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Abstract

Using a sample of more than 0.3 million marathon runners of 56 race events in China
in 2014 and 2015, we estimate the air pollution elasticity of finish time to be 0.041.
Our causal identification comes from the exogeneity of air pollution on the race day
because runners are required to register for a race a few months in advance and we
control for confounding factors. Including individual fixed effects also provides
consistent evidence. Our study contributes to the emerging literature on the effect
of air pollution on short-run productivity, particularly on the performance of ath-
letes engaging in outdoor sports.

Keywords
air pollution, marathon race, mega events, short-run productivity

An emerging literature finds a sizable, negative effect of air pollution on short-run
labor productivity (Adhvaryu, Kala, & Nyshadham, 2014; Chang, Graff Zivin,
Gross, & Neidell, 2016a, 2016b; Fu, Viard, & Zhang, 2017; Graff Zivin and Neidell,
2012; Lichter, Pestel, & Sommer, 2017). This study contributes to this literature by
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estimating the causal effect of air pollution on marathon runners’ performance
(finish time) using a sample of more than 0.3 million runners in 37 cities and 56
race events in China in 2014 and 2015. Our causal identification relies mainly on the
exogeneity of air quality on the race day because runners are required to register for
a race a few months in advance and air quality on the race day can be considered
random. This identification strategy has been implemented in a few environmental
studies (e.g., Lavy, Ebenstein, & Roth, 2014; Lichter et al., 2017; Park, 2016). We
estimate the air pollution elasticity of finish time to be 0.0408. This effect is eco-
nomically significant because of large variations in air quality across Chinese cities.
For example, an average full-marathon runner will need 12 more minutes to cross
the finish line if he or she were to run the Beijing Marathon in 2014 when the air was
severely polluted, compared with running on a day with average air quality.

The related literature can be grouped into two strands.! The first is a large literature
documenting a harmful effect of air pollution on human health. Common air pollutants
include particulate matter 2.5 ug or less in diameter (PM, s), particulate matter 10 ug
or less in diameter (PM,o), sulfur dioxide (SO,), nitrogen dioxide (NO,), carbon
monoxide (CO), and ozone (Os). Long-run exposure to these pollutants can lead to
cardiopulmonary diseases, respiratory infections, lung cancer, infant morbidity,
asthma, and reduced life expectancy (Chay & Greenstone, 2003; Y. Chen, Ebenstein,
Greenstone, & Lie, 2013; Environmental Protection Agency [EPA], 2004; Neidell,
2004; Zhang, Chen, & Zhang, 2018). More relevant in our setting are the effects of
short-run exposure to ambient air pollution. These include decreased lung function,
irregular heartbeat, increased respiratory problems, nonfatal heart attacks, and
angina.? Air pollution can also lower cognitive ability (Lavy et al., 2014; Marcotte,
2017), increase anxiety, and have other negative psychological effects (Bullinger,
1989; S. Chen, Oliva, & Zhang, 2018; Pun, Manjouride, & Suh, 2017). In addition,
the sports health literature provides evidence for a negative effect of air pollution on
athletes’ health and performance (Chimenti et al., 2009; Rundell, 2012).

The second strand of literature focuses on the effect of air pollution on short-run labor
productivity. Graff Zivin and Neidell (2012) find that ozone reduces the productivity of
outdoor fruit pickers in California. Chang, Graff Zivin, Gross, and Neidell (2016a) find
that PM, s reduces the productivity of indoor pear packers in California. Adhvaryu,
Kala, and Nyshadham (2014) identify that PM, 5 reduces hourly productivity of workers
in a garment factory in India. He, Liu, and Salvo (2018) find that PM, s and SO, reduce
the output of textile workers at two firms in Henan and Jiangsu Provinces, China.
Chang, Graff Zivin, Gross, and Neidell (2016b) identify the negative effects of air
pollution on the productivity of workers at two call centers in Shanghai and Nantong,
China. Archsmith, Heyes, and Saberian (2016) find that CO and PM, 5 negatively affect
the productivity of professional baseball umpires in the United States. Fu, Viard, and
Zhang (2017) provide more comprehensive evidence that air pollution decreases the
labor productivity of manufacturing firms, using a nationwide longitudinal firm survey
sample capturing 90% of manufacturing output in China.
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The closest related paper is by Lichter, Pestel, and Sommer (2017). They find that
a 1% increase in the concentration of PM ¢ leads to a 0.02% decrease in professional
soccer players’ performance (measured by the number of passes in a match) in
Germany, an elasticity one half the size of our estimate but still comparable. Their
causal identification takes advantage of the exogeneity of match scheduling which is
controlled by the German Football League and beyond the control of individual
teams and players. Different from our setting, in that an individual runner’s perfor-
mance is mainly determined by individual effort, football is a team sport and a free
rider problem may arise in that a tiring player may have an incentive to reduce his or
her own effort and rely on other team players’ effort.? If air pollution strengthens this
free riding problem, this will amplify and, therefore, overestimate the negative effect
of air pollution on players’ performance. Regardless of the different settings, our
study complements theirs by identifying a similar, robust, negative effect of air
pollution on marathon runners’ performance.

