
6 Estimation 

6.1 Introduction 

Macroeconometric models are typically nonlinear, simultaneous, and large. 
They also tend to have error terms that are serially correlated. The focus of 
this chapter is on models with these characteristics. The notation that will be 
used in this chapter and in Chapters 7- 10 is as follows. Write the model as 

(6.1) f;(Y,, &, 4 = 4, i= 1, ,n, t=1,. ,r, 

where y, is an ndimensional vector of endogenous variables, x, is a vector of 
predetermined variables, q is a vector of unknown coefficients, and ui, is an 
error term. Assume that the first m equations are stochastic, with the remain- 
ing ui, (i = m + 1, , n) identically zero for all 1. 

Let J, be the n X n Jacobian matrix whose ij element is ah;layjAi, j= 
1, , n). Also, let u, be the T-dimensional vector (ui,, , uir)‘, and let 
u be the m . T-dimensional vector (u I,, , U,T. > %d, , %A’. 
Let a denote the k-dimensional vector (01;) , 01;) of all the unknown 
coefficients. Finally, let G;be the k, X Tmatrix whose tth column is al(_v,, x,, 
ai)/&xi, where ki is the dimension of q, and let G’ be the k X m . Tmatrix, 

G; 0 . . 0 
0 G; 

1: 0 ..( 1 G:. 

where k = ZZc I ki. These vectors and matrices will be used in the following 
sections. 

6.2 Treatment of Serial Correlation 

A convenient way ofdealing with serially correlated error terms is to treat the 
serial correlation coefficients as structural coefficients and to transform the 
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Since many equations in macroeconometric models have lagged dependent 
variables, the DW test is of limited use. My response to this problem is to 
estimate the equations initially under the assumption of serial correlation 
(usually first-order) by some consistent technique (usually 2SLS). From this, 
one can test the hypothesis that the serial correlation coefficients are zero, 
which is simply a &test on each coefficient. This test is valid asymptotically if 
one has correctly estimated the asymptotic covariance matrix ofthe estimated 
coefficients, and it is not restricted to equations without lagged dependent 
variables. It also easily handles serial correlation of higher than first order. 
since all this requires is estimating the equation under the assumption ofthe 
particular order. If a test indicates that a serial correlation coefficient is zero, 
the equation can be reestimated without this coefficient being included. 

Although this is the general procedure that I follow in handling serial 
correlation problems, I still include the DW statistic in the presentation ofthe 
results for a particular equation (see Chapter 4). Since the DW statistic is 
biased toward acceptance of the hypothesis of no serial correlation when there 
are lagged dependent variables, a value that rejects the hypothesis indicates 
that there are likely to be problems. The DW test is thus useful for testing in 
one direction, and this is the reason I tend to include it in the results. 

6.3 Estimation Techniques 

6.3.1 Ordinary Least Squares (OLS) 

The OLS technique is a special case of the 2SLS technique, where 0, in (6.5) 
and (6.6) below is the identity matrix. It is thus unnecessary to consider this 
technique separately from the 2SLS technique. 

6.3.2 Two-Stage Least Squares (2SLS) 

Generul Case 

2SLS estimates of LY, (say &J are obtained by minimizing 

(6.5) u~z,(z~z,)-‘z~ui = &DiUi 

with respect to cxi, where Z, is a TX K, matrix of predetermined variables. Zi 
and K, can differ from equation to equation. An estimate of the covariance 
matrix of @ (sap Pz;,) is 

(6.6) P2i; = i?,,(i;:&~i)-~, 

where 6, is Gi evaluated at&and ?Jij = T-l EL, Lit, a, =f;(r,, x,, &J. 
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The 2SLS estimator in this form is presented in Amemiya (1974). It 
handles the case of nonlinearity in both variables and coefficients. In earlier 
work, Kelejian ( 197 I) considered the case of nonlinearity in variables only. 
Bierens ( I98 1, p. 106) has pointed out that Amemiya’s proofofconsistency of 
this estimator is valid only in the case of linearity in the coefficients, that is, 
only in Kelejian’s case. Bierens supplies a proof of consistency and asympto- 
tic normality in the general case. 

It will be useful to consider the special case in which the equation to be 
estimated is linear in coefficients. Write equation i in this case as 

(6.7) y,=x;oli+u,, 

where y,is the T-dimensional vector&, , yir)‘and X,isa TX kimatrix 
of observations on the explanatory variables in the equation. Xi includes both 
endogenous and predetermined variables. Both y, and the variables in X, can 
be nonlinear functions of other variables, and thus (6.7) is much more general 
than the standard linear model. All that is required is that the equation be 
linear in 01,. Substituting ui = J+ - X,(Y~ into (6.5), differentiating with respect 
to cu,, and setting the derivatives equal to zero yields the following formula for 
&i: 

(6.8) & = (X:D,X,)-‘x;D,y, = (~:XJ-l‘& 

where ,?i = QX, is the matrix of predicted values ofthe regression ofX, on 2,. 
Since 0: = Di and &Di = Di, ,%?$; = ,?;D&X, = $D,X, = *Xi, and thus 
(6.8) can be written 

(6.9) & = (&Q’&,: 

which is the standard 2SLS formula in the linear-in-coefficients case. In this 
case G; is simply Xi, and the formula (6.6) for pzii reduces to 

(6. IO) P*ii = CFii($~i)-I. 

Linear-in-Coe$icirnts Case wilh Serial Correlarion 

It will also be useful to consider the linear-in-coefficients case with serially 
correlated errors. Assume that ui in (6.7) is first-order serially correlated: 

(6. I 1) ui = “i_Ipi + Ei, 
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Transforming (6.7) in the manner discussed above yields 

(6.12) yi - yi-rpi = (Xi - Xi-,Q.Yi + Ei. 

Minimizing e;Diei with respect to oi and pi results in the following first-order 
conditions: 

(6.13) Gi = [_)‘(Xi - X,_,;J-r(~)‘(, - y,-,&), 

(6.14) di= 
(Pi_, -/?-,&i)~(yi-Xi~i) 

(Pi-r - J?i_,&J’(.!J_, -X,-,&J ’ 

where ai = Q(X, - Xi_&, pi_, = DJJ;_ , , and Xi,_, = DJ-, If 
Xi_, is included in Z,, then 2i_, = Xi_, (since Xi_, is merely the predicted 
values from a regression of Xi_, on itself and other variables), and therefore 
X,-X,_,& = Xi - Xi_,ji. If in addition y,_i is included in Z,, then J$_, = 
yi_, , and (6.14) becomes 

“I ^ 
(6.14)’ ;i = &;:, > 

where ai_, = yi_, - A’_,&i and iii = yi -Xi&,. This is merely the fortnula for 
the coefficient estimate of the regression of r& on (I_, 

Equations (6.13) and (6.14) can easily be solved iteratively. Given an initial 
guess for ji, hi can be computed from (6. I3), and then given &, )i can be 
computed from (6.14). Given this new value ofji, a new value of bi can be 
computed from (6.13), and so on. If convergence is reached, which means 
that the values of hi andfii on successive iterations are within some prescribed 
tolerance level, the first-order conditions have been solved. 

