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We show that the performance of the new factor models of Hou et al. (2015) and Fama and French (2015)

depends crucially on how their investment factor is constructed. Both models use growth in total assets to 
measure investment. Their ability to price the cross-section of returns decreases significantly when the investment 
factor is constructed using traditional investment measures, or measures that also account for investment in 
intangibles. In contrast, we find that factors based on growth in inventory and accounts receivable contain the 
bulk of the pricing information in the asset growth factor. We show evidence that the superior performance of 
the asset growth factor seems to be attributable to its ability to capture aggregate shocks to equity financing 
costs.
1. Introduction

Recent advances in empirical factor models such as the four-factor 
model of Hou et al. (2015) and the five-factor model of Fama and 
French (2015) have improved our ability to explain the cross-section 
of equity returns, including the returns of many anomalies. As a result, 
these models have been widely adopted in the literature in the short 
period since their publication.1 In these new models, the improvement 
relative to prior models such as the Fama and French (1993) three-

factor model and the Carhart (1997) four-factor model has come in part 
from the addition of new factors related to firm-level profitability and 
investment. In both Fama and French (2015) and Hou et al. (2015), the 
motivation to use profitability and investment factors is based on theo-

retical arguments (a dividend discount model for the five factor model 
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and a production based model of Cochrane (1991) for the four factor 
model) that profitability and investment are inextricably linked to ex-

pected returns.

Our paper examines the link between the empirical specification 
and theoretical motivation of the investment factors in Hou, Xue, and 
Zhang (2015; hereafter HXZ) and Fama and French (2015; hereafter 
FF5F). Specifically, we call attention to the fact that the investment fac-

tors used in the empirical tests of both HXZ and FF5F are not based 
on traditional measures of firm investment (such as measures based on 
capital expenditures and the growth in property, plant, and equipment 
(PPE)) as one might expect from their theoretical arguments. Instead, 
both papers use “asset growth” (i.e., the year-on-year percentage change 
in the book value total assets) from Cooper et al. (2008) as a mea-

sure of investment. We show that both HXZ and FF5F factor models 
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derive much of their explanatory power from their nonconventional 
empirical specification for investment (i.e., asset growth). That is, these 
models are no more powerful than prior models they are purported 
to replace when conventional measures of investment are employed. 
Thus, despite the empirical power of these models and their potential 
relevance to performance evaluation, their relevance to asset pricing is 
potentially limited by their (lack of) theoretical justification, as is the 
case with many other firm characteristics associated with anomalous 
returns.

We argue that it is difficult to justify asset growth as the preferred 
measure of a firm’s investment activity in the HXZ and FF5F mod-

els for several reasons. First, it is not at all clear that asset growth 
is the appropriate measure of investment in the context of the theo-

retical models used by FF5F and HXZ because these models do not 
provide strict guidelines as to which particular set of characteristics 
is best suited for constructing the new factors. This is primarily be-

cause they are reduced-form models which connect expected returns 
with a set of unobservable characteristics – expected growth in book-

equity and expected profitability in FF5F, and optimal investment and 
expected profitability in HXZ. These unobservable characteristics do 
not have a clear link to the data.2 Second, asset growth does not in-

clude off-balance sheet intangible capital, such as knowledge capital 
and organizational capital, an increasingly important type of capital 
that arguably should be included in an investment measure given recent 
evidence in Peters and Taylor (2017). Third, asset growth confounds in-

vestments with the financing used for them. For example, if a firm uses 
cash to finance an investment in PPE, we would observe zero growth 
in total assets when an investment was clearly made. Fourth, it is not 
clear to what extent growth in certain components of total assets, such 
as growth in current assets, can be classified as an investment activity. 
While increases in current assets could be indicative of the firm grow-

ing its operations, they can also be a result of the firm stagnating. Cash 
balances can increase in the absence of investment opportunities, in-

ventory can increase if the firm is not able to sell its products at the 
same rate, and accounts receivables can increase if the firm is not able 
to recover the trade credit extended to its customers.

