
8 Evaluating Predictive Accuracy 

8.1 Introduction 

This chapter deals with one ofthe most important issues in macroeconomics: 
the evaluation and testing of models. The central question in this area is how 
to decide which model out ofa number best approximates the structure ofthe 
economy. Although an obvious answer is to choose the model that fits the 
data best, the problem comes in deciding what criterion to use to judge which 
model fits the data best. In the next two sections the standard ways in which 
this problem has been treated are discussed: Section 8.2 considers the evalua- 
tion of ex ante forecasts, and Section 8.3 considers the evaluation of ex post 
forecasts. My method for dealing with this problem is explained in Section 
8.4. Results for various models are presented in Sections 8.5 and 8.6. 

The three most common measures of predictive accuracy that have been 
used to evaluate ex ante and ex post forecasts are root mean squared error 
(RMSE), mean absolute error (MAE), and Theil’s (1966, p. 28) inequality 
coefficient(U). Let j& be the forecast of variable i for period I, and let y,, be the 
actual value. j$ can be a prediction for more than one period ahead. Assum- 
ing that observations on j$,, and y,, are available for t = 1, , T, the three 
measures are 

(8.1) RMSE= ds> 

(8.2) MAE = + 2 Ik, - &I> 

(*,3) “= &$FG 

where A in (8.3) denotes either absolute or percentage change. All three 
measures are zero if the forecasts are perfect. The MAE measure penalizes 
large errors less than does the RMSE measure. The value of U is one for a 
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no-change forecast (Aji, = 0). A value of U greater than one means that the 
forecast is less accurate than the simple forecast of no change. 

8.2 Evaluation of Ex Ante Forecasts 

The procedure followed to evaluate ex ante forecasts is simply to collect the 
forecast data for a certain period and to compute one or more of the three 
measures just mentioned. Forecasts from different models are evaluated by 
comparing the error measures across models. An important practical prob- 
lem that arises in evaluating ex ante forecasting accuracy is the problem of 
data revisions. Given that the data for many variables are revised a number of 
times before becoming “final, ” it is not clear whether the forecast values 
should be compared to the first-released values, to the final values, or to some 
values in between. There is no obvious answer to this problem. If the revision 
for a particular variable is a benchmark revision, where the level of the 
variable is revised beginning at least a few periods before the start of the 
prediction period, then a common procedure is to adjust the forecast value by 
adding the forecasted change (Al’,,), which is based on the old data, to the new 
lagged value (J+-,). The adjusted forecast value is then compared to the new 
data. If, say, the revision took the form ofaddinga constant amount y,to each 
ofthe old values ofyi,,, then this procedure merely adds the same y, to each of 
the forecasted values of JQ,. This procedure is often followed even if the 
revisions are not all benchmark revisions, on the implicit assumption that 
they are more like benchmark revisions than other kinds. Following this 
procedure also means that if forecast changes are being evaluated, as in the (I 
measure, no adjustments are needed. 

A number of studies have examined ex ante forecasting accuracy using one 
or more of the above measures; some of the more recent ones are McNees 
(1973, 1974, 1975, 1976) and Zarnowitz (1979). It is usually the case that 
forecasts from both model builders and non-model builders are examined 
and compared. A common “base” set of forecasts to use for comparison 
purposes is the set from the ASA/NBER Business Outlook Survey. A general 
conclusion from these studies is that there is no obvious “winner” among the 
various forecasters (see, for example, Zarnowitz 1979, pp. 23, 30). The 
relative performance of the forecasters varies considerably across variables 
and length ahead ofthe forecast, and the differences among the forecasters for 
a given variable and length ahead are generally small. This means that there is 
as yet little evidence that the forecasts from model builders are more accurate 
than, say, the forecasts from the ASA/NBER Survey. 
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Ex ante forecasting comparisons are unfortunately oflittle interest from the 
point of view of examining the predictive accuracy of models. There are two 
reasons for this; the first is that the ex ante forecasts are based on guessed 
rather than actual values of the exogenous variables. Given only the actual 
and predicted values of the endogenous variables, there is no way of separat- 
ing a given error into that part due to bad guesses and that part due to other 
factors. A model should not necessarily be penalized for bad exogenous-vari- 
able guesses from its users. (More will be said about this in Section 8.4.) The 
second, and more important, reason is that almost all the forecasts examined 
in these studies are generated from subjectively adjusted models. (The use of 
add factors is discussed in Section 7.4.) It is thus the accuracy of the forecast- 
ing performance of the model builders rather than that ofthe models that is 
being examined. 

There is some indirect evidence that the use of add factors is quite impor- 
tant in practice. The studies of Evans, Haitovsky, and Treyz (1972) and 
Haitovsky and Treyz ( 1972) analyzing the Wharton and OBE models found 
that the ex ante forecasts from the model builders were more accurate than 
the ex post forecasts from the models, even when the same add factors that 
were used for the ex ante forecasts were used for the ex post forecasts. In other 
words, the use of actual rather than guessed values ofthe exogenous variables 
decreased the accuracy of the forecasts. This general conclusion can also be 
drawn from the results for the BEA model in table 3 in Hirsch, Grimm, and 
Narasimham (1974). This conclusion is consistent with the view that the add 
factors are (in a loose sense) more important than the model in determining 
the ex ante forecasts: what one would otherwise consider to be an improve- 
ment for the model, namely the use of more accurate exogenous-variable 
values, worsens the forecasting accuracy. 

In regard to nonsubjectively-adjusted ex ante forecasts, there is some 
evidence that their accuracy is improved by the use of actual rather than 
guessed values of the exogenous variables. During the period 197OIIIL 
197311, I made ex ante forecasts using a short-run forecasting model (Fair 
197 I b). No add factors were used for these forecasts. The accuracy of these 
forecasts is examined in Fair (1974b), and the results indicate that the 
accuracy is generally improved when actual rather than guessed values ofthe 
exogenous variables are used. 

It is finally of interest to note, although nothing really follows from this, 
that the (nonsubjectively-adjusted) ex ante forecasts from my forecasting 
model were on average less accurate than the subjectively adjusted forecasts 
(McNees 1973), whereas the ex post forecasts (that is, the forecasts based on 
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the actual values of the exogenous variables) were on average of about the 
same degree of accuracy as the subjectively adjusted forecasts (Fair 1974b). 

8.3 Evaluation of Ex Post Forecasts 

The RMSE, MAE, and U measures have also been widely used to evaluate the 
accuracy of ex post forecasts. One of the better-known comparisons of ex post 
forecasting accuracy is described in Fromm and Klein (1976), where eleven 
models are analyzed. The standard procedure for ex post comparisons is to 
compute ex post forecasts over a common simulation period, calculate for 
each model and variable an error measure, and compare the values of the 
error measure across models. If the forecasts are outside-sample, there is 
usually some attempt to have the ends of the estimation periods for the 
models be approximately the same. It is generally the case that forecasting 
accuracy deteriorates the further away the forecast period is from the estima- 
tion period, and this is the reason for wanting to make the estimation periods 
as similar as possible for different models. 

The use ofthe RMSE measure, or one ofthe other measures, to evaluate ex 
post forecasts is straightforward, and little more needs to be said about it. 
Sometimes the accuracy of a given model is compared to the accuracy of a 
“naive” model, which can range from the simple assumption of no change in 
each variable to an autoregressive moving average (ARIMA) process for each 
variable. (The comparison with the no-change model is, of course, already 
implicit in the U measure.) It is sometimes the case that turning-point 
observations are examined separately; by “turning point” is meant a point at 
which the change in a variable switches sign. There is nothing inherent in the 
statistical specification of models that would lead one to examine turning 
points separately. but there is a strand of the literature in which turning-point 
accuracy has been emphasized. 