Equations with RHS endogenous variables and serially correlated errors 
(that is, Eqs. 6.7 and 6.1 I) occur frequently in practice, and the 2SLS 
estitnator for this case has been widely used. This estimator was discussed in 
Fair (1970), and I programmed it into the TSP regression package in 1968 
under the name TSCORC. (“CORC” refers to the fact that the iterative 
procedure used to solve Eqs. 6.13 and 6. I4 is like the Cochrane-Orcutt [ 19491 
iterative procedure in the nonsimultaneous equations case.) There is an 
important difference between (6.13) and the formula for sLi proposed in Fair 
( 1970), and given the widespread use of the TSCORC command, this differ- 
ence should be noted. Let Xi= (Y, X,J, where Yi is the matrix of RHS 
endogenous variables in ($7) and Xii is the matrix of predetermined var- 
iables. Let pi = DiYi and X, = (Y? X,J. The formula proposed for &; was 

(6.13)’ iuj = [($ - x,_,j+)+i - xi_,fii)]-r(,?i - Xi_,F,)‘(Y, - y-,JJ. 
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This is the formula for the coefficient estimates of the regression of yi - JJ+. ,,& 
on 2i - Xi_,jj. Equation (6.13) reduces to (6.13)’ when &andXi_, =( Yi-, 
X2,_,) are included in Z,, that is, when the exogenous, lagged endogenous, 
and lagged exogenous variables in the equation being estimated sre included 
among the first-stage regressors. The inclusion ofXzi means that yL =fi, and, 
as noted earlier, the inclusion ofX,_, means that Xi - Xi_,ji = Xi - Xi-,ji. 
The proposed formula for;< was (6.14)‘, which, as noted above, is the same as 
(6.14) only ifX+, and yi_, are included in Z,. Solving (6.13)’ and (6.14)’ is 
thus not the same as solving (6.13) and (6.14) unless X,i, Xi_, , and y,-, are 
included in Zi. It can be shown that if this is not done, solving (6.13)’ and 
(6.14)’ does not result in consistent estimates. The need to include X,;, Xi-, , 
and y,_, among the first-stage regressors was stressed in Fair (1970), but one 
should keep in mind that this is not absolutely necessary ifthe formulas (6.13) 
and (6.14) are used. In general, however, Xzi, Xi-, , and y,-, are obvious 
variables to include among the first-stage regressors, and for most problems 
this should probably be done even if one is using a program that solves (6.13) 
and (6.14) rather than (6.13)’ and (6.14)‘. 

In the case of linearity in the coefficients and first-order serial correlation, 
G, = (Xi - X,_,p, yi_l - X+,cu,), and the formula (6.6) for p*;, can be 
written 

IfXzi, Xi_, , and J&~ are included in Z,, then (6.15) becomes 

(6.15)’ vz;,= 
(&Xi-,ji)~(~i -X,-,jJ (~i-X,_,~i)‘&_l 

a:_& - Xi_,&) a:_,&_, 

where, as above, Lii-, =x,-~ -Xi_&. This is the formula presented in Fair 
(1970). Remember that Vzii in this case is the covariance matrix for (& $J,,), 
not hLi alone. It was suggested in Fair ( 1970, p. 5 14) that the off-diagonal terms 
in (6.15)’ be ignored (that is, set to zero) when computing pz;,,, and this was 
initially done for the TSCORC option in TSP. This is not, however, a good 
idea, as Fisher, Cootner, and Baily (1972, p. 575, n. 6) first pointed out. The 
saving in computational costs from ignoring the off-diagonal terms is small, 
and in general one should not ignore the correlation between & and j$ in 
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computing pzii. In later versions of TSP the TSCORC option was changed to 
compute vzii according to (6.15)‘, but many copies were distributed before 
this change was made. 

The generalization of the preceding discussion to higher-order serial corre- 
lation is straightfonuard. and this will not be done here except to make one 
point. As the order ofthe serial correlation increases, the number of variables 
that must be included among the first-stage regressors to ensure consistent 
estimates increases if the higher-order equivalents of (6.13)’ and (6.14)’ are 
used. In going from first to second, for example, the new variables that must 
be included are Xi_, and Y~-~. At some point it may not be sensible, given the 
number of observations, to include all these variables, in which case the 
higher-order equivalents of (6.13) and (6.14) should be used for the estimates. 

Restrictions on the Coefficients 

In the general nonlinear case in which (6.5) is minimized using an algorithm 
like DFP, restrictions on the coefficients are easy to handle. Minimization is 
merely over the set of unrestricted coefficients. For each set of unrestricted 
coefficients tried by the algorithm, the restricted coefficients are first calcu- 
lated and then the objective function (6.5) is computed. Except for calculating 
the restricted coefficients given the unrestricted ones, no extra work is in- 
volved in accounting for the restrictions. 

In the case in which the restrictions are linear and the model is otherwise 
only nonlinear in variables, an alternative procedure is available for handling 
the restrictions. To see this, assume that a restriction is 

(6.16) Rq = r> 

where R is 1 X ki, ei is k, X 1, and r is a scalar. R and I are assumed to be 
known. Let cyli denote the first element of o+, and assume without loss of 
generality that the first element ofR is nonrero. Given this assumption, (6.16) 
can be solved for a,; 

(6.17) cyli = R*af + I*, 

where R* is 1 X ki - I and olr is ki - 1 X 1. The vector elf excludes CU,~. 
Given (6.17). (6.7) can be written 

(6.18) J?~ = X,iol,i +X2,$ + ui = X,,(R*ar + r*) + X2& + ui 
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wherey: = y;“,- X,ir*andX: =X,,R* +X,i.ThevectorX,iisa TX 1 vector 
of observations on the variable corresponding to ali, and X,i is a TX ki - 1 
matrix ofobservations on the other explanatory variables. Given that R* and 
r* are known, ~7 and XT are known, and therefore (6.19) can be estimated in 
the usual way. The original equation has been transformed into one that is 
linear in the unrestricted coefficients. The extra work in this case is merely to 
create the transformed variables. 

The coefficient restriction in the US model that is represented by (4.20) is a 
linear restriction on the coefficients of the wage equation (n , y2, and yx) if the 
coefficients of the price equation (p, and /$) are given. For all the limited 
information estimation techniques (that is, all the techniques except 3SLS 
and FIML), the variables in the wage equation were transformed into an 
equation like (6.19) before estimation. This required that the price equation 
be estimated first to get the estimates of/?, and p2 to be used in the transfor- 
mation. This procedure was not followed for the 3SLS and F’IML estimates, 
since the restriction (4.20) is not linear within the context ofall the equations 
of the model. 

Choice of First-Stage Regressors 

Before estimating an equation by 2SLS, the first-stage regressors (FSRs) must 
be chosen. Since analytic expressions for the reduced form equations are not 
available for most nonlinear models. they cannot be used to guide the choice 
of FSRs. One must choose, given knowledge of the model, FSRs that seem 
likely to be important explanatory variables in the (unknown) reduced form 
equations for the RHS endogenous variables in the equation being estimated. 

There is considerable judgment involved in the choice of FSRs for a 
particular equation, and there are only a few rules of thumb that can be given. 
Consider estimating an equation with y>, and Ye, as RHS endogenous vari- 
ables. Assume that the structural equations that determine )?*, and J$, have y4, 
and ysr as RHS endogenous variables. One obvious choice of FSRs is to use 
predetermined variables that are in the structural equations that explain j’z’21 
and .v~,. Another choice is predetermined variables that are in the structural 
equations that explain 4$, and y,,. One can continue this procedure through 
further layers as desired. (This rule of thumb is discussed in Fisher 1965.) 
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A rule of thumb about functional forms is to use mostly logarithms of 
variables ifthe RHS endogenous variables are in logarithms and to use mostly 
linear variables if the RHS endogenous variables are linear. Sometimes 
squares and cubes of variables are used, and sometimes variables multiplied 
by each other are used. There is no requirement that the same set of FSRs be 
used for different equations (although the same set must be used for all the 
RHS endogenous variables in a particular equation), and thus one may want 
to use different sets across equations, each set depending on the particular 
RHS endogenous variables in the equation. 

The predetermined variables in the equation being estimated should also 
be included among the FSRs. Not doing so means treating these variables as 
endogenous. There is, however, an exception to this in the linear-in-coeffi- 
cients case, which should be explained to avoid possible confusion. Consider 
(4.7) and let X, = (Y, X,J, where Y, is the matrix of RHS endogenous 
variablesandXziis the matrix of predetermined variables. If,?iisdefined to be 
(pi X,J, where pi = DiYj, rather than &Xi, and if formula (6.8) is used to 
compute &, then Xzi is treated as exogenous even if it is not included in Z,. 
Equation (6.8) is the instrumental variables formula for hi, and when 
(p: X,;) is used for ,!?i, X,; is serving as its own instrument. When (pi X,J is 
used for fi, and X,; is not included in X;, (6.8) and (6.9) are not the same, and 
(6.9) does not produce consistent estimates. (See McCarthy 197 I .) Equations 
(6.8) and (6.9) are the same only if Xzi is included in Z,. 

