Lecture 5

Chapter 9

- Government budgets updated from text
- Multiplier model with government and net taxes exogenous
- Multiplier model with government and net taxes endogenous
- Government spending multipliers (G and TR)
- Tax multiplier (t)
- Balanced budget amendment

NOTATION

- Y output or income
- \bullet C consumption
- I investment
- G government purchases of goods and services
- TR government spending on transfer payments (a negative tax)
- t tax rate
- TAX taxes
- T net taxes (TAX TR)
- Y_d disposable income (Y T)

MULTIPLIER MODEL, T EXOGENOUS

- $Y_d \equiv Y T$ Definition
- $C = a + bY_d$ Behavioral
- Y = C + I + G Equilibrium condition

SOLUTION

$$\begin{split} Y &= C + I + G \\ &= a - bT + bY + I + G \\ &= \frac{1}{1-b}(a - bT + I + G) \\ &= \frac{a}{1-b} - \frac{b}{1-b}T + \frac{1}{1-b}(I+G) \quad \text{Reduced form} \\ \text{equation} \end{split}$$

$$\frac{\Delta Y}{\Delta G} = \frac{1}{1-b} = \frac{1}{1-\text{MPC}} = \frac{1}{1-.75} = 4$$

$$\frac{\Delta Y}{\Delta T} = \frac{-b}{1-b} = \frac{-\text{MPC}}{1-\text{MPC}} = \frac{-.75}{1-.75} = -3$$

BALANCED BUDGET MULTIPLIER (ONLY WHEN T IS EXOGENOUS)

If $\Delta G = 10$ and $\Delta T = 10$, then:

$$\Delta Y = \frac{10}{1-b} - \frac{10b}{1-b} = 10(\frac{1-b}{1-b}) = 10$$

So

$$\frac{\Delta Y}{\Delta G} = 1$$

MULTIPLIER MODEL, T ENDOGENOUS

- $Y_d \equiv Y T$ Definition
- $C = a + bY_d$ Behavioral
- Y = C + I + G Equilibrium condition
- TAX = tY Behavioral
- $T \equiv TAX TR$ Definition

SOLUTION

$$\begin{split} Y &= C + I + G \\ &= a + b(Y - tY + TR) + I + G \\ &= \frac{a}{1 - b + bt} + \frac{b}{1 - b + bt} TR + \frac{1}{1 - b + bt} (I + G) \quad \text{Reduced form equation} \end{split}$$

If
$$b=.75$$
 and $t=\frac{1}{3}$, then $\frac{1}{1-.75+.25}=2$ and $\frac{.75}{1-.75+.25}=1.5$

MULTIPLIER MODEL, T ENDOGE-NOUS, BALANCED BUDGET AMEND-MENT

- $Y_d \equiv Y T$ Definition
- $C = a + bY_d$ Behavioral
- Y = C + I + G Equilibrium condition
- TAX = tY Behavioral
- $T \equiv TAX TR$ Definition
- G = T Behavioral

SOLUTION

$$\begin{array}{l} Y=C+I+G\\ =a+b(Y-tY+TR)+I+tY-TR\\ =\frac{a}{1-b+bt-t}+\frac{b}{1-b+bt-t}TR+\frac{1}{1-b+bt-t}(I-TR) \end{array}$$
 Reduced form equation

If
$$b = .75$$
 and $t = \frac{1}{3}$, then $\frac{1}{1 - .75 + .25 - .33} = 5.9$

billions # GOP in 2015 = 18,037

Expenditures +	Federal 2015	state d Local 2015
G	964	1,641
TR	2,034	666
GIA	531	_
Interest	438	185
other	56	
	4, 023	2,493
Receipts		
Personal tax	1,533	406
Corporate tax	455	60
Sales property tax	275	1,316
Social Security tex	1,190	19
GIA	\$200 -	531
	3,453	3,332
Deficit (-)	-570	-161
$aggregate$ = $t = \frac{3,453 + 2,332 - 531}{18,037} = 0.29$		

CHANGE IN G

- Government increases its purchases of goods and services, G.
- \bullet Output (income), Y, increases to meet the added sales.
- Taxes, tY, increase. So does disposable income, Y_d , because t is less than 1.0.
- Because of the increase in disposable income, consumption, C, increases. This further increases Y, etc. Reduced form equation is needed to see the final solution.

CHANGE IN TR

- Government increases its transfer payments to households, TR.
- Disposable income, Y_d , increases because transfer payments are part of disposable income.
- Because of the increase in disposable income, consumption, C, increases. Consumption increases by b times the change in TR, where b is the marginal propensity to consume. The initial increase in demand is thus b times the change in TR, not the entire change in TR.
- Output (income), Y, increases to meet the added sales.
- Taxes, tY, increase. Disposable income increases further because t is less than 1.0.
- Because of the further increase in disposable income, consumption increases further. This further increases Y, etc. Reduced form equation is needed to see the final solution.
- Note: the initial injection of demand is not the entire change in TR, unlike when G is changed, where the entire change in demand is the change in G.