Lecture 9
Chapter 11: The AS/AD Model

• Derivation of AD curve from IS curve and Fed rule
• AS and AD together
• Shape of AS curve and the effects on policy responses
• Reduced form equation for AS/AD model—optional
NOTATION

- Y output or income
- C consumption
- I investment
- G government purchases of goods and services—exogenous
- TR government spending on transfer payments (a negative tax)—exogenous
- t tax rate—exogenous
- TAX taxes
- T net taxes ($TAX - TR$)
- Y_d disposable income ($Y - T$)
- r interest rate
- P price level
- PM price of imports (cost variable)—exogenous
- Z "Z" variables in Fed rule—exogenous
AS/AD MODEL

- \(Y_d \equiv Y - T \) Definition
- \(C = a + bY_d \) Behavioral (households)
- \(I = d - e \cdot r \) Behavioral (firms)
- \(Y = C + I + G \) Equilibrium condition
- \(TAX = tY \) Behavioral (government)
- \(T \equiv TAX - TR \) Definition
- \(P = \delta + eY + \zeta PM \) Behavioral (AS curve, firms)
- \(r = \alpha Y + \beta P + \gamma Z \) Behavioral (Fed rule)
Derivation of AD curve

So when P↑, Y↓ -- AD curve
SOLUTION of AS/AD MODEL

\[Y = C + I + G = a + b(Y - tY + TR) + d - e \cdot (\alpha Y + \beta[\delta + \epsilon Y + \zeta PM] + \gamma Z) + G \]

Let \(q = 1 - b + bt + e\alpha + e\beta\epsilon \).

Reduced form equation is:

\[= \frac{a}{q} + \frac{b}{q} TR + \frac{d}{q} - \frac{e\beta\delta}{q} - \frac{e\beta\zeta}{q} PM - \frac{e\gamma}{q} Z + \frac{1}{q} G \]

If \(b = .75, t = 1/3, \alpha = .3, e = .3, \epsilon = .3, \beta = .3 \), then \(q = 0.617 \), so \(\frac{1}{q} = 1.62 \). This compares to \(\frac{1}{1-b+bt} = 2.0 \).

Why is the government spending multiplier smaller when the AS curve and/or the Fed rule are added to the model?