Estimating and Testing
the US Model

8.1 Introduction

The previous chapter discussed techniques for estimating and testing complete
models, and this chapter applies these techniques to the US model. For the
work in this chapter the model has been estimated by 2SLAD, 3SLS, and
FIML in addition to 2SLS. 2SLAD is discussed in Section 4.4, and 3SLS and
FIML are discussed in Section 7.2. Also, median unbiased (MU) estimates
have been obtained for 18 lagged dependent variable coefficients using the
procedure discussed in Section 7.4, and the 2SLS asymptotic distribution is
compared to the exact distribution using the procedure discussed in Section 7.5.
Section 8.3 presents the MU estimates; Section 8.4 examines the asymptotic
distribution accuracy; and Section 8.5 compares the five sets of estimates.

The rest of this chapter is concerned with testing. In Section 8.6 the total
variances discussed in Section 7.7 are computed and compared for the US,
VAR5/2, VAR4, and AC models. Section 8.7 uses the procedure discussed
in Section 7.8 to examine the information content of the forecasts from these
models. Finally, Section 8.8 estimates event probabilities for the models and
comparesthe accuracy of these estimates across the models using the procedure
discussed in Section 7.9. A brief summary of the results is presented in Section
8.9.

Some of the tests in this chapter require a version of the US model in which
there are no hard to forecast exogenous variables. This version is called US+,
and it is discussed in the next section.
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220 8 TESTING THE US MODEL

8.2 US+ Model

The US+ model is the US model with an additional 91 stochastic equations.
Each of the additional equations explains an exogenous variable and is an
eighth order autoregressive equation with a constantterm and time trend added.
Equations are estimated for all the exogenous variables in the model except
the age variables, the dummy variables, the variables created from peak to
peak interpolations, and variables that are constants or nearly constants. All
the exogenous variables in the model are listed in Table A.2. Those for which
autoregressive equations amet estimated are:AG1l, AG2, AG3, CDA,
D691,D692,D714,D721,D794823,0811824,0831834DD772,DELD,
DELH,DELK,HFS,HM,IHHA,IKFA,JJP,LAM,MUH, P2554,
T, TAUG, TAUS, TI, TXCR, WLDG, andWLDS. Excluding these
variables left 91 variables for which autoregressive equations are estimated.
Logs were used for some of the variables. Logs were not used for ratios, for
variables that were negative or sometimes negative, and for variables that were
sometimes close to zero. The estimation technique was ordinary least squares.

The US+ model thus has no hard to forecast exogenous variables, and in
this sense itis comparable to the VAR and AC models discussed in Section 7.6,
which have no exogenous variables other than the constant term and time trend.
Remember, however, from the discussion in Section 7.8 that this treatment of
the exogenous variables may bias the results againstthe US model. Many ofthe
exogenous variables may not be as uncertain as the autoregressive equations
imply.

The covariance matrix of the error terms in the US+ model is<12A1,
and for purposes of the stochastic simulation work it was taken to be block
diagonal. The first block is the 380 covariance matrix of the structural error
terms, and the second block is the<H1 covariance matrix of the exogenous
variable error terms. In other words, the error terms in the structural equations
were assumed to be uncorrelated with the error terms in the exogenous variable
equations. This assumption is consistent with the assumption in the US model
that the structural error terms are uncorrelated with the exogenous variables.
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8.3 MU Estimates of the US Modetl

The procedure for obtaining median unbiased (MU) estimates of a model is
explained in Section 7.4. This procedure was carried out for the US model,
and the results are reported in this section. The starting point was the set of
2SLS estimates in Chapter 5. Starting from these values, median unbiased
estimates of the lagged dependent variable (LDV) coefficients were obtained
for 18 of the 30 stochastic equations. The estimates for the other 12 equations
were fixed at their 2SLS values. The estimation period was 1954:1-1993:2,
for a total of 158 observations. The number of repetitions per iteration (i.e.,
the value of/ in step 3 in Section 7.4) was 500. After 3 iterations (i.e., after
steps 3 and 4 in Section 7.4 were done 3 times), the largest difference between
the successive estimates of any LDV coefficient was less than .001 in absolute
value. Convergence thus occurred very quickly.

The results for the LDV coefficient estimates are presented in Table 8.1.
The bias for each coefficient estimate, defined as the difference between the
2SLS estimate and the MU estimate, is presented in the table. The “Andrews
bias” in the table is the exact bias for an equation with a constant term, time
trend, and lagged dependent variable and with the LDV coefficient equal to the
2SLS coefficient estimate presented in the table. These biases are interpolated
from Table Il in Andrews (1993).

Also presented in Table 8.1 are the 90 percent confidence values. The first
2SLS confidence value for each coefficient is minus 1.645 times the 2SLS
estimate of the asymptotic standard error of the LDV coefficient estimate. The
second 2SLS confidence value is the absolute value of the first value. The MU
values are computed using the coefficient estimates from the 500 repetitions
on the last iteration. The first MU confidence value for each coefficient is
minus the difference between the median estimate and the estimate at which
five percent of the estimates are below it. The second MU confidence value is
minus the difference between the median estimate and the estimate at which
five percent of the estimates are above it.

1The material in this section is taken from Fair (1994a). The results in this paper are the
same as those in Table 8.1.

2T0 lessen stochastic simulation error, the same draws of the error terms were used for
eachiteration. The number of errors drawn per iteration is 2,370,000 = (500 repetit{8as)
stochastic equationg)158 observations). The model is solved dynamically over the es-
timation period for each repetition, and each of the 18 equations is estimated for each
repetition.
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Table 8.1
Estimated Bias of 2SLS Lagged Dependent Variable
Coefficient Estimates

Andrews 90% Confidence Values
Eq. 2SLS Bias Bias 2S19s Mu?
1.CS 943  -.012 -040 -052 .052 -.033 .025
2. CN .620 -.029 -.027 -070 .070 -.074 .060
3.CD 575 -.025 -.025 -104 .104 -094 .079
4, |HH 532 -.020 -025 -091 .091 -.104 .084
5. L1 776 -.049 -031 -082 .082 -104 .078
6. L2 987 -.003 -051 -008 .008 -.017 .011
7.L3 .890 -.040 -036 -.059 .059 -.081 .050
8. LM .863 -.027 -034 -055 .055 -.077 .047
9. MH .896 -.050 -.036 -.064 .064 -083 .053
10. PF 919 -.002 -036 -.010 .010 -.010 .009
11. Y .293 -.000 -.020 -.074 .074 -059 .055
12. IKF -.040 .000 -012 -022 .022 -020 .017
17. MF .904 -.027 -.036 -.048 .048 -.067 .042
23. RB .881 -.002 -035 -.034 .034 -035 .027
24. RM .842  -.003 -.033 -.042 .042 -.048 .034
26. CUR .957 -.003 -043 -018 .018 -.016 .012
27. IM 872 -.032 -.034 -054 .054 -071 .053
30. RS .892 -.003 -035 -031 .031 -035 .027
Average -.018 -033 -051 .051 -.057 .042