Our findings have a few important implications for professional athletes who engage
in outdoor sports, for city governments organizing outdoor mega events, and for the
growing running industry. Our estimates show that the negative effect of air pollution on
top runners is also sizable: a top 10 full-marathon runner will need 4.8 more minutes to
finish the race if she or he were to run the 2014 Beijing Marathon compared with
running on a day with average air quality in China. This suggests that professional
athletes who compete in outdoor sports for awards (such as participating in the
Olympic Games) should consider the negative impact of air pollution on their perfor-
mance (Florida-James, Donaldson, & Stone, 2011; Lippi, Guidi, & Maffulli, 2008).

Many city governments organize various mega events, such as the Olympic
Games, world or nationwide exhibitions, sporting events, or music concerts, to
promote media exposure and urban development (Andranovich, Burbank, & Hey-
ing, 2001). Since air pollution has significant, negative effects on the short-run
health and productivity of people, city governments need to consider the costs and
benefits of hosting outdoor mega events on polluted days. A lesson can be learned
from the 34th Beijing International Marathon held on October 19, 2014. The average
air pollution index was 289 on the race day and 320 during the race hours, which is
considered heavily polluted and healthy people should avoid outdoor activities.*
However, the organizer did not reschedule the race. Many runners quit and many
of the remaining 30,000 runners ran the race donning all kinds of facemasks.’ Our
empirical evidence reminds hosting cities as well as participants of outdoor mega
events that air quality needs to be taken into account.

Our findings are also informative for the growing running industry. The number
of runners in China is estimated to be about 10 million, including runners running
outdoors and in gyms (http://sports.sina.com.cn/run/2016-06-08/doc-ifxsvenx363
5108.shtml [in Chinese]). More and more cities rush to organize running races
including marathon races. The running industry, including producers and retailers
of running gears, running clubs, and race organizations, is growing rapidly (http://
www.nielsen.com/cn/en/insights/news/2016/business-opportunity-looms-as-mara
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thon-mania-sweeps-across-china.html). Our study suggests that the industry stake-
holders need to consider the negative effect of air pollution on runners and the ripple
effects on event management and sales of running products.

The rest of the article is organized as follows: Section 2 describes the data,
Section 3 specifies the econometric models and discusses the causal identification
issues, Section 4 reports the results, and Section 5 concludes.

Data

Our data for marathon runners and races are downloaded from www.runchina.org.
cn, which is maintained by the Chinese Athletic Association (CAA). This website
publishes finish time data for each runner, for all the full-marathon and half-
marathon races hosted in China since 2014. The CAA certifies the running routes
of these races. We have collected the 2014 and 2015 data. The individual-level data
include runner name, gender, age-group, the name of the race, and the net time (the
difference between the time of crossing the finish line and the time of leaving the
start line). There are 37 cities and 56 race events. Some race events organize both
half- and full-marathon races, while others organize only half- or full-marathon
races. There are 90 races in total, including 47 half- and 43 full-marathon races.
Each city hosted only-one race event each year during the sample period except for
Hangzhou, which hosted two race events in 2015 (on November 1 and November 29,
respectively). In our sample, 19 cities hosted one race event, 17 cities hosted two,
and 1 city hosted three. Figure 1 maps all the cities in our sample.

The daily air quality index (AQI) data at the city level are downloaded from the
website of the Ministry of Environmental Protection of China (http://datacenter.
mep.gov.cn/). The daily AQI for a city is the maximum of the six pollutant indexes
based on hourly data from multiple monitoring stations in that city. These six
pollutants are PM; 5, PM;o, SO,, NO,, CO, and O;. From the same website, we
have also obtained the hourly data for the concentrations of each of these six
pollutants for 46 race events.

The AQI ranges between 0 and 500 and a larger value means worse air quality. A
day with the AQI below 100 is considered a “blue sky day” and has no health
implications on healthy people (but sensitive people will be affected when the AQI
is between 50 and 100). An AQI above 100 has progressively negative effects on
health (see Table Al in the Online Appendix).