Covnrinnce Matrix ofAN the Esfimated Coeficients 

Some of the stochastic simulation work in Chapters 7, 8, and 9 requires the 
covariance matrix of all the coefficients estimates, that is, the k X k covar- 
iance matrix of &, where & = (& , , A$,.)‘. For the completely linear case 
(linear in both variables and coefficients), this covariance matrix is presented 
in Theil ( 197 I, pp. 499 - 500) for the case in which the same set of FSRs is 
used for each equation. For the more general case of a nonlinear model and a 
different set of FSRs for each equation, it is straightforward to show that the 
covariance matrix (say V2) is 

(6.20) vz = 

J 
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where 

(6.21) 1 -I , 
(6.22) Vzij = oti plim + G;D,G, 

-I I[ plim + G;DiD,Gj 1 
plim + G;D,Gj 1 -I 

An estimate of Vzjj is vzii in (6.6). An estimate of Vzti (say p2J is 

Regarding the proof that Vz in (6.20) is the correct covariance matrix, the 
derivation in Theil can easily be modified to incorporate the case of different 
sets ofFSRs. Nonlinearity can be handled as in Amemiya ( 1974, appendix 1 ), 
that is, by a Taylor expansion ofeach equation. The formal proofthat Vz is as 
in (6.20), (6.21), and (6.22) is straightforward but lengthy, and it is omitted 
here. Jorgenson and Laffont (I 974, p. 363) incorrectly assert that the off-diag- 
onal blocks of V2 are zero. 

6.3.3 Three-Stage Least Squares (3SLS) 

3SLS estimates of a! (say &) are obtained by minimizing 

(6.24) u’ [t-l @ Z(Z’Z)-‘Z’]u = u’Du 

with respect to CY, where 2 is a consistent estimate of E and Z is a TX K 
matrix of predetermined variables. As estimate of the covariance matrix of& 
(say P3) is 

(6.25) & = (C?‘Di;)-I, 

where C? is G evaluated at & E is usually estimated from the 2SLS estimated 
residuals. This estimator is presented in Jorgenson and Laffont (1974), and it 
is further discussed in Amemiya (1977). Both prove consistency and asymp 
totic normality of 3SLS. 

The 3SLS estimator that is based on minimizing (6.24) uses the same Z 
matrix for each equation. In small samples this can be a disadvantage of 3SLS 
relative to 2SLS. It is possible to modify (6.24) to include the case ofdifferent 
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Z, matrices for each equation, and although this modification is not in general 
practical for large models, it is of some interest to consider. This estimator is 

with respect to (Y. An estimate of the covariance matrix of this estimator is 
(C?‘Bod)-‘. (6.26) reduces to (6.24) when Z, = = Z, = Z. The compu- 
tational problem with this estimator is that it requires inverting the middle 
matrix in brackets. This matrix is of dimension K* = EE, Xi, which is 
generally a large number. For small to moderate models, however, it may be 
feasible to invert this matrix. This estimator has the advantage of being the 
natural full-information extension of 2SLS when different sets of FSRs are 
used. This estimator is a special case of one of the 3SLS estimators in 
Amemiya (1977, p. 963), namely the estimator determined by his equation 
(5.4), where his S, is the first matrix in brackets in (6.26) above. 

If the estimator that minimizes (6.26) is used, a different set of FSRs can be 
used for each equation, and the same considerations apply here as apply for 
the 2SLS estimator. If the estimator that minimizes (6.24) is used, the same 
set of FSRs must be used for all equations. This set should be roughly equal to 
the union of the sets that are used (or that would be used) for the 2SLS 
estimator. The actual set used may have to be smaller than the union if the 
union contains more variables than seem sensible given the number of 
observations. Also, some nonlinear functions of the basic variables may be 
highly collinear (say. x,,, log x1,. and XT,), and one or more of these may be 
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able to be excluded without much loss ofexplanatory power in the lint-stage 
regressions. 

6.3.4 Full Information Maximum Likelihood (FIML) 

Under the assumption that (u,,, , u,,) is independently and identically 
distributed as multivariate N(O,S), the density function for one observation is 

(6.27) 
> 

, 

where S* = SF and S$ is the ij element of S*. The Jacobian J, is defined in 
Section 6.1. The likelihood function of the sample t = 1, , T is 

T 

(6.28) L* = (2n)-*IS*lfnIJ,lexp 
*=I 

and the log of L* is 

(6.29) log I,* = -7 log 272 + ; loglS*l+ i loglJ,l - ; 2 uirF1;u,.C. 
<=I &.,,I 

Since log L* is a monotonic function of L*, maximizing log L* is equivalent 
to maximizing L*. 

The problem of maximizing log L* can be broken up into two parts: the 
first is to maximize log L* with respect to the elements of&‘*, and the second is 
to substitute the resulting expression for S* into (6.29) and to maximize this 
“concentrated” likelihood function with respect to LY. The derivative of log L* 
with respect to S$ is 

(6.30) 

where s*b is the Lj element of S*-‘. This derivative uses the fact that 

a MA I - = a’J for a matrix A. Setting (6.30) equal to zero and solving for s*g aa, 
yields 

(6.3 I) 
I = $*” = - x *rip,, 
T,=, 
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Since S* = S’, s*” = su, and therefore sti = + i u,u,. Substituting (6.3 1) 
r-1 

into (6.29) yields 

(6.32) log L* = -y log 2n +; loglS*l+ f: loglJ,I -J$ 
(-1 

The-? term comes from the fact that -; 2 ui&uj, = -; z .i& ui,uj, = 
1.1.1 r., 1-t 

-; 2 $?*Q= -$ The first and last terms on the RHS of (6.32) are 
i., 

constants. and thus the expression to be maximized with respect to (Y consists 
ofjust the middle two terms. Since loglS*l = logIS’ = -log/SI, the function 
to be maximized can be written 

(6.33) L = -; loglS[ + i log/.&l, 
I-I 

1 = 
where, as noted earlier, the ijelement ofS, sb, is T c u. u. FIML estimates 

I=1 I”’ 
of OL are thus obtained by maximizing L with respect to cx. An estimate of the 
covariance matrix of these estimates (say PA) is 

(6.34) 

where the derivatives are evaluated at the optimum. 
Phillips (1982) has pointed out that Amemiya’s proof of consistency and 

asymptotic efficiency (1977) is based on an incorrect lemma. This is corrected 
in a later paper (Amemiya 1982). Amemiya’s article ( 1977), as corrected, 
shows that in the nonlinear case FIML is asymptotically more efficient than 
3SLS under the assumption of normality. In the linear case RML is consist- 
ent even if the error terms are not normally distributed, where “FIML” means 
the full information maximum likelihood estimator derived under the as- 
sumption of normality. In the nonlinear case this is not in general true, 
although it sometimes is. Phillips (1982) presents an example of a nonlinear 
model for which FIML is consistent for a wide class of error distributions. He 
also proves a “possibility” theorem, which shows that when FIML is consist- 
ent under normality it is always possible to find a nonnormal error distribu- 
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tion for which consistency is maintained. The assumption of normality is not 
necessary for the consistency of 3SLS. Given that 3SLS is consistent under a 
broader class of error distributions than is FlML, it is in this sense a more 
robust estimator. There is thus a trade-off between more robustness for 3SLS 
and more efficiency for FIML if the error terms are normal. 

In the linear case Hausman ( 1975) has shown that RML can be interpreted 
as an instrumental variables estimator in which all the nonlinear restrictions 
on the reduced fortn coefficients are taken into account in forming the 
instruments. This is contrary to the case for 3SLS, which forms the instru- 
ments from unrestricted estimates of the reduced form equations. FIML thus 
uses more information about the model than does 3SLS. In the linear case this 
makes no difference asymptotically because both estimates of the reduced 
form coefficient matrix are consistent (assuming that 3SLS uses all the 
explanatory variables in the reduced form equations as first-stage regressors). 
In the nonlinear case, however, it does make a difference because 3SLS does 
not obtain consistent estimates of the reduced form equations. In general, 
analytic expressions for the reduced form equations are not available, and 
3SLS must be based on approximations to the equations. No such approxi- 
mations are involved for F’IML, and this is the reason it is asymptotically 
more efficient. 

Another interesting difference between FIML and 3SLS concerns the LHS 
variable in each equation. Chow (1964) has shown in the linear case that 
FIML is the natural generalization of least squares in the sense that it 
minimizes the generalized variance of linear combinations of the endogenous 
variables. This is not true of 3SLS, which follows the principle of generalized 
variance but not oflinear combinations. What Chow’s interpretation shows is 
that there is no natural LHS variable for FIML: because of the linear 
combination aspect, each variable in the equation is treated equally. For 
3SLS, on the other hand, a LHS variable must be chosen ahead of time for 
each equation. 