Motivated by these concerns with the asset growth (AG) measure, 
we conduct tests to determine how the HXZ and FF5 models perform 
when their AG factor is constructed using other common measures of in-

vestment. We start by building investment factors using the percentage 
growth in PPE, capital expenditures (CAPX) divided by lagged total as-

sets, and arguably more complete measures of investments such as the 
ones proposed by Peters and Taylor (2017) which include investments 
in off-balance sheet intangible assets. We use a variety of performance 
metrics to compare the HXZ and FF5F models with analogous models 
that use our alternative investment factors.3 Across all of our perfor-

mance measures, our tests show that the performance of the HXZ and 
FF5F models decreases significantly if the AG factor was constructed 
using alternative measures of investment. This finding generalizes to 
a significantly broader set of investment measures. In a model-mining 
exercise, we construct 144 different combinations of investments in var-

ious types of assets (e.g., inventory, PPE, goodwill, R&D, SGA), and 

2 This point is summarized best in Kozak et al. (2019). Speaking primarily 
about HXZ, but making a point that applies equally to FF5F, on page 5, they 
argue: “In practice, however, neither expected profitability nor (planned) in-

vestment are observable. The usual approach is to use proxies, such as lagged 
profitability and lagged investment as potential predictors of unobserved quan-

tities. Yet many additional characteristics are likely relevant for capturing ex-

pected profitability and planned investment and, therefore, expected returns. 
[...] The bottom line is that, in practice, q-theory does not necessarily provide 
much economic reason to expect sparse SDFs in the space of observable charac-

teristics.”
3 Specifically, we compare models based on the number of anomalies ex-

plained, the number of significant alphas in a large set of test assets, and the 
2

maximum Sharpe ratio tests developed by Barillas and Shanken (2017).
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we find that all (almost all) of them underperform the AG-based HXZ 
(FF5F) model. The fact that neither conventional nor broader measures 
of investment perform as well as the AG-based factor reinforces our be-

lief that this factor is not primarily about investment. Hence, using the 
standard q-theory as the motivation for the investment factor may be 
misplaced.

To gain a deeper understanding of what may be driving the pricing 
power of the AG factor, we decompose growth in total assets into its 
major subcomponents from both sides of the balance sheet and measure 
how/if the performance of the HXZ and FF5F models changes when we 
replace the AG factor with a factor based on one of the subcomponents. 
From the left-hand side of the balance sheet, we create factors based 
on changes in cash, inventory, accounts receivable, property, plant, and 
equipment (PPE), intangibles, and other assets (i.e., total assets minus 
the previous five categories). On the right-hand side, we develop factors 
using changes in current operating liabilities, non-current operating li-
abilities, long-term debt, common equity, and retained earnings. This 
gives us eleven different alternative versions of the HXZ and FF5F mod-

els, one for each subcomponent of AG.

Our comparison tests yield two main findings that are consistent 
across HXZ and FF5F comparisons. First, the models using an invest-

ment factor based on more traditional measures of investment such as 
growth in PPE or growth in balance-sheet intangibles significantly un-

derperform the original AG-based models. Second, the models using 
growth in inventory (INVT) and growth in accounts receivable (AREC) 
do not perform significantly differently from the AG-based models. Mo-

tivated by these results, we use spanning regressions to show that the 
INVT and AREC factors (together) contain the bulk of the pricing in-

formation that the AG factor contributes to the HXZ and FF5F models. 
Furthermore, the AG, INVT, and AREC factors are not spanned by any 
other subcomponent of AG. These findings suggest that the explanatory 
power of the AG factor comes primarily from the information contained 
in the dynamics of accounts receivables and inventory, not PPE and in-

tangible investments.