Although the use of the RMSE or a similar measure is widespread, there are 
two serious problems associated with this general procedure. The first con- 
cerns the exogenous variables. Models differ both in the number and types of 
variables that are taken to be exogenous and in the sensitivity of the predicted 
values of the endogenous variables to the exogenous-variable values. The 
procedure of comparing RMSEs or similar measures across models does not 
take these differences into account. If one model is less “endogenous” than 
another (say that prices are taken to be exogenous in one model but not in 
another), it has an unfair advantage in the calculation of the error measures. 
The other problem concerns the fact that forecast error variances vary across 
time. both because of nonlinearities in the model and because of variation in 
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the exogenous variables. Although RMSEs are in some loose sense estimates 
of the averages of the variances across time, no rigorous statistical interpreta- 
tion can be placed on them: they are not estimates of any parameters of the 
model. 

Another problem associated with within-sample calculations of the error 
measures is the possible existence of data mining. If in the process of 
constructing a model one has, by running many regressions, searched dili- 
gently for the best-fitting equation for each variable, there is a danger that the 
equations chosen, while providing good fits within the estimation period, are 
poor approximations to the structure. Within-sample error calculations are 
not likely to discover this, and thus they may give a very misleading impres- 
sion of the true accuracy of the model. Outside-sample error calculations 
should pick up this problem, however, and this is the reason that more weight 
is generally placed on outside-sample results. 

Nelson (1972) used an alternative procedure in addition to the RMSE 
procedure in his ex post evaluation of the FRB-MIT-PENN (FMP) model. 
For each of a number of endogenous variables he obtained a series of static 
predictions using both the FMP model and an ARIMA model. He then 
regressed the actual value of each variable on the two predicted values over 
the period for which the predictions were made. Ifone ignores the fact that the 
FMP mcdel is nonlinear, the predictions from the model are conditional 
expectations based on a given information set. If the FMP model makes 
efficient use of this information, then no further information should be 
contained in the ARIMA predictions. The ARIMA model for each variable 
uses only a subset of the information, namely, that contained in the past 
history ofthe variable. Therefore, if the FMP model has made efficient use of 
the information, the coefficient for the ARIMA predicted values should be 
zero. Nelson found that in general the estimates of this coefficient were 
significantly different from zero. 

This test, although of some interest, cannot be used to compare models that 
differ in the number and types of variables that are taken to be exogenous. In 
order to test the hypothesis of efficient information use, the information set 
used by one model must be contained in the set used by the other model, and 
this is in general not true for models that differ in their exogenous variables. 

8.4 A Method for Evaluating Predictive Accuracy 

My method for evaluating predictive accuracy, in contrast to previous proce- 
dures, takes account of exogenous-variable uncertainty and of the fact that 
forecast error variances vary across time. It also deals in a systematic way with 
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the question of the possible misspecification of the model. It accounts for the 
four main sources of uncertainty of a forecast: uncertainty due to ( 1) the error 
terms, (2) the coefficient estimates, (3) the exogenous-variable forecasts, and 
(4) the possible misspecification of the model. The method relies heavily on 
the use of stochastic simulation. 

8.4.1 Uncertainty from the Error Terms and Coefficient Estimates 

Estimating the uncertainty from the error terms and coefficient estimates is 
simply a matter of computing & in (7.8). & is a stochastic-simulation 
estimate of &, the variance ofthe forecast error for a k-period-ahead forecast 
of variable i from a simulation beginning in period t. It is based on draws from 
both the distribution of the error terms and the distribution of the coefficient 
estimates. If an estimate of the uncertainty from the error terms only is 
desired, the draws should be only from the distribution of the error terms, 
with the coefficient estimates fixed at some set of values. 

8.4.2 Uncertainty from the Exogenous Variables 

There are two polar assumptions that can be made about the uncertainty of 
the exogenous variables: one is that there is no uncertainty; the other is that 
the exogenous-variable forecasts are in some way as uncertain as the endoge- 
now-variable forecasts. Under this second assumption one could, for exam- 
ple, estimate an autoregressive equation for each exogenous variable and add 
these equations to the model. This expanded model, which would have no 
exogenous variables, could then be used for the stochastic-simulation esti- 
mates of the variances. While the first assumption is clearly likely to underes- 
timate exogenous-variable uncertainty in most applications, the second as- 
sumption is likely to overestimate it. This is particularly true for fiscal policy 
variables in macroeconometric models, where government budget data are 
usually quite useful for purposes of forecasting up to at least about eight 
quarters ahead. The best approximation is thus likely to lie somewhere in 
between these two assumptions. 

The basic assumption that I have used in my work so far is in between the 
two polar assumptions. The procedure that I have followed is to estimate an 
eighth-order autoregressive equation for each exogenous variable (with a 
constant term and time trend included in the equation) and then to take the 
estimated standard error from this regression as the estimate of the degree of 
uncertainty attached to forecasting the variable for each period. This proce- 



Evaluating Predictive Accuracy 267 

dure ignorwthe uncertainty ofthe coeficient estimates in the autoregressive 
equations, which is one of the reasons it is not as extreme as the second polar 
assumption. 

A procedure similar to the second polar assumption was used in an earlier 
stochastic simulation study of Haitovsky and Wallace (1972), where third- 
order autoregressive equations were estimated for the exogenous variables 
and then these equations were added to the model. This procedure is consist- 
ent with the second polar assumption except that for purposes ofthe stochas- 
tic simulations, Haitovsky and Wallace took the variances ofthe error terms 
to be one-half of the estimated variances. They defend this procedure (pp. 
267-268) on the grounds that the uncertainty from the exogenous-variable 
forecasts is likely to be less than is reflected in the autoregressive equations. 

Another possible procedure that could be used for the exogenous variables 
would be to gather from various forecasting services data on their ex ante 
forecasting errors of the exogenous variables (exogenous to the investigator, 
not necessarily to the forecasting service). From these errors for various 
periods one could estimate a standard error for each exogenous variable and 
then use these errors for the stochastic-simulation draws. 

For purposes of describing the present method, all that needs to be assumed 
is that some procedure is available for estimating exogenous-variable uncer- 
tainty. If equations for the exogenous variables are not added to the model but 
instead some in-between procedure is followed, then each stochastic-simula- 
tion trial consists of draws of error terms, coefficients, and exogenous-variable 
errors. If equations are added, then each trial consists ofdraws of error terms 
and coefficients from both the structural equations and the exogenous-vari- 
able equations. In either case, let & denote the stochastic-simulation esti- 
mate of the variance of the forecast error that takes into account exogenous- 
variable uncertainty. ?& differs from & in (7.8) in that the trials for ?& 
include draws of exogenous-variable errors. 

The procedure that I have used to estimate exogenous-variable uncertainty 
is implemented as follows. Let .i, denote the estimated standard error from the 
eighth-order autoregressive equation for exogenous variable i. Let vir be a 
normally distributed random variable with mean zero and variance $2: 
IJ;! - N(0, $2) for all 1. Let &, be the “base” value of exogenous variable i for 
period t. The base values can either be the actual values, if the period in 
question is within the period for which data exist, or guessed values othenvise. 
If the values are guessed, they need not be the predictions from the autore- 
gressive equations; the latter are used merely to get the values for $. Let x$ be 
the value of variable i used on a given trial. Then for a given trial x: is taken to 
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be Pi,, + vu, where vi< is drawn from the above distribution. If, say, the 
simulation period were 8 quarters in length and there were 100 exogenous 
variables, 800 draws would be taken, one for each of the 100 i’s and one for 
each of the 8 t’s, There would be 100 autoregressive equations estimated. 

For some of my work I have taken the estimated standard error from the 
autoregressive equation for each variable to be an estimate of the degree of 
uncertainty attached to forecasting the change in the variable for each period. 
Given the way that many exogenous variables are forecast, by extrapolating 
past trends or taking variables to be unchanged from their last observed 
values, it may be that anyerror in forecasting the level ofa variable in, say, the 
first period will persist throughout the forecast period. If this is true, the 
assumption that the errors pertain to the changes in the variables may be 
better than the assumption that they pertain to the levels. This procedure is 
implemented as follows. Let quarter 1 be the first quarter of the prediction 
period, and assume that the prediction period is of length T. The values ofx$ 
(t = 1, , T) for a given trial are taken to be 

x$ = zir + zl;, + vi2 + + Q, 

where each vi, (t= 1, , T) is drawn from the N(0, ff’) distribution. 
Because of the assumption that the errors pertain to changes, the error term vi, 
is carried along from quarter 1 on. Similarly, viz is carried along from quarter 
2 on, and so forth. 