The daily weather condition data are drawn from the Global Weather Database
provided by Bloomberg. We select four variables that most likely affect a runner’s
performance on the race day: precipitation (in centimeters), average temperature (in
Celsius), average wind speed (kilometers per hour), and relative humidity (in per-
centage). For example, conditioning on air quality, wind speed can affect the run-
ners’ movement positively at their backs and negatively into their faces. The daily
weather variables also likely correlate with the daily air quality (e.g., strong wind
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Figure |. Cities that hosted marathon races in 2014 and 2015.

may blow pollutants away from a city); omitting the weather variables will bias the
estimates of air pollution effects.

Our final sample includes 314,341 domestic runners. Table 1 reports the summary
statistics for the key variables. For full-marathon runners, the variations in finish time
are large, ranging between 8,301 s (2 hr 18 min and 21 s, 2:18:21 for short) and 24,337
s (6:45:37) with a mean of 16,581 s (4:36:21) and a standard deviation of 2,701 s
(0:45:01). This is consistent with the distribution of world marathon races documented
in Allen, Dechow, Pope, and Wu (2017) with a mean of 4:26:33 and a standard
deviation of 0:59:11 based on a sample of about 10 million runners. A similar pattern
holds for half-marathon runners’ finish time. About 19% of runners are females and
50% of runners are young people (aged between 18 and 34).

The AQI also shows a large variation across cities and days, ranging between 28 and
289 with a standard deviation of 59. The average AQI during race hours has an even
larger variation, ranging between 15 and 320 with a standard deviation of 67. These
large variations in air quality across races help estimate the pollution effect precisely.

Some medical studies fail to find a correlation between pollutants and marathon
runners’ performance in the United States and some European countries because the
concentrations of pollutants on race days rarely exceed the health limits set by the
U.S. EPA or the World Health Organization (Helou et al., 2012; Marr & Ely, 2010).
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Table |. Summary Statistics.

Standard Sample
Variable Mean Deviation Minimum Maximum  Size
Panel |: Runner characteristics
Finish time (seconds) 12,775 4,732 3,941 24,337 314,341
Finish time for full-marathon runners 16,581 2,701 8,301 24,337 172,523
(seconds)
Finish time for half-marathon runners 8,147 1,311 3,941 20,712 141,818
(seconds)
Full-marathon runner (dummy) 0.55 0.50 0 | 314,341
Female (dummy) 0.19 0.39 0 | 314,341
Age 18-34 (dummy) 0.50 0.50 0 I 314,341
Age 35-39 (dummy) 0.15 0.36 0 | 314,341
Age 4044 (dummy) 0.15 0.36 0 | 314,341
Age 4549 (dummy) 0.10 0.30 0 | 314,341
Age 50-54 (dummy) 0.05 0.22 0 | 314,341
Age 55 or above (dummy) 0.05 0.23 0 | 314,341
Panel 2: Air quality and weather condition on the race day
Air quality index 102.19 58.86 28.00 289.00 314,341
Precipitation (cm) 0.148 0.33 0 22 314,341
Temperature (Celsius) 16.53 4.05 6 25 314,341
Wind speed (kilometers per hour) 11.36 8.73 3.52 68.04 314,341
Relative humidity (%) 70.53 18.29 5.56 97.47 314,341
Panel 3: Average air quality and pollutant concentration (ug/m®) during race hours
Air quality index 101.05 66.59 15.22 319.57 314,341
PMys 73.89 60.89 5.89 268.57 271,296
PMjo 104.79 7798 12.78 34729 271,296
SO, 21.83 15.57 6.10 94.89 271,296
NO, 45.34 24.70 10.33 116.44 271,296
O; 54.42 31.75 10.40 200.00 271,296
CcO 1.20 0.61 0.36 267 271,296

However, Panel 3 of Table 1 shows that the pollutant concentrations in Chinese
cities in general far exceed the health limits. For example, the standard set by the
WHO for PM, s, PM;, and SO, concentrations is 25, 50, and 20 ug/m® for the 24 hr
mean; however, their means during the race hours in our sample are about 74, 105,
and 22 ug/m’, respectively, suggesting harmful effects on runners.®

Model Specification and Causal Identification

To estimate the effect of air quality on marathon runners’ performance, we specify
the following baseline cross-sectional model:

In(Finishtimey;) = o; + B, In(AQL;) + By Wjr + B3X; + &t (1)
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where the dependent variable is the logarithm of Finishtime;;, referring to the net
finish time (in seconds) of runner i who ran a race in city j on day ¢. «; denotes city
fixed effect. AQI;, is the AQI on the race day in a city hosting the race. ¥}, is a vector
of weather condition variables including temperature, wind speed, relative humidity,
and precipitation.” X; is a vector of runner’s demographic variables including a
dummy variable indicating female and five dummy variables for five age-group
categories: aged 35-39, 40-44, 45-59, 50-54, and 55 or above; the default age-
group is 18-34. B, B2, and B3 are the coefficient vectors to be estimated and g5, is the
error term.