4The first number for 2SLS is minus 1.645 times the 2SLS estimate of
the standard error of the LDV coefficient estimate. The second
number for 2SLS is the absolute value of the first number.

bThe first number for MU is minus the difference between the median
estimate and the estimate at which five percent of the estimates are
below it. The second number for MU is minus the difference between
the median estimate and the estimate at which five percent of
the estimates are above it.

The results in Table 8.1 show that the estimated biases are zero to three
decimal places for 2 of the 18 coefficients and negative for the rest. The
average bias across the 18 estimates.&18. The average Andrews bias, on
the other hand, is-.033, and so the results suggest that the bias of a typical
macroeconometric equation is on average less than the bias of an equation that
includes only a constant term, time trend, and lagged dependent variable. In
only four cases in the table is the Andrews bias smaller in absolute value—
equations 2, 5, 7, and 9.

The 2SLS and MU confidence values in Table 8.1 are fairly similar. The
average of the left tail values is.057 for MU and—.051 for 2SLS. The
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average of the right tail values is .042 for MU and .051 for 2SLS. It is clear
that the MU confidence interval is not symmetric around the median estimate.
For all the coefficient estimates the right tail value is less than the left tail value
in absolute value. The left tail of the distribution is thus thicker than the right
tail, although the differences are fairly minor.

An interesting question is whether the biases in Table 8.1 are quantitatively
important regarding the properties of the model. This question is examined
in Sections 8.5 and 11.3.5. In Section 8.5 the sensitivity of the predictive
accuracy of the model to the use of the MU estimates is examined, and in
Section 11.3.5 the sensitivity of the multiplier properties of the model to the
use of the estimates is examined. It will be seen that the use of the MU
estimates has little effect on the predictive accuracy of the model and on its
multiplier properties. These results thus suggest that macroeconometric model
builders have not missed much by ignoring the Orcutt and Hurwicz warnings
40 years ago, although work with other models should be done to see if the
present results hold up. With hindsight, the present results are perhaps not
surprising. What they basically say is that if one changes a LDV coefficient
estimate by about half of its estimated standard error and then reestimates the
other coefficients in the equation to reflect this change, the fit and properties
of the equation do not change very much. This is something that most model
builders probably know from experience.

8.4 Asymptotic Distribution Accuracy?

The procedure for examining the accuracy of asymptotic distributions was
discussed in Section 7.5. It is carried out in this section for the US model.
Again, the 2SLS estimates in Chapter 5 were used as the base estimates. For
the present results the US model was simulated and estimated 800 times.
There are 166 coefficients to estimate in the model, and so the results from
this exercise consist of 800 values of 166 coefficients. A summary of these
results is presented in Table 8.2. Detailed results are presented for the same 18
coefficients that were examined in Table 8.1, namely the LDV coefficients of
the 18 equations, and summary results are presented for all 166 coefficients.
The bias results for the 18 coefficients show, as in Table 8.1, that the 2SLS
estimates of the LDV coefficients are biased downwérddth the average

3The material in this section is also taken from Fair (1994a). The results in this paper
are the same as those in Table 8.2.
4The bias estimates are slightly different in Table 8.2 than in Table 8.1 because they are
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Table 8.2
Asymptotic Distribution Accuracy
Med.- Left Tall Right Tail

Eq. 2SLS Med. 2SLS 5 10 20 5 10 20
1.CS 943 931 -012 04 18 79 00 04 33
2. CN .620 595 -025 40 101 195 16 48 146
3.CD 575 554 -021 38 86 176 08 49 111
4. IHH b532 516 -016 83 125 220 19 75 180
5. L1 776 731 -045 89 136 220 56 116 223
6. L2 987 984 -003 139 185 26.8 89 138 244
7.3 .890 856 -034 94 138 229 14 58 159
8. LM .863 839 -024 93 156 248 25 81 1938
9. MH 896 850 -.046 94 151 233 25 83 181
10. PF 919 919 -000 66 115 208 28 75 176
11.Y 293 292 -001 23 6.0 120 14 50 144
12. IKF -.040 -.039 .001 24 63 144 21 56 150
17. MF 904 882 -022 131 188 271 34 91 211
23. RB .881 877 -004 58 100 201 38 84 185
24. RM 842 836 -006 6.1 11.6 203 46 85 19.0
26. CUR 957 954 -003 40 75 149 18 44 1138
27. IM 872 846 -026 105 164 254 46 108 239
30. RS .892 839 -003 69 124 216 3.0 74 179
MEAN(18) -.016 55 99 194 40 8.1 174
MAE(18) 33 39 42 25 34 44
MEAN(166) 5.0 9.3 183 44 8.7 179
MAE(166) 28 36 43 24 32 41

bias being—-.016. This is as expected.

The main pointof Table 8.2 isto compare the left tail and right tail estimated

probabilities to the values implied by the asymptotic distribution. p;gtbe
the estimated probability for coefficientor the asymptotic value dfpercent.

Remember from Section 7.5 how these percentages are computed. Given for
a particular coefficient estimate the 2SLS estimate of its asymptotic standard

error, one can compute the value above whicpercent of the coefficient
estimates should lie if the asymptotic standard error is accuraté. depral to

20, this value is the median plus 0.84 times the estimated asymptotic standard

error. Fork equal to 10 the multiplier is 1.28, and foequal to 5 the multiplier

is 1.64. From the 800 coefficient estimates one can compute the actual percent
of the coefficient estimates that lie above this value. These are the right tail

based on 800 rather than 500 repetitions and because the iterations done for the results in

Table 8.1 were not done for the results in Table 8.2.
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percents. A similar procedure can be followed for the left tail percents. For
each tail and each coefficiehtone can thus compute valuesg§, p;10, and

pi2o0- Values of these probabilities for each tail are presented in Table 8.2 for
the 18 LDV coefficient estimates. Also reported in the table are the means
of the probabilities across the 18 coefficients and across the 166 coefficients.
In addition, the mean absolute errors around the means are presented for the
18 and 166 coefficients. For example, the mean absolute error for the left tail
pis for the 18 coefficients is the sum @b;5 — 5.5| across the 18 coefficients
divided by 18, where 5.5 is the mean.

