6 Estimation

6.1 Introduction

Macroeconometric models are typically nonlinear, simultaneous, and large.
They also tend to have error terms that are serially correlated. The focus of
this chapter is on models with these characteristics. The notation that will be
used in this chapter and in Chapters 7~ 10 is as follows. Write the model as

(6.1) S, x, ) =uy, i=1,...,n t=1,...,T,

where y, is an n-dimensional vector of endogenous variables, x, is a vector of
predetermined variables, ¢, is a vector of unknown coefficients, and 1, is an
error term. Assume that the first » equations are stochastic, with the remain-
ing 1, i=m+1, ... ,n)identically zero for all 1.

Let J, be the »n X n Jacobian matrix whose ij element is 8f;/dyi, j=
1, . . . ,n). Also, let i; be the T-dimensional vector (#;;, . . . , %), and let
tbethe m + T-dimensional vector (tyy, . . - L Uipy « « « sUpyy - - - 5 Uy} s
Let o denote the A-dimensional vector (e}, . . . , &,,) of all the unknown
coefficients. Finally, let G/ be the k; X T matrix whose th column is /;(,, x,,
a,)/0cx,, where k; is the dimension of a;, and let G’ be the k X m - T matrix,

(G, 0 ... 0]
0 G
[ 0 G/

where k = =7, k;. These vectors and matrices will be used in the following
sections.

6.2 Treatment of Serial Correlation

A convenient way of dealing with serially correlated error terms is to treat the
serial correlation coefficients as structural coefficients and to transform the
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equations into equations with serially uncorrelated error terms. This intro-
duces nonlinear restrictions on the coefficients, but otherwise the equations
are like any others with serially uncorrelated errors. It will be useful to
consider this transformation first because once it has been done, little more
needs 1o be said about serial correlation. Consider the ith equation of (6.1),
and assume that w,, is first-order serially correlated:

{6.2) U, = plty—, + €, t=2,...,T,

where €, is not serially correlated. Lagging (6.1) one period, multiplying
through by g;, and subtracting the resulting expression from (6.1) yields

(6.3) S X @) = pifii— s X1, Q) = Uy = Pty = €,
=2 ....T,

or
(6'4) f?‘(}’rsx?aa?)=eira z=2, e ey T,

where x} includes the variables in x,, x,_,, and y,_,, and & includes both o,
and p,. Equation (6.4) is no more general than (6.1), and thus one can deal
directly with {6.1) under the assumption that serial correlation has been
climinated through transformation.

This procedure results in the “loss™ of the first observation. This has no
effect on the asymptotic properties of the estimators, and it is probably not a
problem about which one needs to be concerned in practice. In many cases
there are ways of using the first observation more efficiently, but at a consider-
able cost in complexity relative to the approach just presented.

This procedure can handle serial correlation of higher orders. If, for
example, i, is second-order serially correlated:

(6.2) Uy = Pty + Pty t €, r=3,...,T,
the transformation in (6.3) is:

(63)’ fi(yts .X‘., ai) - plij;(y:-i s Xp—1» Ot,) - Pzrﬁ(yz—za x:-z: (I,-) == €y,
t=3,...,T

In this case x7* in (6.4) includes the variables in x,, x,_,, X,_;, ,_,, and y,_,,
and o includes «;, p,;, and p,,. Each additional order of the serial correlation
.process results in the “loss” of one more observation.

With respect to testing for serial correlation, it is well known that the
Durbin-Watson (DW) test is biased toward accepting the null hypothesis of
no serial correlation if there is a lagged dependent variable in the equation.
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Since many equations in macroeconometric models have lagged dependent
variables, the DW test is of limited use. My response to this problem is to
estimate the equations initially under the assumption of serial correlation
(usually first-order) by some consistent technique (usually 2SLS). From this,
one can test the hypothesis that the serial correlation coeflicients are zero,
which is simply a t-test on each coefficient. This test is valid asymptotically if
one has correctly estimated the asymptotic covariance matrix of the estimated
coefficients, and it is not restricted to equations without lagged dependent
variables. It also easily handles serial correlation of higher than first order,
since ail this requires is estimating the equation under the assumption of the
particular order. If a test indicates that a serial correlation coefhicient is zero,
the equation can be reestimated without this coefficient being included.

Although this is the genecral procedure that I follow in handling serial
correlation problems, Istill include the DW statistic in the presentation of the
results for a particular equation (see Chapter 4). Since the DW statistic is
biased toward acceptance of the hypothesis of no serial correlation when there
are lagged dependent variables, a value that rejects the hypothesis indicates
that there are likely to be problems. The DW test is thus useful for testing in
one direction, and this is the reason I tend to include it in the results.

6.3 Estimation Techniques
6.3.1 Ordinary Least Squares (OLS)

The OLS technique is a special case of the 2518 technique, where I, in (6.5)
and (6.6) below is the identity matrix, It is thus unnecessary 1o consider this
technique separately from the 2SLS technique.

6.3.2 Two-Stage Least Squares (25LS)

General Case

28LS estimates of o {say &) are obtained by minimizing
(6.5) wiZAZZY "Ziu, = uiDuy,

with respect to «;, where Z;is a T X K; matrix of predetermined variables. Z;
and K; can differ from equation 1o equation, An estimate of the covariance
matrix of &; (say V) is

(6.6) Vo= a,(GIDGY,

where G, is G, evaluated at &; and 6, = T~ XL i, &L, = fi(y,, x,, &).
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The 28LS estimator in this form is presented in Amemiya (1974). It
handies the case of nonlinearity in both variables and coefficients, In earlier
work, Kelejian (1971) considered the case of nonlinearity in variables only.
Bierens (1981, p. 106) has pointed ont that Amemiya’s proof of consistency of
this estimator is valid only in the case of linearity in the coefficients, that is,
only in Kelejian’s case. Bierens supplies a proof of consistency and asympto-
tic normality in the general case.

Linear-in-Coefficients Case

It will be useful to consider the special case in which the equation to be
estimated is linear in coeflicients. Write equation j in this case as

(6.7) = Xo+

where y,is the 7-dimensional vector (3, . . . , ¥y} and X;isa T X &, matrix
of observations on the explanatory variables in the equation. X, includes both
endogenous and predetermined variables. Both y; and the variables in X; can
be nonlinear functions of other variables, and thus (6.7) is much more general
than the standard linear model. All that is required is that the equation be
linear in o, Substituting w4, = y; — X,z into (6.5), differentiating with respect
to o, and setting the derivatives equal to zero yields the following formula for
&

(6.8) &; = (XD, X' XDy, = (XfXx)~IE§Y:,

where X; = D, X, is the matrix oi: predictgd values of ti'le regressign of X;on 7,
Since D} = D;and DD, =D, X X;=X/D,DX,= X|D.X,= XX,, and thus
(6.8) can be written

6.9 & =X X)Xy,

which is the standard 2SLS formula in the linear-in-coefficients case. In this
case ('] is simply X}, and the formula (6.6) for V., reduces to

(6.10) pzii = &fr()?fff)_l~

Linear-in-Coefficients Case with Serial Correlation

It will also be useful to consider the linear-in-coefficients case with serially
correlated errors. Assume that u; in (6.7} is first-order serialty correlated:

(6.11) W=t p; + €.
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Transforming (6.7) in the manner discussed above yields
(6.12)  yi =y =X = X pdo T e,
Minimizing € .D;€; with respect to ¢; and p, results in the following first-order
conditions:
- T T v T TR .
{6.13) & = [(X, — X; 9 (X — X POV XG — Xmh 2 (Vi — Vi P2,
(6.14y  p,= A(ﬁi—i _“X’j—'\lalf) (0 — Xidi)A ’
(Pimt — Xim &) (Vi — Xy @)
_.‘—"‘"‘-—i: R N "
where X, — X, \p; = Di(X; — Xio\p), Vi = D:‘Xf-—ly and X, =D X,_,. If
X,_, isincluded in Z,, then X,_, = X,_, (since X, is merely the predicted
values from a regression of X,_, on itself and other variables), and therefore

X, — X, 0= X,~ X,_ ;. If in addition y,_, is included in Z;, then J,_, =
¥i_1, and (6.14) becomes

(6.14)"  py=-—r",
R Y /P
where &, = y,_; — X;-&,and &; =y, — X,&;. This is merely the formula for

the coefficient estimate of the regression of &; on @,_;.

Equations (6.13)and (6.14) can casily be solved iteratively. Given an initial
guess for p,, &; can be computed from (6.13), and then given &, p; can be
computed from (6.14). Given this new value of p,, a new value of &; can be
computed from (6.13), and so on. If convergence is reached, which means
that the values of &, and p; on successive iterations are within some prescribed
tolerance level, the first-order conditions have been solved.

Equations with RHS endogenous variables and serially correlated errors
(that is, Eqgs. 6.7 and 6.11) occur frequently in practice, and the 25LS
estimator for this case has been widely used. This estimator was discussed in
Fair {1970), and I programmed it into the TSP regression package in 1968
under the name TSCORC. (*CORC” refers to the fact that the iterative
procedure used to solve Egs. 6.13 and 6.14 is like the Cochrane-Orcutt [1949]
iterative procedure in the nonsimultaneous equations case.} There is an
important difference between (6.13) and the formula for &; proposed in Fair
(1970}, and given the widespread use of the TSCORC command, this differ-
ence should be noted. Let X, = (¥; X)), where Y, is the matrix of RHS
endogenous variables in (6.7) and X, is the matrix of predetermined var-
iables. Let ¥,= D,Y, and X, = (¥, X,,). The formula proposed for &, was

(6.13)" &= [(X; - Xz‘-whb!)’(‘fi - X'—Ef)i}]—](ji = X182 = Vica D)
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This is the formula for the coefficient estimates of the regression of ¥, — v, | 5
on X, — X,_p;. Equation (6.13) reduces to (6.13)’ when X;;and X,_, =(¥,_,
X,;_,) are included in Z,, that is, when the exogenous, lagged endogenous,
and lapgged exogenous variables in the equation being estimated gre included
among the first-stage regressors. The inclusion of X,, means that X, = X, and,
as noted carlier, the inclusion of X,_, means that m =X, —X_,},.
The proposed formula for j, was (6. 14)’, which, as noted above, is the same as
(6.14) only if X;_, and y,_, are included in Z,. Solving (6.13)’ and (6.14)" is
thus not the same as solving (6.13) and (6.14) unless X, X, ;, and y,_, are
included in Z;. It can be shown that if this is not done, solving (6.13)" and
(6.14)’ does not result in consistent estimates. The need to include X, X,_,,
and y,_, among the first-stage regressors was stressed in Fair (1970), but one
should keep in mind that thisis not absolutely necessary if the formulas(6.13)
and (6.14) are used. In general, however, X,;, X,_,, and y,_, are obvious
variables to include among the first-stage regressors, and for most problems
this should probably be done even if one is using a program that solves (6.13)
and (6.14) rather than (6.13) and (6.14)".