Despite their sensitivity to the way the AG factor is constructed, the 
HXZ and FF5F models (using AG as the investment factor) do perform 
well in describing the cross-section of stock returns. This means that the 
AG factor likely captures an aggregate source of comovement in returns 
that, given the results described above, is not captured by other mea-

sures of investment, but is captured by the INVT and AREC factors. To 
explore what this source of comovement might be, we use a represen-

tative set of macroeconomic variables that have been shown to produce 
cross-sectional risk dispersion in stock returns, and we use standard 
GMM tests to investigate whether they help price portfolios sorted on 
AG, INVT, AREC and PPE growth (beyond the market factor).4

The key finding revealed by these tests is that financing-related 
shocks (e.g., aggregate shocks to investor sentiment, equity-issuance 
costs, and financial intermediary balance sheets) help price AG, INVT, 
and AREC portfolios (though not always all three), but not PPE port-

folios. The only factor that significantly helps price all three groups 
of AG, INVT, and AREC portfolios but not the PPE portfolios is the 
equity-market sentiment factor (BW) of Baker and Wurgler (2006). 
These results support the notion that the superior performance of the 

4 We use the following macroeconomic variables: the utilization-adjusted 
TFP shocks from Fernald (2012), the investment-specific technology factor 
from Papanikolaou (2011), an innovation factor based on Elsaify (2017), the 
consumption-wealth ratio from Lettau and Ludvigson (2001), the aggregate liq-

uidity factor of Pastor and Stambaugh (2003), the macroeconomic uncertainty 
factor of Jurado et al. (2015), the measure of aggregate equity financing shocks 
from Belo et al. (2019), the financial intermediary leverage factor of Adrien et 
al. (2014), the financial intermediary capital ratio factor of He et al. (2017), 
the production network risk factor of Grigoris et al. (2023), the equity–market 
sentiment measure from Baker and Wurgler (2006), and the “high-yield share” 
measure used to proxy for credit–market sentiment in Greenwood and Hanson 

(2013).
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AG, INVT, and AREC factors is likely linked to their ability to capture 
aggregate financing shocks (as in Belo et al., 2019; Adrien et al., 2014; 
He et al., 2017), particularly those driven by changes in equity-market 
sentiment. To tease out if the BW factor has independent pricing in-

formation with respect to the other aggregate factors, we repeat our 
GMM tests using three-factor SDFs, each a linear function of the mar-

ket factor, the BW factor, and one of the remaining factors used in 
the prior test. We find that, for almost all SDF models, the BW factor 
still has a significant SDF loading when pricing AG, INVT, and AREC 
portfolios, but not when pricing PPE portfolios. Interestingly, when 
pricing AG, INVT, and AREC portfolios, almost all other macro fac-

tors become insignificant when BW is added to the SDF. This is not 
the case when pricing PPE portfolios, where, for example, the TFP, 
CAY, liquidity, and investment-specific technology shocks remain sig-

nificant.

We argue that our findings are consistent with the debt-equity sub-

stitution mechanism proposed by Belo et al. (2019). The authors point 
out that firms with higher investment (measured as CAPX) should be 
less exposed to changes in equity-issuance costs because they are less 
collateral constrained than low-investment firms. This should allow 
these firms to better hedge against aggregate equity financing shocks 
by substituting equity for debt financing in bad states of the world. We 
point out that this mechanism should apply to all the other collateral-

izable assets of the firm. In particular, since short-term assets are more 
collateralizable than long-term assets [e.g., Berger et al. (1996)], sorting 
on INVT and AREC might provide more accurate sorts on the extent to 
which firms are collateral constrained. Supporting this interpretation, 
we show that, in periods with large decreases in investor sentiment 
(BW), firms with high AG, INVT, and AREC are more able to substitute 
equity for debt financing than firms with low AG, INVT, and AREC. We 
find that this substitutability is not as strong when we compare firms 
with high versus low PPE growth.

It is important to recognize that this debt-equity substitution chan-

nel can link the AG factor to equity financing costs regardless of what 
may be driving these costs. As detailed in Belo et al. (2019), equity 
financing costs may be driven by shocks to various forms of agency fric-

tions or investor risk aversion, but they may also be driven by systemic 
behavioral biases. To investigate this possibility, we use an aggregate 
proxy for the degree of overextrapolation (DOX) in the economy from 
Cassella and Gulen (2018) and find that the superior performance of 
HXZ and FF5F over their analogues based on more traditional mea-

sures of investment is present only in high overextrapolation periods. In 
fact, in the subsample with below-median overextrapolation, the HXZ 
model does not perform significantly better than the Carhart (1997)

four-factor model, and the FF5F model does not perform significantly 
better than the Fama and French (1993) model, or the Carhart (1997)

model.

