Lecture 5
Chapter 9

• Government budgets – updated from text
• Multiplier model with government and net taxes exogenous
• Multiplier model with government and net taxes endogenous
• Government spending multipliers (G and TR)
• Tax multiplier (t)
• Balanced budget amendment
NOTATION

- Y output or income
- C consumption
- I investment
- G government purchases of goods and services
- TR government spending on transfer payments (a negative tax)
- t tax rate
- TAX taxes
- T net taxes ($TAX - TR$)
- Y_d disposable income ($Y - T$)
MULTIPLIER MODEL, T EXOGENOUS

• \(Y_d \equiv Y - T \) Definition
• \(C = a + bY_d \) Behavioral
• \(Y = C + I + G \) Equilibrium condition

SOLUTION

\[
Y = C + I + G \\
= a - bT + bY + I + G \\
= \frac{1}{1-b}(a - bT + I + G) \\
= \frac{a}{1-b} - \frac{b}{1-b}T + \frac{1}{1-b}(I + G) \quad \text{Reduced form equation}
\]

\[
\frac{\Delta Y}{\Delta G} = \frac{1}{1-b} = \frac{1}{1-\text{MPC}} = \frac{1}{1-.75} = 4
\]

\[
\frac{\Delta Y}{\Delta T} = \frac{-b}{1-b} = \frac{-\text{MPC}}{1-\text{MPC}} = \frac{-.75}{1-.75} = -3
\]
BALANCED BUDGET MULTIPLIER
(ONLY WHEN T IS EXOGENOUS)

If $\Delta G = 10$ and $\Delta T = 10$, then:

$$\Delta Y = \frac{10}{1-b} - \frac{10b}{1-b} = 10\left(\frac{1-b}{1-b}\right) = 10$$

So

$$\frac{\Delta Y}{\Delta G} = 1$$
MULTIPLIER MODEL, T ENDOGENOUS

• \(Y_d \equiv Y - T\) Definition
• \(C = a + bY_d\) Behavioral
• \(Y = C + I + G\) Equilibrium condition
• \(TAX = tY\) Behavioral
• \(T \equiv TAX - TR\) Definition

SOLUTION

\[Y = C + I + G \]
\[= a + b(Y - tY + TR) + I + G \]
\[= \frac{a}{1-b+bt} + \frac{b}{1-b+bt}TR + \frac{1}{1-b+bt}(I + G) \]
Reduced form equation

If \(b = .75\) and \(t = \frac{1}{3}\), then \(\frac{1}{1-.75+.25} = 2\)
and \(\frac{.75}{1-.75+.25} = 1.5\)
MULTIPLIER MODEL, T ENDOGENOUS, BALANCED BUDGET AMENDMENT

• $Y_d \equiv Y - T$ Definition
• $C = a + bY_d$ Behavioral
• $Y = C + I + G$ Equilibrium condition
• $TAX = tY$ Behavioral
• $T \equiv TAX - TR$ Definition
• $G = T$ Behavioral

SOLUTION

\[
Y = C + I + G \\
= a + b(Y - tY + TR) + I + tY - TR \\
= \frac{a}{1-b+bt-t} + \frac{b}{1-b+bt-t}TR + \frac{1}{1-b+bt-t}(I - TR) \quad \text{Reduced form equation}
\]

If $b = .75$ and $t = \frac{1}{3}$, then $\frac{1}{1-.75+.25-.33} = 5.9$
GDP in 2016 = 18,625

<table>
<thead>
<tr>
<th>Expenditures</th>
<th>Federal 2016</th>
<th>State & Local 2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>965</td>
<td>1,694</td>
</tr>
<tr>
<td>TR</td>
<td>3,093</td>
<td>693</td>
</tr>
<tr>
<td>GIA</td>
<td>556</td>
<td>-</td>
</tr>
<tr>
<td>Interest</td>
<td>475</td>
<td>197</td>
</tr>
<tr>
<td>Other</td>
<td>60</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>4,149</td>
<td>2,584</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Receipts</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Personal tax</td>
<td>1,541</td>
<td>420</td>
</tr>
<tr>
<td>Corporate tax</td>
<td>401</td>
<td>58</td>
</tr>
<tr>
<td>Saleed property d other tax</td>
<td>370</td>
<td>5363</td>
</tr>
<tr>
<td>Social Security tax</td>
<td>1,230</td>
<td>20</td>
</tr>
<tr>
<td>GIA</td>
<td>-</td>
<td>556</td>
</tr>
<tr>
<td>Deficit (-)</td>
<td>3,452</td>
<td>2,417</td>
</tr>
<tr>
<td>Total</td>
<td>-697</td>
<td>-167</td>
</tr>
</tbody>
</table>

Aggregate tax rate = \(t = \frac{3,452 + 2,417 - 556}{18,625} = 0.29 \)
CHANGE IN G

- Government increases its purchases of goods and services, \(G \).

- Output (income), \(Y \), increases to meet the added sales.

- Taxes, \(tY \), increase. So does disposable income, \(Y_d \), because \(t \) is less than 1.0.

- Because of the increase in disposable income, consumption, \(C \), increases. This further increases \(Y \), etc. Reduced form equation is needed to see the final solution.
CHANGE IN TR

- Government increases its transfer payments to households, TR.
- Disposable income, Y_d, increases because transfer payments are part of disposable income.
- Because of the increase in disposable income, consumption, C, increases. Consumption increases by b times the change in TR, where b is the marginal propensity to consume. The initial increase in demand is thus b times the change in TR, not the entire change in TR.
- Output (income), Y, increases to meet the added sales.
- Taxes, tY, increase. Disposable income increases further because t is less than 1.0.
- Because of the further increase in disposable income, consumption increases further. This further increases Y, etc. Reduced form equation is needed to see the final solution.
- Note: the initial injection of demand is not the entire change in TR, unlike when G is changed, where the entire change in demand is the change in G.