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Analyzing Properties of Models

10.1 Introduction

This chapter discusses various methods for analyzing the properties of macroe-
conometric models. These methods are then applied in Chapter 11 to the US
model and in Chapter 12 to the MC model. The methods discussed here are
not tests of models. They are meant to be used after one has some confidence
that the model being analyzed is a reasonable approximation of the economy.
A model that does not do well in tests is not likely to have properties that
accurately reflect the way the economy works.

It is sometimes argued with respect to the testing of models that if a par-
ticular model has properties that seem reasonable ona priori (i.e., theoretical)
grounds, this is evidence in favor of the model. However, because of the back
and forth movement between specification and results, including multiplier
results, that occurs in macro model building, the final version of a model is
likely to have multiplier properties that are similar to what one expects from
the theory. Essentially one does not stop until this happens. Therefore, the fact
that an econometric model has properties that are consistent with the theory is
in no way a confirmation of the model. Models must be tested using methods
like those in Chapters 4 and 7, not by examining the “reasonableness” of their
multiplier properties.

261
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10.2 Computing Multipliers and Their Standard Errors 1

A useful way of examining the properties of a model is to consider how the
predicted values of the endogenous variables change when one or more exoge-
nous variables are changed. This exercise is usually called multiplier analysis,
although the use of the word “multiplier” is somewhat misleading. The output
that one examines from this exercise does not have to be the change in the
endogenous variablesdivided bythe change in the exogenous variable; it can
merely be, for example, the change or percentage change in the endogenous
variable itself. In fact, if more than one exogenous variable has been changed,
there is no obvious thing to divide the change in the endogenous variable by.
The form of the output that is examined depends on the nature of the problem,
and thus the word “multiplier” should be interpreted in a very general way.

10.2.1 Deterministic Simulation

The procedure that is usually used to compute multipliers is based on deter-
ministic simulation. Letxat denote a “base” set of exogenous variable values
for periodt , and letxbt denote an alternative set. Assume that the prediction
period begins in periodt and is of lengthT . Given 1) the initial conditions
as of the beginning of periodt , 2) the coefficient estimates, 3) a set of ex-
ogenous variable values for the entire period, and 4) values of the error terms
for the entire period, the predicted values of the endogenous variables can
be computed. Let̂yaitk denote thek period ahead predicted value of endoge-
nous variablei from the simulation that usesxat+k−1 (k = 1, . . . , T ) for the
exogenous variable values, and letŷbitk denote the predicted value from the
simulation that usesxbt+k−1 (k = 1, . . . , T ). The difference between the two

predicted values, denotedδ̂itk, is an estimate of the effect on the endogenous

1The original discussion of the procedure discussed in this section is in Fair (1980b).
It was also discussed in Fair (1984), Section 9.3. The original procedure required that a
stochastic simulation with respect to the error terms be donewithin a stochastic simulation
with respect to the coefficients, although the first stochastic simulation could be avoided if
one were willing to assume that predicted values from deterministic simulations are close
to mean values from stochastic simulations, which is generally the case in practice. In
private correspondence in 1984, S.G. Hall pointed out to me that a more straightforward
procedure is simply to draw both error terms and coefficients at the same time. This avoids
any stochastic simulations within stochastic simulations. The procedure described in the
present section uses Hall’s suggestion. This section is thus a replacement for Fair (1980b)
and Fair (1984), Section 9.3.
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variable of changing the exogenous variables:

δ̂itk = ŷbitk − ŷaitk (10.1)

Obvious values of the error terms to use in the deterministic simulations
are their expected values, which are almost always zero. For linear models it
makes no difference what values are used as long as the same values are used
for both simulations. For nonlinear models the choice does make a difference,
and in this case the choice of zero values has some problems. Consider,
for example, a model in which inflation responds in a very nonlinear way
to the difference between actual and potential output: inflation accelerates
as output approaches potential. Consider now a period in which output is
close to potential, and consider an experiment in which government spending
is increased. This experiment should be quite inflationary, but this will not
necessarily be the case if the model is predicting a much lower level of output
than actually existed. In other words, if the model is predicting that output is
not close to potential when in fact it is, the inflationary consequences of the
policy change will not be predicted very well.

