is, as just mentioned, ccmmon to 12 of the stochastic equations. 
The error term E,, in Equation (3.3) is assumed not to be serially correlated. 

3.2 THE TREATMENTOF SERIAL 
CORRELATION PROBLEMS 

A convenient way of handling an equation with a first order serially core- 
lated error term is to convert the equation into one that is nonlinear in 
coefficients, but that has a serially uncorrelated error term. Lagging Equa- 
tion (3.2) once, multiplying through by p,,, and subtracting the resulting 
expression from Equation (3.2) yields, after some rearranging: 

+li,3 lWY*, - PllP13 l%Y,,-t f814lWY3r - PIIBL4 MY,,-, 

+!%5%t-P11P1*~2r-I +Elr. (3.4) 

Considering pl, to be just another coefficient to estimate, Equation (3.4) 
differs from Equation (3.2) by the inclusion of more explanatory variables 
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and by the inclusion of nonlinear restrictions on the coetlicients of these 
variables. The error term in the equation is, however, not serially correlated. 
The nonlinear restrictions on the coefficients result from the treatment of 
p, , as an unknown coefficient. 

The treatment of the serial correlation problem in this way means 
that the ugr error terms in (3.1) can be considered to be serially uncorrelated, 
where any initial serial correlation of the error terms has been solved out in 
the manner just described. The interpretation6f (3.1) in this way menns that 
the p, vector should be considered as including the serial correlation coeffi- 
cient when serial correlation is present in the glh equation. When serial corre- 
lation is present in an equation, the number of predetermined variables in 
the equation should also be considered to be larger than it otherwise would 
be, and the equation should be considered to be nonlinear in coefficients as 
well as, possibly, in variables. 

If observations on the endogenous and predetermined variables 
are available for t = 0, I, , T, then Equation (3.4) must be estimated for 
t = I, , T. There are ways of using information on the first observation 
more efficiently than the approach just described allows, but this added 
complication was not considered here. Ignoring the extra information on 
the first observation has no detrimental effect on the large sample properties 
of the estimators. 

The present treatment has also not cortsidrred the case where an 
error term in one equation is directly correlated with the lagged value of an 
error term in some other equation. This complication would introduce 
nonlinear restrictions on the coefficients across, as well as within, equations. 
Since no experimentation with cross-serial correlation effects was carried 
out in this study, this added complication will not be considered in this 
chapter. For the linear model case, see Chow and Fair [9] and Fair [I71 for 
a treatment of cross-serial correlation, as well as serial correlation of higher 
than first order. 

3.3 THE COMPUTATION OF THE TWO 
STAGE LEAST SQUARES ESTIMATES 

Since the model is nonlinear, explicit expressions for the reduced form 
equations cannot be derived. Consequently, consistent estimates of the 
reduced form coefficients cannot be obtained from any type of first stage 
regressions. Fortunately, the two stage least squares (TSLS) procedure does 
not require that consistent estimates of the reduced form coefficients be ob- 
tained in order to obtain consistent estimates of the structural coefficients 
in the second stage. 

Consider, for example, the estimation of Equation (3.4) by 
TSLS. The endogenous terms on the right-hand side of the equation are 
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logy,, and logy,,. If E,, is assumed not to be correlated with any variables 
on the right-hand side of the equation except log Y,, and log Y,,, then con- 
sistent estimates of the coefficients of the equation can be obtained by the 
following two stage procedure. In the first stage, regress log yz, and log Y,* 
on a common set of variables. The variables in this set should be variables 
that one feels, from knowledge of the overall model, have an effect, either 
directly or indirectly, on logy,, and log YS, and are not correlated with E,!. 
In other words, these variables should be correlated with log y2, and logy,,, 
but not with Q,. The variables in this set must include the predetermined 
variables that appear on the right-hand side of Equation (3.4) in the form 

in which they appear in the equation: the constant, log _ 

log y2,-,, .x2,, and x2,_,. Let IG, and IGz, 
XI,-1 

, log%, 

denote the predicted values 
of log Y2, and logy,, from the two regressions, and let S,, and &, denote the 
estimated residuals from the two regressions. By definition, O,, = log YZf 

A 
-logY2, and 0.“ = logy,, - I&,. 