In the case of linearity in the coefficients and first-order serial correlation,
Gy= (X;~ X, pi Vi1 — X;o10e), and the formula (6.6) for ¥y, can be
written

(6.15) IA/MA= A o o .
5 [ (X — Xi—lbi) '(X;;_ X;‘—lﬁi) (X, — X0’ Pim — va—lﬂﬁi) ]_1
FLG— — Xim &) (X = X 0D (B — X180 (Picy — Xy}

If Xy, X;—,, and y,.., are included in Z;, then (6.15) becomes

(6.15)  Pyy=

A

i

[(Xr; — X122 (e X o) (X~ X ) iy ]_’E
ﬁ;-—l(Xf = Xr’—lf"x‘) a;—lai-i ,

where, as above, #,_, = y,_, — X,_,&,. This is the formula presented in Fair
(1970). Remember that I/, in this case is the covariance matrix for (&, p,),
not &, alone, It was suggested in Fair (1970, p. 514) that the off-diagonal terms
in (6.15) be ignored (that is, set to zero) when computing f’m, and this was
initially done for the TSCORC option in TSP. This is not, however, a good
idea, as Fisher, Cootner, and Baily (1972, p. 575, n. 6) first pointed out. The
saving in computational costs from ignoring the off-diagonal terms is small,
and in general one should not ignore the correlation between &; and p, in
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computing 7,;. In later versions of TSP the TSCORC option was changed to
compute ¥, according to (6.15)’, but many copies were distributed before
this change was made.

The generalization of the preceding discussion to higher-order serial corre-
lation is straightforward, and this will not be done here except to make one
point. As the order of the serial correlation increases, the number of variables
that must be included among the first-stage regressors to ensure consistent
estimates increases if the higher-order equivalents of {6.13)” and (6.14)" are
used. In going from first to second, for example, the new variables that must
be included are X;_, and ¥;_,. At some point it may not be sensible, given the
number of observations, to include all these variables, in which case the
higher-order equivalents of (6.13) and (6. 14) should be used for the estimates.

Restrictions on the Coefficients

In the general nonlinear case in which (6.5) is minimized using an algorithm
like DFP, restrictions on the coefficients are easy to handle. Minimization is
merely over the set of unrestricted coefficients. For each set of unrestricted
coefficients tried by the algorithm, the restricted coeflicients are first calcu-
lated and then the objective function (6.5) is computed. Except for calculating
the restricted coefficients given the unrestricted ones, no extra work is in-
volved in accounting for the restrictions.

In the case in which the restrictions are linear and the model is otherwise
only nonlinear in variables, an alternative procedure is available for handling
the restrictions. To see this, assume that a restriction is

{6.16) Ro;=r,

where Ris 1 X &;, o is k; X 1, and r is a scalar. R and r are assumed to be
known. Let o;; denote the first element of ¢;, and assume without loss of
generality that the first element of R is nonzero. Given this assumption, (6.16)
can be solved for o,

(6.17) o= R¥a¥ + r¥,

where R*is 1 X k;,— 1 and o is k; — [ X 1. The vector o excludes ;.
Given (6.17), (6.7) can be written

{6.18) n=Xuo, + o+ w = X (R¥a? + r*) + Xyaf + u;
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or
(6.19)  yF=Xtral+u,

where y* =y, — X, r*and X¥ = X, R* + X,,. The vector X|;isa T X 1 vector
of observations on the variable corresponding to ¢,;, and X, isa 7' X k, — 1
matrix of observations on the other explanatory variables. Given that R* and
r* are known, y¥ and X'¥ are known, and therefore (6.19) can be estimated in
the usual way. The original equation has been transformed into one that is
linear in the unrestricted coefficients. The extra work in this case is merely to
create the transformed variables.

The coefficient restriction in the US model that is represented by (4.20) is a
Iinear restriction on the coefficients of the wage equation (y;, 3,, and y;) if the
coefficients of the price equation (8, and B,) are given, For all the limited
information estimation techniques (that is, all the techniques except 35LS
and FIML), the variables in the wage eguation were transformed into an
equation like {6.19) before estimation. This required that the price equation
be estimated first to get the estimates of §, and $, to be used in the transfor-
mation. This procedure was not followed for the 3SLS and FIML estimates,
since the restriction (4,20} is not linear within the context of all the equations
of the model.

Choice of First-Stage Regressors

Before estimating an equation by 2SLS, the first-stage regressors (FSRs) must
be chosen. Since analytic expressions for the reduced form equations are not
available for most nonlinear models, they cannot be used to guide the choice
of FSRs. One must choose, given knowledge of the model, FSRs that seem
likely to be important explanatory variables in the (unknown) reduced form
equations for the RHS endogenous variables in the equation being estimated.
There is considerable judgment involved in the choice of FSRs for a
particular equation, and there are only a few rules of thumb that can be given.
Consider estimating an equation with ), and y,, as RHS endogenous vari-
ables. Assume that the structural equations that determine y,, and y5, have y,,
and ys, as RHS endogenous variables. One obvious choice of FSRs 1s to use
predetermined variables that are in the structural equations that explain y,,
and y,,. Another choice is predetermined variables that are in the structural
equations that explain y,, and y,,. One can continue this procedure through
further layers as desired. (This rule of thumb is discussed in Fisher 1965.)
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A rule of thumb about functional forms is to use mostly logarithms of
variables if the RHS endogenous variables are in fogarithms and to use mostly
linear variables if the RHS endogenous variables are linear. Sometimes
squares and cubes of variables are used, and sometimes vartables multiplied
by each other are used. There is no requirement that the same set of FSRs be
used for different equations (although the same set must be used for all the
RHS endogenous variables in a particular equation), and thus one may want
to use different sets across equations, each set depending on the particular
RHS endogenous variables in the equation,

The predetermined variables in the equation being estimated should also
be included among the FSRs. Mot doing so means treating these variables as
endogenous. There is, however, an exception 10 this in the linear-in-coeffi-
cients case, which should be explained to avoid pessible confusion. Consider
(6.7 and let X, = (¥, X,), where Y, is the matrix of RHS endogenous
variables and .Y,,is the matrix of predetermined variables. If X, is defined to be
(¥, X,), where ¥,= D,Y,, rather than D,X,, and if formula (6.8) is used to
compute &, then X,, is treated as exogenous even if it is not included in Z,.
Equation {6.8) is the instrumental variables formula for &;, and when
(7, X,)isused for X;, X, is serving as its own instrument. When (¥; X, is
used for X;, and X,, is not included in X;, (6.8) and (6.9) are not the same, and
{6.9) does not produce consistent estimates. {See McCarthy 1971.) Equations
(6.8) and (6.9) are the same only if X, is included in Z,.

Covariance Matrix of All the Estimated Coefficients

Some of the stochastic simulation work in Chapters 7, 8, and 9 requires the
covariance matrix of all the coefficients estimates, that is, the & X k covar-
iance matrix of &, where & = (&1, . . . , &, ). For the completely linear case
(linear in both variables and coefficients), this covariance matrix is presented
in Theil (1971, pp. 499 -500) for the case in which the same set of FSRs is
used for each equation. For the more general case of 4 nonlinear model and a
different set of FSRs for each equation, it is straightforward to show that the
covariance matrix (say 75} is

V2[1 A V?,lm

i

(6.20) V, = ) . R

2 s
i'2ml - I'2mm
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where
|
(6.21) Vyy = 0y [piim iT G,’-D,-G,-] .

L

—1
= GfD,G,] [plim iT G;D,.DJGj]

(6.22) Vay = crg[piim

—1
[plim % GijGj] .

An estimate of ¥y, is 7y, in (6.6). An estimate of ,; (say f/\’z,}) is
(6.23) Vo= 8,(GIDGY (GDDGHG DG,

where 6; = T-' 2, 6i,0,.

Regarding the proof that V5 in (6.20} is the correct covariance matrix, the
derivation in Theil can easily be modified to incorporate the case of different
sets of FSRs. Nonlinearity can be handled as in Amemiva (1974, appendix 1),
that is, by a Taylor expansion of each equation. The formal proofthat F, is as
in (6.20), (6.21), and {6.22) is straightforward but lengthy, and it is omitted
here. Jorgenson and Laffont (1974, p. 363) incorrectly assert that the off-diag-
onal blocks of V, are zero.

6.3.3 Three-Stage Least Squares (3SLS)
3SLS estimates of « (say &) are obtained by minimizing
(6.24) W [E'® ZAZZ)Zu=1'Du

with respect to ¢, where 3 is a consistent estimate of S and Zisa TX K
matrix of predetermined variables. As estimate of the covariance matrix of &
(say V3) is

(6.25) VP, =(G'DG),

where G is G evaluated at & Z is usually estimated from the 2SLS estimated
residuals. This estimator is presented in Jorgenson and Laffont (1974), and it
is further discussed in Amenuya {1977). Both prove consistency and asymp-
totic normality of 3S5LS.