For macroeconometric work it is unclear whether the symmetrica treat- 
ment of the endogenous variables by FIML is desirable or not. If the equa- 
tions that are estimated are decision equations, as is the case for the model in 
Chapter 4, there is a natural LHS variable for each equation. FIML ignores 
this restriction, whereas 3SLS does not, so this may be an argument in favor of 
3SLS. Given this difference and given the fact that 3SLS is more robust to 
specification errors regarding the distribution of the error terms, the question 
of which estimator is likely to be better in practice is far from clear. 
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6.3.5 Least Absolute Deviations (LAD) 

LAD estimates of C-Z, (say hi) are obtained by minimizing 

(6.35) 2 I-U 

with respect to oli. For the general nonlinear model the asymptotic distribu- 
tion of iu, is not known. For the standard regression model yi = Xicxi + uj, 
where Xi is a matrix of exogenous variables and nit is independent and 
identically distributed with distribution function P: Bassett and Koenker 
(1978) have shown that the asymptotic distribution of&, is normal with mean 

oii (thus h, is consistent) and covariance matrix w2Q, where Q = lim +,I’;?;. 

and oz is the asymptotic variance of the sample median from random 
samples with distribution F. Amemiya (1982)suppliesan alternativeproofof 
this proposition. 

The LAD estimator is an example of a robust estimator. An estimator is 
said to be more robust than another if its properties are less sensitive to 
changes in the assumptions about the model, particularly assumptions about 
the distribution of the error terms. In a number of cases the LAD estimator 
has been shown to be more robust that the OLS estimator to deviations ofthe 
error terms from normality. In particular, the LAD estimator seems well 
suited to cases in which the distribution of the error terms is fat-tailed. 

The literature in statistics on robust estimation is now quite extensive, and 
there are many types of robust estimators. The estimators differ primarily in 
how error terms that are large in absolute value (that is_ outliers) are weighted. 
These estimators have not been used very much in applied econometric work, 
so there is little experience to guide the choice ofestimator. Since LAD is the 
simplest of the estimators, it seems to be the best one to start with. An 
interesting open question is how useful any of the robust estimators are for 
empirical work in economics. 

6.3.6 Two-Stage Least Absolute Deviations (2StAD) 

There are two ways of interpreting the 2SLS estimator that is based on the 
minimization of (6.5), and these need to be discussed before considering the 
LAD analogue of 2SLS. For purposes ofthe discussion in this section and in 
Section 6.5.4, it will be assumed that the model (6.1) can be written 

(6. I) Yi:,, = h(Y,> x,, 4 + Ui,, i= 1, .n. t=1,. ,T> 
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where in the ith equation yi, appears only on the LHS. Given this and given 
that 0: = Di and O,Di = Di, (6.5) can be written 

(6.36) u:D,ui = u;DiD,ui 
= (Jj; - h;)DiDi(J$ - hi) 
= (yjDi - /z;Di)(DLvi - Ofhi) 
= (jy - h;)(j; - r;,) 
=&pi - 29;/5 + &I;,, 

where i; = D,y, and & = D,h;. Instead of minimizing (6.36), consider mini- 
mizing 

(6.37) (J$ - h^l)(J$ - hi) = L’;JQ - 2J& + /;I/;,. 

Given that pi& = y;DiDihi = y;Dihi = y$, and given that j?:ji and y;y, are 
not a function of 01~: minimizing (6.36) with respect to oli is equivalent to 
minimizing (6.37). Therefore, the 2SLS estimator can be interpreted as 
minimizing either (pi - &)(J;, - I$ or (y: - @(yi - &). The first interpreta- 
tion is Basmann’s (1957) and the second is Theil’s (1953). 

For the LAD analogue it is unclear which interpretation should be used. 
Using Basmann’s one would minimize 

and using Theil’s one would minimize 

In this case the choice matters in that minimizing (6.38) and minimizing 
(6.39) lead to different estimates. Amemiya (1982) has proposed minimizing 

(6.40) ,$ lwi,+ (1 - &Pi, - /;,,I, 

where 4 is chosen ahead of time by the investigator. The estimator that is 
based on minimizing (6.40) will be called 2SLAD. 

For the general nonlinear model the asymptotic distribution of 2SLAD is 
not known. For the linear model Amemiya (1982) has proved that 2SLAD is 
consistent. He has also in the linear case derived formulas for the asymptotic 
covariance matrix of the estimator for particular assumptions about the 
distributions of the error terms. If all the distributions are normal, he has 
proved that 2SLAD is asymptotically normal. 



224 Macroeconometric Models 

6.4 Sample Size Requirements for FIML and the Estimation of Subsets 
of Coefffcients 

6.4.1 Sample Size Requirements 

For large models there may not be enough observations to estimate all the 
coefficients by FIML. For a linear model without identities, Sargan (1975) has 
shown that the FIML likelihood function has an infinite maximum if the 
number of observations is less than the number ofendogenous and exogenous 
variables. With respect to more general models, Parke (1982b) has derived the 
FIML sample size requirement for models with identities, nonlinearity in 
variables. and serial correlation coefficients. It will be useful to consider 
Parke’s main results. 

Consider first the case ofno identities and no serial correlation coefficients. 
If the model is only nonlinear in variables, it can be written 

(6.41) QA = CJ, 

where Q is a TX 4 matrix of variables that are functions of the basic 
endogenous and exogenous variables, A is a 4 X m matrix of coefficients, and 
U is a TX m matrix of error terms. In general the variables in Q are nonlinear 
functions of the basic endogenous and exogenous variables, although many of 
them may simply be the basic variables. The total number of variables in the 
model is 4. Under the assumption that each of these variables appears at least 
once in the mode1 with a nonzero coefficient (a trivial assumption), Parke has 
shown that the sample size requirement for FIML is T 2 4. 

Adding identities does not in geneml change this requirement. One need 
not include in Q variables that appear in identities but not in the structural 
equations when one is calculating the sample size requirement. When the 
identity is what Parke calls a “closed” identity, one that imposes a linear 
dependency on the columns of Q, the sample size requirement is less. For i 
closed identities the dependencies can be written 

(6.42) QP = 0, 

where P is a 4 X i matrix of known coefficients. For i closed identities the 
sample size requirement is T 2 4 - i. 

An example of a model with a closed identity is the following: 

(6.45) Qa = QI, + Q,,. 
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In this case Qx,, could be substituted out ofthe stochastic equations (6.43) and 
(6.44) without introducing any new variables, and therefore it is not a variable 
that needs to be counted against the sample size requirement. Identitiesofthis 
type are likely to be rare. (There are, for example, no closed identities in the 
model in Chapter 4.) A much more common identity in the model just 
presented would be f&, = Q1, + Q>, + Qs,. where QG, does not appear in the 
stochastic equations. In this case the identity is “open,” and f&,, does count 
against the sample size requirement. 

The treatment of serial correlation is somewhat more involved. Assume 
that x, appears in equation i, where equation i has first-order serially corre- 
lated errors. After the equation is transformed, the variable appears as x; = 
xjt - pi.+, If xjt and xjz_l appear nowhere else in the model, x$ can be 
counted as only one variable. Otherwise, both xj, and x~,_~ must be counted. 
Even ifxjz appears in many equations with first-order serially correlated errors 
(and in general different serial correlation coefficients), the number of vari- 
ables to be counted is still only two (xjz and x,_,). What this says is that the 
introduction of tint-order serial correlation to an equation at most increases 
the number of variables to be counted by the number of original variables in 
the equation. The increase is less than this if at least some of the original 
variables and their one-period-lagged values do not appear elsewhere in the 
model. If none of the original variables and their lagged values appear 
elsewhere in the model, the introduction of serial correlation to an equation 
does not increase the number of variables to be counted. Similar arguments 
apply to higher-order serial correlation. For example, the introduction of 
second-order serial correlation at most increases the number ofvariables to be 
counted by twice the number of original variables in the equation. 

The introduction of a constraint across coefficients does not in general 
reduce the sample size requirement. If it does, it is sometimes possible to write 
the model with fewer variables after the constraint is imposed. Brown (198 1) 
shows that this is always the case for a linear constraint across the coefficients 
in a single equation. As a general rule of thumb, if it is not obvious that a 
constraint can be used to write the model with fewer variables, it should be 
assumed that the constraint does not reduce the sample size requirement. 