Since we have 2 years’ data, we also include a dummy variable indicating year
2015. Ideally, we would also like to control for seasonal effects by including 11
monthly dummies, but most races concentrate in a few months with moderate
temperature and there is no race in February and only one race in July; therefore,
we include 5 bimonthly dummies.® We also include a dummy indicating whether a
runner finished a full marathon or a half marathon. To match with the available daily
weather data, we use daily AQI in our baseline models and also use average AQI
during race hours as robustness checks.

To identify the causal effect of air quality on a marathon runner’s finish time,
we rely mainly on the exogeneity of air quality on the race day. In general, runners
are required to register for a race a few months in advance. For example, the
Beijing Marathon requires registration 2 months in advance; the Wuhan Marathon,
3 months. While a runner can anticipate the average air quality of a city in a
particular season or month, it is unlikely to predict precisely the air quality on the
race day. This implies that air quality on the race day can be treated as random and
exogenous to runners. Note that predictable average air quality of a city in a
particular season is controlled for by city fixed effects and bimonthly dummies.
Therefore, the coefficient B, can be interpreted as the causal effect of air pollution
on runners’ finish time.

This causal identification strategy has been implemented in the environmental
economics literature. For example, Lichter et al. (2017) estimate the effect of PM ¢
concentration on professional soccer players’ performance in Germany using the
exogeneity of match scheduling as the identification—the scheduling is controlled
by the German Football League and beyond the control of teams and players,
implying that air quality on the match day is exogenous to players. Lavy, Eben-
stein, and Roth (2014) estimate the negative effect of air pollution during exam
periods on Israeli students’ test scores. Park (2016) estimates the negative effect of
high temperature during exam periods on New York students’ test scores. Our
research design complements these studies. There are a few other identification
issues worth discussion.

First, each certified marathon route is different in terms of geographic features
such as altitude, surface, flatness, curvature, and landscape along the course. Since
these characteristics hardly change over time, they are subsumed into city fixed
effects.
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Second, some runners may choose a particular city or a particular season to
run a race based on their preferences or other unobserved characteristics. This
concern is also taken care of by the inclusion of city fixed effects and bimonthly
dummies.

Third, it is possible that there are other unobserved personal characteristics that
correlate with air quality on the race day, biasing our estimate of the key coeffi-
cient B;. For example, some runners may have spent more time training them-
selves, which helps them better adapt to air pollution; some runners may simply
have different genes that affect their performance on a polluted day; some runners
may have different reference points in finish time which may provide different
psychological incentives (Allen, Dechow, Pope, & Wu, 2017). We can address this
issue by constructing individual panel data and including runner fixed effects in
the model. Specifically, we drop runners with the same name, gender, and age-
group showing up in the same race because these must be different persons. Then,
we treat runners with the same name, gender, and age-group as the same person.
This generates a runner panel data set and we reestimate Model (1) by including
runner fixed effects and cluster the standard errors at both the runner level and the
city level.

Fourth, runners in the same race may be affected by event-specific factors.
For example, some races are better organized or invite top runners, generating
stronger peer effects (Aral & Nicolaides, 2017). This implies that finish time of
runners in the same race may be correlated. We cluster the standard errors at the
race level.

There is, however, one issue we cannot address. Some runners may quit the race
(or quit during the race) when they know the air quality on the race day is bad. This
“avoidance behavior” creates a sample selection problem.” Unfortunately, we
cannot access the registration data; therefore, we cannot gauge the sample selec-
tion bias using methods such as Heckman’s two-step consistent estimator. The
quitters are likely to be a mixture of both fast and slow runners, so the sample
selection bias is very likely to be small. In Robustness Checks section, we provide
an indirect test to support this. Furthermore, our individual runner panel data
model does not suffer sample selection bias since we compare the effects on the
same runner across races.