There is an easy answer to this problem if the simulation is within the period
for which data exist, which is simply to use the actual (historical) values of the
error terms rather than zero values. By “actual” in this case is meant the values
of the estimated residuals that result from the estimation of the equations. If
these values are used and if the actual values of the exogenous variables are
used, the simulation will result in a perfect fit. This solution will be called
the “perfect tracking” solution. Once the residuals are added to the equations,
they are never changed. The same set of values is used for all experiments.

If the actual values of the error terms are used, the problem regarding
the response of inflation to output does not exist. With the use of the actual
residuals, the model predicts the actual data before any policy change is made.
Note that this procedure is not inconsistent with the statistical assumptions
of the model, since the error terms are assumed to be uncorrelated with the
exogenous variables. The use of the actual values of the error terms has the
advantage that only one simulation needs to be performed per policy experi-
ment. ŷaitk is simply the actual value of the variable, and thus a simulation is
only needed to get̂ybitk.

10.2.2 Stochastic Simulation

For nonlinear modelŝδitk in 10.1 is not an unbiased estimate of the change
because the predicted values are not equal to the expected values. This does
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not, however, seem to be an important problem in practice, since determin-
istic predictions are generally quite close to the mean values from stochastic
simulations, and so if one were only interested in estimates of the changes, it
seems unlikely that stochastic simulation would be needed. The main reason
for using stochastic simulation is to compute standard errors ofδ̂itk.

The stochastic simulation procedure is as follows. The error terms are
assumed to be drawn from theN(0, 6̂) distribution if the “base” values of
the error terms are taken to be zero and from theN(ût , 6̂) distribution if the
historical values of the error terms are used for the base values, whereût is
the vector of historical errors for periodt . The coefficients are assumed to
be drawn from theN(α̂, V̂ ) distribution, wherêα is the vector of coefficient
estimates and̂V is the estimated covariance matrix ofα̂. .

1. Draw a set of error terms and coefficients and solve the model using
the base set of exogenous variables values (xat+k−1, k = 1, . . . , T ). Let

ỹ
aj
itk denote thek period ahead predicted value of variablei from this

solution.

2. For the same set of error terms and coefficients as in step 1, solve
the model again using the alternative set of exogenous variable values
(xbt+k−1, k = 1, . . . , T ). Let ỹbjitk denote thek period ahead predicted
value of variablei from this solution.

3. Compute
δ̃
j
itk = ỹbjitk − ỹajitk (10.2)

4. Repeat steps 1 through 3J times, whereJ is the desired number of
repetitions.

5. Given the values from theJ repetitions, compute the mean, denoted
δ̄itk, and the variance, denoteds̃2

itk, of δ̄itk:

δ̄itk = (1/J )
J∑
j=1

δ̃
j
itk (10.3)

s̃2
itk = (1/J )

J∑
j=1

(δ̃
j
itk − δ̄itk)2 (10.4)

δ̄itk is thus the multiplier, and the square root ofs̃2
itk is its standard error.
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10.3 Sources of Economic Fluctuations2

There has been considerable discussion in the literature about the ultimate
sources of macroeconomic variability. Shiller (1987) surveys this work, where
he points out that a number of authors attribute most of output or unemploy-
ment variability to only a few sources, sometimes only one. The sources vary
from technology shocks for Kydland and Prescott (1982), to unanticipated
changes in the money stock for Barro (1977), to “unusual structural shifts,”
such as changes in the demand for produced goods relative to services, for
Lilien (1982), to oil price shocks for Hamilton (1983), to changes in desired
consumption for Hall (1986). (See Shiller (1987) for more references.) Al-
though it may be that there are only a few important sources of macroeconomic
variability, this is far from obvious. Economies seem complicated, and it may
be that there are many important sources. As discussed in this section, it is
possible using stochastic simulation to estimate the quantitative importance of
various sources of variability from a macroeconometric model.