6.4.2 Estimation of Subsets of Coefficients 

It is possible to reduce the sample size requirement of FIML by fixing some 
coefficients at, say, their 2SLS values (or some other consistently estimated 
values) and estimating the remaining coefficients by FIML. One can fix either 
all the coefficients in a given equation or only some of them. If all the 
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coefficients are fixed, the equation is still taken to be part of the estimation 
problem in the sense that the covariance matrix Sin (6.33) is still n? X M, but 
none of the coefficients in the equation are estimated by FlML. 

Consider the problem by estimating the free coefficients by F’IML, and 
write the relevant subset of the model as 

(6.46) Q,A, = CT, > 

where Q, is TX 41) A, is 9, X wzl, and C!~ is TX m, The matrix A, is the 
matrix of free coefficients, and m, is the number of equations in which at least 
one coefficient is free. CJ~, as will be seen, is the number of variables that count 
for purposes of calculating the sample size requirement. Its determination 
requires some explanation. Assume that x, and xk, appear in equation i and 
that their coefficients (ai, and LYJ are fixed. Assume that log ).‘;< is the LHS 
variable. This equation can be rewritten with logy,, - &xj, - h&t on the 
LHS and x,, and x, eliminated from the RHS. (cii, and 6, are the consistent 
estimates of Lyi, and (Y,~ .) If log Ye,, xj,, and xk, do not appear elsewhere in the 
model, this fixing of the coefficients has eliminated two variables. If log pir 
does appear elsewhere but xj, and x, do not, only one variable has been 
eliminated because the new LHS variable and log y;, count as separate 
variables. Ifx, and x,. appear elsewhere, no variables are eliminated. If all the 
coefficients in an equation are fixed, a variable in the equation is eliminated if 
it appears nowhere else in the model. 4, is the number of variables that remain 
after all possible eliminations. 

Parke has shown that the sample size requirement for this reduced problem 
is T 2 q, + m2 - i, , where m2 = m - m, is the number of equations for which 
none ofthe coefficients are estimated and i, is the number of closed identities 
that pertain to the reduced set of equations (that is, the set of equations not 
counting the m2 equations for which no coefficients are estimated). Note that 
one observation is needed for each ofthe m2 equations that are not estimated. 

Given this result, ifthe sample size requirement is not met for the complete 
model. the problem can be reduced by fixing various coefficients until it is 
met. An example of this procedure is presented in Section 6.52. 

It should finally be noted that because of computational costs, one may 
want to restrict the size of the estimation problem even if the sample size 
requirement is met. The obvious way to do this is to fix some of the 
coefficients at their 2SLS estimates. This can be done for both the FIML and 
3SLS estimators. 

When only a subset of the coefficients is estimated by FIML or 3SLS, the 
easiest thing to do with regard to the estimation ofthe covariance matrix ofall 
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the coefficient estimates is to assume that the coefficient estimates that are 
fixed with respect to the FIML or 3SLS estimation problem are uncorrelated 
with the FIML or 3SLS coefficient estimates. This allows the covariance 
matrix of all the coefficient estimates to be pieced together from the cover- 
iance matrix of the fixed estimates and the covariance matrix of the FIML or 
3SLS estimates. Since correlation of coefficient estimates across equations is 
usually small relative to the correlation within an equation. the erron intro- 
duced by this procedure are likely to be fairly small in most applications. This 
is particularly true if the coefficient estimates that are fixed are of lesser 
importance than the others. 

6.5 Computational Procedures and Results 

6.5.1 OLS and 2SLS 

For equations that are nonlinear in variables only, closed-form expressions 
exist for the OLS and 2SLS estimators. For 2SLS the expression is (6.9), and 
for OLS it is (6.9) with X;replacing fi. Ifthe nonlinearity in coefficients is due 
only to the presence of serially correlated error terms, the estimates can be 
obtained by solving (6.13) and (6.14) (or Eqs. 6.13’and 6.14’) or higher-order 
versions of these iteratively. For general nonlinearities in coefficients, (6.5) 
must be minimized using some general-purpose algorithm like the DFP 
algorithm discussed in Section 2.5. 

Results.for the b’S Model 

The 2SLS estimates of the US model are presented in Chapter 4. The 
first-stage regressors that were used for these estimates are given in Table 6-1. 
Two common sets are presented first in Table 6- 1, one for equations in which 
the RHS endogenous variables are primarily linear and one for equations in 
which the RHS endogenous variables are primarily in logarithms. The addi- 
tional FSRs that were used for each equation are presented second. These 
FSRs are primarily variables that appear as explanatory variables in the 
equation being estimated but that are not part of the common set. The 
common sets include 34 variables, and the number of additional variables 
ranges from 0 to 9. The equations that are estimated by OLS have no RHS 
endogenous variables. 

The time taken to estimate the 30 equations by 2SLS was about 3.0 minutes 
on the IBM 4341 and about 8.4 minutes on the VAX. The estimation ofthe 
covariance matrix ofall the coefficient estimates, vz in (6.20), took about 5.5 





- 
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minutes on the IBM 4341 and about 7.8 minutes on the VAX. The deriva- 
tives in the Gi matrices that are needed for the estimation of the covariance 
matrix were computed numerically. 

Eight of the 30 equations were estimated under the assumption of first- 
order serial correlation of the error terms. The iterative procedure described 
above was used. The starting value ofp was always zero, and the number of 
iterations required for convergence was 10, 7, 1 I> 4, 13, 6, 4, and 5 respec- 
tively. Convergence was defined to take place when successive estimates ofp 
were within .OOl of each other. 

OLS estimation ofthe 30 equations took about .2 minutes on the IBM 434 1 
and about .5 minutes on the VAX, which compares to about 3.0 and 8.4 
minutes respectively for 2SLS estimation. The number of coefficients esti- 
mated in any one equation is small compared to the number estimated in the 
first-stage regressions, and this is the reason for the considerably larger 
expense of the 2SLS estimates. The maximum number of coefficients esti- 
mated in an equation is 12, whereas the minimum number estimated in a 
first-stage regression is 34. Nevertheless, the cost of 2SLS estimation is small 
relative to many other costs reported below. 

6.5.2 FIML 

Until recently the estimation of large nonlinear models by FIML was not 
computationally feasible, but this has now changed. The computational 
problem can be separated into two main parts: the first is to find a fast way of 
computing L in (6.33) for a given value of cy, and the second is to find an 
algorithm capable of maximizing L. 

The main cost of computing L is computing the Jacobian term. Two 
savings can be made here. One is to exploit the sparseness ofthe Jacobian. The 
number of nonzero elements in J, is usually much less than nz. For the US 
model, for example, n is 128 (son* = 16,384), whereas the number of nonzero 
elements is only 441. Considerable computer time is saved by using sparse 
matrix routines to calculate the determinant ofJ,. 

The second saving is based on an approximation. Consider approximating 
XL, loglJ,l by simply the average of the first and last terms in the summation 

T 
multiplied by T: - (loglJ, I + loglJ,I). Let S,, denote the true summation, and 

2 
let S, denote the approximation. It turns out in the applications I have dealt 
with that S, - S, does not change very much as the coefficients change from 
their starting values (usually the 2SLS estimates) to the values that maximize 
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the likelihood function. In other words, S, - S, is nearly a constant. This 
means that S, can be used instead of S,, in computing L, and thus considerable 
computer time is saved since the determinant ofthe Jacobian only needs to be 
computed twice rather than T times for each evaluation of L. For the US 
model T is 115. Using S, in place of S, means, of course. that the coefficient 
values that maximize the likelihood function are not the exact FIML esti- 
mates. If one is concerned about the accuracy ofthe approximation, one can 
switch from S, to S, after finding the maximum using S, If the approxima- 
tion is good, one should see little further change in the coefficients: otherwise 
additional iterations using the algorithm will be needed to find the true 
maximum. 

The choice of algorithm turns out to be crucial in maximizing L for large 
nonlinear models. My experience is that general-purpose algorithms like DFP 
do not work, and in fact the only algorithm that does seem to work is the 
Parke algorithm (1982a), which is a special-purpose algorithm designed for 
FIML and 3SLS estimation. This algorithm exploits two key features of 
models. The first is that the mean of a particular equation’s estimated 
residuals is approximately zero for the FIML and 3SLS estimates. For OLS 
this must be true, and empirically it turns out that it is approximately true for 
other estimators. The second feature is that the correlation of coefficient 
estimates within an equation is usually much greater than the correlation of 
coefficients across equations. 

