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Estimating and Testing
Complete Models

7.1 Notation

This chapter discusses the estimation and testing of complete models. Some
additional notation is needed from that used in Chapter 4 to handle the com-
plete model case. The model will continue to be written as in 4.1. The
additional notation is as follows.Jt denotes then× n Jacobian whoseij ele-
ment is∂fi/∂yjt , (i, j = 1, . . . , n). u denotes them · T –dimensional vector
(u11, . . . , u1T , . . . , um1, . . . , umT )

′. G′ denotes thek ×m · T matrix:

G′ =



G′1 0 . . . 0
0 G′2
. .

. .

. .

0 G′m


whereG′i is defined in Section 4.1. Finally,ut denotes them–dimensional
vector(u1t , . . . , umt ), and6 denotes them×m covariance matrix ofut .
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184 7 TESTING COMPLETE MODELS

7.2 3SLS and FIML1

Two full information estimation techniques are three stage least squares (3SLS)
and full information maximum likelihood (FIML). 3SLS estimates ofα are
obtained by minimizing

S = u′[6̂−1⊗ Z(Z′Z)−1Z′]u = u′Du (7.1)

with respect toα, where6̂ is a consistent estimate of6 andZ is aT × K
matrix of predetermined variables. An estimate of the covariance matrix of
the 3SLS coefficient estimates (denotedV̂3) is

V̂3 = (Ĝ′DĜ)−1 (7.2)

whereĜ is G evaluated at the 3SLS estimate ofα. 6 is usually estimated
from the 2SLS estimated residuals, which is done for the computational work
in the next chapter.

Under the assumption thatut is independently and identically distributed as
multivariate normalN(0, 6), FIML estimates ofα are obtained by maximizing

L = −T
2

log |6| +
T∑
t=1

log |Jt | (7.3)

with respect toα. An estimate of the covariance matrix of the FIML coefficient
estimates (denoted̂V4) is

V̂4 = −
(
∂2L

∂α∂α′

)−1

(7.4)

where the derivatives are evaluated at the optimum.

7.3 Stochastic Simulation2

Some of the methods in this chapter and in Chapter 10 require stochastic
simulation, and so it will be useful to give a brief review of it. Stochastic
simulation requires that an assumption be made about the distribution ofut .
It is usually assumed thatut is independently and identically distributed as

1See Fair (1984), Sections 6.3.3, 6.3.4, 6.5.2, and 6.5.3, for a more detailed discussion
of the 3SLS and FIML estimators.

2See Fair (1984), Section 7.3, for a more detailed discussion of stochastic simulation.
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multivariate normalN(0, 6), although other assumptions can clearly be used.
Alternative assumptions simply change the way the error terms are drawn.
For the results in this book, the normality assumption has always been used.
Stochastic simulation also requires that consistent estimates ofαi be available
for all i. Given these estimates, denotedα̂i , consistent estimates ofuit , denoted
ûit , can be computed asfi(yt , xt , α̂i). The covariance matrix6 can then be
estimated as(1/T )ÛÛ ′, whereÛ is them× T matrix of the values of̂uit .

Let u∗t denote a particular draw of them error terms for periodt from the
N(0, 6̂) distribution. Givenu∗t and givenα̂i for all i, one can solve the model
for periodt . This is merely a deterministic simulation for the given values of
the error terms and coefficients. Call this simulation a “repetition.” Another
repetition can be made by drawing a new set of values ofu∗t and solving again.
This can be done as many times as desired. From each repetition one obtains
a prediction of each endogenous variable. Lety

j
it denote the value on thej th

repetition of variablei for periodt . ForJ repetitions, the stochastic simulation
estimate of the expected value of variablei for periodt , denotedµ̃it , is

µ̃it = 1

J

J∑
j=1

y
j
it (7.5)

Let
σ

2j
it = (yjit − µ̃it )2 (7.6)

The stochastic simulation estimate of the variance of variablei for periodt ,
denotedσ̃ 2

it , is then

σ̃2
it =

1

J

J∑
j=1

σ
2j
it (7.7)

Given the data from the repetitions, it is also possible to compute the vari-
ances of the stochastic simulation estimates and then to examine the precision
of the estimates. The variance ofµ̃it is simply σ̃2

it /J . The variance of̃σ2
it ,

denotedvar(σ̃ 2
it ), is

var(σ̃ 2
it ) =

(
1

J

)2 J∑
j=1

(σ
2j
it − σ̃ 2

it )
2 (7.8)

In many applications, one is interested in predicted values more than one
period ahead, i.e., in predicted values from dynamic simulations. The above
discussion can be easily modified to incorporate this case. One simply draws
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values forut for each period of the simulation. Each repetition is one dynamic
simulation over the period of interest. For, say, an eight quarter period, each
repetition yields eight predicted values, one per quarter, for each endogenous
variable.

It is also possible to draw coefficients for the repetitions. Letα̂ denote,
say, the 2SLS estimate of all the coefficients in the model, and letV̂ denote
the estimate of thek × k covariance matrix of̂α. GivenV̂ and given the nor-
mality assumption, an estimate of the distribution of the coefficient estimates
is N(α̂, V̂ ). When coefficients are drawn, each repetition consists of a draw
of the coefficient vector fromN(α̂, V̂ ) and draws of the error terms as above.

An important conclusion that can be drawn from stochastic simulation
studies using macroeconometric models is that the values computed from de-
terministic simulations are quite close to the mean predicted values computed
from stochastic simulations. In other words, the bias that results from using
deterministic simulation to solve nonlinear models appears to be small.3

It may be the case that the forecast means and variances do not exist, al-
though in practice the possible nonexistence of moments is generally ignored.
Results in Fair (1984), Section 8.5.5, suggest that the possible nonexistence
of moments is not an important problem for macroeconometric models. Al-
ternative measures of dispersion that are robust to the nonexistence problem
give very similar results to those obtained using variances.

7.4 Median Unbiased Estimates4

The estimator considered in this section will be called the “median unbiased”
(MU) estimator. It has been known since the work of Orcutt (1948) and Hur-
wicz (1950) that least squares estimates of lagged dependent variable (LDV)
coefficients are biased even when there are no right hand side endogenous vari-
ables. Macroeconometric model builders have generally ignored this problem,
perhaps because they feel that the bias is likely to be small for the typical num-
ber of observations that are used. Hurwicz’s estimates of the bias in an equation
with only the LDV as an explanatory variable were small after about 100 ob-
servations. For example, for 100 observations the ratio of the expected value
of the LDV coefficient estimate to the true value was .9804 (for small values
of the coefficient). However, the results in Orcutt and Winokur (1969, Table
IV) for 10, 20, and 40 observations show biases larger than those of Hurowitz

3See Fair (1984), Section 7.3.4, for references.
4The material in this section is taken from Fair (1994a).
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for the case in which there is a constant term in the equation, suggesting that
the bias in this case is also larger for, say, 100 observations. Furthermore,
Andrews (1993) has recently shown that the bias is further increased when a
time trend is added to the equation. For example, for 100 observations and a
true coefficient of .8, the ratio of the median of the LDV coefficient estimate
to the true value is .9388 in the equation with the constant term and time trend
added.

Typical macroeconomic equations are, of course, more complicated than
the equations just discussed. They have more explanatory variables; some
of the explanatory variables are likely to be endogenous; the error terms are
sometimes serially correlated; and the equations may be nonlinear in both
variables and coefficients. It is important to know how the size of the biases for
these types of equations compare to those estimated for simpler equations. The
following stochastic simulation procedure provides a way of obtaining median
unbiased estimates in macroeconometric models. From these estimates the
bias for a coefficient, defined as the difference between the base estimates and
the MU estimates, can be computed. For the work here the 2SLS estimates will
be taken to be the base estimates. This procedure is an extension of Andrews’
(1993) idea of computing exact median unbiased estimates in an equation with
a constant term, time trend, and lagged dependent variable.

The procedure requires that one coefficient per stochastic equation be
singled out for special treatment. The interest here is on the coefficient of the
lagged dependent variable, but other coefficients could be considered. Letα1i

denote the coefficient of interest in equationi.
The procedure for obtaining median unbiased estimates of theα1i coeffi-

cients (i = 1, . . . , m) using the 2SLS estimator is as follows:

1. Estimate each equationi by 2SLS. Letα̂1i denote the 2SLS estimate of
α1i .

2. Guess the bias of̂α1i , denotedb1i . Add b1i to α̂1i to obtain a
first estimate of the true value ofα1i . Let α∗1i denote this estimate:
α∗1i = α̂1i + b1i . Constrainα1i to be equal toα∗1i and reestimate
the other elements ofαi by 2SLS. Letα∗i denote this estimate ofαi
(i = 1, . . . , m). Use the estimated residuals from these constrained
regressions to estimate the covariance matrix6. Let 6∗ denote this
estimate of6.