Consider the results for the 166 coefficients in Table 8.2. The means of
the 5, 10, and 20 percent left tail values are 5.0, 9.3, and 18.3, with mean
absolute errors of 2.8, 3.6, and 4.3, respectively. The corresponding right tail
means are 4.4, 8.7, and 17.9, with mean absolute errors of 2.4, 3.2, and 4.1,
respectively. These mean values are less than the asymptotic values (except for
the equality for the 5 percent left tail value), and so on average the asymptotic
distribution has thicker tails than does the exact distribution. These differences
are, however, fairly small. In general the asymptotic distribution seems to be
a good approximation, although the mean absolute errors reveal that there is
some dispersion across the coefficients. The overall results suggest that the
use of the asymptotic distribution is not in general likely to give misleading
conclusions.

The closeness of the asymptotic distribution to the exact distribution is an
important result. If this result holds up for other models, it means that the
unit root problems that have received so much attention in the econometric
literature are not likely to be of much concern to macro model builders. While
the existence of unit roots can in theory cause the asymptotic distributions that
are relied on in macroeconometrics to be way off, in practice the asymptotic
distributions seem fairly good.

8.5 A Comparison of the Estimates

Section 8.3 examined the closeness of the 2SLS and MU estimates. This
section compares the closeness of the 2SLS, 2SLAD, 3SLS, and FIML esti-
mates. It also compares the predictive accuracy of the model for all five sets
of estimates.

The first step for the results in this section was to compute the 2SLAD,
3SLS, and FIML estimates. There are some computational tricks that are
needed to obtain these estimates. These tricks are discussed in Fair (1984),
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Table 8.3
Comparison of 2SLS, 2SLAD, 3SLS, and FIML Estimates

Number of estimates greater ~ Number of
than .5, 1.0, 1.5, 2.0,and 3.0  sign changes
standard errors away from from 2SLS
the 2SLS estimates estimates

137 Coefficients:
5 10 15 20 3.0

3SLS 69 22 4 2 0 2
FIML 101 70 51 32 13 6
166 Coefficients:

2SLAD 62 16 4 2 1 3

Average ratio of 2SLS standard
error to 3SLS standard error =1.28
(137 coefficients)

Average ratio of 3SLS standard
error to FIML standard error =0.81
(137 coefficients)

and this discussion will not be repeated her&f the 166 coefficients, 137
were estimated by 3SLS and FIML, with the remaining coefficients being
fixed at their 2SLS value®%.All 166 coefficients were estimated by 2SLAD.
The first stage regressors that were used for 3SLS are listed in Table A.7 in
Appendix A/ The same first stage regressors were used for 2SLAD as were
used for 2SLS, and these are also listed in Table A.7.

A comparison of the four sets of estimates is presented in Table 8.3. The
main conclusion from this comparison is that the estimates are fairly close

5The 2SLAD computational problem is discussed in Section 6.5.4, the 3SLS problem
in Section 6.5.3, and the FIML problem in Section 6.5.2 in Fair (1984). The Parke (1982)
algorithm was used for the 3SLS and FIML estimates.

5The equations whose coefficients were fixed for 3SLS and FIML are 15, 18, 19, 20, 21,
25, 28, and 29. (Remember that the coefficients for equations 19 and 29 were obtained in
the manner discussed in Section 5.9 rather than by 2SLS.) In addition, the following other
coefficients were fixed: the two autoregressive coefficients in equation 4, the coefficients
of T andDD772- T in equations 13 and 14, and the four dummy variable coefficients in
equation 27. These coefficients were fixed to lessen potential collinearity problems. See
Fair (1984), Section 6.4, for a discussion of sample size requirements and the estimation of
subsets of coefficients.

"The choice of first stage regressors for 3SLS is discussed in Fair (1984), Section 6.3.3.
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to each other, with the FIML estimates being the farthest apart. Of the 137
3SLS estimates, only 22 were greater than one 2SLS standard error away
from the 2SLS estimate, and only 2 were greater than two standard errors.
For the FIML estimates, 70 were greater than one standard error away from
the 2SLS estimate, and 32 were greater than two standard errors. Of the
166 2SLAD estimates, 16 were greater than one standard error away from
the 2SLS estimate, and 2 were greater than two standard errors. There were
2 sign changes for 3SLS, 6 for FIML, and 3 for 2SLAD. The closeness of
these estimates is encouraging, since one would not expect for a correctly
specified model that the use of different consistent estimators would result in
large differences in the estimates.

The second to last result in Table 8.3 shows the efficiency gained from
using 3SLS over 2SLS. The average ratio of the 2SLS standard error to the
3SLS standard error across the 137 coefficients is 1.28. In other words, the
2SLS standard errors are on average 28 percent larger than the 3SLS standard
errors.

The last result in Table 8.3 shows that the 3SLS standard errors are on
average smaller than the FIML standard errors. The average ratio of the 3SLS
standard error to the FIML standard error across the 137 coefficients is .81.
In other words, the 3SLS standard errors are on average 19 percent smaller
than the FIML standard errors. The smaller 3SLS than FIML standard errors
is a typical result, and a possible reason for it is discussed in Fair (1984), pp.
245-246. This discussion will not be repeated here.