Runners may exert more or less effort deliberately during a race when they know
that the air quality is bad. This endogenous behavioral adjustment may bias our
estimates either downward or upward (Graff Zivin & Neidell, 2013). We argue that
either case is unlikely for marathon running. If runners try to slow down hoping to
breathe in less pollutants, they will take a longer time to finish and will be exposed to
pollution longer; in addition, a longer time will lower their rank, damaging their
financial awards or pride. If runners try to speed up to finish the race earlier, they
will inhale more pollutants due to intense lung functioning and most probably will
not be able to sustain the accelerated pace—after all, a full marathon has 42.195 km!
More importantly, if they could have run faster, why didn’t they do so?
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Results

Cross-Sectional Results

Table 2 presents the results of estimating Model (1) using the full sample. All
columns include city fixed effects and bimonthly dummies and the standard errors
are clustered at the race level. Column 1 excludes the weather condition and
demographic variables and the estimated pollution effect on finish time is signif-
icantly positive with an elasticity of .0273. Column 2 adds weather variables and
the coefficient of In(AQI) becomes larger, .0408, and more significant. In terms of
the effects of weather conditions on runners’ performance, high temperature slows
down running speed, as commonly found in many marathon studies because high
temperature increases heat stress and may lead to hyperthermia, dehydration, and
loss of electrolytes (Helou et al., 2012; Maughan, 2010; Spellman, 1996; Vihma,
2010). More precipitation (raining) is also negatively associated with running
speed. Relative humidity helps increase speed, consistent with the finding in
Vihma (2010) and Helou et al. (2012).'° Although column 2 of Table 2 shows
that high wind speed tends to increase running speed, this result should be inter-
preted with caution since wind direction may change over the course of the race
and time and we do not have the wind direction data.'' Weather conditions may
have nonlinear effects on runners’ performance. As a robustness check, we also
add the quadratic terms of the weather variables and report the results in column 2
of Table A3 in the Online Appendix. The coefficient of In(AQI) is very close
(.0471) and remains statistically significant. Although the coefficient of tempera-
ture is not significant and the coefficient of temperature squared is significant only
at the 10% level, they are jointly significant at the 1% level. The implied optimal
temperature for runners is 10 °C, which is consistent with the findings in the
literature that the optimal temperature for marathon runners is generally between
10 and 12 °C (Helou et al., 2012; Maughan, 2010). Both the coefficient of the
linear term (positive) and the coefficient of the quadratic term (negative) of wind
speed are statistically significant and the implied “worst” wind speed is 17 km/hr.
This means that wind speed either below or above 17 km/hr helps increase speed.
We have no good explanation for this result because the effect of wind speed can
be very complicated: Head wind (wind blowing toward the runner) increases
resistance and therefore reduces speed but promotes cooling; tail wind (wind
following the runner) can propel a runner forward but exacerbate the cooling
problem which may lead to hypothermia (Davies, 1980; Pugh, 1971; Spellman,
1996). In addition, wind speed and direction may change over the race course
during race hours. Therefore, the effect of wind speed is rather indeterminate. The
linear and quadratic terms of precipitation and humidity variables are insignificant.
Since our key estimate of pollution effect is robust to linear and quadratic weather
controls, in the rest of analysis, we employ the models with only linear weather
controls.
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Table 2. Full Sample Results.

Variable | 2 3 4

In(Air quality index) 0273% (.01 14) .0408*+++ (,0030) .0408*+* (,0026)

Air quality index 2.731 1% (0.4476)
Full-marathon dummy .6731%F (,0057) 673 1+ (.0056) .6944%++ (.0052) 8,216.7570*** (90.2228)
Year 2015 dummy .0098* (.0051) .0202°%++ (,0026) .0171%+ (.0023) 247.619 1% (49.6329)
Precipitation 0282+ (.0074) 0280 (.0066) 134.2860 (81.8291)
Temperature 0049+ (.0006) .0047+F (.0006) 85.9956* (10.0497)
Wind speed —.0007++ (,0002) —.0007*+ (.0002) —3.5602 (4.3090)
Relative humidity —.0008*** (.0002) —.0008%+ (,0019) —2.6216 (3.3811)
Female 0919+ (.0030) 988.7489+** (36.0599)
Age 35-39 —.0257% (,0034) —383.6603*** (57.8257)
Age 4044 —.0453% (.0041) —663.6623%+* (76.2672)
Age 4549 —.0516% (.0049) —758.7814*%+* (90.5278)
Age 50-54 —.0489%* (.0054) —727.1522%% (96.0032)
Age 55 or above —.0309***+ (.0050) —473.3934*++* (82.2286)
Adjusted R? 8299 .8306 8417 8107

Note. The dependent variable for columns 1-3 is In(Finish time). The dependent variable for column 4 is finish time. All models also include city fixed effects and

bimonthly dummies. Standard errors are clustered at the race level and reported in the parentheses. Sample size: 314,341.
“*" indicates significance at the 10%. “**” indicates significance at the 5% level. “***" indicates significance at the 1% level.