3. DrawT values of the vectoru∗t , t = 1, . . . , T , from the distribution
N(0, 6∗). Use these values and the valuesα∗i (i = 1, . . . , m) to solve
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the model dynamically fort = 1, . . . , T . This is a dynamic simulation
of the model over the entire estimation period using the drawn values of
the error terms and the coefficient valuesα∗i . The lagged endogenous
variable values inxt in 4.1 are updated in the solution process. After
this solution, updateZit to incorporate the new lagged endogenous
variable values (if lagged endogenous variable values are part ofZit ).
LetZ∗it , t = 1, . . . , T , denote this update. Given the new data (i.e., the
solution values of the endogenous and lagged endogenous variables),
estimate each equation by 2SLS, and record the estimate ofα1i asα(1)1i
(i = 1, . . . , m). This is one repetition. Do a second repetition by
drawing anotherT values ofu∗t , using these values and the valuesα∗i
to solve the model, using the new data to estimate each equation by
2SLS, and recording the estimate ofα1i asα(2)1i (i = 1, . . . , m). Do

this J times, and then find the medianαm1i of the J values ofα(j)1i
(j = 1, . . . , J ), (i = 1, . . . , m).

4. If for eachi αm1i is within a prescribed tolerance level ofα̂1i , go to step
6. If this condition is met, it means that for the particular coefficient
values used to generate the data (theα∗i ’s), the median 2SLS estimates
are within a prescribed tolerance level of the original estimates based on
the historical data. If this condition is not met, take the new value ofα∗1i
to be the previous value pluŝα1i − αm1i for eachi. Then constrainα1i

to be equal to this new value ofα∗1i and reestimate the other elements
of αi by 2SLS using the historical data. Letα∗i denote this estimate
of αi (i = 1, . . . , m). Again, use the estimated residuals from these
constrained regressions to estimate the covariance matrix6. Let 6∗
denote this estimate of6. Now repeat step 3 for these new values.

5. Keep doing steps 3 and 4 until convergence is reached and one branches
to step 6.

6. Take the median unbiased estimate ofα1i to beα∗1i , and take the other
coefficient estimates to be those inα∗i (i = 1, . . . , m). α∗1i is the median
unbiased estimate in that it is the value ofα1i that generates data that
lead to the median 2SLS estimate equaling (within a prescribed tolerance
level) the 2SLS estimate based on the historical data. The estimated bias
of α̂1i is α̂1i − α∗1i .

Confidence intervals forαm1i can be computed from the final set of values

of α(j)1i (j = 1, . . . , J ). For a 90 percent confidence interval, for example,
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5 percent of the smallest values and 5 percent of the largest values would be
excluded.

As noted above, this procedure does not require the normality assumption.
Other distributions could be used to draw theu∗t values. Also, the basic
estimator need not be the 2SLS estimator. Other estimators could be used.
The model in 4.1 can also consist of just one equation. In this case6 is a
scalar and the “solution” of the model simply consists of solving the particular
equation (dynamically) over the sample period.

The procedure does, however, have two limitations. First, as noted above,
it focuses on just one coefficient per equation. No other coefficient estimate
in an equation necessarily has the property that its median value in the final
set of values is equal to the original estimate. The focus, of course, need not
be on the coefficient of the LDV, but it must be on one particular coefficient
per equation.

Second, there is no guarantee that the procedure will converge. Remem-
ber that overall convergence requires that convergence be reached for each
equation, and achieving this much convergence could be a problem. For the
results in the next chapter, however, as will be seen, convergence was never a
problem.

7.5 Examining the Accuracy of Asymptotic Distributions5

It is possible using stochastic simulation and reestimation to examine whether
the asymptotic approximations of the distributions of estimators that are used
for hypothesis testing are accurate. If some variables are not stationary, the
asymptotic approximations may not be very good. In fact, much of the recent
literature in time series econometrics has been concerned with the conse-
quences of nonstationary variables.

The procedure proposed here for examining asymptotic distribution accu-
racy is similar to the procedure of the previous section. Take an estimator, say
2SLS, 3SLS, or FIML, and estimate the model. Take these coefficient esti-
mates, denoted̂α, as the base values, and compute6̂ using these estimates.
From theN(0, 6̂) distribution (assuming the normality assumption is used),
draw a vector of them error terms for each of theT observations. Given these
error terms and̂α, solve the model for the entire period 1 throughT . As in
step 3 of the previous section, this is a dynamic simulation of the model over
the entire estimation period. The lagged endogenous variable values in 4.1 are

5As in the previous section, the material in this section is taken from Fair (1994a).
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updated in the solution process. Also, the matrices of first stage regressors,
Zit , are updated to incorporate the new lagged endogenous variable values if
the matrices are used in the estimation, as for 2SLS. The predicted values from
this solution form a new data set. Given this data set, estimate the model by the
technique in question, and record the set of estimates. This is one repetition.
Repeat the draws, solution, and estimation for many repetitions, and record
each set of estimates. (Remember that the draws of the errors are always from
theN(0, 6̂) distribution and that the coefficient vector used in the solution is
alwaysα̂.)

If J repetitions are done, one hasJ values of each coefficient estimate,
which are likely to be a good approximation of the exact distribution. For
ease of exposition, this distribution of theJ values will be called the “exact
distribution,” although it is only an approximation because6 is estimated
rather than known. The asymptotic distribution can then be compared to this
exact distribution to see how close the two distributions are.

There are a number of ways to examine the closeness of the asymptotic
distribution to the exact distribution. For the empirical work in the next chapter,
the median of the exact distribution for a coefficient was first compared to the
coefficient estimate from the technique in question, which is 2SLS in this case.
Remember that these coefficient estimates are the ones used to generate the
data. One can then examine the bias of a coefficient estimate, defined as the
difference between the median and the coefficient estimate. The coefficient
estimates of the lagged dependent variables, for example, are likely to be
biased downward, as discussed in the previous section.

Next, given the median from the exact distribution and given the estimated
standard error of the coefficient estimate from the asymptotic distribution, one
can compute the value above which, say, 20 percent of the coefficient estimates
should lie if the asymptotic distribution is correct. For 20 percent, this value
is the median plus 0.84 times the estimated asymptotic standard error. One
can then compute the actual percent of the coefficient estimates from the exact
distribution that lie above this value and compare this percent to 20 percent.
For the work in the next chapter, this comparison was made for 20, 10, and 5
percent values and for both left and right tails. It will be seen that the exact
and asymptotic distributions are generally quite similar regarding their tail
properties.
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7.6 VAR and AC Models for Comparison Purposes

When testing complete models, it is useful to have benchmark models to use
for comparison purposes. Vector autoregressive (VAR) models provide useful
benchmarks. As will be seen in the next chapter, however, if the interest is
in GDP predictions, “autoregressive components” (AC) models appear to be
better benchmarks than VAR models in the sense of being more accurate. An
AC model is one in which each component of GDP is regressed on its own
lagged values and lagged values of GDP. GDP is then determined from the
GDP identity, as the sum of the components. AC models do not have the
problem, as VAR models do, of adding large numbers of parameters as the
number of variables (components in the AC case) is increased.

Two VAR Models

Two seven variable VAR models are used in the next chapter for comparison
with the US model. The seven variables are (in the notation of the variables
in the US model) 1) the log of real GDP, logGDPR, 2) the log of the GDP
deflator, logGDPD, 3) the log of the wage rate, logWF , 4) the log of the
import price deflator, logPIM, 5) the log of the money supply, logM1, 6) the
unemployment rate,UR, and 7) the bill rate,RS. These are the same variables
used by Sims (1980) with the exception ofRS, which has been added here.

For the first VAR model, denoted VAR4, each of the seven variables is
taken to be a function of the constant, a time trend, its first four lagged values,
and the first four lagged values of each of the other variables. There are thus
30 coefficients to estimate per each of the seven equations. For the second
VAR model, denoted VAR5/2, each of the seven variables is taken to be a
function of the constant, a time trend, its first five lagged values, and the first
two lagged values of each of the other variables, for a total of 19 coefficients
per equation.

It is possible to decrease the number of unrestricted coefficients to estimate
in VAR models by imposing various priors on the coefficients. For the work in
Fair and Shiller (1990) three sets of Bayesian priors were imposed on VAR4.
The results using these versions were similar to the results using VAR4, and
very little gain seemed to result from the use of the priors in terms of making
the VAR models more accurate. Therefore, although no priors were imposed
for the work in this book, the results using VAR4 are likely to be close to the
results that would be obtained using priors.6

6Sims (1993) considers a nine variable VAR model with five lags and imposes an elab-
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The AC Model7

There are 19 components ofGDPR in the US model (counting the statistical
discrepancySTAT P ), and the AC model used in the next chapter consists of
estimated equations for each of these components.8 Each component is taken
to be a function of the constant, a time trend, its first five lagged values, and
the first two lagged values ofGDPR. The final equation of the AC model is
theGDPR identity.

The results in Fair and Shiller (1990) show that going from a few compo-
nents to 17 improves the accuracy of the AC model,9 but that going beyond this
does not. The results also show that adding lagged values ofGDPR (versus
not havingGDPR in the equations at all) leads to a slight improvement in
accuracy. As with different versions of the VAR model, however, the results
are not highly sensitive to different versions of the AC model (i.e., alternative
choices of number of components, the length of the lag, and whether or not
lagged values ofGDPR are included).