8.4.3 Uncertainty from the Possible Misspecification of the Model 

The most difficult and costly part of the method is estimating the uncertainty 
from the possible misspecification of the model, which requires successive 
reestimation and stochastic simulation ofthe model. It is based on a compari- 
son of estimated variances computed by means of stochastic simulation with 
estimated variances computed from outside-sample forecast errors. As will be 
seen, the expected value ofthe difference between the two estimated variances 
for a given variable and period is zero for a correctly specified model. The 
expected value is not in general zero for a misspecified model, and this fact 
can be used to try to account for misspecification effects. 
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All of the stochastic simulations that are referred to in this section are with 
respect to error terms and coefficients only. In other words, there is assumed 
to be no exogenous-variable uncertainty. Section 8.4.4 discusses the way in 
which the estimates of exogenous-variable uncertainty that were discussed in 
Section 8.4.2 are combined with the estimates of misspecification effects. 

Assume that the prediction period begins one period after the end of the 
estimation period, and call this period 1. From stochastic simulation one 
obtains an estimate of the variance of the forecast error, &in (7.8). One also 
obtains an estimate of the expected value of the k-period-ahead forecast of 
variable i, Gi,:,, in (7.7). The difference between this estimate and the actual 
value, y,+,_, , is the mean forecast error: 

(8.5) 
1 

G,* = Y;,+k- I - Yi,k, 

If it is assumed that pi,k exactly equals the true expected value, j&, then 2, 
in (8.5) is a sample draw from a distribution with a known mean of zero and 
variance o&. The square of this error, & is thus under this assumption an 
unbiased estimate of & One therefore has two estimates of G&, one 
computed from the mean forecast error and one computed by stochastic 
simulation. Let dilk denote the difference between these two estimates: 

(8.6) ditr = i,:, - 3 Sk 

If it is further assumed that &exactly equals the true value, then di,k is the 
difference between the estimated variance based on the mean forecast error 
and the true variance. Therefore, under the two assumptions of no error in the 
stochastic-simulation estimates, the expected value of difk is zero. 

The assumption of no stochastic-simulation error, that is, Fi,, = & and 
& = o$, is obviously only approximately correct at best. As noted in Section 
7.3. I, even with an infinite number of draws the assumption would not be 
correct because the draws are from estimated rather than known distribu- 
tions. It does seem, however, that the error introduced by this assumption is 
likely to be small relative to the error introduced by the fact that some 
assumption must be made about the mean ofthe distribution of&. For this 
reason, nothing more will be said about stochastic-simulation error. The 
emphasis instead will be on possible assumptions about the mean of the 
distribution of d,,,, given the assumption of no stochastic-simulation error. 

If the model is misspecified, it is not in general true that the expected value 
of di,k is zero. Misspecification has two effects on di,k. First, if the model is 
misspecified, the estimated covariance matrices that are used for the stochas- 
tic simulation will not in general be unbiased estimates ofthe true covariance 



270 Macroeconometric Models 

matrices. The estimated variances computed by means of stochastic simula- 
tion will thus in general be biased. Second, the estimated variances computed 
from the forecast errors will in general be biased estimates of the true 
variances. Since misspecification affects both estimates, the effect on diik is 

ambiguous. It is possible for misspecification to affect the two estimates in the 
same way and thus leave the expected value of the difference between them 
equal to zero. In general, however. this does not seem likely, and so in general 
one would not expect the expected value of di,, to be zero for a misspecified 
model. 

Because of the common practice in macroeconometric work of searching 
for equations that fit the data well, it seems likely that the estimated means of 
d,, will be positive in practice for a misspecilied model. If the model fits the 
data well within sample, the stochastic-simulation estimates of the forecast 
error variances will be small. This is because they are based on draws from 
estimated distributions of the error terms and coefficient estimates that have 
small (in a matrix sense) covariance matrices. if the model, although fitting 
the data well? is in fact misspecified, this should result in large outside-sample 
forecast errors. The estimated mean of d,tk is thus likely to be positive: C:* is 
small because of small estimated covariance matrices, and ;$ is large because 
of large outside-sample forecast errors. 

The procedure described so far uses one estimation period and one predic- 
tion period. It results in one value of ditk for each variable i and length ahead k. 
Since one observation is obviously not adequate for estimating the mean of 
didi, more observations must be generated. This can be done by using 
successively new estimation periods and new prediction periods. Assume, for 
example, that one has data from period 1 through period 100. The model can 
be estimated through, say, period 70, with the prediction period beginning 
with period 7 I. Stochastic simulation for the prediction period will yield for 
each i and k a value of di,,k in (8.6). The model can then be reestimated 
through period 71, with the prediction period now beginning with period 72. 
Stochastic simulation for this prediction period will yield for each i and k a 
value of d,,, in (8.6). This process can be repeated through the estimation 
period ending with period 99. For the one-period-ahead forecast (k = 1) the 
procedure will yield for each variable i 30 values of di,, (t = 7 I, , 100): 
for the two-period-ahead forecast (k = 2) it will yield 29 values of di,, 
(I = 7 I, , 99); and so on. If the assumption of no stochastic-simulation 
error holds for all I, then the expected value ofdi,k is zero for all t for a correctly 
specified model. 

The final step in the process is to make an assumption about the mean of 
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cI’~,~ that allows the computed values of d,,, to be used to estimate the mean. A 
variety of assumptions are possible. One is simply that the mean is constant 
across time. In other words, misspecification is assumed to affect the mean in 
the same way for all t. If this assumption is made, the mean can be estimated 
by merely averaging the computed values of diii for each i and k. Another 
possible assumption is that the mean is a function of other variables, where 
the other variables are specified. (A simple example ofthis is the assumption 
that the mean follows a linear time trend.) Given this assumption, the mean 
can be estimated from a regression of ditk on the specified variables. (In the 
linear trend case, the explanatory variables would be a constant and a time 
trend.) The predicted value from this regression for period f, denoted &, is 
the estimated mean for period t. In this case the estimated mean obviously 
varies over time if the explanatory variables vary. This second assumption 
would be used if it were felt that the degree of misspecification of the model 
varies in a systematic way with other variables. 

1 A version of the first assumption is that the mean of di,,, is proportional to 
y&, which implies that the mean of di,/& is constant across time. dirk is in 
units of the variable squared, and this assumption is equivalent to the 
constant mean assumption in percentage terms. For variables with trends it 
may be more reasonable to couch the assumption in percentage terms, since 
the mean may vary as a function of the size of the variable. 

8.4.4 Total Uncertainty 

Given &, the estimate ofthe mean ofdzrx for period t, it is possible to estimate 
the total variance of the forecast error, denoted i?$. This is the sum of?,:,,, the 
stochastic-simulation estimate ofthe variance due to the error terms, coeffi- 
cient estimates, and exogenous variables, and &,: 

(8.7) & = a:& + d. ,ik 

The use of %& instead of & in (8.7) is where the estimate of exogenous 
variable uncertainty is brought into the analysis. 

Since the procedure in arriving at & takes into account the four main 
sources of uncertainty of a forecast, the values of zCk can be compared across 
models for a given i, k, and 2. If. for example, one model has consistently 
smaller values of & than another, this would be fairly strong evidence for 
concluding that it is a more accurate model. that is. a better approximation to 
the true structure. 

It may be useful at this stage to review the steps that are involved in arriving 
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at st,t in (8.7). Consider the example used in Section 8.4.3, where data are 
available for periods 1 through 100. Assume that one is interested in estimat- 
ing the uncertainty ofan eight-period-ahead forecast that begins in period 90. 
In other words, one is interested in computing $,:rk for I = 90 and 
k = 1, ,8. Assume that the main set ofcoefficient estimates ofthe model 
is based on an estimation period through period 100. Given (1) these esti- 
mates and the associated estimates ofthe distributions of the error terms and 
coefficient estimates, (2) the actual values of the exogenous variables for 
periods 90-97, and (3) some assumption about exogenous-variable uncer- 
tainty, a:,:,, can be computed using stochastic simulation for t = 90 and 
k = 1, _ 8. Each trial consists of one eight-period dynamic simulation 
beginning in period 90. It requires draws ofthe error terms, coefficients, and 
(possibly) exogenous-variable errors. If, say, 250 trials are taken, the model 
must be solved 250 times for the eight quarters. 