The 3SLS estimator that is based on minimizing (6.24} uses the same Z
matrix for each equation. In small samples this can be a disadvantage of 3SLS
relative to 28LS. It is possible to modify (6.24) to include the case of different
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Z, matrices for each equation, and although this modification is not in general
practical for large models, it is of some interest to consider. This estimator is
the one that minimizes

-1

7z ... 0\ [enzz ... .77
{6.26) e
0 ... Z,] \6,Z7 ... BunZiZn
Z ... 0
u=u'Du
o ... Z,

with respect to «. An estimate of the covariance matrix of this estimator is
(G'DGY. (6.26) reduces to (6.24) when Z, = . . . = Z,, = Z. The compu-
tational problem with this estimator is that it requires inverting the middle
matrix in brackets. This matrix is of dimension K*= Z=[., K;, which is
generally a large number. For small to moderate models, however, it may be
feasible to invert this matrix. This estimator has the advantage of being the
natural full-information extension of 2SLS when different sets of FSRs are
used. This estimator is a special case of one of the 3SLS estimators in
Amemiya (1977, p. 963), namely the estimator determined by his equation
(5.4), where his S; is the first matrix in brackets in (6.26) above,

Choice of First-Stage Regressors

If the estimator that minimizes (6.26) is used, a different set of FSRs can be
used for each equation, and the same considerations apply here as apply for
the 2SLS estimator. If the estimator that minimizes (6.24) is used, the same
set of FSRs must be used for all equations. This set should be roughly equal to
the union of the sets that are used (or that would be used) for the 25LS
estimator. The actual set used may have to be smaller than the union if the
union contains more variables than seem sensible given the number of
observations. Also, some nonlinear functions of the basic variables may be
highly collinear (say, x,,, log x,, and x%,), and one or more of these may be
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able to be excluded without much loss of explanatory power in the first-stage
FERressions,

6.3.4 Full Information Maximum Likelihood (FIML)

Under the assumption that (&, . . . . #,,) 1s independently and identically
distributed as multivariate M0,S), the density function for one observation is

(6.27)  (2m)7|S* |/ fexp (—% ) ati,s:,*u,-,),

where §* = §~" and s} is the ij element of S*. The Jacobian J, is defined in
Section 6.1. The llkellhood function of the sampler=1, . . ., Tis

T
(6.28) I* =(2ﬂ)“5‘|S*1%I—[]M|exp (ué—- > sk ,,),

I

and the log of L* is
(6.29)  logl*=—— iog 2+ = iog]S*l + E log|J,i — 2 Uy STy
z;z

Since log L* is a monotonic function of L*, maximizing log L* is equivalent
to maximizing L*,

The problem of maximizing log L* can be broken up into two parts: the
first is to maximize log L* with respect to the elements of $*, and the second is
to substitute the resulting expression for $* into (6.29) and to maximize this
“concentrated™ likelihood function with respect to a. The derivative of log L*
with respect to s} is

glogl* T
(6.30) ﬂ—af*_ 4 — 2 ity
t

r-=1

where $* is the i element of $*'. This derivative uses the fact that

d loglAj
da;
vields

= ¥ for a matrix A. Setting (6.30) equal to zero and solving for s*¥

T
(6.31) s = 2 IR
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. 1 & "
Since $* = §71, s* = 5, and therefore 5; = T > ui,. Substituting (6.31)

¢l

into (6.29} yields

z Ti
(6.32) logL*= —%Z log 27 + % log|S*|+ ¥ log|J| ——2'33.
=1

1 1 T
term comes from the fact that — 5 2 Uy STy =— 5 > ShY, talky =

I if fe=

1 . T
~3 Z SETs* = —--~2~n—¢. The first and last terms on the RHS of (6.32) are
0

n

The— >

constants, and thus the expression to be maximized with respect to o consists
of just the middle two terms. Since log|5*| =log|S™!| = —log|S|. the function
to be maximized can be written

T T
(633 L= ) log| 81+ Z log|Jl,

. . N .
where, as noted earlier, the jj element of S, s;;, is 7 Y, u,. FIML estimates
=1

of o are thus obtained by maximizing L with respect to ¢v. An estimate of the
covariance mairix of these estimates (say V) is

f L \™
e ==(5)

where the derivatives are evaluated at the optimum.

Phillips (1982) has pointed out that Amemiva’s proof of consistency and
asymptotic efficiency {1977) is based on an incorrect lemma. This is corrected
in a later paper (Amemiva 1982). Amemiya’s article (1977), as corrected,
shows that in the nonlinear case FIML is asymptotically more efficient than
3SLS under the assumption of normality. In the linear case FIML is consist-
ent even if the error terms are not normally distributed, where “FIML™ means
the full information maximum likelihood estimator derived under the as-
sumption of normality. In the nonlinear case this is not in general irue,
although it sometimes is. Phillips (1982) presents an example of a nonlinear
model for which FIML is consistent for a wide class of error distributions. He
also proves a “possibility” theorem, which shows that when FIML 1s consist-
ent under normality it is always possible to find a nonnormal error distribu-
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tion for which consistency is maintained, The assumption of normality is not
necessary for the consistency of 38LS. Given that 38LS is consistent under a
broader class of error distributions than is FIML, it is in this sense a more
robust estimator, There is thus a trade-off between more rabustness for 3SLS
and more efficiency for FIML if the error terms are normal.

It the linear case Hausman (1975) has shown that FIML can be interpreted
as an instrumental variables estimator in which all the nonlinear restrictions
on the reduced form coefficients are taken into account in forming the
instruments, This is contrary to the case for 38LS, which forms the instru-
ments from unrestricted estimates of the reduced form equations. FIML thus
uses more information about the model than does 3SLS. In the linear case this
makes no difference asymptotically because both estimates of the reduced
form coeflicient matrix are consistent (assuming that 3SLS uses all the
explanatory variables in the reduced form equations as first-stage regressors}.
In the nonlinear case, however, it does make a difference because 3SLS does
not obtain congistent estimates of the reduced form equations. In general,
analytic expressions for the reduced form equations are not available, and
3SLS must be based on approximations to the equations. No such approxi-
mations are involved for FIML, and this is the reason it is asymptotically
more efficient.

Another interesting difference between FIML and 3SLS concerns the LHS
variable in each equation, Chow (1964) has shown in the linear case that
FIML is the natural generalization of least squares in the sense that it
minimizes the generalized variance of linear combinations of the endogenous
variables. This is not true of 3SLS, which follows the principle of generalized
variance but not of linear combinations. What Chow’s interpretation shows is
that there is no natural LHS variable for FIML: because of the linear
combination aspect, cach variable in the equation is treated equally. For
3SLS, on the other hand, a LHS variable must be chosen ahead of time for
each equation.

For macroeconometric work it is unclear whether the symmetrical treat-
ment of the endogenous variables by FIML is desirable or not. If the equa-
tions that are estimated are decision equations, as is the case for the model in
Chapter 4, there is a natural LHS variable for each equation. FIML. ignores
this restriction, whereas 3SLS does not, so this may be an argument in favor of
3SLS. Given this difference and given the fact that 35LS is more robust to
specification errors regarding the distribution of the error terms, the question
of which estimator is likely to be better in practice is far from clear,
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6.3.5 Least Absolute Deviations (LAD)

LAD estimates of ¢, (say &,) are obtained by minimizing
.
{6.35) z fet;d
=1

with respect to ;. For the general nonlinear model the asymptotic distribu-
tion of &, is not known. For the standard regression model y, = X,o; + w4,
where X; is a matrix of exogenous variables and u, is independent and
identically distributed with distribution function /, Bassett and Koenker
{1978) have shown that the asymptotic distribution of &; is normal with mean

: . : .1
t; (thus &; is consistent) and covariance matrix Q. where @ =lim T XX,

and * is the asymptotic variance of the sample median from random
samples with distribution F. Amemiva (1982) supplies an alternative proof of
this proposition.

The LAD estimator is an example of a robust estimator. An estimator is
said to be more robust than another if its properties are less sensitive to
changes in the assumptions about the model, particularly assumptions about
the distribution of the error terms. In a number of cases the LAD estimator
has been shown to be more robust that the OLS estimator to deviations of the
error terms from normality. In particular, the LAD estimator seems well
suited to cases in which the distribution of the error terms is fat-tailed.

The literature in statistics on robust estimation is now quite extensive, and
there are many types of robust estimators. The estimators differ primarily in
how error terms that are large in absolute value (that is, outliers) are weighted.
These estimators have not been used very much in applied econometric work,
so there is little experience to guide the choice of estimator. Since LAD is the
simplest of the estimators, it seems to be the best one to start with. An
inleresting open question is how useful any of the robust estimators are for
empirical work in economics.

6.3.6 Two-Stage Least Absolute Deviations (25LAD)

There are two ways of interpreting the 2SLS estimator that is based on the
minimization of {6.5), and these need to be discussed before considering the
LAD analogue of 2SLS. For purposes of the discussion in this section and in
Section 6.5.4, it will be assumed that the model (6.1) can be written

(6.1Y Vi = (. X, o) + uy,, i=1,...,n te=1, ..., T
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where in the ith equation y, appears only on the LHS. Given this and given
that D} = D, and DD, = D,, (6.5) can be written

{6.36) D, = u; DD,
=(y; — DDy, — h)
= ViD; - M D)(Dy; — Dy}
= = M= A
= P15, = 20th; + hik,

where #;,= D,y; and #; = D;,. Instead of minimizing (6.36), consider mini-
mizing
(637 0 = B — Ay = yiv,— 201k + B,

Given that §/A, = v/D.Dh, = viDh, = yih, and given that /7, and yy, are
not a function of ¢;, minimizing (6.36) with respect to «; is equivalent to
minimizing (6.37). Therefore, the 28LS estimator can be interpreted as
minimizing either (5] — A (5, — h) or (v] — A (3, ). The first interpreta-
tion is Basmann’s (1957) and the second is Theil’s (1953).

For the LAD analogue it is unclear which interpretation should be used.
Using Basmann'’s one would minimize

T
(6.38) X 15— A
=1
and using Theil’s one would minimize
T
639 31y~ Al
=1

In this case the choice matters in that minimizing (6.38) and minimizing
(6.39) lead to different estimates. Amemiya {1982) has proposed minimizing

T
(6.40) 3 lgy, + (1 — 9, — Ay,
=1

where ¢q is chosen ahead of time by the investigator. The estimator that is
based on minmimizing {6.40) will be called 2SLAD.

" For the general nonlinear model the asymptotic distribution of 2SLAD is
not known. For the linear model Amemiya {1982) has proved that 2SLAD is
* consistent. He has also in the linear case derived formulas for the asymptotic
covariance matrix of the estimator for particular assumptions about the
distributions of the error terms. If all the distributions are normal, he has
proved that 2S8LAD is asymptotically normal.
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6.4 Sample Size Requirements for FIML and the Estimation of Subsets
of Coefficients

6.4.1 Sample Size Requirements

For large models there may not be enough observations to estimate all the
coefficients by FIML. For a linear model without identities, Sargan (1975) has
shown that the FIML. likelihood function has an infinite maximum if the
number of observations is less than the number of endogenous and exogenous
variables. With respect to more general models, Parke (1982b) has derived the
FIML sample size requirement for models with identities, nonlinearity in
variables, and serial correlation coefficients. Tt will be useful to consider
Parke’s main results.

Consider first the case of no identities and no serial correlation coefficients,
If the model is only nonlinear in variables, it can be written

(6.41) 4=V,

where 0 is a T X g matrix of variables that are functions of the basic
endogenous and exogenous variables, 4 is a ¢ X m matrix of coefficients, and
Uisa T X m matrix of error terms. In general the variablesin Q are nonlinear
functions of the basic endogenous and exogenous variables, although many of
them may simply be the basic variables. The total number of variables in the
model 15 g. Under the assumption that each of these variables appears at least
once in the model with a nonzero coefficient (a trivial assumption), Parke has
shown that the sample size requirement for FIML is Tz q.