Another way to compare the different sets of coefficient estimates is to
examine the sensitivity of the predictive accuracy of the model to the different
sets. This examination is presented in Table 8.4. One, two, three, four, six,
and eight quarter ahead RMSEs are presented for four variables for each set of
estimates. The prediction period is the same as the estimation period, namely
1954:1-1993:2. These predictions are all within sample predictichsere
are 158 one quarter ahead predictions, 157 two quarter ahead predictions, and
so on through 151 eight quarter ahead predictions, where each of the 158

8|f different models were being compared, the use of RMSEs in the manner done here
would not be appropriate and one should use a method like the one in the next section.
The RMSE procedure ignores exogenous variable differences and possible misspecifica-
tions. These problems are less serious when it is simply different estimates of the same
model being used. There are no exogenous variable differences except for the fact that
different coefficients multiply the same exogenous variables across versions. There are also
no specification differences, and so misspecification effects differ only to the extent that
misspecification is differentially affected by the size of the coefficients across versions.
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Table 8.4
RMSEs for Five Sets of Coefficient
Estimates for 1954:1-1993:2
for the US Model

Number of Quarters Ahead
1 2 3 4 6 8

GDPR: Real GDP

2SLS 069 105 130 145 155 159
2SLAD 0.69 107 136 154 172 177
3SLS 0.68 1.02 127 142 153 158
FIML 070 102 124 140 156 1.68
MUE 0.68 1.04 128 142 152 154

GDPD: GDP Deflator

2SLS 040 060 078 097 129 152
2SLAD 040 060 0.78 098 133 1.60
3SLS 040 062 081 100 134 158
FIML 052 090 128 164 228 280
MUE 040 060 0.78 0.97 129 153

U R: Unemployment Rate

2SLS 030 056 0.73 087 102 1.06
2SLAD 030 057 075 090 1.09 116
3SLS 029 052 068 079 091 0.95
FIML 032 058 076 090 103 111
MUE 0.30 057 075 089 105 110

RS: Bill Rate

2SLS 054 102 120 140 162 1.72
2SLAD 054 101 120 142 167 1.78
3SLS 055 098 115 133 152 158
FIML 063 106 128 146 171 1.82
MUE 055 103 121 139 161 171

Errors are in percentage points.

simulations is based on a different starting point.

The results in Table 8.4 show that the RMSEs are very similar across the
five sets of estimates. No one set of estimates dominates the others, and in
general the differences are quite small. The largest differences occur for the
FIML predictions of the price deflator, which are noticeably less accurate than
the others. My experience with the FIML estimation of macroeconometric
models is that FIML estimates are the most likely to differ in large ways from
other estimates and that when they do differ they generally lead to a poorer
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fitting model. For example, 3SLS estimates are generally closer to 2SLS
estimates than are FIML estimates, and they tend to lead to a better fitting
overall model. The 3SLS estimates in Table 8.4 do in fact quite well. They are
slightly worse than the 2SLS estimates for the price deflator, but slightly better
for the other three variables. Again, however, these differences are small.

The closeness of the results in Table 8.4 is again encouraging, since one
would not expect there to be large differences of this sort for a model that is a
good approximation of the economy.

The fact that the MU results are similar to the others in Table 8.4 is consis-
tent with the properties of a simple equation with only the lagged dependent
variable as an explanatory variable, say= ay;_1 + ¢;. Malinvaud (1970),

p. 554, shows for this equation that the expected value of the prediction error
is zero when the distribution ef is symmetric even if the estimate @that is

used to make the prediction is biased. The present results show that even for
much more complicated models, prediction errors seem to be little affected by
coefficient estimation bias.

8.6 Predictive Accuracy

This section uses the method discussed in Section 7.7 to compare the US model
to the VARS/2, VAR4, and AC models. The latter three models are discussed
in Section 7.6. The method computes forecast error variances for each variable
and period ahead that account for the four main sources of uncertainty of a
forecast. The variances can thus be compared across models. The results
for the four models are presented in Table 8.5 for four variables: real GDP,
the GDP deflator, the unemployment rate, and the bill rate. Standard errors
rather than variances are presented in the table because the units are easier to
interpret.

There are considerable computations behind the results in Table 8.5, and
most of this section is a discussion of this table. Consider the a and b rows
for the US model first. The simulation period was 1991:1-1992:4, and 1000
repetitions were made for each row. For the a row, only the structural error
terms were drawn, and for the b row, both the structural error terms and the
coefficients were drawn. In the notation in Section 7.7, each valaed row
is the square root af2, .

The 2SLS estimates in Chapter 5 were used for this work. The estimated
covariance matrix of the error terms, is 30x30. Remember from the dis-
cussion at the end of Section 5.9 that equations 19 and 29 are taken to be
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Table 8.5
Estimated Standard Errors of Forecasts
for Four Models

1991 1992
1 2 3 4 1 2 3 4

GDPR: Real GDP

a .61 98 129 149 162 170 1.78 181
b 63 103 136 158 174 184 193 1.98
c .72 122 164 195 220 238 248 252
d 86 152 214 256 286 298 3.05 3.07

VAR5/2:

a .80 120 144 155 169 186 204 221
b .83 124 153 177 199 222 242 265
d 96 173 223 262 280 290 293 297

VARA4:

a .75 115 140 147 160 174 191 207
b .82 132 157 171 194 212 232 249
d 108 201 245 291 335 364 382 389

AC:

a 51 .80 99 118 134 142 149 1.53
b .52 87 115 136 151 164 174 181
d 73 1.18 161 191 217 239 264 2.85

GDPD: GDP Deflator

a 34 51 64 74 82 8 .97 1.05
b 36 56 69 .79 8 99 110 118
c 48 73 92 108 120 132 141 152
d 43 70 92 114 140 170 200 233

VARS5/2:

a .27 40 53 67 .84 101 117 132
b 27 44 60 .78 97 118 142 1.64
d 29 58 .80 105 136 175 214 253

VARA4:

a 30 44 58 .75 96 117 136 1.55
b 3 49 65 .88 114 138 164 1.93
d 33 62 8 114 149 189 231 277
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Table 8.5 (continued)

1991 1992
1 2 3 4 1 2 3 4

U R: Unemployment Rate

a .2r 44 58 .70 80 .87 .96 1.03
b 31 49 64 77 90 98 107 1.14
c 31 52 70 .87 102 113 121 1.30
d .27 55 .79 103 122 130 131 1.28

VARS5/2:

a .24 4 58 66 .71 .76 .83 .90
b 25 47 63 .75 .85 .93 99 1.07
d 29 60 .86 108 123 130 130 1.27

VARA4:

a .23 42 54 62 65 69 .75 81
b 24 46 62 71 79 84 91 .96
d 34 72 100 124 145 155 159 154

RS: Bill Rate
Us:
a .56 .87 101 111 118 1.23 1.30 1.37
b .54 .89 1.07 114 124 137 147 153
c .57 96 1.17 132 147 160 175 1.85
d 82 157 188 228 274 3.03 335 3.63

VARS5/2:

a .67 108 124 135 146 153 163 1.65
b 66 111 133 153 1.72 1.87 195 2.00
d 115 202 246 301 358 4.02 452 4.87

VARA4:

a 63 103 121 134 145 152 163 167
b .65 112 137 156 174 191 202 206
d 114 211 251 3.05 377 440 491 531

a = Uncertainty due to error terms.

b = Uncertainty due to error terms and coefficient estimates.