Since computing & requires only one stochastic simulation, this is the 
relatively inexpensive part of the method. The expensive part consists of the 
successive reestimation and stochastic simulation that are needed in comput- 
ing the di,k values. In the example in Section 8.4.3, the model would be 
estimated 30 times and stochastically simulated 30 times in computing the 
di,k values. If 250 trials for each stochastic simulation were used, the model 
would be solved 250 X 30 = 7,500 times, where each solution is a dynamic 
eight-period simulation. After the di,, values are computed for, say, periods 70 
through 99, &* can be computed for 1= 90 and k = 1, , 8 using 
whatever assumption has been made about the distribution of dirk. This 
procedure then allows ?& in (8.7) to be computed for I = 90 and 
k= I....,% 

8.4.5 General Remarks about the Method 

In the successive reestimation of the model, the first period of the estimation 
period may or may not be increased by one each time. The criterion that one 
should use in deciding this is to pick the procedure that seems likely to 
correspond to the chosen assumption about the distribution of dftk being the 
best approximation to the truth. It is also possible to take the distance between 
the last period of the estimation period and the first period of the forecast 
period to be other than one. 

Any assumption that one makes about the mean of di,,, is at best likely to be 
only a rough approximation to the truth. It is unlikely that the effects of 
misspecification on the two estimated variances are so systematic as to lead to 
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any assumption that one might make about the mean of the difference 
between the two being exactly right. One useful thing that can be done is 
simply to plot the dirk values over time for a given i and k and see if there are 
systematic tendencies. One might observe trend or cyclical movements in 
these plots, which could be useful either in deciding what to assume about the 
mean of dilk or in deciding how to change the model to try to eliminate the 
misspecification. If the latter is done, one is using the d,,k values to reveal 
weaknesses in the model that might be corrected rather than to adjust the 
stochastic-simulation estimates of the variances for misspecification. The 
individual dirk values may thus be of interest in their own right aside from 
their possible use in estimating total predictive uncertainty. If the values are 
used solely to reveal weaknesses of the model, no assumption about the mean 
of di,, is needed. 

Although I have been interpreting the ditk values as measuring the mis- 
specification of the model, this is not exactly right. Since misspecification 
affects both &and i$ in (8.6), it may be for a particular model that both are 
affected about the same. In this case the expected value of di,k would be close 
to zero and yet the model could be seriously misspecihed. In other words, 
misspecification can make both @tk and <,$ larger and leave the difference 
between the two about the same. The more common case, as discussed in 
Section 8.4.3. seems likely to be one in which extensive searching for equa- 
tions that fit the data well has resulted in an estimate of I&that is too small. In 
this case the &+ values are likely to be on average large. Whatever the case, 
one should be aware that interpreting the &values as measures of misspeci- 
Iication is using the word “misspecification” in a very special way. A better 
but more awkward way of stating what the di,* values are is that they are a 
measure of the misspecification of the model that is not already reilected in 
the stochastic-simulation estimate of the forecast error variance. 

It is important to note that the interpretation of the di,,k values does not 
affect the interpretation of 8& in (8.7) as an estimate of the total variance of 
the forecast error. If misspecification affects the stochastic-simulation esti- 
mate of the variance about as much as it affects the estimate based on the 
outside-sample forecast error (so that a,, is close to zero), misspecification 
effects will be reflected in bfti in (8.7) rather than in & The term (i,,, is merely 
the adjustment for the misspecification effects that are not captured by &. 

The estimates of the mean of di,k that have been proposed in Section 8.4.3 
are not in general efficient because the error term in the d,,k regression is in 
general heteroscedastic. Even under the null hypothesis of no misspecifica- 
lion, the variance of d,,, is not constant across time. It is true, however, that 
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i,,/m has unit variance for all f under the null hypothesis, and 
therefore it is reasonable to assume that ;f,/(& + &J has a constant var- 
iance for all t. This then suggests the following iterative procedure. (I) For 
each i and k, calculate & from the dlzk regression, as discussed earlier; (2) 
divide each observation in the difk regression by & + a,,,, run another 
regression, and calculate &,, from this regression; (3) repeat step 2 until the 
successive estimates of &,, are within some prescribed tolerance level. Litter- 
man ( 1980) has carried out this procedure for a number of models for the case 
in which the only explanatory variable in the d,, regression is the constant 
term (that is, for the case in which it is assumed that the mean of the d,,k 
distribution is constant across time). 

If one is willing to assume that i, is normally distributed, which may or 
may not be a good approximation, Litterman (1979) has shown that the 
iterative procedure just described produces maximum likelihood estimates. 
He has used this assumption in Litterman (1980) to test the hypothesis (using 
a likelihood ratio test) that the mean ofdj,, is the same in the first and second 
halves of the sample period. The hypothesis was rejected at the Spercent level 
in only 3 of 24 tests. These results thus suggest that the assumption of a 
constant mean of &,,,, may not be a bad approximation in many cases. The 
results for the US model, which are reported in Section 8.5, also suggest that 
the assumption may be a reasonable approximation. 

Another interpretation of the mean of dirk is that it is a measure of the 
average unexplained forecast error variance (that is, that part not explained 
by &). Using this interpretation, Litterman (1980) has examined the ques- 
tion of whether the use of the estimated mean of di,,+ leads to more accurate 
estimates of the forecast error variance. The results of his tests, which are 
based on the normality assumption, show that substantially more accurate 
estimates are obtained using the estimated means. 

It should finally be noted that although the method is designed to catch a 
model that fits the data well within sample but is in fact poorly specified. there 
is a subtle form ofdata mining that the method does not account for. If. say, a 
model is specified in period 100, estimated through period 90, and tested with 
respect to its outside-sample forecasting accuracy for periods 9l- lot), it is 
clear that this is not a strict outside-sample test. Information on what 
happened between periods 91 and 100 may have been used in the specifica- 
tion of the model, and thus one cannot be sure that the model’s “outside-sam- 
ple” accuracy that is estimated for periods 9 1 - 100 will hold for, say. periods 
lOI- 110. Within the context of the present method, this means that the 
computed values of dilk for periods 9l- 100 are too low, which will result in 
values of difk that are too low and thus values of 6$_ that are too low. 
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8.5 A Comparison of the US, ARUS, VARIUS, VAR2US, 
and LINUS Models 

In this section five econometric models of the United States are compared 
using the method in Section 8.4. The main concern is to see how the US 
model compares to the autoregressive model (ARUS), the two vector autore- 
gressive models (VARIUS and VAR2US), and a simple linear model 
(LINUS). The US model is discussed in Chapter 4, and the other models are 
discussed in Chapter 5. 

8.5.1 Computing the d, Values 

The primary cost of the method is computing the ditk values. In computing 
these values, each of the five models was estimated 51 times. The first 
estimation period ended in 1969111, the second estimation period ended in 
1969IV, and so on through 19821. A stochastic simulation was then run for 
each of the 51 sets of estimates. where the prediction period began two 
quarters after the end of the estimation period. The reason for beginning the 
prediction period two quarters rather than only one quarter after the end of 
the estimation period is that in practice most of the data for the most recent 
quarter are preliminary. In my work I use the preliminary data as initial 
conditions for a forecast but not as observations for estimation. This means 
that there is always a two-quarter gap between the end of the estimation 
period and the beginning ofthe prediction period, and the present procedure 
is consistent with this practice. 