Adding identities does not in general change this requirement. One need
not include in Q variables that appear in identities but not in the structural
equations when one is calculating the sample size requirement, When the
identity is what Parke calls a “closed” identity, one that imposes a linear
dependency on the columns of (, the sample size requirement is less. For {
closed identities the dependencies can be written

(6.42) QP=0,

where P is a ¢ X i matrix of known coefficients. For { closed identities the
sample size requirement is 7' =g — i,
An example of a model with a closed identity is the following:

(6.43) Q= oyt oy + o0y + iy,
(6.44) Oy = 0y + O+ 03 Qs t 1y,
(645) QSt = er + QZ:-
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In this case (25, could be substituted out of the stochastic equations (6.43) and
{6.44) without introducing any new variables, and therefore it is not a variable
that needs to be counted against the sample size requirerent. Identities of this
type are likely to be rare. (There are, for example, no closed identities in the
model in Chapter 4.} A much more common identity in the model just
presented would be O, = G, + Os, + O, where J,, does not appear in the
stochastic equations. In this case the identity is “open,” and Q,, does count
against the sample size requirement.

The treatment of serial correlation is somewhat more involved. Assume
that x;, appears in equation /, where equation I has first-order serially corre-
lated errors. After the equation is transformed, the variable appears as x %=
Xy = PiXp-1. I X, and x;,_, appear nowhere else in the model, x% can be
counted as only one variable. Otherwise, both x, and x,_, must be counted.
Even if x, appears in many equations with first-order serially correlated errors
(and in general different serial correlation coefficients), the number of vari-
ables to be counted is still only two (x;, and x;,..,). What this says is that the
introduction of Arst-order serial correlation to an equation at most increases
the number of vanables to be counted by the number of original variables in
the equation. The increase is less than this if at least some of the original
variables and their one-period-lagged values do not appear elsewhere in the
model. If none of the original variables and their lagged values appear
¢elsewhere in the model, the introduction of serial correlation to an equation
does not increase the number of variables to be counted. Similar arguments
apply to higher-order serial correlation. For example, the introduction of
second-order serial correlation at most increases the number of variables to be
counted by twice the number of original variables in the equation.

The introduction of a constraint across coeflicients does not in general
reduce the sample size requirement, If it does, it is sometimes possible to write
the model with fewer variables after the constraint is imposed. Brown (1981)
shows that this is always the case for a linear constraint across the coefficients
in a single equation. As a general rule of thumb, if it is not obvious that a
constraint can be used to write the model with fewer variables, it should be
assumed that the constraint does not reduce the sample size requirement.

- 6.4.2 Estimation of Subsets of Coefficients

It is possible to reduce the sample size requirement of FIML by fixing some
coefficients at, say, their 2SLS values (or some other consistently estimated
values) and estimating the remaining coeflicients by FIML. One can fix either
all the coefficients in a given equation or only some of them. If all the
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coefficients are fixed, the equation is still taken to be part of the estimation
problem in the sense that the covariance matrix Sin (6.33) is still m X m, but
none of the coefficients in the equation are estimated by FIML.

Consider the problem by estimating the free coefficients by FIML, and
write the relevant subset of the model as

(6.46) Q4 =1,

where (0, is T X g, 4, is g, X m,, and U, is T X m,. The matrix A, is the
matrix of free coefficients, and », is the number of equations in which at least
one coefficient is free. g, , as will be seen, is the number of variables that count
for purposes of calculating the sample size requirement. Its determination
requires some explanation. Assume that x; and x,, appear in equation / and
that their coefficients (¢, and o) are fixed. Assume that log y, is the LHS
variable. This equation can be rewritten with log v, — &;x;, — &px;, on the
LHS and x;, and x;, eliminated from the RHS. (&;, and &;; are the consistent
estimates of ¢v;, and a,;;.) If log ¥, x;,, and x;, do not appear elsewhere in the
model, this fixing of the coefficients has eliminated two variables. If log 3,
does appear elsewhere but x;, and x,, do not, only on¢ variable has been
eliminated because the new LHS variable and log y, count as separate
variables. If x;, and x,, appear elsewhere, no variables are eliminated. Ifall the
coeflicients in an equation are fixed, a variable in the equation is eliminated if
it appears nowhere else in the model. g, is the number of variables that remain
after all possible eliminations.

Parke has shown that the sample size requirement for this reduced problem
is T'=q, + m, — i,, where m, = m1 — m, is the number of equations for which
none of the coefficients are estimated and i, is the number of closed identities
that pertain to the reduced set of equations (that is, the set of equations not
counting the m, equations for which no coeflicients are estimated). Note that
one observation is needed for each of the , equations that are not estimated.

Given this result, if the sample size requirement is not met for the complete
model, the problem can be reduced by fixing various coeflicients until it is
met. An example of this procedure is presented in Section 6.5.2.

1t should finally be noted that because of computational costs, one may
want to restrict the size of the estimation problem even if the sample size
requirement 15 met. The obvious way to do this is to fix some of the
coefficients at their 25LS estimates. This can be done for both the FIML and
3S5LS estimators.

When only a subset of the coefficients is estimated by FIML. or 38LS, the
easiest thing to do with regard to the estimation of the covariance matrix of all
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the coeflicient estimates is to assume that the coefficient estimates that are
fixed with respect to the FIML or 3SLS estimation problem are uncorrelated
with the FIML or 38LS coefficient estimates. This allows the covariance
matrix of all the coeflicient estimates to be pieced together from the covar-
iance matrix of the fixed estimates and the covariance matrix of the FIML or
3SL.S estimates. Since correlation of coefficient estimates across equations is
usually small relative to the correlation within an equation, the errors intro-
duced by this procedure are likely to be fairly small in most applications. This
is particularly true if the coefficient estimates that are fixed are of lesser
importance than the others,

6.5 Computational Procedures and Results
6.5.1 OLS and 25L8

For equations that are nonlinear in variables only, closed-form expressions
exist for the OLS and 2SLS estimators. For 2SLS the expression is (6.9), and
for QLS it is (6.9) with X, replacing X,. If the nonlinearity in coefficients is due
only to the presence of serially correlated error terms, the estimates can be
obtained by solving (6.13) and (6.14) (or Eqs. 6.13” and 6. 14) or higher-order
versions of these iteratively. For general nonlinearities in coefficients, (6.5)
must be minimized using some general-purpose aigorithm like the DFP
algorithm discussed in Section 2.5,

Results for the US Model

The 28LS estimates of the US model are presented in Chapter 4. The
first-stage regressors that were used for these estimates are given in Table 6-1.
Two common sets are presented first in Table 6-1, one for equations in which
the RHS endogenous variables are primarily linear and one for equations in
which the RHS endogenous variables are primarily in logarithms. The addi-
tional FSRs that were used for cach equation are presented second. These
FSRs are primarily variables that appear as explanatory variables in the
equation being estimated but that are not part of the common set. The
commeon sets include 34 variables, and the number of additional variables
ranges from O to 9. The equations that are estimated by OLS have no RHS
endogenous variables.

The time taken to estimate the 30 equations by 25LS was about 3.0 minutes
on the IBM 4341 and about 8.4 minutes on the VAX. The estimation of the
covariance matrix of all the coefficient estimates, 1 in (6.20), took about 5.5



TABLE 6-1. First stage regressors for the US model for 25LS
Basic sets
Lineax Log
1 constant constant
2 {aafpopy log (AN POPY
3 Cg + C5 log{Cg +CS]
3 (Co/ror)_, Log{CD/FPOP)
5 {CN/POP]_i log[cri/POP]_1
6 (CS/POF) log (CB/POP)
M M M M
7 {1 -dlg -d15 —d4g 'd4s)_1 log{l M&lg -dlS 'ddg '545)_1
8 EX log EX
a9 Hf_1 log Hf—l
10 (IHh/PDP}_l log(IHh/PUP)_l
11 (1M/7OP}_, log (1M/POP)_,
12 e -JHMIN)_1 log(Jf/JHMIN)wl
13 {JgHg +Jmﬁm +JSHS)/PDP iog[(Jgﬁg +JmHm +JSHS)/PGP}
14 {KH/PGP)_i Eog(ﬂiiPOP)_l
15 (KX - XKMIN) | 10g(XK/KKMIN)_L
16 MLy Ml_l
17 ‘;”D_1 PD_1
18 ?f-l lag pf—l
158 PIM log PIM
20 RB_1 RB-E
21 RS, RS_y
22 RSM2 Rs_z
23 T i
24 (TR, “TR_ )/ (POP<P, ) log[ (TR, +TR_y)/ (POPPy )]
25 V.1 log Vv,
26 wf_l log We g
A7 Y-l iog Y-l
28 Y_2 log Y—Z
28 A log ¥ _,
30 YA4 log ¥ ,
3 YN!{PUP-?h_I} 1ag{YN/(PﬁP-Ph_1}]
3z z, z_,
33 UR”'1 ﬁR_i
34 2Z 2

[continued)



TABLE 6-1 {continued)

Ezgzii;n Additional First stage regressors for each eguation
1 PCS_;, WA
2 PCN |, Wa_
3 PCD_y, RH_y, WA, LYIR/(20PeR]
4 QLS estimation
5 (LL/POPL) , By o, WA
& (La/eoey_ |, Py g, WA,
7 (L3/POP3) |, By 1. WA,
8 (LM/POP) 1, Py oo WA
9 2 loglM/ (POP 7)1, log[¥T/(P0P Pl
10 log{l +dy +ds)
11 D593, D&R94, D601, D601_l, V—Z
12 éKKK-l’ IKf«l’ RBA“‘i
13 a p593, D594, 9594_1, A log ‘Efml’ ].E)g(qu"JI‘I.!*[IN]-2
4 ® log Hy_;, log(Jo/JHNIN)
15 QLS estimation
16 * tog PX,
7 ® S T
18 De ys ["f —ng "Tfs)_i’ ng * d?s
1% OLS estimation
20 gLS estimation
21 OLS estimation
22 (BO/BR) e (RS —-RD)_l
23 0O BXtra
24 RM_l
25 A(CF -ng_TfS)_l’ CF—i’ dzg + dZS’ (ng +Tf3},]_
26 & lOgECUR,«”{POP'PK]}nl, lUg(X/POP)_i
27 PIM‘i, Pk_l, RMA_I, D651, DeS2, bo9l, DeRz, D714, D721
87 legu |, log UB
29 OLS estimation
30 pp7o3-Ml_,, Ji7

1

Note: a, Basic sct is log.
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minutes on the IBM 4341 and about 7.8 minutes on the YAX. The deriva-
tives in the G; matrices that are needed for the estimation of the covariance
matrix were computed numerically.

Eight of the 30 equations were estimated under the assumption of first-
order serial correlation of the error terms. The iterative procedure described
above was used. The starting value of p was always zero, and the number of
iterations required for convergence was 10, 7, 11, 4, 13, 6, 4, and 5 respec-
tively. Convergence was defined to take place when successive estimates of p
were within .001 of each other.