Now replace logy2, and logY3, in Equation (3.4) with their pre- 
dicted values: 

By one of the properties of least squares, all ofthe variables on the right-hand 
side of this equation are orthogonal within the sample period to S,, and D,,. 
This is because a common set of regressors has been used for both first stage 
regressions and because this set includes all of the predetermined variables 
on the right-hand side of Equation (3.4) in the form in which they appear 
in the equation. Ed, is uncorrelated with all of the right-hand side variables 
in Equation (3.5). It is uncorrelated with the two predicted value variables 
because these variables are merely linear combinations of variables that are 
uncorrelated with 811 by assumption. Q, is uncorrelated with all of the other 
variables in the equation by assumption. Consequently, the composite error 
term in parentheses in Equation (3.5) is uncorrelated with all of the right- 
hand side variables, and so consistent estimates of this equation can be 
obtained by minimizing the sum of squared residuals with respect to the six 

coefficients: PII, Azr &, A4, AS, and pII. 
Minimizing the sum of squared residuals in Equation (3.5) is a 

nonlinear minimization problem because of the presence of p, 1. This problem 
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is not, however, very difficult to solve. One procedure that can be used is the 
iterative procedure outlined in Fair [22] (p. 509, fn. 3), which is merely the 
Cochrane-Orcutt [IO] procedure adjusted to account for simultaneous 
equations bias. Since this minimization problem is not very difficult, other 
procedures could clearly be used. The question of which procedure one uses 
to minimize the sum of squared residuals in Equation (3,s) is a numerical 
question, not a statistical one. 

The above analysis is also not limited to the particular kind of 
nonlinearity present in Equation (3.5). One could, for example, have a restric- 
tion that says that /3,2 = fi, j fll + and carry out the minimization incorpora- 
ting this restriction as well. All this would do would be to change possibly 
the numerical procedure used to carry out the minimization. The Cochrane- 
Orcutt procedure and its various generalizations, for example, are more or 
less restricted to nonlinearities caused by the presence of serial correlation 
of the error terms. 

In a very elegant paper, Amemiya [2] discusses the nonlinear 
two stage least squares estimator. He proves, for the case in which the equa- 
tion being estimated is only nonlinear in coetlicients, that the nonlinear two 
stage least squares estimator has the same asymptotic distribution as the 
limited information maximum likelihood estimator, providing that one uses 
all the predetermined variables in the model as regressors in the first stage 
regressions. (Amemiya considers only the case in which the predetermined 
variables are fixed.) For the nonlinear-in-variables case, no such theorem 
exists. The efficiency of the two stage least squares estimator in this case 
depends on how closely one has approximated the (unknown) reduced form 
equations in the first stage regressions. 

The TSLS estimates of the model are presented in Table 2-3. 
The only nonlinearity in coefficients that existed in any of the equations was 
due to the presence of the serial correlation coefficient, and so the iterative 
procedure described in [22] was used to minimize the sum of squared errors 
when nonlinearity existed. A different set of first stage regressors was used 
for each equation estimated, depending on the predetermined variables and 
the right-hand side endogenous variables included in the equation. The 
regressors that were chosen for each equation were, in addition to the ones 
that were necessary to meet the orthogonality requirement discussed above, 
ones that seemed likely to have important effects on the included right-hand 
side endogenous variables. 

The “t-statistics” that are presented in Table 2-3 are the absolute 
values of the ratios of the coefficient estimates to the estimates of their asymp- 
totic standard errors. The estimates of the asymptotic standard errors for 
those equations that were linear in coefficients (no serial correlation) were 
computed in the usual way for the two stage least squares estimator. The 
estimates were computed as the square roots of the diagonal elements of 
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8*@‘2)-‘, where 6’ is the TSLS estimate of the variance of the error term 
in the equation being estimated and i is the matrix of observations on the 
variables used in the second stage regression. A ” is placed on 2 to denote 
the fact that some of the variables in i are variables of predicted values. 
8’ is the estimate of the variance of the actual error term in the equation, 
not of the variance of the composite error lerm that is minimized in the 
second stage regression. 

For those equations that were nonlinear in coefficients because 
of the serial correlation assumption, the estimates of the asymptotic standard 
errors (including the estimates of the asymptotic standard errors of the esti- 
mates of the serial correlation coefficients) were computed in a manner 
analogous to that described in [22], p. 514, for the linear model case. Consider, 
for example, Equation (3.2). Let Z denote the matrix of observations on the 
right-hand side variables in this equation. Let 2 denote the matrix that is 

obtained from Z by replacing logy,, and logyi, in Z with I=, and 

Ia, (t = 1, , T), the latter two series being obtained in the manner 
described above. 