We acknowledge that it is difficult to definitively conclude that a 
given factor model captures risk or mispricing in the absence of a struc-

tural model. For this reason, we do not take a strong stance on which 
particular driver of equity financing costs is more likely to explain our 
results. Beyond our main finding that the AG factor seems to capture 
shocks to equity-issuance costs, the more general takeaway from our 
study is that linking reduced-form theoretical models (like the ones in 
Hou et al., 2015 and Fama and French, 2015) to the actual data is a ten-

uous endeavor, especially when those models include quantities that are 
not directly observable. The main allure of these kinds of models is that 
they provide a parsimonious potential theoretical explanation for return 
comovement patterns we observe in the data. However, as our paper 
shows, given the large number of degrees of freedom available when 
taking these models to the data, and the significant differences in per-

formance caused by making different implementation choices, one has 
to question whether these reduced-form models are truly “disciplined 
by theory”. If they are not (as our results suggest), then there is little 
reason to prefer these models over statistically-motivated models such 
3

as Kozak et al. (2019) or Kelly et al. (2019).
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2. Building factors using alternative measures of corporate 
investment

HXZ and FF5F show ample evidence that their models significantly 
outperform existing benchmark models (like Fama and French (1993)

and Carhart (1997)) in explaining anomaly returns and the average re-

turns of various tests assets.5 The key finding that motivates our study 
is the observation that the performance of the HXZ and FF5F models 
deteriorates significantly if the AG factor is constructed using different 
measures of investment. To illustrate this fact, we begin by identifying 
some of the most common measures of corporate investment used in the 
literature. The corporate investment literature is vast, and any survey of 
it is bound to be incomplete. With this caveat in mind, our broad review 
of the literature reveals that empirical studies of corporate investment 
(including tests of the q-theory) most commonly focus on investment in 
physical capital, measured either using the capital expenditure (CAPX) 
figure from the statement of cash flows or growth in property, plant, 
and equipment (PPE).6 Hence, we use CAPX and change in PPE, both 
divided by lagged PPE, as our two traditional measures of investment.7

In a recent study, Peters and Taylor (2017) point out that although 
firms mainly owned physical capital when the neoclassical theory of 
investment was developed more than three decades ago, intangible 
capital has become an increasingly important factor of production and 
should be included in measures of corporate investment. They calculate 
total intangible capital as the sum of intangible capital on the balance 
sheet (goodwill) plus intangible capital off the balance sheet. The latter 
is calculated as capitalized knowledge capital (R&D) plus capitalized 
organizational capital (30% of SG&A).8 The total capital of a firm is 
calculated as the sum of physical capital (gross PPE) plus intangible 
capital. In our analysis below, we use the annual change in these mea-

sures of total, tangible and intangible capital as additional measures of 
investment (all normalized by lagged total capital). We refer to these 
measures as TOTK, PHK, and INTK respectively.9

5 We replicate these findings in Section A and Tables E1 and E2 of the Ap-

pendix.
6 Table E3 in the Appendix provides a sample of studies using CAPX or PPE 

growth to measure investment. This list is by no means exhaustive. Our only 
intent is to point out that, at least from our reading of the literature, standard 
practice seems to measure investment using CAPX and PPE-based variables. For 
comparison, in our search, we found only three studies that use growth in total 
assets to measure corporate investment – Alti and Tetlock (2014), Li and Zhang 
(2010), and Baker et al. (2003) – and the latter two use it as part of a larger set 
of investment measures.

7 In unreported tests, we verify that our results are qualitatively unchanged if 
we use variations of these two measures, such as (1) normalizing by lagged total 
assets instead of PPE (e.g., Warusawitharana and Whited, 2016) (2) normalizing 
by replacement value of capital calculated using a perpetual inventory method 
(e.g., Fazzari et al., 1988) (3) subtracting the sale of PPE to obtain measures 
of net investment instead of gross investment (e.g., Liu et al., 2009) (4) adding 
R&D expense to all investment measures (e.g., Asker et al., 2015) (5) adding 
change in inventory to all investment measures (e.g., Lyandres et al., 2008) 
and (6) using capital expenditures net of depreciation (e.g., Denis and Sibilkov, 
2010).