7.7 Comparing Predictive Accuracy10

As discussed in Section 7.3, stochastic simulation allows one to compute
forecast error variances. Letσ̃2

itk denote the stochastic simulation estimate
of the variance of the forecast error for ak period ahead forecast of variablei
from a simulation beginning in periodt . This estimate is presented in equation
7.7 except that ak subscript has been added to denote the length ahead of the
forecast. If the estimated variance is based on draws of both the error terms
and coefficients, then the uncertainty from both of these sources has been
accounted for.

One might think that forecast error variances computed in this way could

orate set of priors on the coefficients. In future work it would be interesting to see how
well this model does compared to, say, VAR4, but at the present time it would be extremely
difficult to try to duplicate Sims’ procedures.

7AC models were first proposed in Fair and Shiller (1990).
8The 19 components in alphabetical order areCD, CN , COG, COS, CS, EX, IHB,

IHF , IHH , IKB, IKF , IKG, IKH , IM, IV F , IVH , PROG, PROS, andSTAT P .
PROG andPROS are combined in the US model in such a way that they do not appear
as separate variables. They are, however, raw data variables and are defined in Table A.4.

9The number of components in the US model at the time of this work was 17, hence 17
instead of 19 components were used.

10The method discussed in this section was briefly outlined in Section 1.2, and it is
discussed in more detail in Fair (1980a) and in Fair (1984), Chapter 8.
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simply be compared across models to see which variances are smaller. There
are, however, two additional problems. The first is controlling for different
sets of exogenous variables across models (VAR and AC models, for example,
have no exogenous variables, whereas a model like the US model has many).
This can be done in a variety of ways. One is to estimate autoregressive
equations for each exogenous variable and add these equations to the model.
The expanded model can then be stochastically simulated to get the variances.
The expanded model in effect has no exogenous variables. Another way is
to estimate in some manner the forecast error variance for each exogenous
variable (perhaps using past errors made by forecasting services in forecasting
the variable) and then use these estimates and, say, the normality assumption
to draw exogenous variable values for the stochastic simulation.

The second problem is the possibility of data mining. A model may have
small estimated variances of the structural error terms and small estimated
variances of the coefficient estimates (which leads to small forecast error vari-
ances from the stochastic simulation) because it has managed to spuriously
fit the sample well. A further step is needed to handle this problem, which
is to compare variances estimated from outside sample forecast errors with
variances estimated from stochastic simulation. The expected value of the dif-
ference between the two estimated variances for a given variable and period
is zero for a correctly specified model. The expected value is not in general
zero for a misspecified model, and this fact can be used to adjust the forecast
error variances for the effects of misspecification.

Let the prediction period begin one period after the end of the estimation
period, and call this periods. Consider stochastic simulation with both er-
ror terms and coefficients drawn. From a stochastic simulation beginning in
periods one obtains an estimate of the variance of the forecast error,σ̃2

isk, in
equation 7.7, where againk refers to the length ahead of the forecast. From this
simulation one also obtains an estimate of the expected value of thek period
ahead forecast of variablei, µ̃isk, in equation 7.5. The difference between
this estimate and the actual value,yis+k−1, is the mean forecast error, denoted
ε̂isk:

ε̂isk = yis+k−1− µ̃isk (7.9)

If it is assumed that̃µisk exactly equals the true expected value, thenε̂isk
in equation 7.9 is a sample draw from a distribution with a known mean of zero
and varianceσ 2

isk, whereσ2
isk is the true variance. The square of this error,

ε̂2
isk, is thus under this assumption an unbiased estimate ofσ2

isk. One therefore
has two estimates ofσ 2

isk, one computed from the mean forecast error and one
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computed by stochastic simulation. Letdisk denote the difference between
these two estimates:

disk = ε̂2
isk − σ̃ 2

isk (7.10)

If it is further assumed that̃σ 2
isk exactly equals the true value (i.e.,σ̃2

isk = σ2
isk),

thendisk is the difference between the estimated variance based on the mean
forecast error and the true variance. Therefore, under the two assumptions of
no error in the stochastic simulation estimates, the expected value ofdisk is
zero for a correctly specified model.

If a model is misspecified, it is not in general true that the expected value
of disk is zero. Misspecification has two effects ondisk. First, if the model is
misspecified, the estimated covariance matrices that are used for the stochastic
simulation will not in general be unbiased estimates of the true covariance
matrices. The estimated variances computed by means of stochastic simulation
will thus in general be biased. Second, the estimated variances computed from
the forecast errors will in general be biased estimates of the true variances.
Since misspecification affects both estimates, the effect ondisk is ambiguous.
It is possible for misspecification to affect the two estimates in the same way
and thus leave the expected value of the difference between them equal to zero.
In general, however, this does not seem likely, and so in general one would
not expect the expected value ofdisk to be zero for a misspecified model.

Because of the common practice in macroeconometric work of searching
for equations that fit the data well (data mining), it seems likely that the esti-
mated means ofdisk will be positive in practice for a misspecified model. If
the model fits the data well within sample, the stochastic simulation estimates
of the variances will be small because they are based on draws from estimated
distributions of the error terms and coefficient estimates that have small (in
a matrix sense) covariance matrices. If the model, although fitting the data
well, is in fact misspecified, this should result in large outside sample forecast
errors. The estimated mean ofdisk is thus likely to be positive:̃σ2

isk is small
because of small estimated covariance matrices, andε̂2

isk is large because of
large outside sample forecast errors.

The procedure described so far uses only one estimation period and one
prediction period, where the estimation period ends in periods − 1 and the
prediction period begins in periods. It results in one value ofdisk for each
variablei and each length aheadk. Since one observation is obviously not
adequate for estimating the mean ofdisk, more observations must be gener-
ated. This can be done by using successively new estimation periods and new
prediction periods. Assume, for example, that one has data from period 1
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through period 150. The model can be estimated through, say, period 100,
with the prediction beginning with period 101. Stochastic simulation for the
prediction period will yield for eachi andk a value ofdi101k in equation 7.10.
The model can then be reestimated through period 101, with the prediction
period now beginning with period 102. Stochastic simulation for this predic-
tion period will yield for eachi andk a value ofdi102k. This process can be
repeated through the estimation period ending with period 149. For the one
period ahead forecast (k = 1) the procedure will yield for each variablei 50
values ofdis1 (s = 101, . . . ,150); for the two period ahead forecast (k = 2)
it will yield 49 values ofdis2, (s = 101, . . . ,149); and so on.

The final step in the process is to make an assumption about the mean of
disk that allows the computed values ofdisk to be used to estimate the mean.
A variety of assumptions are possible, which are discussed in Fair (1984),
Chapter 8. The assumption made for the empirical work in the next chapter
is that the mean is constant across time. In other words, misspecification is
assumed to affect the mean in the same way for alls. Given this assumption,
the mean, denoted asd̄ik, can be estimated by merely averaging the computed
values ofdisk. Note that calculating the individualdisk values that are needed to
calculated̄ik is computer intensive in that it requires estimating and stochastic
simulating many times.

Givend̄ik, it is possible to estimate the total variance of the forecast error.

Assume that the period of interest begins in periodt , and let ˜̃σ2
itk denote the

stochastic simulation estimate of the variance based on draws of error terms,
coefficients, and exogenous variables. The total variance, denotedσ̂2

itk, is the
sum of the stochastic simulation estimate plusd̄ik:

σ̂2
itk = ˜̃σ

2
itk + d̄ik (7.11)

Since the procedure in arriving atσ̂ 2
itk takes into account the four main sources

of uncertainty of a forecast, it can be compared across models for a giveni, t ,
andk.

7.8 Comparing Information in Forecasts11

Introduction

This section discusses an alternative way of comparing models from the
method of comparing variances in the previous section. It focuses on the

11The material in this section is taken from Fair and Shiller (1990).
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information contained in each model’s forecast. Econometric models obvi-
ously differ in structure and in the data used, and so their forecasts are not
perfectly correlated with each other. How should one interpret the differences
in forecasts? Does each model have a strength of its own, so that each forecast
represents useful information unique to it, or does one model dominate in the
sense of incorporating all the information in the other models plus some?

Structural econometric models make use of large information sets in fore-
casting a given variable. The information set used in a large scale macroecono-
metric model is typically so large that the number of predetermined variables
exceeds the number of observations available for estimating the model. Esti-
mation can proceed effectively only because of the large number ofa priori
restrictions imposed on the model, restrictions that do not work out to be simple
exclusion restrictions on the reduced form equation for the variable forecasted.

VAR models are typically much smaller than structural models and in this
sense use less information. The above question with respect to VAR models
versus structural models is thus whether the information not contained in VAR
models (but contained in structural models) is useful for forecasting purposes.
In other words, are thea priori restrictions of large scale models useful in
producing derived reduced forms that depend on so much information, or is
most of the information extraneous? The same question can be asked of AC
models versus structural models.

One cannot answer this question by doing conventional tests of the restric-
tions in a structural model. These restrictions might be wrong in important
ways and yet the model contain useful information. Even ignoring this point,
however, one cannot perform such tests with most large scale models because,
as noted above, there are not enough observations to estimate unrestricted
reduced forms.