Define 0 to be equal to i - 6, ,Z_,, where @, , is the TSLS 
estimate of pi, and Z-, is the matrix Z lagged one period. (It is assumed 
that observations for f = 0 are available.) Then the estimates of the asymp- 
totic standard errors of the coefficient estimates other than @,, were computed 
as the square roots of the diagonal elements of a”(@@‘, where 8’ is the 
estimate of the variance of c,,: the nonserially correlated error term. The 
estimate of the asymptotic standard error of pi I was computed, as described 
in [22], as the square root of (I - fi:,)/T. 

The f-statistics and Durbin-Watson statistics presented in Table 
2-3 are meant to be interpreted more as just summary measures of the regres- 
sions than as precise statistical tests of some hypothesis. Too many assump- 
tions of classical statistical hypothesis testing have been violated in the 
process of arriving at the estimates in Table 2-3 for any rigorous interpreta- 
tion of the statistics as test statistics to be warranted. The primary way that 
the model has been tested in this study is to compare, in the manner des- 
cribed in Chapter Eight, its prediction accuracy with the prediction accuracy 
of other models. 

3.4 THE COMPUTATION OF THE FULL 
INFORMATION MAXIMUM LIKELIHOOD 
ESTIMATES 

In by now a classic paper, Chow [7] p rovides an interpretation of the full 
information maximum likelihood (FIML) estimator of a linear simultaneous 
equations model as a natural generalization of least squares. The FIML 



estimates are ones that minimize the generalized variance of the error terms 
in a model, subject to the restriction that the generalized variance of certain 
linear combinations of the endogenous variables be equal to a constant. 
The linear combination aspect of this procedure is the reason why the FIML 
estimator does not require, as do two and three stage least squares, that 
there be one natural left-hand side variable per equation. 

In the present model there is a natural left-hand side variable for 
every equation except one, Equation 70 in Table 2-2. Equation 70 is, however, 
one of the key equations in the model, it being the equation that allows the 
bill rate to be implicitly determined. Therefore, because of Equation 70 and 
the implicit determination of the bill rate, the FlML estimator appears to 
be the natural one to use to estimate the model. 

Under the assumption that the error terms for the stochastic 
equations in (3.1) are jointly normally distributed, the FIML estimates of 
the unknown coeficients in the model are obtained by maximizing: 

(3.6) 

with respect to the unknown coeficients,” where 

GA h = 1, , W, (3.7) 

(g,h=l,...,G) (3.8) 

The matrix S is M x M, and the Jacobian matrix J, is G x G. 
The maximization of L in (3.6) is a computationally difficult 

problem for a model of even moderate size because of the presence of the 
Jacobian terms. For every evaluation of L, T + I determinants have to be 
computed. Tof these determinants are for the J, matrices, which are generally 
of much higher dimension than the dimension of S. Since, as just discussed, 
it seems important to obtain FIML estimates of the model, a considerable 
effort was put into this study in trying to do so. 

It did turn out to be feasible to obtain a set of estimates of the 
model that may be close to the true set of FIML estimates. This set was 
obtained as follows. First, 78 of the 166 unknown co&icients were fixed at 
their TSLS estimates, leaving 88 coefficients to estimate. An attempt was 
made to choose for the coefficients to estimate by FlML those that appeared 
to be most important in the model. The coefficients of the strike dummy 
variables, for example, were never chosen to be estimated. Second, some of 
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the identities in the model were substituted out, decreasing the dimension 
of J, in (3.8) to 48 x 48. 

Third, J, is a very sparse matrix, and advantage was taken of 
this fact in computing its determinant. Although J, was 48 x 48, there were 
only 200 nonzero elements in it. There is a considerable literature, apparently 
largely unknown to economists, on dealing with sparse matrices,b and it 
turned out in the present case that considerable computational time could 
be saved by taking advantage of the fact that J, is sparse. A good set of rou- 
tines for dealing with sparse matrices is available from IBM [29], and when 
these routines were combined in the appropriate way to take the determinant 
of J,, the computational time needed to take the determinant was decreased 
by a factor of 28 over the time that would otherwise be required. This is an 
enormous saving, and were it not for this saving, it would clearly not have 
been feasible to obtain the set of estimates that was in fact obtained. 