8 The assumption that firms on average use 30% of SG&A as an investment 
in human capital and the rest for operating expenses has been used in several 
other studies e.g., Eisfeldt and Papanikolaou (2014), Hulten and Hao (2008), 
and Zhang (2014).

9 Appendix C contains a discussion of the relation between asset growth and 
all of our alternative measures of investment. Table E4 in the Appendix shows 
that, just like AG, these measures also strongly negatively predict future stock 
returns, but AG remains a significant predictor when included in the same re-

gressions. Table E5 shows, among other things, that AG provides an incomplete 
picture of firms’ investment activity: a large portion (34% to 54%) of firms’ to-

tal capital is not on the balance sheet, and the correlation between AG and 
off-balance sheet capital investment is quite low (around 0.16 to 0.30). See Ap-
pendix C for more details.
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Table 1

Using Sharpe Ratio Tests to Compare HXZ and FF5F to Models Based on Alternative Investment Factors.

Panel A: Comparing HXZ-like models using maximum Sharpe ratio tests

Baseline model Statistic None CAPX PPE TOTK PHK INTK

HXZ(AG) Δ(𝑚𝑎𝑥𝑆𝑅2) -0.078*** -0.038** -0.044** -0.040** -0.055*** -0.055**

p-value (0.002) (0.041) (0.012) (0.020) (0.005) (0.015)

None Δ(𝑚𝑎𝑥𝑆𝑅2) 0.040** 0.034** 0.038** 0.023* 0.024*

p-value (0.016) (0.035) (0.030) (0.094) (0.053)

FF3F Δ(𝑚𝑎𝑥𝑆𝑅2) 0.026 0.067** 0.060** 0.065** 0.049* 0.050*

p-value (0.303) (0.023) (0.032) (0.021) (0.070) (0.074)

Panel B: Comparing FF5F-like models using maximum Sharpe ratio

Baseline model Statistic None CAPX PPE TOTK PHK INTK

FF5F(AG) Δ(𝑚𝑎𝑥𝑆𝑅2) -0.037** -0.034** -0.038** -0.037** -0.033** -0.039**

p-value (0.037) (0.034) (0.021) (0.021) (0.038) (0.034)

None Δ(𝑚𝑎𝑥𝑆𝑅2) 0.002 -0.001 -0.001 0.004 -0.002

p-value (0.698) (0.664) (0.782) (0.573) (0.331)

FF3F Δ(𝑚𝑎𝑥𝑆𝑅2) 0.025 0.027 0.024 0.024 0.029 0.023

p-value (0.124) (0.144) (0.162) (0.162) (0.112) (0.153)

Note: This table compares the performance of the HXZ and FF5F models with that of models based 
on alternative investment measures using maximum Sharpe ratio tests as in Barillas et al. (2020). The 
alternative measures of investment we use are: capital expenditures divided by lagged PPE (“CAPX” 
column), the percentage growth in PPE (“PPE” column), the percentage growth in total capital (“TOTK” 
column), the change in total physical capital divided by lagged total capital (“PHK” column), and the 
change in total intangible capital divided by lagged total capital (“INTK” column). For the last three 
measures, total capital, total physical capital, and total intangible capital are measured as in Peters 
and Taylor (2017). The Panel A constructs factors as in HXZ and Panel B constructs models as in FF5F. 
Columns and rows labeled “None” use no investment factor at all.
2.1. Using Sharpe ratio tests to compare model performance