The question whether one model’s forecast of a variable, for example,
real GDP, carries different information from another’s can be examined by
regressing the actual change in the variable on the forecasted changes from
the two models. This procedure, which is discussed below, is related to the
literature on encompassing tests12 and the literature on the optimal combi-
nation of forecasts.13 This procedure has two advantages over the standard
procedure of computing root mean squared errors (RMSEs) to compare alter-
native forecasts. First, if the RMSEs are close for two forecasts, little can be

12See, for example, Davidson and MacKinnon (1981), Hendry and Richard (1982), Chong
and Hendry (1986), and Mizon and Richard (1986). See also Nelson (1972) and Cooper
and Nelson (1975) for an early use of encompassing like tests.

13See, for example, Granger and Newbold (1986).
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concluded about the relative merits of the two. With the current procedure
one can sometimes discriminate more. Second, even if one RMSE is much
smaller than the other, it may still be that the forecast with the higher RMSE
contains information not in the other forecast. There is no way to test for this
using the RMSE framework.

It should be stressed that the current procedure does not allow one to
discover whether all the variables in a model contribute useful information for
forecasting. If, say, the regression results reveal that a large model contains all
the information in smaller models plus some, it may be that the good results
for the large model are due to a small subset of it. It can only be said that the
large model contains all the information in the smaller models that it has been
tested against, not that it contains no extraneous variables.

The procedure requires that forecasts be based only on information avail-
able prior to the forecast period. Assume that the beginning of the forecast
period ist , so that only information through periodt − 1 should be used for
the forecasts. There are four ways in which future information can creep into
a current forecast. The first is if actual values of the exogenous variables for
periods aftert − 1 are used in the forecast. The second is if the coefficients of
the model have been estimated over a sample period that includes observations
beyondt − 1. The third is if information beyondt − 1 has been used in the
specification of the model even though for purposes of the tests the model
is only estimated through periodt − 1. The fourth is if information beyond
periodt − 1 has been used in the revisions of the data for periodst − 1 and
back, such as revised seasonal factors and revised benchmark figures.

One way to handle the exogenous variable problem is to estimate, say, an
autoregressive equation for each exogenous variable in the model and add these
equations to the model. The expanded model effectively has no exogenous
variables in it. This method of dealing with exogenous variables in structural
models was advocated by Cooper and Nelson (1975) and McNees (1981).
McNees, however, noted that the method handicaps the model: “It is easy to
think of exogenous variables (policy variables) whose future values can be
anticipated or controlled with complete certainty even if the historical values
can be represented by covariance stationary processes; to do so introduces
superfluous errors into the model solution.” (McNees, 1981, p. 404). For
the work in the next chapter autoregressive equations have been estimated for
each exogenous variable in the US model, although, as McNees notes, this
may bias the results against the US model.

The coefficient problem can be handled by doing rolling estimations for
each model. For the forecast for periodt , for example, the model can be
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estimated through periodt−1; for the forecast for periodt+1, the model can
be estimated through periodt ; and so on. By “model” in this case is meant
the model inclusive of any exogenous variable equations. If the beginning
observation is held fixed for all the regressions, the sample expands by one
observation each time a time period elapses. This rolling estimation was
followed for the work in the next chapter.

The third problem—the possibility of using information beyond period
t − 1 in the specification of the model—is more difficult to handle. Models
are typically changed through time, and model builders seldom go back to
or are interested in “old” versions. For the work in Fair and Shiller (1990),
however, a version of the US model was used that existed as of the second
quarter of 1976, and all the predictions were for the period after this. For the
work in the next chapter the current version of the US model has been used,
and so this potential problem has been ignored here. This may bias the results
in favor of the US model, although the changes in the model that have been
made since 1976 are fairly minor.

The data revision problem is very hard to handle, and almost no one tries.
It is extremely difficult to try to purge the data of the possible use of future
information. It is not enough simply to use data that existed at any point in
time, say periodt − 1, because data for periodt are needed to compare the
predicted values to the actual values. To handle the data revision problem one
would have to try to construct data for periodt that are consistent with the old
data for periodt − 1, and this is not straightforward. For the work in the next
chapter nothing has been done about this problem either.

Forecasts that are based only on information prior to the forecast period
will be called “quasi ex ante” forecasts. They are not true ex ante forecasts if
they were not issued at the time, but they are forecasts that could in principle
have been issued had one been making forecasts at the time.

Quasi ex ante forecasts may, of course, have different properties from
forecasts made with a model estimated with future data. If the model is mis-
specified (e.g., parameters change through time), then the rolling estimation
forecasts (where estimated parameters vary through time) may carry rather
different information from forecasts estimated over the entire sample.14 The

14Even if the model is not misspecified, estimated parameters will change through time
due to sampling error. If the purpose were to evaluate the forecasting ability of the true
model (i.e., the model with the true coefficients), there would be a generated regressor
problem. However, the interest here is in the performance of the modeland its associated
estimation procedure. If one were interested in adjusting for generated regressors, the
correction discussed in Murphy and Topel (1985) could not be directly applied here because
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focus here is on quasi ex ante forecasts.
It should also be noted that some models may use up more degrees of

freedom in estimation than others, and with varied estimation procedures it
is often very difficult to take formal account of the number of degrees of
freedom used up. In the extreme case where there were so many parameters
in a model that the degrees of freedom were completely used up when it was
estimated (an obviously over parameterized model), it would be the case that
the forecast value equals the actual value and there would be a spurious perfect
correspondence between the variable forecasted and the forecast. One can
guard against this degrees of freedom problem by requiring that no forecasts
be within sample forecasts, which is true of quasi ex ante forecasts proposed
here.15

The Procedure

Let t−s Ŷ1t denote a forecast ofYt made from model 1 using information avail-
able at timet − s and using the model’s estimation procedure and forecasting
method each period. Lett−s Ŷ2t denote the same thing for model 2. (In the
notation above, these two forecasts should be quasi ex ante forecasts.) The
parameters is the length ahead of the forecast,s > 0. Note that the estimation
procedure used to estimate a model and the model’s forecasting method are
considered as part of the model; no account is taken of these procedures here.

The procedure is based on the following regression equation:

Yt − Yt−s = α + β(t−s Ŷ1t − Yt−s)+ γ (t−s Ŷ2t − Yt−s)+ ut (7.12)

If neither model 1 nor model 2 contains any information useful fors period
ahead forecasting ofYt , then the estimates ofβ andγ should both be zero.
In this case the estimate of the constant termα would be the averages period
change inY . If both models contain independent information16 for s period
ahead forecasting, thenβ andγ should both be nonzero. If both models contain
information, but the information in, say, model 2 is completely contained in

the covariance matrix of the coefficient estimates used to generate the forecasts changes
through time because of the use of the rolling regressions. Murphy and Topel require a
single covariance matrix.

15Nelson (1972) and Cooper and Nelson (1975) do not stipulate that the forecasts be
based only on information through the previous period.

16If both models contain “independent information” in the present terminology, their
forecasts will not be perfectly correlated. Lack of perfect correlation can arise either be-
cause the models use different data or because they use the same data but impose different
restrictions on the reduced form.
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model 1 and model 1 contains further relevant information as well, thenβ but
notγ should be nonzero.17

The procedure is to estimate equation 7.12 for different models’ forecasts
and test the hypothesisH1 thatβ = 0 and the hypothesisH2 thatγ = 0. H1

is the hypothesis that model 1’s forecasts contain no information relevant to
forecastings periods ahead not in the constant term and in model 2, andH2

is the hypothesis that model 2’s forecasts contain no information not in the
constant term and in model 1.

As noted above, this procedure bears some relation to encompassing tests,
but the setup and interests are somewhat different. For example, it does not
make sense in the current setup to constrainβ andγ to sum to one, as is usually
the case for encompassing tests. If both models’ forecasts are just noise, the
estimates of bothβ andγ should be zero. Also, say that the true process
generatingYt isYt = Xt +Zt , whereXt andZt are independently distributed.
Say that model 1 specifies thatYt is a function ofXt only and that model
2 specifies thatYt is a function ofZt only. Both forecasts should thus have
coefficients of one in equation 7.12, and so in this caseβ andγ would sum to
two. It also does not make sense in the current setup to constrain the constant
term α to be zero. If, for example, both models’ forecasts were noise and
equation 7.12 were estimated without a constant term, then the estimates ofβ

andγ would not generally be zero when the mean of the dependent variable
is nonzero.

It is also not sensible in the current setup to assume thatut is identically
distributed. It is likely thatut is heteroskedastic. If, for example,α = 0,
β = 1, andγ = 0, ut is simply the forecast error from model 1, and in
general forecast errors are heteroskedastic. Also, ifk period ahead forecasts
are considered, wherek > 1, this introduces ak − 1 order moving average
process to the error term in equation 7.12.18 Both heteroskedasticity and the
moving average process can be corrected for in the estimation of the standard
errors of the coefficient estimates. This can be done using the procedure given
by Hansen (1982), Cumby, Huizinga, and Obstfeld (1983), and White and
Domowitz (1984) for the estimation of asymptotic covariance matrices. Let
θ = (α β γ )

′
. Also, defineX as theT × 3 matrix of variables, whose row

t isXt = (1 t−s Ŷ1t − Yt−s t−s Ŷ2t − Yt−s), and letût = Yt − Yt−s − Xt θ̂ .