The computations for the US model were as follows. The first of the 5 I 
estimation periods was 19541- 1969111 (63 observations). The coefficients 
were estimated by 2SLS, and.the covariance matrix of the coefficient esti- 
mates was computed. Let r& denote the coefficient estimates, and let p1 
denote the estimated covariance matrix. The correct formula for the covar- 
iance matrix is (6.20) in Chapter 6, where the off-diagonal blocks ofthe matrix 
are not zero. Computing this matrix is fairly expensive in that it requires more 
time than is required to compute the coefficient estimates. (The times re- 
ported in Section 6.5.1 for the IBM 4341 are 3.0 minutes for the coefficient 
estimates and 5.5 minutes for the covariance matrix.) If the off-diagonal 
blocks are taken to be zero, there is no extra cost in computing the covariance 
matrix because the diagonal blocks are available from the estimates of the 
individual equations. For the work here, the off-diagonal blocks were taken to 
be zero for all 5 I sets of estimates. 

Given the coefficient estimates, the covariance matrix ofthe error terms (3) 
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was estimated as (l/63)00’, where 0 is the 30 X 63 matrix of values of the 
estimated error terms. Using N(0, 3) as the distribution of the error terms and 
N(&,, VJ as the distribution ofthe coefficient estimates, a stochastic simula- 
tion was then run for the 197OI- 19711V period, where both error terms and 
coefficients were drawn. The number of trials was 50. The results from this 
simulation allowed values of&to be computed for all i, fork = 1, ,8, 
and for (equal to 19701. The simulation produces values of&and>i,k. Given 
Tizk and given the actual data on the endogenous variables, i, can be 
computed. di,k is then merely ;& - &. 

The results for one variable in the model (real GNP) from this simulation 
are presented in the first row of Table 8- 1. The first eight values, 100(~i,J~~,,J, 
are the stochastic simulation estimates of the standard errors of the forecast, 
expressed as a percentage of the forecast mean. The second eight values, 
100( I;i,,l/>i,k), are the estimates of the standard errors ofthe forecast based on 
the actual outside-sample forecast errors, again expressed as a percentage of 
the forecast mean. 

There are a few dummy variables in the model that are not relevant for the 
early estimation periods, which means that there are slightly fewer than 169 
coefficients to estimate for the early periods. For the first period, for example, 
there are 165 coefficients to estimate. 

The second estimation period was 1954I- 19691V (64 observations), which 
differs from the first period by the addition of one quarter at the end. The first 
quarter of the period was left unchanged. The coefficients were estimated by 
2SLS for this period, and new estimates of i; and $were obtained. Stochastic 
simulation was then performed for the 197011- 19721 period, which allowed 
values of d,, to be computed for all i, for k = I, , 8, and for I equal to 
197011. The results for real GNP from this simulation are presented in the 
second row ofTable 8-l. A total of 50 trials were also used for this simulation. 

This process was repeated for the remaining 49 estimation periods. Since 
only data through 1982111 exist, the length of the prediction periods for the 
last seven sets ofestimates was less than eight, as can be seen in Table S- 1, The 
last estimation period was 1954I- 19821(113 observations), and for this set of 
estimates the prediction period was merely one quarter, 1982111. 

The total time needed to estimate the model 5 I times was about 2. I hours 
on the IBM 4341. The total time for the 5 1 stochastic simulations, which 
consisted of 50 trials each, was about 2.2 hours. The stochastic-simulation 
work consisted of 50 X 5 1 = 2,550 solutions of the model. For none of the 
draws did the Gauss-Seidel technique fail to solve the model. For the earlier 
work on the VAX, the model was estimated and stochastically simulated 44 
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times. The total time for the estimation was abut 4.8 hours, and the total 
time for the stochastic simulation (50 trials each) was about 10.7 hours. 

The same calculations were performed for the other models, the only 
difference being that 100 rather than 50 trials were used for each stochastic 
simulation for the ARUS, VARIUS, and VAR2US models. (50 trials were 
used for the LINUS model.) The first quarter of the estimation period was 
19541 for all the models except ARUS, where it was 195411. The estimation 
times for ARUS, VAR IUS, VAR2US, and LINUS were, respectively, 3,9,3, 
and 36 minutes on the IBM 4341 and 5, 16,5, and 19 minutes on the VAX. 
The stochastic-simulation times were 15,28, 13, and 14 minutes on the IBM 
4341 and 38, 71,31, and 35 minutes on the VAX. 

8.5.2 Discussion of the dm Values for the US Model 

Since the individual d,,, values may be of interest in their own right, they will 
be examined before proceeding to the estimates of the total variar.:e of the 
forecast error. Consider the results for real GNP in Table 8-I. If one looks 
down one of the first eight columns, it can be seen that the standard errors 
vary considerably across prediction periods (except for perhaps the one- 
quarter-ahead results in the first column). For the eight-quarter-ahead results, 
for example, the estimated standard errors vary from 1.43 percent in row 35 
to 3.41 percent in row 17. Experimenting with more trials indicated that 
sampling error contributes very little to this variability. It thus appears that 
there is considerable variability of forecast-error variances across time (for a 
fixed k), at least for the US model. This variability is due to different estimated 
covariance matrices, different initial conditions (that is, different lagged 
values ofthe endogenous and exogenous variables), and different values ofthe 
exogenous variables. It is interesting to note that some ofthe largest standard 
errors occur in the mid-1970s, which was characterized at times by extreme 
initial conditions and exogenous variable values. In particular, the price of 
imports (PIM), which is an exogenous variable, took on extreme values 
during much of this period. It may be that these extreme values help contrib- 
ute to the larger stochastic-simulation estimates of the standard errors for the 
mid- 1970s. 

The values in the last eight columns in Table 8-1 are the absolute values of 
the outside-sample forecast errors in percentage terms. These values, unlike 
the values in the first eight columns, use the actual values of the endogenous 
variables for the prediction period in their calculation, which is the reason 
they are more erratic. In some cases the forecasts are nearly perfect, and in 
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others the errors are quite large. The largest error is for the eight-quarter- 
ahead forecast in row 14, which is 7.73 percent. The results in row 14 are for 
the prediction period beginning in 197311, and therefore the eight-quarter- 
ahead forecast is for 19751. 

The square of an element in the right half of Table 8-1 minus the square of 
the corresponding element in the left half is equal to L&J&, which is simply 
ditk in percentage terms. The key question is whether these values have any 
systematic tendencies. To examine this question, d,,,/G,fk is plotted in Figure 
8- 1 for i equal to real GNP and kequal to I, The main conclusion from Figure 
8-l is that no systematic tendencies are apparent. The value for 198011 is very 
large relative to others, but aside from this, the values are not obviously larger 
for one subperiod than for another, and there is no obvious trend. Plots for 
many other variables were examined, and the same conclusion was reached. 

The only systematic tendency that was apparent was that some of the plots 
showed evidence of serial correlation for values of kgreater than about four or 
five. This can be explained as follows. If, say, quarter 85 is a difficult quarter to 
predict, perhaps because of a large unexplained shock in the quarter, then a 
dynamic simulation that runs through this quarter may also do poorly in 
predicting quarters 86 and beyond. In other words, the simulation may get 
thrown off by the bad prediction in quarter 85. This means, for example, that 
five-quarter-ahead forecasts for quarters 85,86,87,88, and 89 may all be on 
average poor, thus implying large values for& (k = 5 and t = 81, . ,85). 
The shock in quarter 85 will have no effect on the stochastic-simulation 
estimates of the variances, since these are not based on the actual data for the 
endogenous variables for this quarter, and therefore the large values of the 
outside-sample errors imply large values ofdi,k. In this way, serial correlation 
may be introduced into the d,, series for values of k greater than one. 

The general impression one gets from examining the plots is thus that the 
misspecification of the model does not appear to have changed over time or to 
have been different in any subperiods. One could attempt to examine this 
question in a less casual way by, say, regressing the dilk values (for a given i and 
k) on variables that one thinks may be related to the misspecification of the 
model. Although this might be worth doing in future work, it seems unlikely 
to me, from having examined the plots, that much would come of it. 

