Effects of Rurality on Long-Term Health Outcomes

Literature

- 1. Retirees choosing to move from urban places to more rural areas
 - a. Lack of healthcare access
 - b. Friendly neighbors, slower pace of life
- 2. Natural experiments examining the impact of moving/migration on health
 - a. Does When You Die Depend on Where You Live? Evidence from Hurricane Katrina (American Economic Review 2020)
 - b. The Effects of Exposure to Better Neighborhoods on Children: New Evidence from the Moving to Opportunity Experiment (AER 2016)
- 3. Contribution: A number of studies looking at the impact of rurality of childhood residence on health, but none on the effects of migration from urban to rural areas

Data

- Includes detailed economic and health information in the survey
- Largest representative sample of Americans over age 50
- Created in 1990 by Act in Congress to provide data for the study of health and retirement
- Spans 1992 2018, administered biannually

Variables of Interest

Independent Variables: Population Density of Place of Residence

- Based on the 2013 Beale Rural-Urban Continuum codes
 - \circ 1 for Urban
 - 2 for Suburban
 - $\circ \quad \ \ 3 \, for \, Rural$

Dependent health outcome variables

• Cancer (0 or 1), Arthritis (0 or 1), Psychiatric conditions (0 or 1), Cognition (scale from 0 to 27), and self-rated health (scale from 1-5)

Method: Naive Regression

Health_{it} =
$$\beta$$
Lagged_Density_{it} + γX_{it} + λ_t + Θ_i + ϵ_{it}

Lagged_Density = 2013 Beale code for place of residence in previous wave X_{it} = vector of controls λ_{t} = time fixed effects Θ_{i} = U.S. Census region-division fixed effects

Table 1: Estimated Equations

	Dependent variable:				
	Cancer	Self-rated health	Cognition	Psychiatric	Arthritis
	probit	OLS	OLS	probit	probit
	(1)	(2)	(3)	(4)	(5)
beale2013 lag 1	0.016	-0.012	0.515***	-0.160***	-0.140***
	(0.042)	(0.028)	(0.147)	(0.042)	(0.037)
beale2013 lag 2	0.111**	-0.097***	0.827***	-0.257***	-0.041
	(0.053)	(0.036)	(0.186)	(0.057)	(0.047)
beale2013 lag 3					
Birth year	0.015	-0.010	0.075	-0.004	0.021
	(0.032)	(0.023)	(0.106)	(0.034)	(0.029)
Age	0.040	0.001	-0.167	-0.016	0.048*
	(0.032)	(0.023)	(0.107)	(0.034)	(0.029)
Gender	0.133***	-0.131***	0.832***	0.248***	0.243***
	(0.038)	(0.023)	(0.141)	(0.038)	(0.030)

4

Method: Differences-in-Differences

 $Health_{it} = \beta Destination*YearsMoved_{it} + \gamma X_{it} + \lambda_t + \Theta_i + \epsilon_{it}$

- Sample = individuals who moved once during the span of the survey who originally lived in an urban area
- Destination = 2013 Beale code of move destination
- YearsMoved are the years of the survey normalized to represent the number of years since the participant moved. (0 for year of the move)

Health_{it} = β Destination*YearsMoved_{it} + γX_{it} + λ_t + Θ_i + ϵ_{it}

The Heckman Correction

Two step process:

- First, estimates the probability that an individual drops out of the survey at a given wave (assigning 1 or 0)
- 2. Second, only estimates the final equation with the individuals who "survive" (previously assigned 1)