17If both models contain the same information, then the forecasts are perfectly correlated,
andβ andγ are not separately identified.

18The error term in equation 7.12 could, of course, be serially correlated even for the one
period ahead forecasts. Such serial correlation, however, does not appear to be a problem
for the work in the next chapter, and so it has been assumed to be zero here.
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The covariance matrix of̂θ , V (θ̂), is

V (θ̂) = (X′X)−1S(X
′
X)−1 (7.13)

S = �0+
s−1∑
j=1

(�j +�′j ) (7.14)

�j =
T∑

t=j+1

(utut−j )X̂
′
t X̂t−j (7.15)

whereθ̂ is the ordinary least squares estimate ofθ ands is the forecast horizon.
Whens equals 1, the second term on the right hand side of 7.14 is zero, and the
covariance matrix is simply White’s (1980) correction for heteroskedasticity.

Note that as an alternative to equation 7.12 thelevelofY could be regressed
on the forecastedlevelsand a constant. IfY is an integrated process, then
any sensible forecast ofY will be cointegrated withY itself. In the level
regression, the sum ofβ andγ will thus be constrained in effect to one, and
one would in effect be estimating one less parameter. IfY is an integrated
process, running the levels regression with an additional independent variable
Yt−1 (thereby estimatingβ andγ without constraining their sum to one) is
essentially equivalent to the differenced regression 7.12. For variables that are
not integrated, the levels version of 7.12 can be used.

It should finally be noted that there are cases in which an optimal forecast
does not tend to be singled out as best in regressions of the form 7.12, even with
many observations. Say the truth isYt − Yt−1 = aXt−1+ et . Say that model
1 does rolling regressions ofYt − Yt−1 onXt−1 and uses these regressions
to forecast. Say that model 2 always takes the forecast to bebXt−1 where
b is some number other thana, so that model 2 remains forever an incorrect
model. In equation 7.12 regressions the two forecasts tend to be increasingly
collinear as time goes on; essentially they are collinear after the first part of
the sample. Thus, the estimates ofβ andγ tend to be erratic. Adding a large
number of observations does not cause the regressions to single out the first
model; it only has the effect of enforcing thatβ̂ + (γ̂ b)/a = 1.

7.9 Estimating Event Probabilities19

Stochastic simulation can be used to calculate the probability of various events
happening. This is straightforward once the stochastic simulation has been set

19The material in this section is taken from Fair (1993c)
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up and the event defined. Consider a five quarter prediction period and the
event that within this period there were two consecutive quarters of negative
real GDP growth. Assume that 1000 repetitions are taken. For each repetition
one can record whether or not this event occurred. If it occurred, say, 150
times out of the 1000 repetitions, its estimated probability would be 15 percent.
Many events, of course, can be considered. The only extra work for each extra
event is keeping track of how often each event occurs in the repetitions.

Government policy makers and business planners are obviously interested
in knowing the probabilities of various economic events happening. Model
builders who make forecasts typically do not directly answer probability ques-
tions. They typically present a “base” forecast and a few alternative “scenar-
ios.” If probabilities are assigned to the scenarios, they are subjective ones of
the model builders.20 An advantage of estimating probabilities from stochastic
simulation is that they are objective in the sense that they are based on the use
of estimated distributions. They are consistent with the probability structure
of the model.

In estimating probabilities by stochastic simulation, it seems best to draw
only error terms (not also coefficients). Although coefficient estimates are
uncertain, the true coefficients are fixed. In the real world, the reason that eco-
nomic events are stochastic is because of stochastic shocks (error terms), not
because the coefficients are stochastic. (This is assuming, of course, that the
true coefficients are fixed, which is the assumption upon which the estimation
is based.)21 For the estimation of probabilities in the next chapter, only error
terms are drawn.

This procedure for estimating probabilities can also be used for testing
purposes. It is possible for a given event to compute aseriesof probability
estimates and compare these estimates to the actual outcomes. Consider an
eventAt , such as two consecutive quarters of negative growth out of five for
the period beginning in quartert . Let Pt denote a model’s estimate of the
probability ofAt occurring, and letRt denote the actual outcome ofAt , which
is 1 if At occurred and 0 otherwise. If one computes these probabilities for
t = 1, . . . , T , there areT values ofPt andRt available, where each value of
Pt is derived from a separate stochastic simulation.

To see how good a model is at estimating probabilities,Pt can be compared

20Stock and Watson (1989) do present, however, within the context of their leading
indicator approach, estimates of the probability that the economy will be in a recession six
months hence.

21I am indebted to Gregory Chow for suggesting to me that one may not want to draw
coefficients when estimating probabilities.
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toRt for t = 1, . . . , T . Two common measures of the accuracy of probabilities
are the quadratic probability score (QPS):

QPS = (1/T )
T∑
t=1

2(Pt − Rt)2 (7.16)

and the log probability score (LPS):

LPS = −(1/T )
T∑
t=1

[(1− Rt) log(1− Pt)+ Rt logPt ] (7.17)

whereT is the total number of observations.22 It is also possible simply to
compute the mean ofPt (say P̄ ) and the mean ofRt (say R̄) and compare
the two means.QPS ranges from 0 to 2, with 0 being perfect accuracy, and
LPS ranges from 0 to infinity, with 0 being perfect accuracy. Larger errors
are penalized more underLPS than underQPS.

The testing procedure is thus simply to define various events and compute
QPS andLPS for alternative models for each event. If model 1 has lower
values than model 2, this is evidence in favor of model 1.

7.10 Full Information Estimation and Solution of Rational
Expectations Models23

Introduction

The single equation estimation of equations with rational expectations was
discussed in Section 4.3, where Hansen’s method was described. It is also
possible, however, to use FIML to estimate models with rational expectations.
Methods for the solution and FIML estimation of these models were presented
in Fair and Taylor (1983) and also discussed in Fair (1984), Chapter 11. The
basic solution method, called the “extended path” (EP) method, has come to be
widely used for deterministic simulations of rational expectations models,24

22See, for example, Diebold and Rudebusch (1989).
23The material in this section is taken from Fair and Taylor (1990).
24For example, the extended path method has been programmed as part of the TROLL

computer package and is routinely used to solve large scale rational expectations models
at the IMF, the Federal Reserve, the Canadian Financial Ministry, and other government
agencies. It has also been used for simulation studies such as DeLong and Summers (1986)
and King (1988). Other solution methods for rational expectations models are summarized
in Taylor and Uhlig (1990). These other methods do not yet appear practical for medium
size models and up.
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but probably because of the expense, the full information estimation method
has not been tried by others. This earlier work discussed a “less expensive”
method for obtaining full information estimates, but the preliminary results
using the method were mixed. Since this earlier work, however, more exper-
imenting with the less expensive method has been done, and it seems much
more promising than was originally thought.

This section has two objectives. The first is to discuss the new results
using the less expensive method that have been obtained and to argue that full
information estimation now seems feasible for rational expectations models.
In the process of doing this some errors in the earlier work regarding the
treatment of models with rational expectations and autoregressive errors are
corrected. The second objective is to discuss methods for stochastic simulation
of rational expectations models, something that was only briefly touched on
in the earlier work.

The Solution Method

The notation for the model used here differs somewhat from the notation used
in equation 4.1. The lagged values of the endogenous variables are written out
explicitly, andxt is now a vector of only exogenous variables. The model is
written as

fi(yt , yt−1, . . . , yt−p,Et−1yt , Et−1yt+1, . . . , Et−1yt+h, xt , αi) = uit
(7.18)

uit = ρiuit−1+ εit , (i = 1, . . . , n) (7.19)

whereyt is ann–dimensional vector of endogenous variables,xt is a vector of
exogenous variables,Et−1 is the conditional expectations operator based on
the model and on information through periodt−1,αi is a vector of parameters,
ρi is the serial correlation coefficient for the error termuit , andεit is an error
term that may be correlated across equations but not across time. The function
fi may be nonlinear in variables, parameters, and expectations. The following
is a brief review of the solution method for this model. More details are
presented in Fair and Taylor (1983) and in Fair (1984), Chapter 11. In what
follows i is always meant to run from 1 throughn.

Case 1:ρi = 0

Consider solving the model for periods. It is assumed that estimates ofαi are
available, that current and expected future values of the exogenous variables
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are available, and that the current and future values of the error terms have been
set to their expected values (which will always be taken to be zero here). If the
expectationsEs−1ys , Es−1ys+1, . . ., Es−1ys+h were known, 7.18 could be
solved in the usual ways (usually by the Gauss-Seidel technique). The model
would be simultaneous, but future predicted values would not affect current
predicted values. The EP method iterates over solutionpaths. Values of the
expectations through periods+h+ k+h are first guessed, wherek is a fairly
large number relative toh.25 Given these guesses, the model can be solved
for periodss throughs + h+ k in the usual ways. This solution provides new
values for the expectations through periods + h + k—the new expectations
values are the solution values. Given these new values, the model can be
solved again for periodss throughs+h+k, which provides new expectations
values, and so on. This process stops (if it does) when the solution values for
one iteration are within a prescribed tolerance criterion of the solution values
for the previous iteration for all periodss throughs + h+ k.