Macroeconometric models provide an obvious vehicle for estimating the
sources of variability of endogenous variables. There are two types of shocks
that one needs to consider: shocks to the stochastic equations and shocks
to the exogenous variables. Shocks to the stochastic equations can be han-
dled by a straightforward application of stochastic simulation. Shocks to the
exogenous variables are less straightforward to handle. Since by definition
exogenous variables are not modeled, it is not unambiguous what one means
by an exogenous variable shock. One approach is to estimate an autoregressive
equation for each exogenous variable in the model and add these equations to
the model. Shocks to the exogenous variables can then be handled by stochas-
tic simulation of the expanded model. The US+ model is a model like this,
and it is used in the next chapter in the application of the present approach.3

Assume, therefore, that one has a model like US+ to work with and assume
that the variable of interest is real GDP. As discussed in Section 7.3, given the
estimated covariance matrix of the error terms, one can estimate the variance of
GDP by means of stochastic simulation. Letσ̃2

it denote the estimated variance
of real GDP (endogenous variablei) for periodt , where the estimated variance
is based on draws of all the error terms in the model, including the error terms
in the exogenous variable equations if such equations are added. Now consider

2The material in this section is taken from Fair (1988a).
3When using a model like US+, one may want to take the covariance matrix of the error

terms to be block diagonal, as discussed in Section 8.2. This was done for the stochastic
simulation work in the next chapter, as it was for the probability calculations in Section 8.8.



266 10 ANALYZING PROPERTIES OF MODELS

fixing one of the error terms at its expected value (usually zero) and computing
the variance of GDP again. In this case the stochastic simulation is based on
draws of all but one of the error terms. Letσ̃2

it (k) denote the estimated variance
of real GDP based on fixing the error term in equationk at its expected value.

The difference betweeñσ2
it andσ̃2

it (k) is an estimate of how much the error
term in equationk contributes to the variance of GDP.4 If, say, the variance of
GDP falls by 5 percent when the error term for equationk is not drawn, one
can say that equationk contributes 5 percent to the variance of GDP.

Another way to estimate this contribution would be to drawonly the error
term for equationk, compute the variance of GDP, and compare this variance
to the variance when all the error terms are drawn. If the error term in equation
k is correlated with the other error terms in the model, these two procedures are
not the same. There is no right or wrong way of estimating this contribution,
and because of the correlation, any procedure is somewhat crude. Fortunately,
one can examine how sensitive the results are to the effects of the correlation
of the error terms across equations to see how to weigh the results. This is
done in Section 11.4, where it will be seen that the main conclusions using the
US+ model are not sensitive to the effects of the correlation.

In the above discussionk need not refer to just one equation. One can fix
the error terms in a subsetk of the equations at their expected values and draw
from the remaining equations. In this way one can examine the contribution
that various sectors make to the variance of GDP. If the error terms across
equations are correlated, then fixing, say, two error terms one at a time and
summing the two differences is not the same as fixing the two error terms at
the same time and computing the one difference. Again, however, one can
examine the effects of the error term correlation on the results.

It is important to realize what is and what is not being estimated by this
procedure. Consider an exogenous variable shock. What is being estimated
is the contribution of the error term in the exogenous variable equation to the
variance of GDP. This contribution isnot the same as the multiplier effect of
the exogenous variable on GDP. Two exogenous variables can have the same

4Regarding the use of this difference as an estimate of an error term’s contribution to the
variance of GDP, Robert Shiller has informed me that Pigou had the idea first. In the second
edition of Industrial Fluctuations, Pigou (1929), after grouping sources of fluctuations into
three basic categories, gave his estimate of how much the removal of each source would
reduce the amplitude (i.e. the standard deviation) of industrial fluctuations. He thought that
the removal of “autonomous monetary causes” would reduce the amplitude by about half.
Likewise, the removal of “psychological causes” would reduce the amplitude by about half.
Removal of “real causes,” such as harvest variations, would reduce the amplitude by about
a quarter. See Shiller (1987) for more discussion of this.
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multiplier effects and yet make quite different contributions to the variance
of GDP. If one exogenous variable fits its autoregressive equation better than
does another (in the sense that its equation has a smaller estimated variance),
then, other things being equal, it will contribute less to the variance of GDP.
It is possible, of course, to use measures of exogenous variable shocks other
than error terms from autoregressive equations, but whatever measure is used,
it is not likely to be the same as the size of the multiplier.

The notationσ̃2
it will be used to denote the estimated variance of endoge-

nous variable i for period t based on draws of allm + q error terms. The
notationσ̃ 2

it (k) will be used to denote the estimated variance when the error
terms in subsetk of the equations are fixed at their expected values, where
subsetk can simply be one equation. Letδ̃it (k) be the difference between the
two estimated variances:

δ̃it (k) = σ̃2
it − σ̃ 2

it (k) (10.5)

In the US application in the next chapter, values ofδ̃it (k) are computed for
the one through eight quarter ahead predictions of real GDP and the private
nonfarm price deflator for a number of different choices ofk.