The problem with algorithms like DFP that require numerical first deriva- 
tives is that the computed gradients do not appear to be good guides regarding 
the directions to move in. Gradients are computed by perturbing one coeffi- 
cient at a time. When a coefficient ischanged without the constant term in the 
equation also being changed to preserve the mean of the residuals, a large 
change in L results (and thus a large derivative). This result can obviously be 
quite misleading. The Parke algorithm avoids this problem by spending most 
of its time perturbing two coefficients at once, namely a given coefficient and 
the constant term in the equation in which the coefficient appears. The 
constant term is perturbed to keep the mean ofthe residualsunchanged. (The 
algorithm does not, of course. do this all the time, since the means of the 
residuals must also be estimated). To take advantage of the generally larger 
correlation within an equation than between equations, the Parke algorithm 
spends more time searching within equations than between them. General- 
purpose algorithms do not do this, since they have no knowledge of the 
structure of the problem. 

It should also be noted regarding the computational problem that if only a 
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few coefficients are changed before a new value of L is computed, consider- 
able savings can be made by taking advantage of this fact. If, for example, the 
coefficients are not in the Jacobian, the Jacobian term does not have to be 
recomputed. If only a few equations are affected by the change in coefficients, 
only a few rows and columns in the S matrix have to be recomputed. Since the 
Parke algorithm spends much of its time perturbing two coefficients at a time, 
it is particularly suited for these kinds of savings. 

The estimated covariance matrix for the FIML coefficient estimates, p4 in 
(6.34) is difficult to compute. It is not part of the output of the Parke 
algorithm, and thus extra work is involved in computing it once the algorithm 
has found the optimum. My experience is that simply trying to compute the 
second derivatives of L numerically does not result in a positive-definite 
matrix. Although the true second-derivative matrices at the optimum are 
undoubtedly positive-definite, they seem to be nearly singular. If this is true, 
small errors in the numerical approximations to the second derivatives may 
be sufficient to make the matrix not positive-definite. 

Fortunately, there is an approach to computing pd that does work, which is 
derived from Parke (1982a). Parke’s results suggest that the inadequate 
numerical approximations may be due to the fact that the means of the RHS 
variables in the estimated equations are not zero. If so, the problem can be 
solved by subtracting the means from the RHS variables before taking 
numerical derivatives. Let /I denote the coefficient vector that pertains to the 
model after the tneans have been subtracted, and let a denote the original 
coefficient vector. The relationship between (Y and p is 

(6.47) CY=M./?, 

where Mis a k X k square matrix that is composed ofthe identity matrix plus 
additional nonzero elements that represent the means adjustments. Unless 
there are constraints across equations, M is block-diagonal. Assume, for 
example, that the first equation of the model is 

(6.48) Yl, = PI + Pz(Y21 - %) + Ps(Y,* - m3 + u,,, t=1,. ,I”, 

where rn2 and ms are the sample means of yz, and Y,, respectively. This 
equation can be written 
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In this case the part of (6.47) that corresponds to the first equation is 

(6.50) (ii)-(s -” -r)(;;). 

Parke found that the covariance matrix of B could easily be computed 
numerically. Let p&$) denote this matrix: 

Given p&?), the covariance matrix of u is simply 

(6.52) I$ = M. VJfl) M’. 

p4 can thus be obtained by first computing the covariance matrix of the 
coefficients of the transformed model (that is, the model in which the RHS 
variables have zero means) and then using (6.52) to get the covariance matrix 
of the original coefficients. 

Results for the US Model 

The solution ofthe FIML estimation problem for the US model is reported in 
Table 6-2. Thereare 169 unconstrainedcoefficientsin the model: 107 ofthese 
were estimated by FIML, with the remaining tixed at their 2SLS estimates. 
The coefficients that were not estimated by FIML include the dummy 
variable coefficients in Eqs. I 1, 13, and 27 and all the coefficients in Eqs. 5,6. 
7. 8. 15, lg. 19,20,21. 25, 28, and 29. These coefficients and equationswere 
judged to be less important than the others, although this is obviously a 
subjective choice. The sample size requirement for this subset ofcoefficients is 
99. There are 115 observations. 

The starting values were the 2SLS estimates. The value of L in (6.34) at 
these estimates is 5098.66. The change in L after 70 iterations in Table 6-2 is 
18 I .76. On the first iteration the Parke algorithm increased L by 67.07, and on 
the second and third iterations it increased L by 8.68 and 7.64 respectively. 
The change after three iterations was thus 83.39. which is 45.9 percent ofthe 
total change. This illustrates ageneral feature ofthe Parke algorithm: it climbs 
very quickly for the first few iterations and then slows down considerably for 
the rest. 



Between iterations 58 and 62 the number of Jacobians computed to 
approximate the sum was increased from 2 to 13. When I3 Jacobians were 
used, the sum was approximated by interpolating between the points. As can 
be seen in the table, the change in L was little affected by this. If the use of 2 
Jacobians in fact provided a poor approximation, it is likely that the Parke 
algorithm would have increased L by much more than it did on the first few 
iterations after the switch. That it did not is some evidence in favor of the 
approximation. 

Another way of looking at the 2 versus 13 question is to consider how 
sensitive the difference in L computed the two ways is to changes in the 
coefficients. The following results help answer this: 
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V&e qf L 2 Jacobians 

I. at start (ZSLS estimates) 5,098.66 
L after 59 iterations L279.53 
L after 62 iterations 5,279.82 
L after 70 iterations 5,280.42 

13 Jacobians 

5,284.49 
5,464.04 
5.464.34 
5,464.96 

.!Aff^prmcr 

- 185.83 
-184.51 
- 184.52 
- 184.54 

It is clear that the difference is little affected by the change in the coellicients 
from the 2SLS estimates to the estimates at the end of iteration 70. It thus 
seems that the use of 2 Jacobians is adequate. Note that this saves consider- 
able time, since the cost ofone iteration ofthe Parke algorithm increases from 
about2.8 minutestoabout 5.4 minuteson theIBM4341 when 13 ratherthan 
2 Jacobians are used. 

As discussed earlier, when only one or two coefficients are being changed by 
the algorithm, many of the calculations involved in computingL do not have 
to be performed. In the present example, if these cost savings had not been 
used, the time taken for one iteration of the Parke algorithm would have 
increased by about a factor of 4.5, which is a considerable difference. As will 
be seen in the next section. this difference is even more pronounced in the 
3SLS estimation problem. 

It is a characteristic of the estimation problem that the likelihood function 
is fairly flat in the vicinity of the optimum. For example, the change in L on 
iteration 70 was only .06, and yet, as reported in note b in the table, 26 
coefficients changed by 1 .O percent or more and 4 changed by 5.0 percent of 
more. The largest three changes were 8.1, 12.6, and 18.4 percent. The 
coefficients that change this much are obviously not significant, and they are 
not coefficients that are very important in the model. Nevertheless, these 
results do point out one of the reasons the FIML estimation problem is so 
hard to solve. 

As noted in Table 6-2, the total time for the FIML estimation problem was 
about 3.5 hours on the IBM 4341. The time taken to compute the FIML 
covariance matrix after the coefficient estimates were obtained was about 53 
minutes. The M transformation discussed earlier was used in the calculation 
of this matrix, and the second derivatives were obtained numerically. 

6.5.3 3SLS 

The 3SLS estimation problem is to minimize (6.24). The only cost saving to 
note for this problem is that the D matrix, which is M . TX m r, need not be 
calculated anew each time (6.24) is computed if only a few coefficients are 
changed. 
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The first-stage regressors for this problem are presented in Table 6-3. There 
are 49 variables in this set. A number of the variables in Table 6-1 that were 
used for the 2SLS estimates were not used for the 3SLS estimates because of 
the desire to keep the number relatively small. The 2SLS estimates of the 
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residuals were used to compute 2 in (6.24), which remained unchanged 
throughout the solution of the problem. 