Fourth, it turned out that a fairly good approximation to 

,&g IJ, I is g(log /J, / + log IJr 1). When log IJt / is plotted against r 

(t = 1, , T), the points come fairly close to lying on a straight line, so that 
the average of the first and last points multiplied by T/2 is a fairly close 
approximation to the sum of the 7 points. This approximation was used for 
the work here, which meant that the determinant of J; only had to be 
computed twice per evaluation of L rather than 82 times. To give an exam- 
ple of the error introduced by the approximation, the sum of all 82 points 
using the TSLS estimates was -8056.3, whereas the average of the first and 
last points multiplied by 41 was -8105.5. This is an error of about 0.6 per- 
cent. 

The above procedures decreased the computer time needed for 
one evaluation of L to about 0.4 of a second on the IBM 370-1.58 computer 
at Yale. (The 370-158 is not a particularly fast computer for this purpose 
relative to a number of other computers in existence.) The fifth and final step 
in the calculation of the estimates was to maximize L using algorithms for 
maximizing nonlinear functions of coefficients that do not require analytic 
derivatives. The two algorithms that were considered are the no-derivative 
algorithm of Powell (371, and a member of the class of gradient algorithms 
considered by Hung 1281. The gradient algorithm requires first derivatives, 
and for present purposes the derivatives were obtained numerically. The 
gradient algorithm that was used is the one that updates the approximation 
to the inverse of the matrix of second partial derivatives by means of the 
“rank one correction formula.” These two algorithms were used successfully 
by the author in two other studies, one concerned with solving optimal 
control problems for econometric models [20] and one concerned with 
obtaining FIML and robust estimates of econometric models [19]. For the 
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optimal control work, a maximization problem in which there were 239 
unknown coefficients to determine was solved using the gradient algorithm. 

The TSLS estimates were used as starting points for both algo- 
rithms. From the results of some early experimentation, the no-derivative 
algorithm appeared to be more adept at increasing the value of the likelihood 
function, and so it was the one used in the final stages of the work. Even the 
uses of the no-derivative algorithm did not, however, result in much of an 
increase in the value of the likelihood function from the value corresponding 
to the TSLS estimates. The value of the likelihood function for the TSLS 
estimates is 907.2. The value of the likelihood function for the “FIML” 
estimates presented in Table Z-3 is 924.6, which is a gain of only 1.9 percent. 

It took the algorithm 24 iterations to achieve this value. The 
24 iterations corresponded to 24,449 function evaluations (about l,OiM 
function evaluations per iteration), which at 0.4 seconds per evaluation took 
about two hours and 43 minutes’ of computer time. The value of the likeli- 
hood function was only changing in the fourth digit (the first decimal point) 
at the point that the algorithm was stopped (from having exhausted the 
computer budget for this project). The coefficient estimates were also chang- 
ing by only small amounts. 

It can be seen in Table 2-3 that the FIML estimates are in most 
cases quite close to the TSLS estimates. (Generally, only three significant 
digits ax presented in Table 2-3, and in a number of cases the FIML and 
TSLS estimates are the same to three digits. Almost all the estimates, how- 
ever, differed in at least the fifth digit.) This can mean either that the TSLS 
estimates are in fact quite close to the true FLML estimates, or that the algo- 
rithm did a poor job in maximizing the likelihood function. Cost considera- 
tions prevented any further experimentation to see if the true optimum had 
in fact been reached. Given the small increase in the value of the likelihood 
function that occurred, it is clear that more work needs to be done before 
one can have much confidence that the “FIML” estimates that have been 
obtained in this study are close to the true FIML estimates. 

One final point about the computation of the FIML estimates 
should be noted. Constraining 78 of the coefficients to be equal to their 
TSLS estimates resulted in I3 of the 26 stochastic equations not having any 
coefficients left to be estimated by FlML. These 13 equations were not, 
however, dropped from the model when computing the FIML estimates. 
The predicted error terms for these equations (based on the TSLS estimates) 
were used, for example, in the computation of /S / in (3.6). The Jacobian .& 
was also not changed. This procedure allows the correlation between the 
error terms in the 13 unestimated equations and the error terms in the 13 
estimated equations to have an effect on the coefficient estimates of the I3 
estimated equations. 
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3.5 THE SOLUTION OF THE MODEL 

The model is solved by the use of the Gauss-Seidel technique. For the work 
in Chapter Eight and for most of the work in Chapter Nine, Equation 8 
in Table 2-2, the equation explaining the value of demand deposits and 
currency of the household sector (DDH,), was used to solve for the bill rate. 
Given values of the predetermined variables and given values of SAVN,, 
CC,, DDF,, BURR,, SAVE,, LF,, and SECR,, Equations 45, 61, 62, 64, and 
70 in Table 2-2 form a set of five equations in five unknowns that can be 
solved analytically. The five unknowns are: ER,, A,, DDB,. LBVBB,, and 
DDH,. 