Because of the correlation of the error terms across equations, it can turn
out thatδ̃it (k) is negative for some choices ofk. Also, as noted above, it is not
in general the case thatδ̃it (k) for, say,k equal to the first and second equations
is the same as̃δit (k) for k equal to the first equation plus̃δit (k) for k equal to
the second equation.

Computational Issues

For a number of reasons the stochastic simulation estimates of the variances are
not exact. First, they are based on the use of estimated coefficients rather than
the true values. Second, they are based on the use of an estimated covariance
matrix of the error terms rather than the actual matrix. Third, they are based
on a finite number of repetitions. Ignoring the first two reasons, it is possible
to estimate the precision of the stochastic simulation estimates for a given
number of repetitions. In other words, it is possible to estimate the variances
of σ̃ 2

it andσ̃2
it (k). The formula for the variance of̃σ2

it is presented in equation
7.8 in Chapter 7. What is of more concern here, however, is the variance of
δ̃it (k), and this can also be estimated.

Let
δ
j
it (k) = σ2j

it − σ 2j
it (k) (10.6)
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whereσ 2j
it is defined in equation 7.6. The estimated mean ofδ

j
it (k) across the

J repetitions is̃δit (k) in equation 10.5:

δ̃it (k) = 1

J

J∑
j=1

δ
j
it (k) (10.7)

The estimated variance ofδ̃it (k), denotedvar[δ̃it (k)], is then

var[δ̃it (k)] = ( 1

J
)2

J∑
j=1

[δjit (k)− δ̃it (k)]2 (10.8)

Given values ofyjit andyjit (k), j = 1, · · · , J , from the stochastic simulations,
all the above values can be computed.

Stochastic simulation error turned out to be a bigger problem than I orig-
inally thought it would be. One thousand repetitions was enough to make the
variances ofσ̃2

it and σ̃2
it (k) acceptably small, but without any tricks, it was

not enough to make the variance ofδ̃it (k) anywhere close to being acceptably
small. Fortunately, there is an easy trick available. The variance ofδ̃it (k) is
equal to the variance of̃σ 2

it plus the variance of̃σ 2
it (k)minus twice the covari-

ance. The trick is to make the covariance high, which can be done by using the
same draws of the error terms for the computation of bothσ̃ 2

it andσ̃2
it (k). Any

one equation of a model, for example, requires 8000 draws of its error term
for 1000 repetitions for a forecast horizon of 8 quarters. If these same 8000
numbers are used to compute bothσ̃ 2

it andσ̃ 2
it (k), the covariance between them

will be increased. When this trick is used, 1000 repetitions leads to variances
of δ̃it (k) that are acceptably small. This will be seen in Table 11.10 in the next
chapter.

To conclude, estimating sources of economic fluctuations in macroecono-
metric models is an obvious application of stochastic simulation. The advent
of inexpensive computing has made applications like this routine and thus has
greatly expanded the questions that can be asked of such models.

10.4 Optimal Choice of Monetary-Policy Instruments5

Over twenty years ago today Poole (1970) wrote his classic article on the
optimal choice of monetary-policy instruments in a stochastic IS–LM model.

5The material in this section is taken from Fair (1988b).
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Poole assumed that the monetary authority (henceforth called the Fed) can
control the interest rate (r) or the money supply (M) exactly. These are the
two “instruments” of monetary policy. If the aim is to minimize the squared
deviation of real output from its target value, Poole showed that the choice
of the optimal instrument depends on the variance of the error term in the IS
function, the variance of the error term in the LM function, the covariance of
the two error terms, and the size of the parameters in the two functions.

Most people would probably agree that between about October 1979 and
October 1982 the Fed put more emphasis on monetary aggregates than it did
either before or after. Otherwise, the interest rate has seemed to be the Fed’s
primary instrument. It is interesting to ask if the use of the interest rate can
be justified on the basis of the Poole analysis. Is the economy one in which
the variances, covariances, and parameters are such as to lead, a la the Poole
analysis, to the optimal instrument being the interest rate?