The same subset ofcoefficients was estimated by 3SLS as was estimated by 
FIML. The solution of the 3SLS problem is reported in Table 6-4. This 
problem was easier to solve than the FIML problem. Again, the 2SLS 
estimates were used as starting values. The total change in the objective 
function, F, after 26 iterationswas46.55, ofwhich 39.81 was obtained by the 
Parke algorithm after 3 iterations. On iteration 26, eight coefficients changed 
by 1 .O percent or more, and the largest three changes were 6.6. 10.5, and 26.7 
percent. 

Each iteration requires about 4 minutes on the IBM 4341 and about 1 I 
minutes on the VAX. The total time for the 26 iterations on the IBM 4341 
was about 1.7 hours. The D matrix for the US model is 3,450 X 3,450 (m = 
30, T= 115), and considerable time was saved by not computing this matrix 
from scratch any more times than were absolutely necessary. If the entire 
matrix had been computed each time that (6.24) was computed, the time per 
iteration would have increased by about a factor of 17, and thus the total time 
would have increased from 1.7 hours to 28.9 hours. 

The time taken to compute the 3SLS covariance matrix, ps in (6.25), was 
about 23 minutes on the IBM 4341 and about II minutes on the VAX. The 
derivative matrix d that is needed for this calculation was computed numeri- 
cally. The reason the IBM 4341 time is large relative to the VAX time is that 
in the calculation of pa much reading and writing from the disk is done, and 
the IBM 4341 is relatively slow at this. 

6.5.4 LAD and 2SLAD 

The LAD and 2SLAD computational problem is to minimize 

(6.53) 2 hl 

with respect to oi, where uil = ud = y, - h, for LAD and u, = qyil + 
(I - y)gft - 6, for 2SLAD. This computational problem is not particularly 
easy, especially when uil is a nonlinear function ofol,. I have had no success in 
trying to minimize(653)using theDFPalgorithm and Powell’s no-derivative 
algorithm (1964). (When the DFP algorithm was tried, the derivatives were 
computed numerically. The problem that they do not exist everywhere was 
ignored.) Both algorithms failed to get close to the optimum in most of the 
cases that I tried. 
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Because the standard algorithms do not work, other approaches must be 
tried. I have used two, one that worked well and one that did not. The one that 
worked well uses the fact that 

where vvi, = /I+~/. For a given set of values of ivi, (t = 1, , T), minimizing 
(6.54) is simply a weighted least squares problem. If vi, is a linear function of 
cyj, closed-form expressions exist for &; otherwise a nonlinear optimization 
algorithm can be used. This suggests the following iterative procedure. (I) 
Pick an initial set of values of wit These can be the absolute values of the OLS 
or 2SLS estimated residuals. (2) Given these values, minimize (6.54). (3) 
Given the estimate of oli from step 2, compute new values of vi, and thus new 
values of +v>(. (4) With the new weights, go back to step 2 and minimize (6.54) 
again. Keep repeating steps 2 and 3 until successive estimates ofcvi are within 
some prescribed tolerance level. If on any step some value of uSi, is smaller 
than some small preassigned number (say E). the value of wi, should be set 
equal to E. 

The accuracy of the estimates using this approach is a function of E: the 
smaller is E, the greater is the accuracy. If vi, is a linear function of ol;, the 
estimates will never be exact because the true estimates correspond to ki 
values of u~,~ being exactly zero, where ki is the number of elements of ai. 

In the case in which the equation to be estimated is linear in coefficients, the 
closed-form expression for & for a given set of values of ivir is 

(6.55) &, = &,,@-r,$yj+ 

2: is the same as ,?i in (6.9) except that each element in row t of.$ is divided 
by 6. The vector dt equals ~JJ~ + (I - q)jJj except that row 1 is divided by 
J;;,. ($i equals D(JI .) 

Ifthe equation is linear in coefficients but has serially correlated errors: vi, is 
not a linear function of the coefficients inclusive of the serial correlation 
coefficients. and therefore a closed-form expression does not exist. It is 
possible in his case, however, to solve for the estimates by iteratively solving 
equations like (6.13) and (6.14). This avoids having to use a general-purpose 
algorithm like DFP. Assuming that Xi_, and yi_, are included in Z,, the two 
equations for the first-order serial correlation case are 

(6.57) j& = a 
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Figure 6-I Approximation ofA@,, .L3) to Iq,l 

,?T* is the matrix $ - Xi_l& with each element in row t divided by Gt; &* 
is the vector qyi + (1 - q).& - y,_,j, with row I divided by &,; ii?-, is the 
vector yi_, - Xii_& with row I divided by Jk;;;; and t$ is the vector qy, + 
(1 - q)ji - Xii$ with row I divided by &,. For a given set of weights, (6.56) 
and (6.57) can be solved iteratively. 

The second approach is derived from Tishler and Zang (1980). The prob 
lem of minimizing (6.53) is changed to a problem of minimizing 

-4 if q, 5 --I( 
(6.59) 4%,8) = 

I 
(L'Z +P*)/u if-/?<v,,</J. 
0, if uif 2fl 

The value ofpis some small preassigned number. Since lim A(+,# =IuJ, the 

smaller isp, the closer is (6.53) to (6.59). The approxim%& ofA(v,, /I’) tolq,;,l 
is presented in Figure 6-I. Since A(+, p) is once continuously differentiable, 
an optimization algorithm like DFP can be used to minimize (6.59) for a 
given value of p, The smaller is 8, the more difficult the minimization 
problem is likely to be_ and thus there is a trade-off between accuracy and ease 
of solution. 
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Four sets of estimates of the US model were obtained: LAD, 2SLAD using 
4 = 0.0, 2SLAD using q = 0.5, and 2SLAD using 4 = 1 .O. The method of 
Tishler and Zang did not work well, in the sense that the results were quite 
sensitive to the value ofg chosen, and therefore it was dropped from further 
consideration fairly early in the calculations. For small values offi the DFF’ 
algorithm, which was the algorithm used, failed to converge, and for large 
values of fi the algorithm converged to answers that implied values of the true 
objective function, (6.53), that were larger than those obtained by the first 
method. It was difficult to find in-between values ofa that worked well. 

The first method, on the other hand, worked extremely well. For ZSLAD 
using 4 = 0.5, for example, the number ofiterations required for convergence 
for the 30 equations ranged from 4 to 145, with an average of 35.6. Conver- 
gence was taken to be achieved when successive estimates ofeach coefficient 
were within .002 percent of each other. The value used for E was .OOOOOOl. 
The total time for estimating the model by LAD was about 2.2 minutes on the 
IBM 4341 and about 5.7 minutes on the VAX. The total time for each ofthe 
three 2SLAD estimation problems was about 6.5 minutes on the IBM 4341 
and about 16.5 minutes on the VAX. Of the 120 equations estimated, none 
had a residual that was smaller than E in absolute value at the time that 
convergence was achieved. These results are very encouraging, and they 
indicate that computational costs are not likely to be a serious problem in the 
future with respect to LAD and 2SLAD estimation. 

6.6 Comparison of the OLS, 2SLS, 3SLS, FIML, LAD, and 2SLAD 
Results for the US Model 

If the model is correctly specified and all the assumptions about the error 
terms are correct, all but the OLS and LAD estimates of the US model are 
consistent. They should thus differ from each other only because of a finite 
sample size. In practice the model is likely to be misspecihed. and not all the 
assumptions about the error terms are likely to be correct. Given this, it is not 
obvious how the estimates should compare. In this section the quantitative 
differences among the estimates are examined. The consequences of these 
differences for the predictive accuracy of the model are discussed in Section 
8.5.5, and the consequences for the properties of the model are discussed in 
Section 9.4.5. 

Table 6-5 presents acomparison ofthe estimates for six equations: the three 
consumption equations, 1, 2. and 3; the price equation. 10; the production 
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equation, 11; and the interest rate reaction function, 30. The 2SLS estimates 
are used as the basis ofcomparison. Each number in a “b” column in the table 
is the difference between the particular estimate and the 2SLS estimate 
divided by the standard error of the 2SLS estimate. These numbers thus 
indicate how many standard errors the estimates are from the 2SLS estimates. 
where the standard errors that are used are 2SLS standard errors. Table 6-6 
provides summary measures for all the coefficient estimates. 