QLS estimation of the 30 equations took about .2 minutes on the IBM 4341
and about .5 minutes on the VAX, which compares to about 3.0 and 8.4
minutes respectively for 25LS estimation. The number of coefficients esti-
mated in any one equation is small compared to the number estimated in the
first-stage regressions, and this is the reason for the considerably larger
expense of the 28LS estimates. The maximum number of coefficients esti-
mated in an equation is 12, whereas the minimum number estimated in a
first-stage regression is 34. Nevertheless, the cost of 2SLS estimation is small
relative to many other costs reported below.

6.5.2 FIML

Until recently the estimation of large nonlinear models by FIML was not
computationally feasible, but this has now changed. The computational
problem can be separated into two main parts: the first is to find a fast way of
computing L in (6.33) for a given value of &, and the second is to find an
algorithm capable of maximizing 1.

The main cost of computing £ is computing the Jacobian term. Two
savings can be made here. One is 1o exploit the sparseness of the Jacobian. The
number of nonzero elements in J, is usually much less than #2. For the US
model, for example, nis 128 (so n* = 16,384), whereas the number of nonzero
¢lements is only 441. Considerable computer time is saved by using sparse
matrix routines to calculate the determinant of J,.

The second saving is based on an approximation. Consider approximating
2T, log|/| by simply the average of the first and last terms in the summation

. T
multiplied by T 3 (log|J,| + log|J}. Let S; denote the true summation, and

let S| denote the approximation. It turns out in the applications I have dealt
with that S, — 8, does not change very much as the coefficients change from
their starting values (usually the 2SLS estimates) to the values that maximize
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the likelihood function. In other words, S, — S| is nearly a constant. This
means that 5, can be used instead of §;in computing £, and thus considerable
computer time is saved since the determinant of the Jacobian only needs to be
compuied twice rather than T times for each evaluation of L. For the US
model T'is 115. Using S, in place of §, means, of course, that the coefhcient
values that maximize the likelthood function are not the exact FIML esti-
mates. If one is concerned about the accuracy of the approximation, one can
switch from 5, to S, after finding the maximum using §;. If the approxima-
tion is good, one should see little further change in the coefficients; otherwise
additional iterations using the algorithm will be needed to find the true
maximum,

The choice of algorithm turns out to be crucial in maximizing L for large
nonlinear models. My experience is that general-purpose algorithms like DFP
do not work, and in fact the only algorithm that does seem to work is the
Parke algorithm (1982a), which is a special-purpose algorithm designed for
FIMI. and 3SLS estimation. This algorithm exploits two key features of
models. The first is that the mean of a particular equation’s estimated
residuals is approximately zero for the FIML and 3SLS estimates, For OLS
this must be true, and empirically it turns out that it is approximately true for
other estimators. The second feature is that the correlation of coefficient
estimates within an equation is usually much greater than the correlation of
coefficients across equations.

The problem with algorithms like DFP that require numerical first deriva-
tives is that the computed gradients do not appear to be good guides regarding
the directions to move in. Gradients are computed by perturbing one coeffi-
cient at a time. When a coefficient is changed without the constant term in the
equation also being changed to preserve the mean of the residuals, a large
change in L results (and thus a large derivative). This result can obviously be
quite misleading. The Parke algorithm avoids this problem by spending most
of its time perturbing two coefficients at once, namely a given coefficient and
the constant term in the equation in which the coefficient appears. The
constant term is perturbed to keep the mean of the residuals unchanged. (The
algorithm does not, of course, do this all the time, since the means of the
residuals must also be estimated). To take advantage of the generally larger
correlation within an equation than between equations, the Parke algorithm
" spends more time searching within equations than between them. General-
purpose algorithms do not do this, since they have no knowledge of the
structure of the problem.

It should also be noted regarding the computational problem that if only a
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few coefficients are changed before a new value of L is computed, consider-
able savings can be made by taking advantage of this fact. If, for example, the
coefficients are not in the Jacobian, the Jacobian term does not have to be
recomputed. If only a few equations are affected by the change in coefficients,
only a few rows and columns in the S matrix have to be recomputed. Since the
Parke algorithm spends much of its time perturbing two coefficients at a time,
it is particularly suited for these kinds of savings.

The estimated covariance matrix for the FIML coefficient estimates, ¥, in
(6.34), 1s difficult to compute, It is not part of the output of the Parke
algorithm, and thus extra work is involved in computing it once the algorithm
has found the optimum. My experience is that simply trving to compute the
second derivatives of L numerically does not result in a positive-definite
matrix, Although the true second-derivative matrices at the optimum are
undoubtedly positive-definite, they seem to be nearly singular. If this is true,
small errors in the numerical approximations to the second derivatives may
be sufficient to make the matrix not positive-definite,

Fortunately, there is an approach to computing I?Q that does work, which is
derived from Parke (1982a). Parke’s results suggest that the inadequate
numerical approximations may be due to the fact that the means of the RHS
variables in the estimated equations are not zero. If so, the problem can be
solved by subtracting the means from the RHS varables before taking
numerical derivatives. Let £ denote the coeflicient vector that pertains to the
model after the means have been subtracted, and let o denote the original
coefficient vector. The relationship between « and § is

(6.47) a=M-8

where Misa k X k square matrix that is composed of the identity matrix plus
additional nonzero elements that represent the means adjustments. Unless
there are constraints across equations, M is block-diagonal. Assume, for
cxample, that the first equation of the model is

(6.48) Y= P+ By, — ) + By, — m3) + Uy, t=1,...,T,

where m, and m, are the sample means of y,, and y,, respectively. This
equation can be written

(6.49) Y= B = forny = Bamis + Boya, + B, + 1y,
=0y )y, oyt uy,, =1 ... ,T
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In this case the part of (6.47) that corresponds to the first equation is

o bt —m, =—m, B
{6.50) o =10 1 0 il
o 0 0 | B

Parke found that the covariance matrix of £ could easily be computed
numerically. Let ¥,(£) denote this matrix:

FLM - B!
apop’ '
Given F,(f)), the covariance matrix of e is simply

6.52) VP ,=M-V(p M.

(651  Vip= —[

I, can thus be obtained by first computing the covariance matrix of the
coefficients of the transformed model (that is, the model in which the RHS
variables have zero means) and then using (6.52) to get the covariance matrix
of the original coefhicients,

Results for the US Model

The solution of the FIML estimation problem for the US model is reported in
Table 6-2. There are 169 unconstrained coefficients in the model; 107 of these
were estimated by FIML, with the remaining fixed at their 28LS estimates.
The coefficients that were not estimated by FIML include the dummy
variable coefficients in Eqs. 11, 13, and 27 and all the coefficients in Egs. 5, 6,
7.8.15, 18,19, 20, 21, 25, 28, and 29. These coefficients and equations were
judged to be less important than the others, although this is obviously a
subjective choice. The sample size requirement for this subset of coefficients is
99. There are 115 observations.

The starting values were the 28L8 estimates. The value of L in (6.34) at
these estimates is 5098.66. The change in L after 70 iterations in Table 6-2 is
181.76. On the first iteration the Parke algorithm increased . by 67.07, and on
the second and third iterations it increased L by 8.68 and 7.64 respectively,
The change after three iterations was thus 83.3%, which is 45.9 percent of the

-total change. This illustrates a general feature of the Parke algorithm: it climbs
very quickly for the first few iterations and then slows down considerably for
the rest.
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TABLE 6+2, Solution of the FIML estimation problem

for the US model

L =14in (6.33}

L At start [Z5LS estimates) = 5008,64
L after 70 iterations = 578G.42
Total AL = 181.76
Her. Iter, Iter, Iter. Iter.
no. AL no. Al na, AL na. AL ne. AL
i 87,07 15 2,23 29 1.60 43 43 57 .10
2 8.68 16 2.75 30 1.30 44 ,31 58 & 08
3 7.64 17 3,21 31 1.03 45 .42 583 g5
4 4,61 18 340 32 1.29 46 .39 60 3,05
5 4.8% 18 3,08 33 1.12 47 .30 a1 2 06
[ 6.84 26 2.58 34 .53 48 .36 62 8 06
7 5.51 21 3.19 35 J47 49 .20 63 .05
8 4,17 22 2.71 36 .70 50 14 64 .04
g 4,190 23 1,38 37 W57 51 .20 65 .05
18 5.17 24 1,49 38 1.16 52 .23 66 .08
11 5.04 25 2,38 39 .99 53 .10 67 11
12 2.54 26 1,20 40 .83 54 .20 68 11
13 3.51 27 1.13 41 .41 55 .10 49 e
14 3.15 % 1.18 42 .41 56 .10 700 08

Notes: a, 13 Jacobimns computed rathsr than 2.
servations 1, 10, 19, 28, 37, 46, 55, 64, 73, 82, 91, 100,

1153

{Computations at ob-

b. Between iterations 69 and 70, 20 coefficients changed by
1.0 percent or more and 4 changed by 5.0 percent or more.

the largest 3 changes were $.1, 12.6, and 18.4 percent.
Model consists of 169 unconstreined coefficients,

coefficients estimated by FIML,
1982 £IT (1i5 observations).

+ Each iteration requires about 462 function evaluations.

107

Sample period is 1954 [ -

The time per iteration when 2 Jacobians were computed was
about 2.8 minutes on the IBM 4341 and about 7.3 minutes on
When 13 Jacobians were computed the respective

the VAX,

times were 5,4 minutes and 12,3 minutes.

The total time on

the IBM 4341 for the 70 iterations was thus about 65 x2.8
rminutes + 5 x5.4 winutes = 3.5 hours.

* The time taken to compute the FIML covariance matrix, v

4

in (6.34}, was about 53 minuzes on the IBM 4341 and about
2.1 hours on the VAX,

Between iterations 58 and 62 the number of Jacobians computed to
approximate the sum was increased from 2 to 13. When 13 Jacobians were
used, the sum was approximated by interpolating between the points. As can
be seen in the table, the change in L was little affected by this. If the use of 2
Jacobians in fact provided a poor approximation, it is likely that the Parke
algorithm would have increased 1. by much more than it did on the first few
iterations after the switch. That it did not is some evidence in favor of the

approximation.

Another way of looking at the 2 versus 13 question is to consider how
sensitive the difference in L computed the two ways is 10 changes in the

coefficients. The following results help answer this:
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Value of L 2 Jacobians 13 Jacobians Difference
1. at start {28LS estimates) 5,098.66 5,284.49 —185.83
L after 39 iterations 5,279.33 5,464.04 - | 84,51
L after 62 iterations 5,279.82 5,464.34 —184.52
L after 70 iterations 5,280.42 5,464.96 —184.54

It is clear that the difference is little affected by the change in the coefficients
from the 2SLS estimates to the estimates at the end of iteration 70. It thus
seems that the use of 2 Jacobians is adequate. Note that this saves consider-
able time, since the cost of one iteration of the Parke algorithm increases from
about 2.8 minutes to about 5.4 minutes on the IBM 4341 when 13 rather than
2 Jacobians are used.

