ECON 4438 Paper 3 Impact of a Change from NAP to SNAP on Employment in Puerto Rico

Tamara Gruslova

Introduction

SNAP:

- United States food stamps program
- Federal program funded based on need

NAP:

- Puerto Rico food stamp program
- Fixed grant given by United States government

Should SNAP replace NAP given it increases number of eligible individuals and benefit amounts?

Goal of Paper

- Counterfactual simulation to estimate impact of program change from NAP to SNAP on labor
- Measuring:
 - Change in probability of employment
 - Change in number of hours worked
 - Change in take up rate of benefits

Data

- Puerto Rico Community Survey Public Use Microdata Sample (PRCS PUMS) for 2023
- 27,427 individual/household level observations
- For each individual, information on their personal characteristics, employment status, income, welfare receipt, and survey weight was taken

Model Overview

- Eligibility and benefit amount for both NAP and SNAP calculated using program schedules
- Probit regression of employment on received benefit amounts and controls, separate for men and women
- Regression of weekly hours worked on received benefit amounts and controls
- Probit regression of benefit receipt given eligibility for program on received benefit amounts and controls
- Calculation of differences between NAP and SNAP

Results - Employment

- Average elasticity of employment in response to changes in benefit amounts is -0.039164
- A transition from NAP to SNAP results in 72, 671 less individuals being employed
- This is a 5.543% increase in overall unemployment rate for the population of Puerto Rico

Results - Hours Worked

- Average elasticity of weekly hours worked in response to changes in benefit amounts is -0.017788
- A transition from NAP to SNAP reduces the weekly number of hours worked by the population by 720,194
- This is a 1.5598% decrease in the number of hours worked by the entire population of Puerto Rico

Results - Take Up

- Average elasticity of benefit take up in response to changes in benefit amounts is 0.05577
- A transition from NAP to SNAP results in 35,351 more eligible individuals actually receiving benefits
- This is a 4.68% increase in the take up rate of benefits across the population of Puerto Rico

Questions?

Appendix

Left - Men's Employment

```
\begin{split} Employment &= \Phi(\alpha + \beta_1 SimBenefits + \beta_2 HighSchool + \beta_3 GED + \beta_4 Associates \\ &+ \beta_5 Bachelors + \beta_6 Masters + \beta_7 Doctorate + \beta_8 Closure1 \\ &+ \beta_9 Closure2 + \beta_{10} Closure3 + \beta_{11} Closure4 + \beta_{12} Age + \beta_{13} Age^2 \\ &+ \beta_{14} Married) \end{split}
```

Right - Women's Employment

 $Employment = \Phi(\alpha + \beta_1 SimBenefits + \beta_2 HighSchool + \beta_3 GED + \beta_4 Associates \\ + \beta_5 Bachelors + \beta_6 Masters + \beta_7 Doctorate + \beta_8 NOC + \beta_9 OCUnder6 \\ + \beta_{10} FER + \beta_{11} Age + \beta_{12} Age^2 + \beta_{13} Married)$

	Employment
SimBenefit	-0.003 *** (1.52×10^{-6})
HighSchool	-0.0321 *** (0.006)
GED	-0.2216 *** (0.012)
Associates	0.0600 *** (0.008)
Bachelors	0.0877 *** (0.007)
Masters	0.3149 *** (0.014)
Doctorate	0.2720 *** (0.025)
Closure1	0.2038 *** (0.013)
Closure2	-0.0433 *** (0.011)
Closure 3	0.1037 *** (0.1037)
Closure4	0.9098 *** (0.022)
Age	0.0644 *** (0.001)
Age^2	-0.0007 *** (9.8×10^{-6})
Married	0.3877 *** (0.006)
CNST	-0.0237 (0.018)
Psuedo R ²	1.00
No. obs.	5053

	Employment
SimBenefit	-0.0004 *** (1.67×10^{-6})
HighSchool	-0.0363 *** (0.007)
GED	-0.1796 *** (0.015)
Associates	0.1383 *** (0.008)
Bachelors	0.2916 *** (0.007)
Masters	0.2184 *** (0.011)
Doctorate	0.3050 *** (0.021)
NOC	0.1888 *** (0.004)
OCUnder6	0.0802 *** (0.011)
FER	0.2660 *** (0.021)
Age	0.0456 *** (0.0456)
Age^2	-0.0004 *** (1.32×10^{-5})
Married	0.1444 *** (0.006)
CNST	0.2429 *** (0.021)
Pseudo R^2	1.00
No. obs.	4895

Appendix

Hours Worked Regression

 $WKHP = \alpha + \beta_1 SimBenefit + \beta_2 WageIncome + \beta_3 HighSchool + \beta_4 GED + \beta_5 Associates \\ + \beta_6 Bachelors + \beta_7 Masters + \beta_8 Doctorate + \beta_9 Age + \beta_{10} Age^2 + \beta_{11} Female \\ + \beta_{12} Married$

	WKHP
SimBenefit	-0.0010 *** (7.14×10^{-5})
WageIncome	6.196×10^{-5} *** (2.84 × 10 ⁻⁶)
HighSchool	0.0698 (0.296)
GED	-0.6320 (0.350)
Associates	1.3087 *** (0.329)
Bachelors	1.9162 *** (0.287)
Masters	2.0117 *** (0.418)
Doctorate	0.7937 (0.753)
Age	0.6653 *** (0.043)
Age^2	-0.0075 *** (0.0001)
Female	1.7325 *** (0.204)
Married	-0.2845 (0.223)
INDP2	-1.3132 *** (0.372)
INDP3	-2.4876 *** (0.339)
INDP4	-1.9969 *** (0.312)
INDP5	2.6632 *** (0.670)
CNST	20.1419 *** (0.916)

Appendix

Benefit Take Up Regression

 $P(WelfareReciept|Eligible = 1) = \Phi(\alpha + \beta_1 SimulatedBenefit + \beta_2 HouseholdSize \beta_4 Age + \beta_5 Age^2 + \beta_6 Female)$

	Employment
SimBenefit	$7.91 \times 10^{-5***}$ (1.01×10^{-6})
Household Size	0.0572*** (0.002)
R65	-0.1736 *** (0.004)
Age	-0.0061 *** (0.0003)
Age^2	6.584×10^{-5} *** (3.47×10^{-6})
Female	0.117 *** (0.004)
CNST	0.7387 *** (0.008)
Pseudo R^2	0.9218
No. obs.	7866