These analytic solutions were obtained, and the five equations 
that resulted from these solutions were used as the equations explaining the 
five variables. This procedure means that Equation 70 is used in the solution 
of DDH,, the DDH, equation having been “used up” in determining the 
bill rate. Each of the remaining 76 equations in Table 2-2 was used to solve 
the variable that appears naturally on the left-hand side of the equation. 
Equations 77 and 80, which explain the hours and loan constraint variables, 
were modified slightly in the process of solving the model. These modifica- 
tions are discussed in Chapters Four and Five. 

There are other ways that the model could be solved, but this 
way was one of the most natural and proved to be quite satisfactory. The 
number of iterations needed to solve the model each quarter was generally 
between about 5 and 20, depending on the starting values used. The speed 
of convergence seemed to be maximized by damping the solution value of 

the bill rate by about 90 per cent on each iteration. In other words, if R-ii) 

denotes the solution value of RBILL, on the i”’ iteration and Rmj’+‘) 
denotes the solution value of RBILL, that results from solving Equation 8 

for RBILL, on the (if IT’ iteration, then the value of Rai”,li,,1 was taken 

to be Raj” + O.l(R%~‘+” - A ti, RBILL, ). Otherwise, no other damping 
was used in the solution of the model. One solution of the model for 82 
quarters took about ten seconds of computer time on the IBM 370-158 
computer at Yale. 

The model was solved by setting all the structural error terms 
equal to zero (their expected value). It is well known that this procedure is 
incorrect for nonlinear models in the sense that it is not equivalent to setting 
the reduced form error terms equal to their expected values and then solving 
the reduced form equations. (See, for example, Howrey and Kelejian [27].) 
The proper way to solve the model would be by means of stochastic simula- 
tion, but this procedure is too costly to use in this study. Consequently, the 
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usual procedure for solving nonlinear models was followed, even though it 
is not quite right. 

For some of the solutions in Chapter Nine, and for all the solu- 
tions in Chapter Ten, the bill rate was taken to be exogenous and VBG, was 
added as the extra endogenous variable. In this case Equation 70 could be 
used to solve for VBG, directly, and each of the other equations could be 
used to solve for the variable that appears naturally on the left-hand side. 
Convergence turned out to be somewhat faster in this case than in the en- 
dogenous bill rate case. 

3.6 A POSSIBLE ESTIMATOR FOR FUTURE USE 

The purpose of this section is to describe an estimator that may be of interest 
to consider in future work. The estimator is not computationally feasible on 
the IBM 370-158 computer, but it should be feasible on computers about 
ten to twenty times faster than the 370-158. 

To motivate this estimator, consider lirst the estimation of a 
linear simultaneous equations model by FIML.. Let V denote a I x M matrix 
of reduced form error terms, where M is the number of stochastic equations, 
and let P denote a T x M matrix of predicted reduced form error terms. 
Given values of the structural coefficients, one can obtain predictions of the 
reduced form error terms by “simulating” the model over the sample period. 
This simulation should be thought of for now as being a static simulation. 
In the linear model case, simulation does not require the use of any iterative 
procedure to solve the model each period because the reduced form coeffici- 
ent matrix can he obtained directly from the structural coefficient matrices. 

Consider now minimizing /I”!’ with respect to the structural 
coefficients. Since 1 f’P[ can be computed given a set of values of the strut- 
tural coefficients, one of the algorithms discussed in section 3.4 could be 
used to carry out this minimization. If one were successful in this task, the 
values of the structural coefficients that minimized j VI’ would be the 
FIML estimates. (See, for example, Malinvaud [33]. Ch. 19, p. 677.) The 
FIML estimates are thus estimates that minimize the generalized variance 
of the reduced form error terms with respect to the structural coefficients. 