Stochastic simulation can be used to examine this question using a macroe-
conometric model. Are the variances, covariances, and parameters in the
model such as to favor one instrument over the other, in particular the in-
terest rate over the money supply? The purpose of this section is to show
that stochastic simulation can be used to examine Poole like questions in large
econometric models. Interestingly enough, Poole’s analysis had not been tried
on an actual econometric model prior to the work discussed here. The clos-
est study before the present work was that of Tinsley and von zur Muehlen
(1983), but they did not analyze the same question that Poole did.6 Other
studies that have extended Poole’s work, such as those of Turnovsky (1975)
and Yoshikawa (1981), have been primarily theoretical.

Poole also showed that there is a combination policy that is better than
either the interest rate policy or the money supply policy. This is the policy
where the Fed behaves according to the equationM = α + βr, where the

6In their stochastic simulation experiments, Tinsley and von zur Muehlen always used
the interest rate (the Federal Funds rate) as the policy instrument. They used this instrument
to target a particular variable, called an “intermediate” target. The intermediate targets they
tried are the monetary base, three definitions of the money supply, nominal GNP, and the
Federal Funds rate itself. For each of these target choices, they examined how well the
choice did in minimizing the squared deviations of the unemployment rate and the inflation
rate from their target values. The unemployment rate and the inflation rate are the “ultimate”
targets. In the present case the aim is to see how well the interest rate does when it is used
as the policy instrument in minimizing the squared deviations of real output from its target
value compared to how well the money supply does when it is used as the policy instrument.
This is the question that Poole examined.
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parametersα andβ are chosen optimally.7 It is possible through repeated
stochastic simulation to find the optimal values ofα andβ for an econometric
model, and this procedure is also done in Section 10.4 for the US model.

The Procedure

The procedure is a straightforward application of stochastic simulation. First,
fix the interest rate path and perform a stochastic simulation to get the variance
of real GDP. Second, fix the money supply path and perform a stochastic simu-
lation to get the variance of real GDP. Finally, compare the two variances. The
variance of real GDP for a given period corresponds to Poole’s loss function if
one takes the target value of GDP for that period to be the mean value from the
stochastic simulation. If the variance is smaller when the interest rate is fixed,
this is evidence in favor of the interest rate, and vice versa if the variance is
smaller when the money supply is fixed.

If the horizon is more than one quarter ahead, then variances are computed
for each quarter of the simulation period. The simulations are dynamic, so
that, for example, the computed variance for the fourth quarter is the variance
of the four quarter ahead prediction error.

Let σ̃ 2
it (r) denote the stochastic simulation estimate of the variance of en-

dogenous variablei for periodt when the interest rate is the policy instrument,
and letσ̃ 2

it (M) denote the same thing when the money supply is the policy
instrument. The issue is then to compareσ̃2

it (r) to σ̃2
it (M) for i equal to real

GDP to see which is smaller.

10.5 Optimal Control

Optimal control techniques have not been widely used in macroeconometrics.
Models may not yet be good enough to warrant the use of such techniques, but
if they improve in the future, optimal control techniques are likely to become
more popular. The following is a brief discussion of optimal control. A more
complete discussion is in Fair (1984), Chapter 10.

The solution of optimal control problems using large scale models turns
out to be fairly easy. The first step in setting up a problem is to postulate an
objective function. Assume that the period of interest ist = 1, . . . , T . A
general specification of the objective function is

W = h(y1, . . . , yT , x1, . . . , xT ) (10.9)

7See also Tobin (1982) for a discussion of this.
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whereW , a scalar, is the value of the objective function corresponding to
values of the endogenous and exogenous variables fort = 1, . . . , T . In most
applications the objective function is assumed to be additive across time, which
means that 10.9 can be written

W =
T∑
t=1

ht (yt , xt ) (10.10)

whereht (yt , xt ) is the value of the objective function for periodt . The model
can be taken to be the model presented in equation 4.1 in Chapter 4.

Let zt be ak–dimensional vector of control variables, wherezt is a sub-
set ofxt , and letz be thek · T –dimensional vector of all the control values:
z = (z1, . . . , zT ). Consider first the deterministic case where the error terms
in 4.1 are all set to zero. For each value ofz one can compute a value ofW by
first solving the model 4.1 fory1, . . . , yT and then using these values along
with the values forx1, . . . , xT to computeW in 10.10. Stated this way, the op-
timal control problem is choosing variables (the elements ofz) to maximize an
unconstrainednonlinear function. By substitution, the constrained maximiza-
tion problem is transformed into the problem of maximizing an unconstrained
function of the control variables:

W = 8(z) (10.11)

where8 stands for the mappingz −→ y1, . . . , yT , x1, . . . , xT −→ W . For
nonlinear models it is generally not possible to expressyt explicitly in terms of
xt , which means that it is generally not possible to writeW in 10.11 explicitly
as a function ofx1, . . . , xT . Nevertheless, given values forx1, . . . , xT , values
of W can be obtained numerically for different values ofz.