¢ = Uncertainty due to error terms, coefficient estimates,
and exogenous variable forecasts.

d = Uncertainty due to error terms, coefficient estimates,
exogenous variable forecasts, and the possible
misspecification of the model.

Errors are in percentage points.

231
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stochastic for purposes of computiigeven though their coefficients are not
estimated in a traditional way. Remember also that equation 19 is divided
through by|A F + 10| and that equation 29 is divided through |G| before
computing the error terms to be used in compufihg

The estimation period foE was 1954:1-1993:2. This is the estimation
period used for estimating all the equations except 15, which explains
The estimation period for equation 15 begins in 1956:1 rather than 1954:1.
However, for purposes of computiryg, the period beginning in 1954:1 was
used for equation 15. Data féf O prior to 1956:1 were constructed in the
manner discussed in Section 3.2.3.

The estimated covariance matrix of the coefficient estimateés, is
166x166. The formula for this matrix is given in equation 4.5 in Chapter
4. For purposes of computirig, the coefficients in equations 19 and 29 were
taken to be fixed. There are five of these coefficients. Also, four of the coef-
ficients in the wage equation 16 are constrained and thus not freely estimated.
There are thus a total of 175 coefficients in the model, but only 166 freely
estimated. The dimension @E is thus 166<166 rather than 176175.

Consider next the c row for the US model. For this row, structural errors,
coefficients,and exogenous variable errors were drawn, and again 1000 rep-
etitions were made. The procedure that was used for the exogenous variable
errors is the following. First, an eighth order autoregressive equation with a
constant and time trend was estimated for each of 91 exogenous variables.
These are the same equations that are used for the US+ model discussed in
Section 8.2 except that all the equations here are linear whereas many of the
equations for US+ are in logs. The estimation period was 1954:1-1993:2. Let
5; denote the estimated standard error from the equation for exogenous vari-
ablei. Letv;; be a normally distributed random variable with mean zero and
variances? : v;, ~ N(0, 52) for all . Letx{. be the actual value of exogenous
variablei for periods. Finally, letx}, be the value of variablé used for a
given repetition. Then for prediction period 1 throughthe values fox, for
a given repetition were taken to be

*
X1 = X{1 +vi1

x5 = x5+ vi1 + vi2

x'p =xfp vt +vio+ -+ ur
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where each;; (t = 1,---, T) is drawn from thev (0, fl.z) distribution. This
treatment implies that the errors are assumed to pertaghaogesin the
exogenous variables. The errgy is carried along from quarter 1 on, the
error v;p is carried along from quarter 2 on, and so forth. Given the way
that many exogenous variables are forecast, by extrapolating past trends or
taking variables to be unchanged from their last observed values, it may be
that any error in forecasting the level of a variable in, say, the first period will
persist throughout the forecast period. If this is true, the assumption that the
errors pertain to the changes in the variables may be better than the assumption
that they pertain to the levels. Given that the simulation period is 8 quarters in
length and given that there are 91 exogenous variables, 728 exogenous variable
errors are drawn for each repetition.

Turn next to the d row for the US model. This row required by far the most
computational work. Inthe notation in Section 7.7, each valed row is the
square root o62,. Put another way, the square of each d row value is equal
to the square of the ¢ row value plds, whered;; is the mean of the/;
values discussed in Section 7.7. In computingdfe values, the model was
estimated and stochastically simulated 68 times. All estimation periods began
in 1954:1 (except for equation 15, where the beginning was 1956:1). The first
estimation period ended in 1976:2, the second in 1976:3, and so on through
1993:1. The estimation technique was 2SLS. For each estimation period the
covariance matrix of the structural error terrds,and the covariance matrix
of the coefficient estimated/», were estimated along with the coefficients.
For this workV, was taken to be block diagonal.

Dummy variables whose nonzero values begin after 1976:2 obviously can-
not be included in the version of the model estimated only through 1976:2.
Dummy variables were thus added when appropriate as the length of the es-
timation period increased. The varialll¥94823- PCM1_; in equation 30
was added for the first time for the estimation period ending in 1979:4. The
variable D811824 in equation 21 was added for the first time for the period
ending in 1981:1, and the variabi#2831834 in the same equation was added
for the first time for the period ending in 1983:1. Finally, the variables involv-
ing DD772 in equations 13 and 14 were added for the first time for the period
ending in 1983:1.

Given the 68 sets of estimates, 68 stochastic simulations were run. Each
simulation period was of length 8 quarters subject to the restriction that the last
quarter for predictions was 1993:2. All simulations were outside the estimation
period. The first simulation period began in 1976:3, the second in 1976:4, and
so on through 1993:2. Both structural error terms and coefficients were drawn
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for these simulations (using the appropriate estimates ahd V»), and the
number of repetitions per each of the 68 stochastic simulations was 250. For
the one quarter ahead predictidn= 1), these calculations allowed 68 values

of d;s; to be computed for each endogenous variapbfeom which the mean

d;x was computed. For the two quarter ahead prediction, there were 67 values
of d;sx computed, and so on. Given these means and given the ¢ row values
in Table 8.5, the d row values could be computed.

The same procedure was followed for the other three models except that
the other models have no exogenous variables and so no ¢ row values are
needed. For these models the number of repetitions per stochastic simulation
was 1000 even for the 68 stochastic simulations involved in getting;the
values. The estimation technique was ordinary least squares. As was the case
for the US model, the covariance matrices of the coefficient estimates were
taken to be block diagonal.

Once these calculations have been done and the d row values computed,
one can compare the models. As discussed in Section 7.7, each model is on an
equal footing with respect to the d row values in the sense that the four main
sources of uncertainty of a forecast have been accounted for. The d row values
can thus be compared across models.

Turn now to the d row values in Table 8.5, and consider first the US
model versus the two VAR models. For real GD®RI§P R) the US model
is better than VARS/2 for the first four quarters and slightly worse for the
remaining four. The US model is better than VAR4 for all eight quarters.
For the GDP deflator@ D P D) the US model is worse than VAR5/2 for the
first five quarters and better for the remaining three. The US model is worse
than VARA4 for the first three quarters, tied for quarter four, and better for
the remaining four quarters. For the unemployment rét®) the US model
is better than VAR5/2 for the first four quarters and essentially tied for the
remaining four. The US model is better than VARA4 for all quarters. For the
bill rate (RS) the US model is better than both VAR models for all quarters.
Comparing VAR5/2 and VAR4, VAR5/2 is more accurate for all variables and
all quarters except for the one quarter ahead prediction of the bill rate, where
the two models essentially tie.