The fact that the misspecification of the model does not appear to have 
changed over time is not in itself encouraging regarding the accuracy of the 
model. The misspeciiication may in fact be quite large, even though un- 
changing, and may have a large effect on total forecasting uncertainty. What is 
encouraging about the results is that the assumption of a constant mean for 
di,, or dJT,& (for a given i and k) seems to be a reasonable approximation. 
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Figure 8-I Plot of di,J2,x for the US model for i = real GNP, k = I, 
t= 197OIL1982111 

8.5.3 Computing the Total Variance of the Forecast Error 

The total variance ofthe forecast error is&in (8.7). The computation of 6$k 
for the five models is discussed in this section. It is easiest to describe these 
computations by referring to the results in Table 8-2. The prediction period is 
19781- 1979IV. Consider tirst the results for real GNP for the US model. The 
values in the a and b rows are from the same two stochastic simulations that 
were used for the results in Table 7-l. For the a-row results only draws ofthe 
error terms were made, whereas for the b-row results draws of both the error 
terms and coefficients were made. The number of trials for each simulation 
was 250. The coefficient estimates that were used for these results are the 2SLS 
estimates for the 19541- 1982111 period (115 observations). These are the 
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estimates presented in Chapter 4; they are the basic 2SLS estimates of the 
model. 

The values in Table 8-2 are either estimated standard errors in units of the 
variable or estimated standard errors in percentage points. For real GNP the 
errors are in percentage points. The numbers in the b row. for example, are 
5i,,,/;i,k, where Ti,k is the stochastic-simulation estimate ofthe forecast mean 
(Eq. 7.7) and aickis the square root ofthe stochastic-simulation estimate ofthe 
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variance of the forecast error (Eq. 7.8). The numbers in the a row are the same 
except that the estimates are based on draws of the error terms only. 

The results in the a and b rows are not needed for the computations ofthe 
total variance of the forecast error; they are presented merely to show how 
much ofthe total variance can be attributed to the uncertainty from the error 
terms and coefficient estimates. The results that are needed are those from a 
stochastic simulation with respect to the error terms, coefficients, and exoge- 
nous variables. These results are presented in the c rows in Table 8-2. The 
procedure that was used for this stochastic simulation for the US model is as 
follows. 

An eighth-order autoregressive equation (with a constant and time trend 
included) was estimated for each exogenous variable in Table A-4 (Appendix 
A) except for the dummy variables, the time trend, and variables whose value 
never changes or changes only once during the sample period. (These vari- 
ables are 0593 through 00793, H,,,, f, SD, &,, SK, y,, and y,.) The sample 
period for each regression was 195411- 1982111. A total of 88 equations were 
estimated. The estimated standard error from each of these regressions was 
taken to be the error associated with forecasts of the variable. The procedure 
discussed in Section 8.4.2 was used for the draws of the exogenous-variable 
values for the stochastic simulation. The base values of the exogenous 
variables were taken to be the actual values. Each trial of the stochastic 
simulation for the c rows consisted of eight draws of 30 values each from the 
distribution ofthe error terms, one draw of 169 values from the distribution of 
the coefficient estimates, and eight draws from each of the 88 distributions of 
the exogenous-variable errors, A total of250 trials were taken. For none ofthe 
draws did the Gauss-Seidel technique fail to find a solution. The total time 
taken for this simulation was about the same as the time taken for the a-row 
and b-row simulations, namely about 6.7 minutes on the IBM 4341 and 
about 49 minutes on the VAX. (See the note to Table 7-I.) 

A stochastic simulation of 250 trials was also performed under the assump- 
tion that the exogenous-variable errors pertain to changes in the variables 
rather than to levels. This procedure is also discussed in Section 8.4.2. The 
estimated standard errors from this simulation were in general larger than 
those from the first simulation, but the results were fairly close These results 
are not reported in Table 8-2. 

The c-row values in Table 8-2 are either &,,, or &,,/$itk, where %i,k is the 
square root of &.The final step is to add to & the estimated mean of di,k. 
The discussion in Section 8.5.2 indicates that the assumption that the mean of 
d,,, is constant across time may be a reasonable approximation. This assump- 
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tion was used for variables without trends. For variables with trends it was 
assumed that the mean of ditk/& is constant across time. Given the first 
assumption, the estimated mean of di,, is the average of the di,k values (for a 
fixed i and k); and given the second assumption, the estimated mean of 
&ii,/$& is the average ofthe d&;,& values. There are 5 1 observations for the 
one-quarter-ahead forecasts (k = I), 50 observations for the two-quarter- 
ahead forecasts (k = 2), and so on. Let &denote the estimated mean of di,k, 
and let & denote the estimated mean of d&&. The I subscript has been 
dropped from & and c?A because the estimated means are assumed to be 
constant across time. 

For variables without trends the estimate of the total variance of the 
forecast error, &, is & + &. For variables with trends the estimate is 
?& + & . 2,:,,. For variables without trends the values in the d rows in Table 
8-2 are the square roots of &, and for variables with trends the values are the 
square roots of&/&. The differences between the d-row and c-row values 
in the table are measures of the effects of misspecification on predictive 
accuracy, although this is subject to the qualification discussed in Section 
8.4.5 about the interpretation of the word “misspecification.” 

The same procedure was followed for the other models. There are no 
exogenous variables in the ARUS. VAR I US, and VARZUS models, and thus 
there are no c-row values. For the LINUS model there are three exogenous 
variables for which autoregressive equations were estimated: Q, , Q2, and J/l. 

8.5.4 Comparison of the Results for the Five Models 

The US Model versus the Others 

The models can be compared according to the size of the d-row values. In 
examining the d-row values 1 usually give more weight to the results the 
further out the forecast is. In other words, 1 usually give more weight to the 
four-quarter-ahead results than to the one-quarter-ahead results, more to the 
eight-quarter-ahead results than to the four-quarter-ahead results, and so on. 
The further out a forecast is, the more this is a test of the accuracy of the 
dynamic properties of the model. 

For real GNP it is clear that the US model is substantially better than the 
other four models. The eight-quarter-ahead standard error is 3.43 percent, 
which compares to values of 4.05, 7.15,4.93, and 5.13 percent for the other 
four models. The US model is also best for the unemployment rate and the 
bill rate. It is not as good as VARI US and VAR2US for the GNP deflator. It is 
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substantially worse for the money supply, where the eight-quarter-ahead 
standard error is 5.33 percent, which compares to values of 3.47? 2.02, and 
2.7 I for ARUS. VARIUS, and VAR2US respectively. 

The poorer results for the money supply mean that the demand-for-money 
equations in the US model are not as accurate as autoregressive specifications. 
This is something that I have known for a long time, but it is not easy to 
remedy. I have so far been unable to find demand-for-money equations that 
lead to more accurate predictions within the context of the overall model. 
Fortunately, errors in predicting the money supply have fairly minor conse- 
quences for the other variables. Given the use of the interest rate reaction 
function, the only important way in which errors in predicting the money 
supply affect the other variables in the model is through their effect on the bill 
rate predictions. The lagged growth of the money supply is one of the 
explanatory variables in the bill rate equation, and therefore errors in predict- 
ing the money supply affect the bill rate predictions. Although errors in 
predicting the bill rate have important effects on many other variables in the 
model, the effect of the money supply on the bill rate is only moderate. The 
indirect effect of money supply errors on the other variables in the model 
(through the direct effect of the money supply on the bill rate) is thus fairly 
minor. 

Given that the US model is more accurate for three ofthe key variables (real 
GNP, the unemployment rate, and the bill rate), the results seem encouraging 
for the model. More tests are needed, of course. especially against other 
structural models, before any strong conclusions can be drawn. 

For the remaining five variables in Table 8-2, the comparisons are only 
between the US and ARUS models. Four of these variables-the level of 
profits, the savings rate, the savings ofthe federal government, and the savings 
of the foreign sector-are “residual” variables. These types of variables are 
generally hard to predict in structural models, and it is interesting to see how 
the US model does relative to an autoregressive equation for each variable. 
The results for the first variable, the wage rate, are about the same for the two 
models for the first four quarters; after that the ARUS model does somewhat 
better. For the savings rate of the household sector, the two models are almost 
the same for the first three quarters. and the ARUS model is substantially 
better thereafter. The US model is substantially better for profits and the 
savings of the federal government, and the ARUS model is substantially 
better for the savings of the foreign sector. The overall results for these five 
variables are thus mixed. It is encouraging that the US model is better with 
respect to profits and the savings of the federal government, but it is clear that 
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the model could stand some improvement with respect to the savings rate of 
the household sector and the savings of the foreign sector. 