The main conclusion to be drawn from these results is that all the estimates 
are fairly close to each other except for the F’IML estimates. Consider Table 
6-6: only 3 of the 107 3SLS coefficient estimates are more than 1.5 standard 
errors away from the 2SLS estimates, whereas 38 ofthe RML estimates are. 
Only 1 ofthe 169 OLS estimatesismore than 1.5 standard errorsaway. Ofthe 
2SLAD estimates, 7 are more than 1.5 standard errors away for 4 = 0.0, 12 are 
forq=0.5, and 19 are forq = 1.0. For LAD the number is 15. Very fewofthe 
estimates changed signs, as can be seen in the bottom half of Table 6-6. Even 
for FIML_ only 6 estimates changed sign. 

With respect to the individual estimates in Table 6-5, one important 
difference between the FIML estimates and the others occurs in Eq. 11, the 
equation determining production, Y. Coefficient 3 in Eq. 1 I is the coefficient 
for the sales variable, X. For all the estimates except FIML, this coefficient is 
around 1 .O, whereas for FIML it is around I .4. Also, coefficient 2 in Eq. 1 I _ 
which is the coefficient of the lagged dependent variable, is around .I5 for the 
other estimates and close to zero for FIML. The FIML estimates of the lagged 
dependent variable coefficients in two of the three consumption equations 
(Eqs. 2 and 3) are likewise quite different from the others. In both equations 
the lagged dependent variable coefficient is number 2. The FIML and 2SLS 
estimates in the two equations are. respectively, ,666 I9 versus .4 1164 and 
.45821 versus .07423. 

It should be stressed that the only reason for the present comparison is to 
get a general idea of how close the estimates are. Of more importance are the 
comparisons in Sections 8.5.5 and 9.4.5, which examine the estimates within 
the context of the overall model. What can be said so far is that the RML 
estimates differ most from the others when the examination is coefficient by 
coefficient. 

Comparison ofStandard Errors 

Table 6-7 presents a comparison of the 2SLS. 3SLS, and RML estimated 
standard errors. As expected, the 2SLS standard errors are generally larger 
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than the 3SLS standard errors_ where the average of the ratios of the two is 
I .27. This is not always the case, however, as can be seen for coefficients l-6 
and 8 in Eq. 4, where the 2SLS standard errors are smaller. This difference is 
due to the different first-stage regressors that are used by 2SLS and 3SLS. As 
discussed earlier, 2SLS uses different sets of FSRs for different equations, 
whereas 3SLS uses a common set that is smaller than the union of the 2SLS 
sets. This can cause the 2SLS standard errors to be smaller. In the present case, 
Eq. 4 has no RHS endogenous variables, and thus the 2SLS estimates are the 
OLS estimates. The FSRs in this case include all the explanatory variables in 
the equation. Not all of these explanatory variables were included in the 
common set of FSRs for the 3SLS estimates, and therefore some of the 
variables in the equation were treated as endogenous. This was enough to lead 
to larger 3SLS standard errors for some of the coefficients. 



The more interesting result in Table 6-7 is that the 3SLS standard errors are 
generally smaller than the FIML standard errors. The average of the ratios of 
the two is .74. This result has also been obtained, but not discussed, by 
Hausman (I 974). For 10 of the 12 estimated coefficients of Klein’s model I 
that are reported in Hausman’s table 1, p. 649, the FIML standard error is 
larger than the corresponding 3SLS standard error. 

My conjecture as to why the 3SLS standard errors are generally smaller is 
the following. Given the large number of FSRs that are used by 3SLS, the 
predicted values of the endogenous variables from the first-stage regressions 
are fairly close to the actual values. For FIML, on the other hand, we know 
from Hausman’s interpretation (1975) of the FIML estimator as an instru- 
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mental variables estimator that FIML takes into account the nonlinear 
restrictions on the reduced form coefficients in forming the instruments. This 
means that in small samples the instruments that FIML forms are likely to be 
based on worse first-stage fits of the endogenous variables than are the 
instruments that 3SLS forms. In a loose sense, this situation is analogous to 
the fact that in the 2SLS case the more variables that are used in the first-stage 
regressions. the better is the tit in the second-stage regression. 

Possible Use cfrhr Huusman Test 

An interesting question is whether Hausman’s m-statistic (1978) provides a 
useful way of examining the differences among the estimates. The m-statistic 
is as follows. Consider two estimators, j0 and /?, , where under some null 
hypothesis both estimators are consistent but only ,$ is asymptotically effi- 
tient. -while under the alternative hypothesis only pi is consistent. Let 4 = 
/J’, - /la, and let V. and vt denote consistent estimates of the asymptotic 
covariance matrices ( vr, and Vi) of ,$, and ,&, respectively. Hausman’s 
m-statistic is @(v, - VJ’@, and he has shown that it is asymptotically 
distributed as x2 with k degrees of freedom, where k is the dimension of 8. 
Note that under the null hypothesis V, - V. is positive-definite. 

Consider now comparing the FIML and 3SLS estimates. Under the null 
hypothesis of correct specification and normally distributed errors, both 
estimates are consistent, but only the FIML estimates are asymptotically 
efficient. On the other hand, 3SLS estimates are consistent for a broad class of 
error distributions, whereas for many distributions FIML estimates are in- 
consistent. If the alternative hypothesis is taken to be that the error distribu- 
tion is one that leads to consistent 3SLS estimates but inconsistent FIML 
estimates, then in principle Hausman’s m-statistic can be used to test the null 
hypothesis of normality against the alternative. Let W) and d@) denote the 
3SLS and FIML estimates of (Y respectively, and let rj = &(a) - &@J, The 
m-statistic in this case is $(ps - pJi& where the estimated covariance 
matrices vJ and p* are defined in (6.25) and (6.34) respectively. 

In practice the test cannot be performed if pr - pg is not positive-definite. 
For the US model it is clear from Table 6-7 that pr - pa is not positive-deft- 
nite, since most of the diagonal elements of pr are smaller than the corre- 
sponding elements of vd. Ifanything, & - pa is closer to being negative-deft- 
nite, although this is not true either since some of the diagonal elements of pd 
are smaller than the corresponding elements of pa The matrix Pa - vd is also 
not positive-definite for Klein’s model I. since, as noted earlier, Hausman’s 
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results (I 974) show that 10 of the 12 estimated coeffcients have larger FlML 
standard errors than 3SLS standard errors. It thus seems unlikely that 1’, - pd 
will be positive-definite in practice for most models, and therefore the m-sta- 
tistic is not likely to be useful for testing the normality hypothesis. (If the 
model is linear, the test obviously has no power, since RML, like 3SLS, is 
consistent for a broad class of error distributions.) 

The m-statistic can also be used in principle to compare the FIML and 
2SLS estimates. Under the null hypothesis of normally distributed errors and 
correct specification, both estimates are consistent, but only the FIML esti- 
mates are asymptotically efficient. Under the alternative hypothesis of nor- 
mality and misspecification of some subset of the equations, all the FIML 
estimates are inconsistent, but only the ZSLS estimates of the misspecitied 
subset are inconsistent. The m-statistic can thus be applied to one or more 
equations at a time to test the hypothesis that the rest ofthe model is correctly 
specified. If for some subset the m-statistic exceeds the critical value, the test 
would indicate that there is misspecification somewhere in the rest of the 
model. 

In practice this test cannot be applied if pz - fd is not positive-definite, and 
for the US model, as is clear from Table 6-7, vz - PA is not positive-definite, 
Many of the diagonal elements of vz are smaller than the corresponding 
elements of pa. It thus also seems unlikely that this test of misspecification 
will be useful in practice. 

Finally, the specification hypothesis can be tested in certain circumstances 
using the m-statistic on the 2SLS and 3SLS estimates. Ifboth estimators are 
members of a class of estimators for which 3SLS is asymptotically efficient. 
the test can be applied. The problem is that when the two estimators are based 
on different sets of FSRs, as is usually the case with large models, they are not 
members of the same class. One cannot argue. for example, that the 3SLS 
estimates given above for the US model are asymptotically efficient relative to 
the 2SLS estimates, and thus the Hausman test cannot be applied in this case. 

In summary, the m-statistic does not seem useful for testing either the 
normality hypothesis or the correct specification hypothesis. Regarding the 
latter, my feeling is that it is better simply to assume that the model is 
misspecified (so that no test is needed) and to try to estimate the degree of 
misspecification. This is the procedure followed for the comparison method 
in Chapter 8. 