As discussed earher, when only one or two coeflicients are being changed by
the algorithm, many of the calculations involved in computing L do not have
to be performed. In the present example, if these cost savings had not been
used, the time taken for one iteration of the Parke algorithm would have
increased by about a factor of 4.5, which is a considerable difference. As will
be seen in the next section, this difference is even more pronounced in the
3SLS estimation problem.

It is a characteristic of the estimation problem that the likelihood function
is fairly flat in the vicinity of the optimum. For example, the change in L on
iteration 70 was only .06, and yet, as reported in note b in the table, 26
coefficients changed by 1.0 percent or more and 4 changed by 5.0 percent or
meoere. The largest three changes were 8.1, 12.6, and 18.4 percent. The
coefficients that change this much are obviously not significant, and they are
not coefficients that are very important in the model. Nevertheless, these
results do point out one of the reasons the FIML estimation problem is so
hard 1o solve,

As noted in Table 6-2, the total time for the FIML estimation problem was
about 3.5 hours on the IBM 4341, The time taken to compute the FIML
covariance matrix after the coefhicient estimates were obtained was about 33
minutes. The A transformation discussed earlier was used in the calculation
of this matrix, and the second derivatives were obtained numerically.

6.5.3 3SLS

The 35LS estimation problem is to minimize (6.24). The only cost saving to
note for this problem is that the 2 matrix, whichism - T X m - T, need not be
calculated anew each time (6.24) is computed if only a few coeflicients are
changed.



TABLE 6-3.

First stage regressors for the US model for 35LS

¥rom the basic sets

Additional first stage

for 25LS regressors

1. constant 35. WA-i

2. (AA/POP}Wl 36, RM_}

EN Cg + CS 37. log{Mh/(POP-Ph))Al
4. (CD/POijl 38, logfl +d5g +dss}
5. (CN/POP]ML 38, V—Z

6. (CS/POF} 40, IK.

A L L LR I AL B KK

8. EX 42, log(Jg/JMIN)
9. log Hg 43. 1og(}4f/?x)_1
10. {th/POP)_l 44, {BO/BR)_l
11, (IM/POP)_, 45. RD,

1z, log[Jf/JHMIX)_l 46. Iog[CUR/[PGP-PX))_l
13, [JgHg +JmHm +JSH5]/PGP 47. PIM_1

14, {KHIPOPJ_I 48. FX—I

15. (KK - KKMIN) 49, D@?gs-mi_l

16, Ml

17. Pb_;

18. log Pf_1

19. log PIM

20, RB_’1

21, RS_1

22, s

23, t

24, {TRgh +TRSh)f{POP-Ph_1]

25, V-l

26, leg wf-i

27. le

28, Y-Z

29, Y_s

0.0,

31. (YN/(POP-PhJ)_l

32, 7
33, UR_1
34. 22

-1




TABLE 6-4.

Solution of the 35LS estimation problem
for the US model

F=ulu in {6.24)

F at start {25LS estimates) = 1890.33
F after 26 iterations = 1843.78
Total [AF} = 46.5%
Iteration Iteration

number |aE! number jar|

1 23,90 14 .24

2 9,31 15 .16

3 6,80 16 .10

4 1.81 17 .13

5 .82 18 .12

& BT 19 LIt

7 62 20 .08

8 .28 21 Nl

9 W32 22 .08

16 22 23 W05

11 .21 24 Nird

12 W12 25 .08

13 A6 2 .05

Motes: a. Betwecon iterations 25 and 26 eight coef-

ficients changed by 1.0 percent or wore.
The largest three changes were 6.6, 10,5,
and 26.7 percent.

Hodel comnsists of 169 unconstrained coef-
ficients, 107 coefficients estimated by
38L8. Bample period is 1954 I -1982 III
{I15 observations).

Each iteration requires about 444 fuactiom
evaluations. The time per iteration was
about 4 minutes on the IBM 4341 and about
11 minstes on the VAX. The tetal time om
the IBM 4321 was thus about 26 x4 minutes
= 1.7 hours,

The time taken to compute the 3SLS covar-
iance matrix, Vs in (6,25), was about 23

minutes on the IBM 4341 and abour 11
minutes on the VaX.

Resudts for the US Model

Estimation
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The first-stage regressors for this problem are presented in Table 6-3. There
are 49 variables in this set. A number of the variables in Table 6-1 that were
used for the 2SLS estimates were not used for the 3SLS estimates because of
the desire to keep the number relatively small. The 2SLS estimates of the
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residuals were used to compute 3 in (6.24), which remained unchanged
throughout the solution of the problem.

The same subset of coefficients was estimated by 3SLS as was estimated by
FIML. The solution of the 3SLS problem is reported in Table 6-4. This
problem was easier to solve than the FIML problem. Again, the 2SLS
estimates were used as starting values. The total change in the objective
function, F, after 26 iterations was 46.55, of which 39.81 was obtained by the
Parke algorithm after 3 iterations. On iteration 26, cight coefficients changed
by 1.0 percent or more, and the largest three changes were 6.6, 10.5, and 26.7
percent,

Each iteration requires about 4 minutes on the IBM 4341 and about 1|
minutes on the VAX. The total time for the 26 iterations on the IBM 4341
was about 1.7 hours. The D matrix for the US model is 3,450 X 3,450 (m =
30, 7= 115), and considerable time was saved by not computing this matrix
from scratch any more times than were absolutely necessary. If the entire
matrix had been computed each time that (6.24) was computed, the time per
iteration would have increased by about a factor of 17, and thus the total time
would have increased from 1.7 hours to 28.9 hours.

The time taken to compute the 3SLS covariance matrix, ¥; in (6.25), was
about 23 minutes on the IBM 4341 and about 11 minutes on the VAX. The
derivative matrix ( that is needed for this calculation was computed numeri-
cally. The reason the IBM 4341 time is large relative to the VAX time is that
in the calculation of V5 much reading and writing from the disk is done, and
the IBM 4341 is relatively slow at this.

6.54 LAD and 25LAD

The LAD and 2SLAD computational problem is to minimize

-
(6.53) 2; (0]
=

with respect to oy, where v,= u,= y,— h; for LAD and v,= qy, +
(1 — @), — h,, for 2SLAD. This computational problem is not particularly
easy, especially when v, is a nonlinear function of «;. I have had no success in
trying to minimize (6.53) using the DFP algorithm and Powell’s no-derivative
algorithm (1964). (When the DFP algorithm was tried, the derivatives were
computed numerically. The problem that they do not exist everywhere was
ignored.) Both algorithms failed to get close to the optimum in most of the
cases that I tried.
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Because the standard algorithms do not work, other approaches must be
tried. I have used two, one that worked well and one that did not. The one that
worked well uses the fact that

(6.54 gl = 3 L == ,
=] ! =1 ivir‘ =t Wy
where w, =iz, 1. For a given set of values of w;, (¢ =1, . . . , T), minimizing

(6.54) is simply a weighted least squares problem. If v, is a linear function of
a;, closed-form expressions exist for &;; otherwise a nonlinear optimization
algorithm can be used. This suggests the following iterative procedure. (1}
Pick an initia set of values of w,,. These can be the absolute values of the OLS
or 2SLS estimated residuals. (2) Given these values, minimize (6.54). (3)
Given the estimate of &, from step 2, compute new values of v; and thus new
values of w,,. (4) With the new weights, go back to step 2 and minimize (6.54)
again, Keep repeating steps 2 and 3 until successive estimates of ¢v; are within
some prescribed tolerance level. If on any step some value of w, is smaller
than some small preassigned number (say €). the value of w, should be set
equal to e,

The accuracy of the estimates using this approach is a function of € the
smaller is €, the greater is the accuracy. If v, is a linear function of «;, the
estimates will never be exact because the true estimates correspond to k;
values of w, being exactly zero, where k; is the number of elements of «;.

In the case in which the equation to be estimated is linear in coeflicients, the
closed-form expresston for &; for a given set of vatues of w;, is

(6.55) &=L xvir,

X¥is the same as X, in (6.9) except that each element in row ¢ of X, is divided
by Yi,. The vector $* equals gy, + (1 — ¢ except that row ¢ is divided by
Vw,. (F equals D;y,.)

If the equation is linear in coefficients but has serially correlated errors, v, is
not a linear function of the coefficients inclusive of the serial correlation
coefficients, and therefore a closed-form expression does not exist. It is
possible in his case, however, to solve for the estimates by iteratively solving
equations like (6.13} and (6.14). This avoids having to use a general-purpose
algorithm like DFP. Assuming that X;_, and y,_, are included in Z;, the two
-equations for the first-order serial corrclation case are

(6.36) &= (XX RXP) 1L

N ar ik

(6.57) pi=——
. e
Ui Uiy
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[¥iy]

[ Sy

-8

Figure 6-1 Approximation of A(v,, 8) to]v,]

X** is the matrix X, — X,_, p, with each element in row ¢ divided by vw,; }:’;"*
is the vector gy, + (1 = )f; — y,—,f; with row ¢ divided by vw,; 4%, is the
vector y;_, — X,_,& with row ¢ divided by Vw,; and ¥ is the vector gy, +
(1 — @)f; — X;&; with row ¢ divided by J?vj, For a given set of weights, (6.56)
and {6.57) can be solved iteratively.

The second approach is derived from Tishler and Zang (1980). The prob-
lem of minimizing (6.53) is changed to a problem of minimizing

I
(6.58) > Alvy, B,

where
—v it v, =8
(6.59) A, f)=1{ @i+pH2 <y, <p.
v, if v,=p8

The value of §is some small preassigned number. Since lim A(v;,, f) =[v,l, the

A0
smaller is 8, the closeris (6.53) to (6.59). The approximation of A(z;,, §) 0|y
* is presented in Figure 6-1, Since Az, f) is once continuously differentiable,
an optimization algerithm like DFP can be used to minimize (6.59) for a
given value of 8. The smaller is f, the more difficult the minimization
problem is likely to be, and thus there is a trade-off between accuracy and ease
of solution,
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Results for the US Model

Four sets of estimates of the US model were obtained: LAD, 2SLAD using
g=0.0, 25LAD using ¢ = 0.5, and 2SLAD using ¢ == 1.0. The method of
Tishler and Zang did not work well, in the sense that the results were quite
sensitive to the value of 8 chosen, and therefore it was dropped from further
consideration fairly early in the calculations. For small values of § the DFP
algorithm, which was the algorithm used, failed to converge, and for large
values of § the algorithm converged to answers that implied values of the true
objective function, (6.53), that were larger than those obtained by the first
method. It was difficult to find in-between values of £ that worked well.