So far the guessed values of the expectations for periodss + h + k + 1
throughs + h + k + h (the h periods beyond the last period solved) have
not been changed. If the solution values for periodss throughs + h depend
in a nontrivial way on these guesses, then overall convergence has not been
achieved. To check for this, the entire process above is repeated fork one larger.
If increasingk by one has a trivial effect (based on a tolerance criterion) on
the solution values fors throughs + h, then overall convergence has been
achieved; otherwisek must continue to be increased until the criterion is met.
In practice what is usually done is to experiment to find the value ofk that is
large enough to make it likely that further increases are unnecessary for any
experiment that might be run and then do no further checking using larger
values ofk.

The expected future values of the exogenous variables (which are needed
for the solution) can either be assumed to be the actual values (if available and
known by agents) or be projected from an assumed stochastic process. If the
expected future values of the exogenous variables are not the actual values, one
extra step is needed at the end of the overall solution. In the above process the
expected values of the exogenous variables would be used for all the solutions,
the expected values of the exogenous variables being chosen ahead of time.
This yields values forEs−1ys ,Es−1ys+1, . . . , Es−1ys+h. Given these values,

25Guessed values are usually taken to be the actual values if the solution is within the
period for which data exist. Otherwise, the last observed value of a variable can be used
for the future values or the variable can be extrapolated in some simple way. Sometimes
information on the steady state solution (if there is one) can be used to help form the guesses.
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7.18 is then solved for periods using theactualvalue ofxs , which yields the
final solution valueŷs . To the extent that the expected value ofxs differs from
the actual value,Es−1ys will differ from ŷs .

Two points about this method should be mentioned. First, no general con-
vergence proofs are available. If convergence is a problem, one can sometimes
“damp” the solution values to obtain convergence. In practice convergence is
usually not a problem. There may, of course, be more than one set of solution
values, and so there is no guarantee that the particular set found is unique. If
there is more than one set, the set that the method finds may depend on the
guesses used for the expectations for theh periods beyonds + h+ k.

Second, the method relies on the certainty equivalence assumption even
though the model is nonlinear. Since expectations of functions are treated as
functions of the expectations in future periods in equation 7.18, the solution
is only approximate unlessfi is linear. This assumption is like the linear
quadratic approximation to rational expectations models that has been pro-
posed, for example, by Kydland and Prescott (1982). Although the certainty
equivalence assumption is widely used, including in the engineering literature,
it is, of course, not always a good approximation.

Case 2:ρi 6= 0 and Data Befores − 1 Available

The existence of serial correlation complicates the problem considerably. The
error terms for periodt − 1 (uit−1, i = 1, . . . , n) depend on expectations
that were formed at the end of periodt − 2, and so a new viewpoint date is
introduced. This case is discussed in Section 2.2 in Fair and Taylor (1983),
but an error was made in the treatment of the second viewpoint date. The
following method replaces the method in Section 2.2 of this paper.26

Consider again solving for periods. If the values ofuis−1 were known,
one could solve the model as above. The only difference is that the value of an
error term likeuis+r−1would beρri uis−1 instead of zero. The overall solution
method first uses the EP method to solve for periods− j , wherej > 0, based
on the assumption thatuis−j−1 = 0. Once the expectations are solved for,
7.18 is used to solve foruis−j . The actual values ofys−j andxs−j are used
for this purpose (although the solution values are used for the expectations)
because these are structural errors being estimated, not reduced form errors.
Given the values foruis−j , the model is solved for periods − j + 1 using the
EP method, where an error term likeuis−j+r is computed asρri uis−j . Once

26The material in Fair and Taylor (1983) is also presented in Fair (1984), Chapter 11, and
so the corrections discussed in this section pertain to both sources.
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the expectations are solved for, 7.18 is used to solve foruis−j+1, which can
be used in the solution for periods− j +2, and so on through the solution for
periods.

The solution for periods is based on the assumption that the error terms
for periods − j − 1 are zero. To see if the solution values for periods are
sensitive to this assumption, the entire process is repeated withj increased by
1. If going back one more period has effects on the solution values for period
s that are within a prescribed tolerance criterion, then overall convergence has
been achieved; otherwisej must continue to be increased. Again, in practice
one usually finds a value ofj that is large enough to make it likely that further
increases are unnecessary for any experiment that might be run and then do
no further checking using larger values ofj .

It should be noted that once periods is solved for, periods + 1 can be
solved for without going back again. From the solution for periods, the values
of uis can be computed, which can then be used in the solution for periods+1
using the EP method.

Case 3:ρi 6= 0 and Data Before Periods − 1 not Available

This case is based on the assumption thatεis−1 = 0 when solving for period
s. This type of an assumption is usually made when estimating multiple
equation models with moving average residuals. The solution problem is
to find the values ofuis−1 that are consistent with this assumption. The
overall method begins by guessing values foruis−2. Given these values, the
model can be solved for periods − 1 using the EP method and the fact that
uis+r−2 = ρri uis−2. From the solution values for the expectations, 7.18 and
7.19 can be used to solve forεis−1.27 If the absolute values of these errors
are within a prescribed tolerance criterion, convergence has been achieved.
Otherwise, the new guess foruis−2 is computed as the old guess plusεis−1/ρi .
The model is solved again for periods − 1 using the new guess and the EP
method, and so on until convergence is reached.

At the point of convergenceuis−1 can be computed asρiuis−2, where
uis−2 is the estimated value on the last iteration (the value consistent with
εis−1 being within a prescribed tolerance criterion of zero). Given the values
of uis−1, one can solve for periods using the EP method, and the solution is
finished.

27These are again estimates of the structural error terms, not the reduced form error
terms. Step (iii) on page 1176 in Fair and Taylor (1983) is in error in this respect. The errors
computed in step (iii) should be the structural error terms.
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Computational Costs

The easiest way to think about the computational costs of the solution method
is to consider how many times the equations of a model must be “passed”
through. LetN1 be the number of passes through the model that it takes to
solve the model for one period, given the expectations.N1 is usually some
number less than 10 when the Gauss-Seidel technique is used. The EP method
requires solving the model forh + k + 1 periods. LetN2 be the number of
iterations it takes to achieve convergence over these periods. Then the total
number of passes for convergence isN2N1(h + k + 1). If, say,h is 5, k is
30,N2 is 15, andN1 is 5, then the total number of passes needed to solve the
model for one period is 11,250, which compares to only 5 when there are no
expectations. Ifk is increased by one to check for overall convergence, the
total number of passes is slightly more than doubled, although, as noted above,
this check is not always done.

For Case 2 above the number of passes is increased by roughly a factor
of j if overall convergence is not checked. Checking for overall convergence
slightly more than doubles the number of passes.j is usually a number between
5 and 10. Ifq is the number of iterations it takes to achieve convergence for
Case 3 above, the number of passes is increased by a factor ofq+1. In practice
q seems to be between about 5 and 10. Note for both Cases 2 and 3 that the
number of passes is increased relative to the non serial correlation case only
for the solution for the first period (periods). If period s + 1 is to be solved
for, no additional passes are needed over those for the regular case.

FIML Estimation

Assume that the estimation period is 1 throughT . The objective function that
FIML maximizes (assuming normality) is presented in equation 7.3 above and
is repeated here for convenience

L = −T
2

log |6| +
T∑
t=1

log |Jt | (7.20)

6 is the covariance matrix of the error terms andJt is the Jacobian matrix
for periodt . 6 is of the dimension of the number of stochastic equations in
the model, andJt is of the dimension of the total number of equations in the
model. Theij element of6 is (1/T )6Tt=1εit εj t . Since the expectations have
viewpoint datet − 1, they are predetermined from the point of view of taking
derivatives for the Jacobian, and so no additional problems are involved for the
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Jacobian in the rational expectations case. In what followsα will be used to
denote the vector of all the coefficients in the model. In the serial correlation
caseα also includes theρi coefficients.

FIML estimation of moderate to large models is expensive even in the
standard case, and some tricks are needed to make the problem computationally
feasible. An algorithm that can be used for large scale applications is discussed
in Parke (1982), and this algorithm will not be discussed here. Suffice it to say
that FIML estimation of large scale models is computationally feasible, and in
fact FIML estimates of the US model are presented in the next chapter. What
any algorithm needs to do is to evaluateL many times for alternative values
of α in the search for the value that maximizesL.

In the standard case computing6 for a given value ofα is fairly inexpen-
sive. One simply solves 7.18 and 7.19 for theεit error terms given the data
and the value ofα. This is only one pass through the model since it is the
structural error terms that are being computed. In the rational expectations
case, however, computing the error terms requires knowing the values of the
expectations, which themselves depend onα. Therefore, to compute6 for a
given value ofα one has to solve for the expectations for each of theT periods.
If, say, 11,250 passes through the model are needed to solve the model for one
period and ifT is 100, then 1,125,000 passes are needed for one evaluation
of 6 and thus one evaluation ofL. In the 25 coefficient problem below, the
Parke algorithm required 2,817 evaluations ofL to converge, which would be
over 3 trillion passes if done this way.28

It should be clear that the straightforward combination of the EP solution
method and FIML estimation procedures is not likely to be computationally
feasible for most applications. There is, however, a way of cutting the number
of times the model has to be solved over the estimation period to roughly the
number of estimated coefficients. The trick is to compute numerical derivatives
of the expectations with respect to the parameters and use these derivatives to
compute6 (and thusL) each time the algorithm requires a value ofL for a
given value ofα.