Comparison cf the Other Four Models 

Consider first the LINUS model. The main variable that it is designed to 
explain is real GNP. For this variable it is less accurate than the US model and 
more accurate than the VARl US and VAR2US models. It is more accurate 
than the ARUS model for the first four quarters ahead and less accurate after 
that. The results are thus mixed, although the fact that the model is not nearly 
as accurate as the US model is not encouraging in regard to the ability to 
collapse a large model into a relatively small one without a substantial loss of 
predictive accuracy. 

In the comparison of VAR 1 US versus VARZUS, VAR2US seems some- 
what better: it is more accurate for real GNP, the GNP deflator, and the 
unemployment rate. It is less accurate for the bill rate and the money supply. 
In the comparison of ARUS versus VARZUS, ARUS is more accurate for real 
GNP and the unemployment rate but less accurate for the GNP deflator and 
the bill rate. The results are mixed for the money supply. There is thus no 
obvious winner between ARUS and VAR2US. 

There is one feature ofthe money supply results for VARIUS that should 
be noted. For the four- through seven-quarter-ahead predictions, the d-row 
values are less than the corresponding b-row values, which means that the 
estimated means of the d&& values were negative. For the six-quarter- 
ahead prediction, the estimated mean was almost negative enough to make 
the d-row value zero. These results are due to the fact that the stochastic-simu- 
lation estimates of the variances are large relative to the estimates based on the 
outside-sample forecast errors. For models like VARIUS, which have a large 
number of coefficients to estimate relative to the number of observations and 
thus in general have very imprecise estimates, it sometimes happens that the 
stochastic-simulation estimates of the variances are very large. It is not clear 
in these cases whether much confidence should be put in the results; there are 
just too few observations for much to be said. 

Comparison Using Root Mean Squared Errors 

Root mean squared errors (RMSEs) for the five models for the 19701- 1982111 
period are presented in Table 8-3. These errors were computed as follows. 
Outside-sample forecast errors are available from the 5 I stochastic simula- 
tions that were involved in computing the di,k values. These errors are the 
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differences between the mean values (the&J and the actual values. They are 
based on 5 1 sets of estimates of each model, where each prediction period 
begins two quarters after the end of the estimation period. From these errors 
one can compute RMSEs by merely adding the squared errors, dividing by 
the number of observations, and taking the squared root. For the one- 
quarter-ahead predictions there are 51 observations, for the two-quarter- 
ahead predictions there are 50 observations, and so on. 

It is ofinterest to compare the RMSEs in Table 8-3 with the d-row values in 
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Table 8-2. In some loose sense the RMSEs handle the effects of misspecilica- 
tion because they are based on outside-sample errors only, and thus the main 
differences between the RMSEs and the d-row values are that the RMSEs do 
not handle exogenous variable uncertainty and do not account for the fact 
that forecast error variances vary across time. The RMSEs and the d-row 
values differ, in some cases by substantial amounts, but the rankings of the 
models are roughly (but not exactly) the same. One would probably draw 
similar conclusions as those given above if one looked only at the RMSE 
results. 

The main reason for the similar rankings is that exogenous-variable “ncer- 
tainty is not much of a problem in any model. For three of the models there 
are no exogenous variables, and for the US and LINUS models, which have 
exogenous variables, the differences between the c-row and b-row values in 
Table 8-2 are not in general very large. The US model in particular does not 
appear to be heavily tied to hard-to-forecast exogenous variables. For models 
that are heavily tied and that differ considerably in the number and types of 
variables that are taken to be exogenous, the difference between the rankings 
using the RMSEs and those using the d-row values could be substantial. 

With respect to the cost ofthe calculations, the RMSE results are essentially 
as costly as the d-row results because both are based on 5 1 sets of estimates 
and 5 1 stochastic simulations. The RMSE results could, however, be made 
less costly by using deterministic simulations to compute the predicted 
values. As discussed in Section 7.3, predicted values from deterministic 
simulations are generally close to expected values from stochastic simula- 
tions, so little is likely to be lost by using deterministic simulations. In the 
present case this would save about halfthe cost, since about halfthe time was 
spent computing the estimates and about half in performing the stochastic 
simulations. 

8.55 Other Results for the US Model 

Comparison acran Rows 

It should be clear from examining the a and b rows in Table 8-2 that more of 
the forecasting uncertainty is due to the error terms than to the coefficient 
estimates: the differences between the b and a rows arc small relative to the 
size of the a-row values. It should also be clear, as noted earlier, that 
exogenous-variable uncertainty does not contribute very much to total “n- 
certainty: the differences between the c and b rows are small. The variable 
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most affected by exogenous-variable uncertainty in Table 8-2 is the sayings of 
the federal government. This is_ of course, as expected. since many ofthe key 
exogenous variables in the model are federal government variables. 

It should be noted that there is no requirement that each c-row value be 
greater than its corresponding b-row value. Although this is rare, an increase 
in the variability of one endogenous variable may be associated with a 
decrease in the variability of another. In the results for the US model in Table 
8-2, one of the c-row values is less than the corresponding b-row value for the 
GNP deflator, three are less for the unemployment rate, three are less for the 
bill rate, five are less for the money supply, and one is less for the wage rate. 

The d-row values are sometimes more than twice as large as the corre- 
sponding c-row values, which means that misspecification contributes sub- 
stantially to overall uncertainty. For real GNP the d-row value for the 
eight-quarter-ahead prediction is 3.43 percent, which compares to the c-row 
value of I .60 percent. For the GNP deflator the numbers are 4.3 1 and I. I3 
percent. Only one d-row value is less than the corresponding c-row value for 
the US model, which is for the one-quarter-ahead prediction ofthe wage rate. 
When this happens, as noted earlier, it means that the estimated mean of dizk 
or dilk/y$ is negative. It is argued in Section 8.4.3 that the estimated means 
are in general likely to be positive, and the results in Table 8-2 certainly 
confirm this. 

An Alfcrnative Measure of Dispmion 

In order to see whether the possible nonexistence of moments is a problem, an 
alternative measure of dispersion from the variance was computed for some 
of the variables. This measure, &, is discussed in Section 7.3.2. It is equal to 
(j& - J7&)/2. where & it the value for which 34.135 percent of the trial 
values lie above it and below the median and &$k is the value for which 34.135 
percent of the trial values lie below it and above the median. If the nonexis- 
tence-of moments is a problem, one might expect C,,,x to be much larger 
than S,,, 

The results for one stochastic simulation for the US model are presented in 
Table 8-4. This is the same simulation that was used for the b-row results in 
Table 8-2. The draws are with respect to the error terms and coefficients. The 
number of trials was 250. None of the draws resulted in a failure of the 
Gauss-Seidel technique to find a solution, and therefore no “extreme” draws 
had to be discarded. The values in the a rows in Table 8-4 are either estimated 
standard errors, eiik, or estimated standard errors as a percentage of the 
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forecast mean, C?&&. The values in the b rows are either & or & as a 
percentage of the forecast median, &,,/pz. 

It is clear from Table 8-4 that the results are very close. The measures are 
almost indistinguishable, and any conclusions drawn from using one measure 
would also be drawn from using the other. It thus does not appear that the 
possible nonexistence of moments is a practical problem for models like the 
US model, and therefore the common practice of ignoring this problem may 
be justified. It is true, however, that the cost of computing alternative 
measures is fairly low, and as a check on the results these measures should 
probably be computed from time to time. 

Comparison qf the Predictive Accuracy of Eight Sets of Estimates 

In Section 6.6 the eight sets of estimates of the US model were compared in 
various ways. Another way to do this is to see how they compare in terms of 
predictive accuracy of the overall model. One procedure that could be used 
would be to compute d-row values like those in Table 8-2 for each estimator, 
which would require estimating the model 5 1 times for each estimator and 
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performing 5 1 stochastic simulations for each estimator. This procedure is 
too expensive for present purposes, especially given the cost of estimating the 
model just one time by FIML and 3SLS. One also runs into the problem that 
the numben ofobservations for the early estimation periods are not sufficient 
to estimate all 107 coefficients that were estimated for the basic period by 
FIML. 