The first method, on the other hand, worked extremely well. For 28LAD
using ¢ == 0.5, for example, the number of iterations required for convergence
for the 30 equations ranged from 4 to 145, with an average of 35.6. Conver-
gence was taken to be achieved when successive estimates of each coefhcient
were within 002 percent of each other. The value used for € was .Q000001.
The total time for estimating the model by LAD was about 2.2 minutes on the
IBM 4341 and about 5.7 minutes on the VAX. The total time for each of the
three 2SLAD estimation problems was about 6.3 minutes on the IBM 4341
and about 16.5 minutes on the VAX. Of the 120 equations estimated, none
had a residual that was smaller than ¢ in absolute value at the time that
convergence was achieved. These results are very encouraging, and they
indicate that computational costs are not likely to be a serious problem in the
future with respect to LAD and 2SLAD estimation.

6.6 Comparison of the OLS, 25LS, 3SLS, FIML, LAD, and 25LAD
Results for the US Model

If the model is correctly specified and all the assumptions about the error
terms are correct, all but the OL.S and LAD estimates of the US model are
consistent, They should thus differ from each other only because of a finite
sample size, In practice the model is likely to be misspecified. and not all the
assumptions about the error terms are likely to be correct. Given this, it is not
obvious how the estimates should compare. In this section the gquantitative
differences among the estimates are examined. The consequences of these
differences for the predictive accuracy of the model are discussed in Section
8.53.5, and the consequences for the properties of the model are discussed in
Section 9.4.3.

Table 6-3 presents a comparison of the estimates for six equations: the three
consumption equations, 1, 2, and 3; the price equation, 10; the production



TABLE 6-5. Comparison of coefficient estimates for selected equations of the US model
25LAD Z8LAD 25LAD

By. Coeff. 5L FIML 3518 {q =0.0) {q =6.5) (4 =1.03 LAD oL

ne. o, a a b a & b a b a b a b S b

1 1 -00019 -.00240 -0,80 -.00042 0,19 ~.00040 -0.18 -.001el 0,56 .00323 9,32 -.00008 0,08 L1540 0,42
i LOB650 .99893 0.77 .9902: 0.23 .98920 ¢.17 L90260 0,38 .97983 -0.42 .98125 -0.33 98786 0,08
3 LO0055 50066 0.47 L00058 0,12 L0057 0,07 80063 0.31 00062 8,28 00058 0,32 .0D039 -0.72
4 01878 2922 0.99 L02:43 0,17 L0205 0.07 L0700 012 .G2052 4.08 81183 0,83 00936 -1.09
5 30714 -.52427 -1.58 -.00138 -0.42 L00265 -0.23 - 00257 -4.4% 01021 .15 L1480 0,39 L0277 0.28
[ ~. 00126 -.00111 0.73 -.00124 0,12 -.00326 0.00 -.00123 0.16 - B0116 .48 -.00082 2.08 ~.00088 1.78
7 .02312 01107 -1.00 LD1852 -0.38 L02094 -0.18 01913 -0.33 .02280 -0.03 00864 1,21 L0156 -0.29

2 1 .10903 .23987 4.76 L11422 0,19 10362 -0,20 .08105 -1,02 LU7983 1,06 L11491 0,21 L13478 0.94
Z 66619 .41164 ~3.83 .65620 -0.15 67928 0.20 L71808 0,80 .73586 1.05 .B5734 -0.13 .61356 -0,79
3 .00227 .60181 -1.04 00220 -0,15 00231 0.08 00235 .17 -00197 -0.67 00208 0,44 00218 «D.19
4 . 18547 .58420 5.34 L 18727 0.02 .19026 0.06 .08513 -1.34 .08915 -~1,29 L205875  0.27 L25481 0.93
5 -, 04689 -.16405 -5.40 «. 04851 ~0_12 -.04648 0.02 -.Qz047 1.22 -.02517- 1,00 -.05775% -0.50 -.06867 -1.00
[¢] .(6369 .02956 -1.15 .06952 0.20 05044 -0.45 .08090 0,58 08117 0.58 L07367 0.34 06468 0,03
7 ~-.00061 L0207 4,59 -.00038 0.39 -.00057 0.06 -.00081 -0.51 - 00054 0.13 -.00405 0.96 ~.00004 0,97
3 .08251 .11018 1.17 .08212 -0.03 06744 -0.66 07383 -0.39 06047 -0.956 056689 .1.12 LOB567 0,12

3 1 07348 20807 6.53 Q7710 0.18 L05432 -0.93 06464 -0.43 07328 ~8.01 06771 -0.28 06016 0,65
2 .45821 .07423 -4.98 _44448 -0.18 L48225 0,33 .51434  0.73 (48472 0,34 .53824  1.04 .49524  0.48
3 .00235 00247 0.32 .00222 -0.35 .00238% 0,07 00211 -4.6% 00211 -{. 63 00187 -1.28 0022 -0,39
4 L4468 1.03962 6.39 . 39930 -0.05 .30037 ~3.05 .35309 -0.54 L3771 -6, 27 .34360 -0.02 .31159 -0,94
5 -. 14399 -,32751 -6.71 -.1048% -0.03 -, 06856 1.06 ~.08505 0.45 -, 16485 -£.03 -, 08862 0.16 -.07811 0.78
6 06682 -, 11739 -3,27 .08347  0.30 L13503 1.%1 -07585 0.16 L085815  0.34 08378 9.30 211408 0,84
7 -. 00617 - 00749 -1.78 ~-.00608 0.i2 -.00602 2.19 ~-.00570 0.60 ~-.BUs19  1.27 -.00447 2.20 - 00537 1.64
8 ,12315 L17596 1.45 12353 0.01 L13739 0.39 ;11844 -0.13 JAZTZ2 0,31 11679 0,17 L13968  0.45

10 i 18683 L18028  0.49 .18257 -0.17 .16517 -0,85 185821 0.09 L2010 0.56 L20672 0,78 .18718 §.01
2 .92214 LO085e -1.22 91883 -0.21 .93113 8.81 L92353 0.12 L9172 -0,44 L93457 20,68 L82200 -4.41
3 .03394 D3672 DBV 03326 -8.13% .82584 -0.84 B3438 0,09 03665 0,55 L0377 0.77 .03401 0,01
4 .03388 04079 1.74 .03650 0.606 .a3192 -0.50 .03210 -0.45 .G3482 0,23 03538 0.38 03392 0,01
5 ~. 08086 -. 07402 0,36 -, 08966 -0.45 -.07814 0.15 -.07365 0.38 ~-.07883 0,11 -.08155 -0.63 ~-.08094  §.00

11 1 11.36381 21.87884 4.04 10.69493 -0.26 8.12353 -1.24 11.64382 0.11 §.81205 -0,98 9.25990 -0.81 19.58937 -0,30
F4 L16209 -.03324 -4.43 .15484 -0.16 .15023 -0.27 L14886 -0.30 18034 0.41 17040 0,19 L18002 0.41
3 1.01142 1.43204 8.15 1.01595 0.09 .98842 -0,45 1.03510 0.46 L97080 -0.79 L98684 G 48 .88039 -0.60
4 -, 19265 -.43424 -5.57 -.18766 0,11 -.149886 0,99 -, 20464 -0.28 -.16538 4.63 -.17028 ©.52 -.17797 0.34
& 60491 76119 1.74 L56992 -0,39 58685 -0.06 .61413  0.10 .60371 -0.01 58844 618 58023 -0.27

0 1 -9.45741 ~5.60570 1.22 -7.66028 0.57 ~3,52105 -0.02 -7.29281 0,68 -8.18864 0.40 ~7.91120 0.49 -9,80375 -0.11
2 LB5812 L90573 1.42 .BB58BS 0.83 .83247 -0,76 .88576 1.12 J93716 2.35 2674 2,04 .56039 0.07
3 GEBT2 -, 81235 -2.45 .J3783 -0.95 LU6980  0.03 -0534% -03.4d7 .02104 -1.46 .03465 -1,05 L06709 -0.05
4 .B2862 L1741 -1,21 L2389 -0.58 .83043 0,08 .02282 -0.69 02533 -0,43 L02446 0,52 03065 (.10
5 5574 86527 6.27 L06069  0.05 L03185 -1.40 .04213 -0.86 03831 -1.05 .03532 -1.19 06343 0.5
3] LG5248 .B5675 1.28 .04356 0,58 .03640 0.21 .02722 -0.28 .03938 0,36 .04258 0.53 03166 -0.04
7 .13149 11772 -G.44 /10735 -8.77 .14851 9.54 .15053 0.6l 03888 .2.96 .93972 -2.93 L13201 0.02

Notes: a. Coefficient estimate; b, (Coefficient estimate - 2518 coefficient estimate)/standard error of 25L5 coefficient estimate.

S|OPOW DUIBWIOULOJB0U0BN  2p2
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equation, 11; and the interest rate reaction function, 30. The 25LS estimates
are used as the basis of comparison. Each numberina “b” column in the table
is the difference between the particular estimate and the 2SLS estimate
divided by the standard error of the 2SLS estimate, These numbers thus
indicate how many standard errors the estimates are from the 2SLS estimates,
where the standard errors that are used are 2SLS standard errors. Table 6-6
provides summary measures for all the coefficient estimates.

The main conclusion to be drawn from these results is that all the estimates
are fairly close to each other except for the FIML estimates. Consider Table
6-6: only 3 of the 107 3SLS cocfficient estimates are more than 1.5 standard
errors away from the 2SLS estimates, whereas 38 of the FIML estimates are.
Only 1 of the 169 OLS estimates is more than 1.5 standard errors away. Of the
2SLAD estimates, 7 are more than 1.5 standard errors away for g = 0.0, 12 are
for g =10.5, and 19 are for g = 1.0. For LAD the number is 15, Very few of the
estimates changed signs, as can be seen in the bottom half of Table 6-6. Even
for FIML, only 6 estimates changed sign.