Using VARS5/2 as the better of the two VAR models, what conclusion can
be drawn about the US model versus VAR5/2? For the first three variables the
models are generally quite close, and one might call it a tie. For the fourth
variable, the bill rate, the US model does substantially better. The US model
may thus have a slightedge over VARS5/2, but only slight. Remember, however,
that the present results are based on the use of the autoregressive equations
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for the 91 exogenous variables. As discussed earlier, these equations may
exaggerate the uncertainty of the exogenous variables and thus bias the results
against the US model.

Turning next to the AC model, it does very well in t6eD P R predictions.
Ithasthe smallestdrowvaluesinthetable. There clearly seemsto be predictive
power in the lagged components@D P R that is not captured in the US and
VAR models.

Comparing the a and b rows in Table 8.5 shows that coefficient uncer-
tainty contributes much less to the variances than does the uncertainty from
the structural error terms. In other words, the a row values are large relative to
the difference between the b row and arow values. For the US model the differ-
ences between the c row values and the b row values are generally larger than
the differences between the b row and a row values, which says that exogenous
variable uncertainty (as estimated by the autoregressive equations) generally
contributes more to the total variance than does coefficient uncertainty.

The differences between the d row and c row values are measures of the
misspecification of the model not already captured in the c row values. On this
score, the worst specifications for the models are for the bill rate and the best
are for the unemployment rate. Again, the differences between the US model
and VARS5/2 regarding misspecification are close except for the bill rate, where
the US model is much better.

Outside Sample RMSEs

From the 68 stochastic simulations that are used fordthe calculations,
one has for each endogenous variabé8 one quarter ahead outside sample
error terms, 67 two quarter ahead outside sample error terms, and so on.
(These errors are denotégy in Section 7.7.) From these errors one can
compute RMSEs, and the results of doing this for four variables are presented
in Table 8.6. Remember, however, that comparing RMSESs across models has
problems that do not exist when comparing the d row values in Table 8.5 across
models. Exogenous variable uncertainty is not accounted for, which affects
the comparisons between the US model and the others but not between the
other models themselves. Also, the fact that forecast error variances change
overtime is not accounted for in the RMSE calculations. The RMSEs in Table
8.6 are, however, all outside sample, which is aleast a crude way of accounting
for misspecification effects.

For what they are worth, the results in Table 8.6 show that the US model
is noticeable better than the VAR models for real GDP and the bill rate. The
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Table 8.6

Number of Quarters Ahead

1 2 3 4 6 8
GDPR: Real GDP
us 79 139 195 233 264 274
VAR5/2 1.07 189 251 3.06 384 457
VAR4 115 2.05 261 322 433 515
AC 79 123 164 195 248 2.99
GDPD: GDP Deflator
us 34 58 82 123 232 321
VARS5/2 31 .61 .87 1.18 1.98 2.89
VAR4 33 .62 .88 1.18 201 3.02
UR: Unemployment Rate
usS 31 .61 89 116 151 161
VAR5/2 .32 65 94 120 152 168
VAR4 36 .74 104 129 168 1.84
RS: Bill Rate
us .80 161 191 229 3.03 361
VAR5/2 1.18 208 252 3.07 413 5.10
VAR4 1.17 215 256 3.12 453 5.56

1. The results are based on 68 sets of coefficient
estimates of each model.

2. Each prediction period began one quarter
after the end of the estimation period.

3. ForUR andRS the erors are in percentage

points. FOrGDP R andG D P D the errors

are expressed as a percent of the forecast

mean (in percentage points).

results are fairly close for the GDP deflator and the unemployment rate. The
AC model is about the same as the US model and noticeably better than the
VAR models. Therefore, as expected, the US model does better relative to the
other models when exogenous variable uncertainty is not taken into account.

This completes the comparison of the models using the d row values. The
next two sections compare the models in two other ways, and the final section

summarizes the overall comparison results.
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8.7 Comparing Information in Forecasts’

Section 7.8 discussed a method for comparing the information in various fore-
casts, and this section uses this method to compare the forecasts from the US,
US+, VAR5/2, VAR4, and AC models. The results of comparing the US and
US+ models to the other three are presented in Table 8.7, and the results of
comparing the AC model to the two VAR models are presented in Table 8.8.
The rest of this section is a discussion of these two tables.

When using the method in Section 7.8, the forecasts should be based on
information only up to the beginning of the forecast period. In other words,
they should be “quasi ex ante” forecasts. The 68 sets of estimates that were used
for the results in the previous section are used here to generate the forecasts.
As was the case inthe previous section, each forecast period begins one quarter
after the end of the estimation period. There are 68 one quarter ahead forecasts,
67 two quarter ahead forecasts, and so on. All these forecasts are outside
sample, and so they meet one of the requirements of a quasi ex ante forecast.

The other main requirement of a quasi ex ante forecast is that it not be based
on exogenous variable values that are unknown at the time of the forecast.
The VAR and AC forecasts meet this requirement because the models have
no exogenous variables, but the forecasts from the US model do not. The
68 sets of forecasts that were computed for the US model are based on the
actual values of the exogenous variadieg.he US+ model, on the other hand,
has no hard to forecast exogenous variables, and so it meets the exogenous
variable requirement. Both the US and US+ models were used for the present
results to see how sensitive the results for the US model are to the treatment
of exogenous variables. For this work the US+ model was also estimated 68
times, including estimation of the 91 exogenous variable equations, and these

9The material in this section is an updated version of the material in Fair and Shiller
(1990) (FS). In FS the US model was compared to six VAR models, eight AC models, and
two autoregressive models, whereas for present purposes only two VAR and one AC model
are used. In addition, the version of the US model that was used in FS was the version
that existed in 1976, whereas the current version of the model is used here. Finally, only
the results for real output were discussed in FS, whereas results for the GDP deflator, the
unemployment rate, and the bill rate are also discussed here. The forecasts examined in
this section are alijuasiex ante. The information content aftualex ante forecasts for a
number of models is examined in Fair and Shiller (1989) using the present method, but this
material is not presented here.