Given this setup, the problem can be turned over to a nonlinear maximiza-
tion algorithm like DFP. For each iteration, the derivatives of8 with respect
to the elements ofz, which are needed by the algorithm, can be computed
numerically. An algorithm like DFP is generally quite good at finding the
optimum for a typical control problem.

Consider now the stochastic case, where the error terms in 4.1 are not
zero. It is possible to convert this case into the deterministic case by simply
setting the error terms to their expected values (usually zero). The problem can
then be solved as above. In the nonlinear case this does not lead to the exact
answer because the values ofW that are computed numerically in the process
of solving the problem are not the expected values. In order to compute the
expected values correctly, stochastic simulation has to be done. In this case
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each function evaluation (i.e., each evaluation of the expected value ofW for
a given value ofz) consists of the following:

1. A set of values of the error terms in 4.1 is drawn from an estimated
distribution.

2. Given the values of the error terms, the model is solved fory1, . . . , yT
and the value ofW corresponding to this solution is computed from
10.10. LetW̃ j denote this value.

3. Steps 1 and 2 are repeatedJ times, whereJ is the number of repetitions.

4. Given theJ values ofW̃ j (j = 1, . . . , J ), the expected value ofW is
the mean of these values:

W̄ = (1/J )
J∑
j=1

W̃ j (10.12)

This procedure increases the cost of solving control problems by roughly
a factor ofJ , and it is probably not worth the cost for most applications. The
bias in predicting the endogenous variables that results from using determin-
istic rather than stochastic simulation is usually small, and thus the bias in
computing the expected value ofW using deterministic simulation is likely to
be small.

The US model has the following problem regarding the application of
optimal control techniques to it. If the aim is to minimize a loss function that
has in it squared deviations of output from some target value and inflation from
some target value, then the optimal policy for the US model will generally be
to achieve the output target almost exactly unless the weight on the inflation
loss is very high. The difficulty pertains to the demand pressure variable in
the price equation 10, which was discussed in Chapter 5. Reliable estimates
of the behavior of the price level at very high output levels cannot be obtained
in the sense that the data do not appear to support any nonlinear functional
forms. Without some nonlinearity in price behavior at high levels of output,
the optimal control solution is likely to correspond to the output target being
closely met unless the weight on the inflation loss is very high. In this sense
the optimal control exercise is not very interesting because it all hinges on
the form of the output variable in the price equation, about which the data
tell us little. Because of this problem, no optimal control experiments were
performed in the next chapter.
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10.6 Counterfactual Multiplier Experiments

It is sometimes of interest to use a model to predict what an economy would
have been like had something different happened historically. In Section 11.7,
for example, the US model is used to predict what the U.S. economy would
have been like in the 1980s had tax rates been higher and interest rates lower
than they in fact were. The procedure for doing this is straightforward. One
chooses the exogenous variable changes to make and solves the model for these
changes. If one wants to use the shocks (error terms) that existed historically,
then the estimated residuals are added to the model before solving it. From
this base the model can then be solved using either deterministic or stochastic
simulation. If stochastic simulation is used, the draws of the error terms
are around their estimated historical values. If one is merely interested in
the mean paths of the variables, then stochastic simulation is not likely to be
necessary because mean values are usually quite close to predicted values from
deterministic simulations.

Generating predictions in this manner is a way of answering counterfac-
tual questions. One need not, however, stop with the predicted economies.
These economies can be treated like the actual economy, and experiments like
multiplier experiments performed. In other words, one can examine the prop-
erties of the predicted economies using methods like the ones discussed in this
chapter. These properties can then be compared, if desired, to the estimated
properties of the actual economy. An example of this is in Section 11.7, where
the effectiveness of monetary policy is examined in the predicted economy
with higher tax rates and lower interest rates. The monetary-policy properties
in this economy are compared to those estimated for the actual economy. These
kinds of experiments are useful ways of teaching students macroeconomics.