Consider the derivative ofEt−1yt+r with respect to the first element ofα.
One can first solve the model for a given value ofα and then solve it again for
the first element ofα changed by a certain percent, both solutions using the
EP method. The computed derivative is then the difference in the two solution
values ofEt−1yt+r divided by the change in the first element ofα. To compute

28Note that these solutions of the error termεit are only approximations whenfi is
nonlinear. Hence, the method gives an approximation of the likelihood function.
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all the derivatives requiresK + 1 solutions of the model over theT number
of observations, whereK is the dimension ofα.29 One solution is for the
base values, and theK solutions are for theK changes inα, one coefficient
change per solution. From theseK+1 solutions,K ·T (h+1) derivatives are
computed and stored for each expectations variable, one derivative for each
length ahead for each period for each coefficient.30 Once these derivatives are
computed, they can be used in the computation of6 for a given change inα,
and no further solutions of the model are needed. In other words, when the
maximization algorithm changesα and wants the corresponding value ofL,
the derivatives are first used to compute the expectations, which are then used
in the computation of6. Since one has (from the derivatives) an estimate of
how the expectations change whenα changes, one does not have to solve the
model any more to get the expectations.

Assuming that the solution method in Case 3 above is used for the FIML
estimates, derivatives ofuit−1 with respect to the coefficients are also needed
when the errors are serially correlated. These derivatives can also be computed
from theK + 1 solutions, and so no extra solutions are needed in the serial
correlation case.

Once theK+1 solutions of the model have been done and the maximization
algorithm has found what it considers to be the optimum, the model can be
solved again for theT periods using the optimal coefficient values and thenL

computed. This value ofLwill in general differ from the value ofL computed
using the derivatives for the same coefficient values, since the derivatives are
only approximations. At this point the new solution values (not computed
using the derivatives) can be used as new base values and the problem turned
over to the maximization algorithm again. This is the second “iteration” of
the overall process. Once the maximization algorithm has found the new
optimum, new base values can be computed, a new iteration performed, and so
on. Convergence is achieved when the coefficient estimates from one iteration
to the next are within a prescribed tolerance criterion of each other. This

29In the notation presented in Section 7.1k rather thanK is used to denote the dimension
of α. K is used in this section sincek has already been used in the description of the EP
method.

30Derivatives computed this way are “one sided.” “Two sided” derivatives would require
an extraK solutions, where each coefficient would be both increased and decreased by
the given percentage. For the work here two sided derivatives seemed unnecessary. For
the results below each coefficient was increased by five percent from its base value when
computing the derivatives. Five percent seemed to give slightly better results than one
percent, although no systematic procedure of trying to find the optimal percentage size was
undertaken.
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procedure can be modified by recomputing the derivatives at the end of each
iteration. This may improve convergence, but it obviously adds considerably to
the expense. At a minimum, one might want to recompute the derivatives at the
end of overall convergence and then do one more iteration. If the coefficients
change substantially on this iteration, then overall convergence has not in fact
been achieved.

Table 7.1 reports the results of estimating three models by FIML using the
derivatives. The first model, Model 1, is a version of the wage contracting
model in Taylor (1980):

y1t = α11y1t−1+ α12y1t−2+ α13Et−1y1t+1+ α14Et−1y1t+2

+ α15Et−1y2t + α16Et−1y2t+1+ α17Et−1y2t+2+ u1t (7.21)

y2t = α21y1t + α22y1t−1+ α23y1t−2+ u2t (7.22)

with the restrictions thatα11 = α13 = 1/3, α12 = α14 = 1/6, α15 = α16 =
α17, andα21 = α22 = α23. There are two free parameters to estimate,α15 and
α21. Data for this model were generated using normally distributed serially
independent errors with zero correlation between equations. Values ofα15 and
α21 of .0333333 and−.333333 were used for this purpose. Fifty observations
were generated.

Because this model is very small and linear, a factorization procedure
can be used to evaluateL exactly. This procedure can in turn be used in the
maximization ofL using an algorithm like DFP. The coefficient estimates
computed this way arêα15 = .0260125 and̂α21 =−.3916.

Table 7.1 shows the results using the “derivative” method discussed above.
The results for Model 1 show that convergence was essentially achieved after
one iteration. Three solutions of the model over the 50 periods were needed
for the derivatives for the first iteration, which compares to 61 that would have
been needed had the derivatives not been used. The difference betweenL

computed using the derivatives andL computed from the full solution after
the first iteration is very small, and so the method worked quite well. The DFP
algorithm was used for this problem since the model was not large enough to
require the Parke algorithm. The two further iterations for Model 1, which
were based on recomputing the derivatives, led to very small changes. The
third iteration in particular was unnecessary.

For Model 2 the error term in equation 7.21 is assumed to be serially
correlated:

u1t = ρ1u1t−1+ ε1t (7.23)
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Table 7.1
FIML Results for Three Models

Model 1: Taylor Model, No Serial Correlation

L̂ L̂ No. of
using using full func.

α̂15 α̂21 derivatives solution evals.

Start .0333333 -.333333 508.6022
Iteration:
1 .0252994 -.391662 509.0470 509.0462 61
2 .0260233 -.391609 509.0467 509.0467 50
3 .0260117 -.391612 509.0467 509.0466 37

Model 2: Taylor Model, Serial Correlation

L̂ L̂ No. of
using using full func.

α̂15 ρ̂1 α̂21 derivatives solution evals.

Start .0200000 .600 -.200000 501.8234
Iteration:
1 .0335672 .635 -.210860 505.5016 531.1740 77
2 .0289718 .673 -.321878 532.0178 531.7876 166
3 .0495646 .745 -.321324 532.1676 531.8590 103
4 .0778620 .837 -.322183 532.3424 531.9918 103
5 .0886905 .878 -.322699 532.1248 531.9346 96
6 .0903430 .889 -.322646 531.9557 531.9032 90

Model 3: Six Equation Model, 25 Coefficients

L̂ L̂ No. of
using using full func.

derivatives solution evals.

Start 170.3100
Iteration:
1 189.1670 184.3381 2817
2 189.2047 189.0098 1103
3 189.0450 189.0297 538
4 189.0784 189.0784 258

The DFP algorithm was used for Models 1 and 2.
The Parke algorithm was used for Model 3.
Derivatives were recomputed after each iteration for

Models 1 and 2, but not for Model 3.

whereρ1 was set equal to .7 to generate the data. The coefficient estimates
using the factorization routine and the DFP algorithm areα̂15 = .0738367,̂ρ1=
.83545, and̂α21 =−.32211. This set of values will be called the “exact”
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Table 7.2
Model 3: Six Equations

1. logCt cnst, logCt−1, Et−1 logYt+2, Rt

2. It − It−1 cnst,Yt − Yt−1, Et−1(Yt+1− Yt ), Rt , t , It−1

3. log(Mt/Pt ) cnst, log(M/P )t−1, logYt , Rt

4. logPt cnst, logPt−1, logPMt , (YSt − Yt )/YSt ,
Et−1[(YSt+1− Yt+1)/YSt+1], RHO

5.Rt cnst,Rt−1, Et−1100[(Pt+2/Pt+1)
4− 1],

100[(Yt/Yt−1)
4− 1], 100[(Mt−1/Mt−2)

4− 1]

6.Yt = Ct + It +Qt

answer. The results in Table 7.1 show that the derivative method got close,
but not quite, to the exact answer. The largest value ofL occurred after the
fourth iteration, 531.9918, with coefficient estimates fairly close to the exact
answer. On iterations 5 and 6, however, the method moved slightly further
away from the answer. The derivatives were computed after each iteration
for this problem. The value ofL using the exact coefficient estimates (not
reported in the table) was 532.0333. The method thus moved fromL equal
to 501.8234 toL equal to 531.9918, but it could not go the rest of the way to
532.0333. When the method was started off from the exact answer, it moved
away from it slightly, like the case for iterations 5 and 6 in Table 1. This
basically seems to be a hard computational problem. The likelihood function
is fairly flat near the top, especially with respect toα15 andρ1, and one other
local optimum was found in the course of this work.31

Model 3 is a simple six equation macroeconomic model with 25 coeffi-
cients, one of which is a serial correlation coefficient. The model is meant
for computational exercises only; it is not meant to be a good approximation
of the economy. The equations are shown in Table 7.2 (C is consumption,I
is investment,M is the nominal money supply,P is the GNP deflator,R is
the interest rate,Y is GNP,YS is an estimate of potential GNP,PM is the
import price deflator,Q is government spending plus net exports,t is the time

31Also, although not reported in Table 7.1, Model 2 is much harder to solve than Model
1 in requiring a much larger value ofk and many more iterations of the solution paths to
converge.
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trend,RHO means that the error term in the equation is first order serially
correlated, andC, I , Y , YS, andQ are in real terms): The exogenous variables
in the model arePMt , YSt ,Qt , andt . Future expected values are in equations
1, 2, 4, and 5, and the longest lead length is 2.