10Remember that the actual values of the exogenous variables were used in computing
thed; s values in the previous section. Exogenous variable uncertainty was handled through
the c row calculations.
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Table 8.7
US Model Versus Three Others: Estimates of Equation 7.12
One Quarter Ahead Forecast Four Quarter Ahead Forecast
Other us Other us Other
Model cnst B y SE cnst B y SE
GDPR: Real GDP
US Model
VAR5/2  -.0008 781 -.051 .00691 -.0025 .753 -.103  .01727
(0.45) (5.30) (0.34) (0.41) (4.87) (0.72)
VAR4 -.0008 .756 -.003 .00692 -.0021  .767 -112  .01722
(0.50) (5.35) (0.03) (0.36) (4.86) (0.84)
AC -.0020 .620 .324  .00681 -0101  .505 578  .01629
(1.11) (3.48) (1.45) (1.56) (3.74) (2.30)
US+ Model
VAR5/2 -.0002 .678 .006  .00825 .0069 .381 153 02121
(0.10) (3.90) (0.04) (0.53) (1.01) (0.60)
VAR4 -.0000 .613 .064  .00823 .0053 417 124 02123
(0.02) (3.02) (0.52) (0.43) (1.08) (0.52)
AC -.0020 .289 .758  .00770 -.0116  .335 911  .01866
(0.90) (1.51) (4.14) (1.45) (2.13) (3.37)
GD P D: GDP Deflator
US Model
VAR5/2  .0023 454 416 .00260 .0079 .519 341 .01000
(3.22) (3.49) (2.95) (1.36) (2.54) (1.59)
VAR4 .0027 461 .387 .00264 .0082 .489 377 .00981
(3.71) (3.49) (2.67) (1.54) (2.39) (1.89)
US+ Model
VAR5/2 .0024  .394  .454 .00284 0073 261 582 .01050
(3.08) (2.26) (2.41) (1.10) (1.02) (2.41)
VAR4 .0027 407 428 .00282 .0071 .307 .556 .01021
(3.53) (2.96) (2.82) (1.14) (1.43) (299
U R: Unemployment Rate
US Model
VAR5/2  .0018 .579 .398  .00278 .0385 .689 -.200 .00909
(0.97) (4.25) (2.84) (3.96) (2.82) (0.85)
VAR4 .0030 .730 .230  .00288 .0409 761 -305 .00892
(1.68) (6.23) (1.89) (4.89) (3.20) (1.48)
US+ Model
VAR5/2  .0011 .595 392 .00279 .0373 .556 -.071  .00996
(0.54) (4.14) (2.67) (3.06) (2.30) (0.28)
VAR4 .0021 .748 225 .00288 .0399 .625 -176  .00990
(1.10) (5.83) (1.73) (3.67) (2.49) (0.75)
RS: Bill Rate
US Model
VAR5/2 -31 1.069 -.027 .795 1.69 .588 .184 2.180
(0.88) (6.55) (0.20) (0.92) (1.74) (1.21)
VAR4 -.32 1.097 -.054 795 1.63 .662 121 2.209
(0.94) (6.82) (0.37) (0.86) (1.83) (0.75)
US+ Model
VAR5/2  -35 1073 -027  .822 228 501 186  2.223
(0.92) (6.20) (0.19) (1.34) (1.55) (0.95)
VAR4 -.36 1.093 -.047 .821 2.22 575 123 2.247
(0.99) (6.54) (0.31) (1.27) (1.64) (0.60)
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Table 8.8
AC Versus VAR5/2 and VAR4
One Quarter Ahead Forecast Four Quarter Ahead Forecast
Other AC Other AC Other
Model cnst B y SE cnst B y SE
GDPR: Real GDP
VAR5/2 -0010 .916 106 .00778 -.0038  .938 .204  .01863
(0.54) (5.28) (0.81) (0.46) (3.78) (2.28)
VAR4 -.0010 .881 .120 .00774 -.0048 .954 181 .01873
(0.54) (4.81) (1.18) (0.60) (3.79) (2.22)

68 sets of estimates were used. All the forecasts for the US+ model were also
outside sample. Again, remember from the discussion in Section 7.8 that the
treatment of the exogenous variables as in US+ may bias the results against
the model. Many of the exogenous variables may not be as uncertain as the
autoregressive equations imply.

Both one quarter ahead and four quarter ahead forecasts are examined
in Table 8.7. In the estimation of the equations, the standard errors of the
coefficient estimates were adjusted in the manner discussed in Section 7.8 to
account for heteroskedasticity and (for the four quarter ahead results) a third
order moving average process for the error term. Equation 7.12 was used for
real GDP and the GDP deflator, where both variables are in logs, and the level
version of equation 7.12 was used for the unemployment rate and the bill rate.

Turn now to the results in Table 8.7, and consider the forecasts of real GDP
first. Also, ignore for now the results for the AC model. The results show that
both US and US+ dominate the VAR models for real GDP. The estimates of
the coefficients of the VAR forecasts are never significant, and the estimates
of the coefficients of the US and US+ forecasts are significant except for the
four quarter ahead forecasts for US+, where the t-statistics are about one. It
is thus interesting to note that even though the standard errors of the forecasts
in Table 8.5 (the d row values) are fairly close for real GDP for the US and
VAR models, the results in Table 8.7 suggest that the VAR forecasts contain
no information not already in the US forecasts. In this sense the method used
in this section seems better able to discriminate among models.

The results for the GDP deflator show that both the US (and US+) forecasts
and the VAR forecasts contain independent information. In most cases both
coefficients are significant, the exceptions being US versus the VAR models
for the four quarter ahead forecasts, where the VAR forecasts are not quite sig-
nificant, and US+ versus the VAR models for the four quarter ahead forecasts,
where the US+ coefficients are not quite significant.
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For the unemployment rate US and US+ dominate the VAR models with
the exception of the one quarter ahead forecasts from VAR5/2, which are
significant in the US and US+ comparisons, although with t-values smaller
than those for the US and US+ forecasts.

The results for the bill rate show that US and US+ dominate the VAR
models for the one quarter ahead forecasts. For the four quarter ahead forecasts
the US and US+ forecasts have larger coefficient estimates and larger t-values
than do the VAR forecasts, although collinearity is such that none of the t-
values are greater than two.

The results of these comparisons are thus encouraging for the US model.
Only for the GDP deflator is there much evidence that even the US+ forecasts
lack information that is contained in the VAR forecasts.

Consider now the AC model, where there are only results for real GDP.
The US and US+ comparisons in Table 8.7 suggest that both the US or US+
forecasts and the AC forecasts contain independent information. There clearly
seems to be forecasting information in the lagged components of GDP that is
not captured in the US model, and this is an interesting area for future research.