An easier procedure is simply to compute root mean squared errors for 
each set of estimates for some prediction period, and this is what was done. 
The prediction period that was used is 19701- 1982111, which is within the 
estimation period that was used for each set of estimates, 19541- 1982111. 
Although this procedure is a poor one for comparing alternative models 
because of possible differences in exogenous variables and the possible mis- 
specification ofthe models, it is not as bad for comparing alternative estimates 
of the same model. The exogenous variables are the same for each set of 
estimates, and the misspecification of the model may not vary too much 
across the different sets. In future work, however, it would be better to try to 
use the more expensive procedure to compare the estimates. 

The results are presented in Table 8-5. Remember that the main conclu- 
sion from the comparisons in Section 6.6 is that all the estimates are fairly 
close to each other except for the FIML estimates. One of the key questions 
here, therefore, is how the FIML estimates compare to the others in terms of 
predictive accuracy. 

The main conclusion that one can draw from the results in Table 8-5 is that 
they are not conclusive. The ranking of the estimates varies across variables 
and across the length of the prediction period. The biggest difference in the 
results concerns the one- through four-quarter-ahead results for FIML for real 
GNP. The one- and two-quarter-ahead FIML errors are much larger than the 
others, and the three- and four-quarter-ahead FIML errors are smaller. Part of 
this difference is probably due to the fact, as discussed in Section 6.6, that the 
FIML estimates of the coefficients of the lagged dependent variables are 
generally smaller than the other estimates. (See, for example, the results in 
Table 6.5.) In other words, the FIML resultsare less dependent on the values 
of the lagged endogenous variables, which may hurt for the first few quarters 
ahead and help thereafter. 

It is possible that the four LAD estimators (LAD and the three ZSLAD 
estimators) are hurt by the use ofthe root mean squared error measure rather 
than the mean absolute error (MAE) measure. In order to determine this, 
MAEs were also computed for the eight sets of estimates. The results for real 
GNP and the GNP deflator are presented in Table 8-6. It is clear from this 
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table that the main conclusion is not changed by the use ofthe MAE measure: 
the same inconclusive results are obtained for both measures. 

One way of looking at these results is the following. It is clear from the 
results in Table 8-2 that the US model is misspecified when estimated by 
2SLS. Table 8-2 provides quantitative estimates of this misspecification, and 
for some variables the estimates are fairly large. One might expect that 
estimating the model by other techniques would change the degree of mis- 
specification, either positively or negatively. The results in Tables 8-5 and 8-6. 
however, suggest that this is not the case. However the model is misspecified, 
the size of the misspecification is not sensitive to the use of alternative 
estimators. An interesting question for future research is whether this conclu- 
sion holds for other models and for later versions of the US model. 

8.6 A Comparison of the MC and ARMC Models 

The cost of solving the MC model is too large for it to be feasible to use the 
method in Section 8.4 to analyze it. As discussed in Section 7.5.2, the time 
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taken to solve the model for one quarter varies between about 20 and 40 
seconds on the IBM 4341, which compares to about .2 seconds for the US 
model. The MC model is thus between about 100 and 200 times more 
expensive to solve than the US model, which for present purposes rules out 
for the MC model many of the experiments that could be performed for the 
US model. Aside from the cost, the number ofobservations available for the 
flexible exchange rate period is also not large enough to allow the method in 
Section 8.4 to be used. The method requires that a model be successively 
reestimated over a number of periods, and in the MC case there are barely 
enough observations to estimate the equations that pertain to the flexible 
exchange rate period once. 

Because the method in Section 8.4 could not be used, the present compari- 
son of the MC and ARMC models is very crude, and not much weight should 
be placed on the results. What was done is the following. Three eight-quarter 
periods were chosen: a fixed exchange rate period, 197011- 19721, and two 
flexible rate periods, 1974I- 1975fV and 19761- 19771V. For each of these 
periods both static and dynamic predictions were generated using determin- 
istic simulation, where the error terms were set equal to zero. The actual 
values of the exogenous variables were used for the MC model; the ARMC 
model has no exogenous variables. The MC model was solved both for the 
case in which trade shares are exogenous and for the case in which they are 
determined by the trade share equations. This allows one to examine how 
much accuracy is lost by having to predict trade shares rather than knowing 
them exactly. Given these predictions, RMSEs were computed for each run. 

The results are presented in Tables 8-7, 8-8, and 8-9. For the results in 
Table 8-7 a weighted average of the RMSEs across all countries except the 
United States was taken for each variable. The RMSEs were weighted by the 
ratio of the country’s real GNP (in 75$) in the last (that is, eighth) quarter of 
the prediction period to the total real GNP of all the countries. This provides a 
summary measure of the overall tit of the MC model with respect to each 
variable. The RMSEs for the individual countries are presented in Table 8-8 
for one run, the dynamic simulation for the period 19741- 19751V. This is the 
period of the large increase in the price of oil by OPEC, and it is not a 
particularly easy period to explain. The RMSEs for the United States are 
presented in Table 8-9. 

As mentioned in Section 5.1.2, the ARMC model does not contain esti- 
mated equations for variables that are determined by identities in the MC 
model. Four of the variables listed in Tables 8-7 and 8-8 are determined by 
identities, Y. PM X75$, and PW$, and therefore no ARMC results are 
presented for these variables. 
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The following general conclusions can be drawn from Table 8-7. (1) MC is 
generally slightly less accurate than ARMC for consumption and investment. 
It is generally the same as ARMC or more accurate for other variables: the 
GNP deflator, the two interest rates, the exchange rate, the money supply, 
imports, and the price of exports. (2) The best period for the accuracy of MC 
relative to that of ARMC is probably 19741- 1975IV, the period of the large 
OPEC price increase, although the relative results across periods are close. (3) 
The use of the trade share equations increases the RMSEs for the export 
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variable, X75$, by a factor of between about two and four. For the dynamic 
prediction for 197% 19771V, for example, the RMSE increased from 2.83 
percent to 9.38 percent. The variable next most affected by the trade share 
equations is GNP, which is as expected since exports are part ofGNP. (4) The 
largest RMSE for the exchange rate for the MC model is only 5.30 percent 
(dynamic simulation for the 1974I- 19751V period), which seems fairly good. 
The largest RMSE for the short-term interest rate is 1.79 percentage points. 

The RMSEs in Table 8-8 for the individual countries are generally larger 
for the smaller countries. This is as expected, given the poor quality of much 
of the data for the smaller countries and the likelihood that the model 
approximates less well the structure of these economies. For the first 18 
countries in the table (Canada through Spain), the real GNP RMSEs range 
from 1.7 percent for Austria to 8.0 percent for Switzerland. The range for the 
GNP deflator is from 1.5 percent for the Netherlands to 6.9 percent for 
Finland, and the range for the exchange rate is from 2.5 percent for Canada to 
10.5 percent for Switzerland. 

With respect to the results in Table 8-9 for the United States, the fit ofthe 
US model for most variables worsens when it is embedded in the MC model. 
In the full MC model the two variables that are exogenous in the US model 
alone, the price of imports (PM) and exports (X75$), are endogenous and 
thus predicted with error. The RMSEs for PA4 for the MC model with trade 
shares endogenous (the c columns) range from I. 16 percent to 7.12 percent, 
and the RMSEs forX75$ range from 2.98 percent to 9.04 percent. These two 
additional sources of error generally lead to larger errors for the other 
variables in the US model, although in some cases the error cancellation is 
such that the RMSEs are smaller in the full MC model. The largest increase in 
the RMSE for real GNP occurred for the dynamic simulation for the 19741- 
1975IV period, which was from 1.45 percent to 2.35 percent. 

As stressed at the beginning of this section, it is not possible to draw any 
definitive conclusions from the present comparison. In general the MC model 
seems to do fairly well compared to the ARMC model, and thus the results are 
at least encouraging. In particular, the exchange rate RMSEs seem small 
enough for the MC model to warrant at least a small amount of optimism that 
the exchange rate equations are reasonable approximations. 