The equations were first estimated using Hansen’s method discussed in
Section 4.3. The estimation period was 1954:1–1984:4, for a total of 124
observations. The Hansen estimates were then used as starting values for the
FIML calculations.32

The results in Table 7.1 for Model 3 are based on only one set of calcu-
lations of the derivatives. The model was solved 26 times for the 124 ob-
servations to get the derivatives for the 25 coefficients. The Parke algorithm
was used for the maximization. It can be seen in Table 7.1 that the use of the
derivatives worked quite well. After the first iteration the difference between
L computed using the derivatives andL computed from the full model solution
is fairly large (189.1670− 184.3381), but the differences are quite small for
iterations 2, 3, and 4. Convergence had been achieved after iteration 4.

The good results for Model 3 are encouraging. Model 3 is probably more
representative of models likely to be used in practice than is Model 2. Model
2 is probably extreme in the degree to which future predicted values affect
current predicted values, and this may be one of the reasons results are not as
good for it.

The FIML covariance matrix of the coefficient estimates (V̂4) was esti-
mated for each model using the formula 7.4, where the derivatives are evaluated
(numerically) at the optimum. These covariance computations are feasible be-
cause the expectations derivatives can be used in calculating the derivatives in
7.4. In other words, no further solutions of the model are needed to compute
V̂4 in 7.4. V̂4 for Model 3 is used for the stochastic simulation results discussed
next.

Stochastic Simulation

For models with rational expectations one must state very carefully what is
meant by a stochastic simulation of the model and what stochastic simulation
is to be used for. In the present case stochastic simulation isnot used to

32The results for Model 3 in Tables 7.1 and 7.3 are the same as those in Fair and Taylor
(1990). They have not been updated for present purposes. Since Model 3 is not part of the
US model and is not used for any of the work in the following chapters, there was no need
to update. Also, the results for Models 1 and 2 in Table 7.1 are the same as those in Fair
and Taylor (1990).
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improve on the accuracy of the solutions of the expected values. The expected
values are computed exactly as described above—using the EP method. This
way of solving for the expected values can be interpreted as assuming that
agents at the beginning of periods form their expectations of the endogenous
variables for periodss and beyond by 1) forming expectations of the exogenous
variables for periodss and beyond, 2) setting the error terms equal to their
expected values (say zero) for periodss and beyond, 3) using the existing set
of coefficient estimates of the model, and then 4) solving the model for periods
s and beyond. These solution values are the agents’ expectations.

For present purposes stochastic simulation begins once the expected values
have been solved for. Given the expected values for periodss throughs +
h, stochastic simulation is performed for periods. The problem is now no
different from the problem for a standard model because the expectations are
predetermined. Assume that the errors are distributedN(0, 6̂), where6̂ is
the FIML estimate of6 from the last subsection. From this distribution one
can draw a vector of error terms for periods. Given these draws (and the
expectations), the model can be solved for periods in the usual ways. This is
one repetition. Another repetition can be done using a new draw of the vector
of error terms, and so on. The means and variances of the forecast values can
be computed using equations 7.5 and 7.7 in Section 7.3.

One can also use this approach to analyze the effects of uncertainty in the
coefficients by assuming that the coefficients are distributedN(α̂, V̂4), where
α̂ is the FIML estimate ofα andV̂4 is the estimated covariance matrix ofα̂.
In this case each draw also involves the vector of coefficients.

If uit is serially correlated as in 7.19, then an estimate ofuis−1 is needed for
the solution for periods. This estimate is, however, available from the solution
of the model to get the expectations (see Case 2 in the previous subsection),
and so no further work is needed. The estimate ofuis−1 is simply taken as
predetermined for all the repetitions, anduis is computed asρiuis−1 plus the
draw forεis . (Note that theε errors are drawn, not theu errors.)

Stochastic simulation is quite inexpensive if only results for period s are
needed because the model only needs to be solved once using the EP method.
Once the expectations are obtained, each repetition merely requires solving
the model for periods. If, on the other hand, results for more than one period
are needed and the simulation is dynamic, the EP method must be usedp times
for each repetition, wherep is the length of the period.

Consider the multiperiod problem. As above, the expectations with view-
point dates−1 can be solved for and then a vector of error terms and a vector
of coefficients drawn to compute the predicted value ofyis . This is the first
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step.
Now go to periods + 1. An agent’s expectation of, say,yis+2 is different

with viewpoint dates than with viewpoint dates − 1. In particular, the value
of yis is in general different from what the agent at the end of periods − 1
expected it to be (because of the error terms that were drawn for periods).33

A new set of expectations must thus be computed with viewpoint dates.
Agents are assumed to use the original set of coefficients (not the set that was
drawn) and to set the values of the error terms for periodss + 1 and beyond
equal to zero. Then given the solution value ofyis and the actual value of
xs , agents are assumed to solve the model for their expectations for periods
s + 1 and beyond. This requires a second use of the EP method. Given these
expectations, a vector of error terms for periods + 1 is drawn and the model
is solved for periods + 1. If equationi has a serially correlated error, then
uis+1 is equal toρ2

i uis−1 plus the draw forεis+1. Now go to periods+ 2 and
repeat the process, where another use of the EP method is needed to compute
the new expectations. The process is repeated through the end of the period of
interest. At the end, this is one repetition. The overall process is then repeated
for the second repetition, and so on. Note that only one coefficient draw is
used per repetition, i.e., per dynamic simulation. AfterJ repetitions one can
compute means and variances just as above, where there are now means and
variances for each period ahead of the prediction. Also note that agents are
always assumed to use the original set of coefficients and to set the current
and future error terms to zero. They do not perform stochastic simulation
themselves.

Stochastic simulation results for Model 3 are presented in Table 7.3. The
FIML estimates of6,α, andV4 from the previous subsection were used for the
draws. The length of the prediction was taken to be four, and 100 repetitions
were performed. This meant that the number of times the model had to be
solved for the expectations was 400. Again, had the length been taken to
be one, the number of solutions for the expectations would have been one.
The results show, as is common with most macroeconometric models, that the
stochastic simulation estimates of the means are quite close to the deterministic
simulation estimates. The deterministic simulation estimates are simply based
on setting the error terms to zero and solving once for each period (as the agents
are assumed to do). The real use of stochastic simulation is to compute standard
deviations or variances. The estimated standard deviations are presented in

33It may also be that the actual value ofxs differs from what the agent expected it to be
at the end ofs − 1.
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Table 7.3
Stochastic Simulation Results for Model 3

1983
1 2 3 4

Consumption a 2095.4 2111.9 2129.6 2146.5
b 2094.0 2113.0 2130.8 2149.0
c 13.1 17.9 23.1 29.4

Investment a 259.3 264.2 268.2 272.5
b 259.1 264.1 269.1 274.4
c 6.7 8.7 9.8 12.3

Money Supply a 521.5 532.2 543.2 554.5
b 521.1 533.1 543.8 556.0
c 5.5 8.4 10.9 11.7

Price Level a 1.0293 1.0435 1.0587 1.0751
b 1.0293 1.0437 1.0595 1.0762
c .0046 .0083 .0110 .0125

Interest Rate a 8.39 8.57 8.75 8.94
b 8.28 8.40 8.74 9.01
c .79 .96 1.09 1.21

Real GNP a 3201.2 3243.9 3273.1 3305.4
b 3199.6 3244.8 3275.2 3309.8
c 17.6 23.3 28.1 35.7

a = predicted value from deterministic simulation
b = mean value from stochastic simulation
c = standard deviation from stochastic simulation

The results are based on 100 trials.
Units are billions of 1982 dollars for consumption,
investment, and real GNP; billions of dollars for
the money supply; 1982=1.0 for the price level;
and percentage points for the interest rate.

row c in the table. For real GNP, for example, the estimated standard deviation
of the four quarter ahead forecast error is $35.7 billion, which is about one
percent of the mean value of $3309.8 billion.

Stochastic simulation has also been used to evaluate alternative interna-
tional monetary systems using the multicountry models in Carloyzi and Taylor
(1985) and Taylor (1988). For this work values ofεit were drawn, but not val-
ues of the coefficients. The vector of coefficientsα was taken to be fixed.

It seems that stochastic simulation as defined above is computationally
feasible for models with rational expectations. Stochastic simulation is in
fact likely to be cheaper than even FIML estimation using the derivatives.
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If, for example, the FIML estimation period is 100 observations and there
are 25 coefficients to estimate, FIML estimation requires that the model be
solved 2600 times using the EP method to get the derivatives. For a stochastic
simulation of 8 periods and 100 repetitions, on the other hand, the model has
to be solved using the EP method only 800 times.

Conclusion

To conclude, the results in this section are encouraging regarding the use
of models with rational expectations. FIML estimation is computationally
feasible using the procedure of computing derivatives for the expectations, and
stochastic simulation is feasible when done in the manner described above.
FIML estimation is particularly important because it takes into account all the
nonlinear restrictions implied by the rational expectations hypothesis. It is
hoped that the methods discussed in this section will open the way for many
more tests of models with rational expectations.