With respect to the individual estimates in Table 6-5, one important
difference between the FIML estimates and the others occurs in Eq. 11, the
equation determining production, Y. Coefficient 3 in Eq. 11 is the coefficient
for the sales variable, X. For all the estimates except FIML, this coefhicient is
around 1.0, whereas for FIML it is around [.4. Also, coefficient 2 in Eq. 11,
which is the coefficient of the lagged dependent variable, is around .15 for the
other estimates and close to zero for FIML. The FIML estimates of the lagged
dependent variable coefficients in two of the three consumption equations
(Eqgs. 2 and 3) are likewise quite different from the others. In both equations
the lagged dependent variable coefficient is number 2. The FIML and 2SLS
estimates in the two equations are, respectively, .66619 versus 41164 and
45821 versus (07423,

It should be stressed that the only reason for the present comparison is to
get a general idea of how close the estimates are. Of more importance are the
comparisons in Sections 8.5.5 and 9.4.5, which examine the estimates within
the context of the overall model. What can be said so far is that the FIML
estimates differ most from the others when the examination is coefficient by
cocfhcient.

 Comparison of Standard Errors

Table 6-7 presents a comparison of the 2SLS, 3SLS, and FIML estimated
standard errors. As expected, the 28LS standard errors are generally larger



244  Macroeconometric Models

TABLE 6-6. Comparison of coefficient estimates
of the US model

Number of coefficient estimates

greater than .5, 1.0, 1.5, 2.0
2.5, and 3.0 standard ervors
away from the 2SLS estimates

.5 1,0 1.5 2.0 2.5 3.G

107 total
coefficients:
FIML 81 &3 38 25 18 16
35S 34 8 3 2 4] 0
i6h total
coefficients:
ZSEAD (g =0.9) 64 21 7 5 3 1
25LAD (g =0.5) 77 33 12 8 3 1
25LAD (g =1.03 98 53 19 12 & 3
Lab 91 40 15 11 4 1
OLs 28 9 1 o 0 a
Number of sign changes from 25L3
estimates other than these for
CORSLANL LIRS
FIML )
38L5 2
25LAD (g =D.0} 1
25LAD (g =0.5} 2
28LAD (q =1.0) 1
LAD 1
LS 2

than the 35LS standard errors. where the average of the ratios of the two is
1.27. This is not always the case, however, as can be seen for coefficients 1 -6
and 8 in Eq. 4, where the 2518 standard errors are smaller. This difference is
due to the different first-stage regressors that are used by 2SLS and 3SLS. As
discussed earlier, 2SLS uses different sets of FSRs for different equations,
whereas 35LS uses a common set that is smaller than the union of the 2SLS
sets. Thiscan cause the 281 standard errors to be smaller. In the present case,
Eq. 4 has no RHS endogenous variables, and thus the 2SLS estimates are the
OLS estimates. The FSRs in this case include all the explanatory variables in
the equation. Not all of these explanatory variables were included in the
commeon set of FSRs for the 3SLS estimates, and therefore some of the
variables in the equation were treated as endogenous. This was enough to lead
to larger 3SLS standard errors for some of the coefficients.



TABLE 6-7,

and 35L3 standard errors for the US model

Ratios of 38LS and FIML standard errors and of 25LS

Estimation

Eq. Ceeff, EI_S_ S_Ez £q. Coeff. Sk} SEZ Eg. Coeff, SES SEE
no 0., SE4 SE no, no. SE, SE. no no, SE, SE.
4 3 4 3
1 1 .86 1.20 10 i JI5 1017 17 i .82 1.16
2 .78 1.21 2 72 1.19 2 .77 1,20
3 690 1,17 3 741017 3 72 1,19
4 T2 1.19 4 .75 1.18 4 75 1.20
3 82 1.22 5 .75 1.15 22 1 1.03 1,18
[ JTT1.23 I 1 .32 1.28 2 67 1.37
7 .85 1.1% 2 .57 1.22 3 .68 1.20
2 i .63 1.28 3 .40 1.21 23 i 79 1012
2 B8 1.25 4 .27 1,24 2 L0 1017
3 P2 S 8 .78 1,18 3 .42 1.42
4 560 1,30 12 1 .81 1.1¢ 4 L83 1.34
5 .87 1,32 Z .77 1,22 5 701,22
& .73 1,20 3 B8 01,22 24 1 .68 1.18
7 65 1,34 4 .74 1,28 2 .65 1.22
g .84 1,20 5 L85 1,27 3 .36 1.45
3 1 L2600 1,39 ] .82 1,28 4 .42 1.38
2 .28 1,34 T 71,21 5 LB 1.26
3 .48 1.25 g .77 01,21 26 1 , 76 1.15
4 24 1,41 13 1 W86 1,78 2 .81 1,13
5 .25 1,40 P4 86 1,78 3 .78 1,15
& .43 1,38 3 BF 1,72 4 .82 1,13
7 L33 1.2% 4 .65 1,58 5 .74 1,18
8 .61 1,33 5 .88 1,86 27 1 .85 1.37
4 1 1.47 .75 & .83 1,58 P4 BT 1,38
P4 1.26 LAL ] .78 1,57 3 .85 1,38
3 1.09 .95 14 1 .75 1,38 4 .72 1.28
4 1.32 .87 2 L7500 1,45 E .68 1,28
5 1.32 .81 3 771,53 ] 671,27
3] 1.43 .35 4 .75 1,38 30 1 .82 1.19
7 1.83 1.17 5 63 1,51 2 .80 1,22
8 .88 ,96 16 1 .68 1,40 3 W80 1,26
8 W77 1.40 2 6% 1,41 4 .83 1.1%
g 1 .78 1.21 3 72 1,82 5 e 1.32
2 .81 1,20 4 07 1,36 8 L7501,29
3 LTT O 1.24 5 L8l 1.36 7 .73 01.27
4 .82 1.18
S 7z 1.1% AVERAGE 74 1.27
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The more interesting result in Table 6-7 is that the 3SLS standard errors are
generally smaller than the FIML standard errors. The average of the ratios of
the two is .74. This result has also been obtained, but not discussed, by
Hausman (1974). For 10 of the 12 estimated coeflicients of Klein’s model |
that are reported in Hausman's table 1, p. 649, the FIML standard error is
larger than the corresponding 35LS standard error.

My conjecture as to why the 35LS standard errors are generally smaller is
the following. Given the large number of FSRs that are used by 35LS, the
predicted values of the endogenous variables from the first-stage regressions
are fairly close to the actual values. For FIML, on the other hand, we know
from Hausman’s interpretation (1975) of the FIML estimator as an instru-
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mental variables estimator that FIML takes into account the nonlinear
restrictions on the reduced form coefficients in forming the instruments. This
means that in small samples the instruments that FIML forms are likely to be
based on worse first-stage fits of the endogenous variables than are the
instruments that 3SLS forms. In a loose sense, this situation is analogous to
the fact that in the 2518 case the more variables that are used in the first-stage
regressions, the better is the fit in the second-stage regression.

Possible Use of the Hausman Test

An interesting question is whether Hausman’s mz-statistic (1978) provides a
uscful way of examining the differences among the estimates. The m-statistic
is as follows. Consider two estimators, ﬁo and ﬂl, where under some null
hypothesis both estimators are consistent but only ,6’0 is asymptotically eth-
cient, while under the alternative hypothesis only 51 is consistent. Let g =
B 13’0, and let ¥, and 7, denote consistent estimates of the asymptotic
covariance matrices (V, and 1) of ﬁo and f)’l , respectively. Hausman’s
m-statistic is §'(V, — Vp)'4, and he has shown that it is asymptotically
distributed as x* with & degrees of freedom, where k is the dimension of §.
Note that under the null hypothesis ¥, — V is positive-definite.

Consider now comparing the FIML and 35LS estimates. Under the null
hypothesis of correct specification and normally distributed errors, both
estimates are consistent, but only the FIML estimates are asymptotically
efficient. On the other hand, 3SLS estimates are consistent for a broad class of
error distributions, whereas for many distributions FIML estimates are in-
consistent, If the alternative hypothesis is taken to be that the error distribu-
tion is one that leads to consistent 3SLS estimates but inconsistent FIML,
estimates, then in principle Hausman’s m-statistic can be used to test the null
hypothesis of normality against the alternative. Let &3 and &% denote the
3SLS and FIML estimates of o« respectively, and let §= 63 — &%, The
m-statistic in this case is §(V; — F,)"'d, where the estimated covariance
matrices I7’3 and f’., are defined in (6.25) and (6.34) respectively.

In practice the test cannot be performed if I?’3 — ¥, is not positive-definite,
For the US model it is clear from Table 6-7 that ¥, — ¥, is not positive-defi-
nite, since most of the diagonal clements of ¥, are smaller than the corre-
sponding elements of F7,. If anything, i, — ¥, is closer to being negative-defi-
nite, although this is not true either since some of the diagonal elements of F,
are smaller than the corresponding elements of ;. The matrix 173 — V,isalso
not positive-definite for Klein’s model 1, since, as noted earlier, Hausman’s
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results (1974) show that 10 of the 12 estimated coefficients have larger FIML
standard errors than 3SLS standard errors. It thus scems unlikely that 7, — 7,
will be positive-definite in practice for most models, and therefore the m-sta-
tistic is not likely to be useful for testing the normality hypothesis. (If the
model is linear, the test obviously has no power, since FIML, like 3SLS, is
consistent for a broad class of error distributions.)

The m-statistic can also be used in principle to compare the FIML and
2SLS estimates. Under the null hypothesis of normatly distributed errors and
correct specification, both estimates are consistent, but only the FIML esti-
mates are asymptotically efficient. Under the alternative hypothesis of nor-
mality and misspecification of some subset of the equations, all the FIML
estimates are inconsistent, but only the 28LS estimates of the misspecified
subset are inconsistent. The m-statistic can thus be applied to one or more
equations at a time to test the hypothesis that the rest of the model is correctly
specified. If for some subset the m-statistic exceeds the critical value, the test
would indicate that there is misspecification somewhere in the rest of the
model.

In practice this test cannot be applied if ¥, — ¥, is not positive-definite, and
for the US model, as is clear from Table 6-7, ¥, — ¥, is not positive-definite.
Many of the diagonal elements of ¥, are smaller than the corresponding
elements of ¥,. It thus also seems unlikely that this test of misspecification
will be useful in practice.

Finally, the specification hypothesis can be tested in certain circumstances
using the m-statistic on the 2SLS and 3SLS estimates. If both estimators are
members of a class of estimators for which 3SLS is asymptotically efficient,
the test can be applied. The problem is that when the two estimators are based
on different sets of FSRs, as is usually the case with large models, they are not
members of the same class. One cannot argue, for example, that the 35LS
estimates given above for the US model are asymptotically efficient relative to
the 2SLS estimates, and thus the Hausman test cannot be applied in this case.

In summary, the m-statistic does not scem useful for testing either the
normality hypothesis or the correct specification hypothesis. Regarding the
latter, my feeling is that it is better simply to assume that the model is
misspecified (so that no test is needed) and to try to estimate the degree of
misspecification. This is the procedure followed for the comparison method
in Chapter 8.