The VAR versus AC comparisons in Table 8.8 show that the VAR fore-
casts appear to contain no independent information for the one quarter ahead
forecasts, but at least some slight independent information for the four quarter
ahead forecasts. As did the results in the previous section, these results sug-
gest that the AC model may be a better alternative than VAR models for many
purposegl!

Lwith a few exceptions, the results for real GDP here are similar to those in Fair and
Shiller (1990) (FS). The US+ version is closest to the version used in FS, and so the following
discussion focuses on the US+ results. The one quarter ahead results for US+ in Table 8.7
have the US model dominating the VAR models, which is also true in Table 2 in FS. For
the four quarter ahead results neither the US+ nor the VAR forecasts are significant in Table
8.7 and both are significant in Table 2 in FS. However, in both tables the US forecasts have
larger coefficient estimates and larger t-values than do the VAR forecasts. Regarding US+
versus AC, the results in Table 8.7 are more favorable for AC than they are in Table 2 in
FS. In Table 2 in FS the US model dominates the AC models, whereas in Table 8.7 the AC
model has a large and significant coefficient estimate for both the one quarter ahead and
four quarter ahead forecasts for US+ versus AC. Finally, the VAR versus AC comparisons
in Table 8.8 are similar to those in Table 3 in FS. In both tables the AC forecasts dominate
the VAR forecasts for the one quarter ahead results and both forecasts are significant for the
four quarter ahead results.
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8.8 Estimating Event Probabilities'?

The use of event probability estimates to compare models was discussed in
Section 7.9. This comparison is made in this section for two events and five
models. The five models are the US, US+, VAR5/2, VAR4, and AC models.
The two events, labelled A and B are:

A = At least two consecutive quarters out of five of negative real GDP growth.

B = At least two quarters out of five of negative real GDP growth.

Event A is a recession as generally defined. Event B allows the two or more
guarters of negative growth not to be consecutive.

The first 64 sets of estimates of each model that were used for the results in
the previous section were used here. (Only 64 rather than 68 sets of estimates
could be used because each forecast here has to be five quarters ahead.) There
were 64 five quarter ahead outside sample stochastic simulations performed.
The number of repetitions per five quarter forecast was 250 for US and US+
and 1000 for the VAR5/2, VAR4, and AC.

Regarding the US+ model, this is the first time that stochastic simulation
of the model is needed. For the results in the previous section only determin-
istic outside sample forecasts were used. As discussed in Section 8.2, when
stochastic simulation was performed using US+, the covariance matrix of all
the error terms, which is 121121, was taken to be block diagonal. For the
results in this section this matrix was estimated 64 times, each estimate being
used for each of the 64 stochastic simulations. The covariance matrices of
the coefficient estimates are not needed for the work in this section because
coefficients are not drawn.

From the stochastic simulation work one has five sets of valueg, of
(t =1,---,64) for each of the two events, one for each model, wiiens
the model’s estimate of the probability of the event for the period beginning
in quarters. One also has values & for each event, wherg; is the actual
outcome—one if the event occurred and zero otherwise. Given the values

12The material in this section is an updated and expanded version of the material in
Section 3.3 in Fair (1993c). In Fair (1993c) only within sample forecasts were used and
the only comparisons were to the constant model and a fourth order autoregressive model.
In this section all the forecasts are outside sample and comparisons are made to two VAR
models and an AC model in addition to the constant model. Also, no coefficients are drawn
for the present results, whereas they were drawn in the earlier work. (See the discussion in
Section 7.9 as to why coefficients were not drawn here.)
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Table 8.9
Estimates of Probability
Accuracy

Event A
(Actual p =.188)
Model p QPS LPS

Constant .188 .305 .483
us 175 310 477
Us+ 173 .310 .472
VAR5/2 .310 .496 .844
VAR4 .264 518 .972
AC 154 324 510

Event B
(Actual p = .234)
Model p QPS LPS

Constant .234 .359 .545
us 211 290 .438
Us+ .238 .306 .465
VARS5/2 .416 514 *
VAR4 .358 521 *
AC .237 .363 .537

*LPS not computable.

of R;, another model can be considered, which is the model in which
is taken to be equal t& for eachs, whereR is the mean ofR, over the
64 observations. This is simply a model in which the estimated probability
of the event is constant and equal to the frequency that the event happened
historically. This model will be called “Constant.” The results for this model
are not outside sample because the mean that is used is the mean over the
whole sample period.

The summary statistics are presented in Table 8.9. In two cases (both for
the VAR models) thd. P S measure could not be computed because erher
was 1 andR; was 0 or vice versa. This is a limitation of tlie? S measure in
that in cannot handle extreme errors of this type. It, in effect, gives an infinite
loss to this type of error.

The results in Table 8.9 are easy to summarize. Either US or US+ is best
for both events for both error measures except the case of the constant model
and event A, where the QPS for the constant model is slightly smaller. This is
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thus strong support for the US model.

The results in Table 8.9 also show that the AC model completely dominates
the VAR models. This is in keeping with the results in the previous two
sections, which generally show the AC model out performing the VAR models.

Figures 8.1 and 8.2 plot the values®fand R, for the US+ and VARS/2
models for event A for the 64 observations. Itis clear from the plots why US+
has better QPS and LPS values in Table 8.9. VAR5/2 has high probabilities
too early in the late 1970s and comes down too fast after the recession started
compared to US+. Note that both models do not do well predicting the 1990—
1991 recession. No model seems to do well predicting this recession.

8.9 Summary of the Test Results

Overall, the results in Tables 8.5, 8.6, 8.7, and 8.9 are favorable for the US
model. Even after correcting for exogenous variable uncertainty that may be
biased against the model, the model does well in the tests relative to the VAR
and AC models. The GDP deflator results are the weakest for the US model,
and this is an area for future work. Also, the results in Table 8.7 show that
there is information in the AC forecasts of real GDP not in the US forecasts,
which suggests that the US model is not using all the information in the lagged
components of GDP. Aside from the GDP deflator forecasts, there does not
appear to be much information in the VAR forecasts not in the US forecasts.

The AC model generally does as well as or better than the VAR models.
This suggests that there is useful information in the lagged components of
GDP that the VAR models are not using. From another perspective, if one
wants a simple, non structural model to use for forecasting GDP, an AC model
would seem to be a better choice than a VAR model.
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