The minimization procedure just described could be carried out 
for a nonlinear model as well, where “simulation” would now require the 
use of something like the Gauss-Seidel procedure to solve the model each 
period. The predicted error terms that make up P would be the differences 
between the simulated and actual values of the endogenous variables. The 
values of the structural coefficients that corresponded to the minimum of 
1 VP/ would not be FIML estimates in this case because the true reduced 

form error terms are not additive in nonlinear models. There is. however, 
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at least some analogy between these estimates and the true FIML estimates. 
The above minimization procedure can be carried out, in either 

the linear or nonlinear case, using dynamic simulation rather than static 
simulation, a dynamic simulation being defined as a simulation that uses 
generated values of the lagged endogenous variables rather than actual 
values. The dynamic simulation can either be over the entire sample period 
or just for a few periods ahead at a time. Let P denote the TX M matrix of 
predicted error terms obtained from dynamic simulation of the model. The 
values of the structural coefficients that correspond to the minimum of 
IpPI will b e called full information dynamic (FDYN) estimates. 

The suggestion here is that it may be of interest in future work 
to obtain FDYN estimates of the model. It is true, of course, that for a 
properly specified model the FIML estimates are asymptotically efficient, 
so that if one knew that the model was properly specified, there would be 
no reason to be concerned with obtaining FDYN estimates. It is almost 
newr the case, however, that one has complete confidence in the specifica- 
tion of a model, especially regarding the specification of the lag structures. 
The reason for proposing the FDYN estimator here is the feeling that the 
estimator may-by taking into account in a somewhat more explicit way 
than does the FIML estimator the dynamic properties of a model-lessen 
the effects of misspecification. Whether this is true or not is, of course, 
unclear, but at least it does seem worthy of some experimentation. 

As mentioned in section 3.5, the time taken to solve the model 
once for 82 quarters is about ten seconds on the IBM 370158. The time taken 
does not vary much depending cm whether the simulation is static or dynamic. 
The time that would be required to compute 1 pP/ once the model is solved 
for the 82 quarters is less than one second. Consequently, if the algorithms 
discussed in section 3.4 were used to minimize IpPI, the time taken per 
function evaluation would be about ten seconds. This compares to the time 
of 0.4 seconds for the evaluation of the likelihood function in (3.6) in the 
computation of the FIML estimates. The FDYN estimates are thus about 
25 times more expensive to compute than the FlML estimates, which means 
that the problem is really not feasible on the IBM 370-158. It should, however, 
be feasible to compute the estimates on a computer about ten to twenty 
times faster. 

Klein [M] has suggested that it might be useful to estimate 
dynamic models by minimizing some function of multiperiod prediction 
errors. He is not very explicit on what function should be used, although for 
the linear model case he does suggest in one place (p. 64) that one might 
use the sum of the variances of the predicted error terms, each variance 
being normalized by the variance of the endogenous variable to which the 
error term corresponds. A more natural function to use, however, for both 
linear and nonlinear models, would appear to be the function j FP / suggested 
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above. This function can be interpreted as a generalized variance of the 
predicted error terms, and it corresponds most naturally to the function that 
FIML minimizes in the static case. 

Another reason for suggesting that some experimentation with 
the FDYN estimator be done is that Fairly good results were obtained in 
Fair [12] using a single equation DYN estimator. The results in 1121, while 
clearly tentative, do indicate that some gain in prediction accuracy may be 
attained by the use of DYN estimators. The results in [12] are all within- 
sample results. If in the future FDYN estimates are obtained, they will 
clearly have to be judged on groun&of outside-sample prediction accuracy, 
or at least on some criteria other than within-sample prediction accuracy, 
since the FDYN estimates are explicitly designed to minimize a generalized 
variance of within-sample prediction errors. 

Another class of estimators that may be worth considering in 
future work is the class of robust estimators. As discussed in Fair [l9], 
almost any estimator that is based on minimizing some function of the 
error terms in an equation or a model can be modified to be a robust estima- 
tor. Again, ~cmx encouraging results were obtained in [19] about the possi- 
bility of being able to increase prediction accuracy by the use of robust 
estimators. These results are also very tentative, but they do at least indicate 
that further experimentation with robust estimators of econometric models 
should be undertaken. Primarily because of cost considerations, robust 
estimators were not considered in this study. 

NOTES 

“See, for example, Chow [S]. 
‘See Brayton, Gustavson, and Willoughby [5] for a fairly extensive biblio- 

graphy on sparse matrices. 