We perform formal comparison tests between models with alterna-

tive constructions of the investment factor using the framework in Baril-

las and Shanken (2017) and Barillas et al. (2020). Barillas and Shanken 
(2017) show that comparing the performance of two factor models 𝑓1
and 𝑓2 (with traded factors) in pricing a set of test assets 𝑋 is equivalent 
to comparing the maximum Sharpe ratios that can be obtained with the 
factors in each model (denoted below as 𝑚𝑎𝑥𝑆𝑅2(𝑓1) vs. 𝑚𝑎𝑥𝑆𝑅2(𝑓2)). 
Indeed, the extent to which model 𝑓1 fails to price assets 𝑋 and 𝑓2 is 
given by the extent to which its maximum Sharpe ratio can be increased 
by including 𝑋 and 𝑓2 in the investment universe: 𝑚𝑎𝑥𝑆𝑅2(𝑓1, 𝑓2, 𝑋) −
𝑚𝑎𝑥𝑆𝑅2(𝑓1). Analogously, the amount of mispricing under the 𝑓2 model 
is given by 𝑚𝑎𝑥𝑆𝑅2(𝑓2, 𝑓1, 𝑋) − 𝑚𝑎𝑥𝑆𝑅2(𝑓2). Therefore, the difference 
in performance between models 𝑓1 and 𝑓2 is given by the difference 
[𝑚𝑎𝑥𝑆𝑅2(𝑓1, 𝑓2, 𝑋) −𝑚𝑎𝑥𝑆𝑅2(𝑓1)] −[𝑚𝑎𝑥𝑆𝑅2(𝑓2, 𝑓1, 𝑋) −𝑚𝑎𝑥𝑆𝑅2(𝑓2)] =
𝑚𝑎𝑥𝑆𝑅2(𝑓2) −𝑚𝑎𝑥𝑆𝑅2(𝑓1). Importantly, note that this implies that test 
assets do not matter if our sole purpose is to compare the two models.

In Table 1 we present these differences in maximum Sharpe ratios 
between the model specified in the column header minus the model 
specified in the row header.10 The column headers specify what vari-

able was used to construct the investment factor (and “None” signifies 
that no investment factor was used). Panel A uses HXZ-like models and 
Panel B uses FF5F-style models. The fact that all estimates in the first 
row in Panel A are negative tells us that all HXZ-style models based on 
an alternative investment measure (i.e., CAPX, PPE, TOTK, PHK, INTK) 
perform significantly worse than the original, AG-based, HXZ model 
when pricing any set of test assets.11 The second row in Panel A of 

10 The p-values in parentheses are calculated using the asymptotics derived in 
Barillas et al. (2020) (Equations 3 and 4 in their paper).
11 Note that each of these alternative models differs from the original HXZ 
model in two respects. First, the AG factor is replaced with a factor based on 
a different measure of investment. Second, because these HXZ-style factors are 
based on a 2-by-3-by-3 independent sort on size, profitability and investment, 
changing the investment measure means the size and profitability factors will 
4

also differ between the HXZ model and its alternatives. If we ignored this second 
Table 1 suggests that the five alternative HXZ-style models perform sig-

nificantly better than if they did not contain their investment factor. 
The third row suggests that they also significantly outperform the FF3F 
model.12

Panel B of Table 1 performs the analogous model-comparison tests, 
using FF5F-style models instead of HXZ-style models. Again, the first 
row of Panel B suggests that replacing the AG factor in the FF5F model 
with a factor based on either of our five investment measures leads to 
models that significantly underperform FF5F. Strikingly, the statistically 
insignificant estimates in the second and third row of Panel B suggest 
that the FF5F-style CAPX, PPE, TOTK, PHK and INTK investment fac-

tors can in fact be spanned by the market, size, BM, and profitability 
factors (second row results) and even by the FF3F factors (third row re-

sults). Hence, when constructed using more traditional measures, the 
investment factor is redundant in the FF5F model.

In Table E6 in the Appendix, we present the performance of these al-

ternative investment models in explaining common anomaly portfolios 
and bivariate test assets. The results show the same qualitative pattern 
as the one found in Table 1. Models based on alternative investment 
measures perform significantly worse than the original, AG-based mod-

els. Furthermore, in Section D and Tables E7 and E8 of the Appendix, 
we show evidence that AG is not a better predictor of future invest-

ment, profitability or book-equity growth than CAPX. This casts doubt 
on the idea that the superior performance of the AG factor (over more 
traditional investment measures) can be attributable to its being a bet-

ter proxy for the other key variables in the present value framework 
and Tobin’s Q models (i.e. expected investment, expected profitability 
and expected book-equity growth).

effect, the results in the first row of Panel A would be equivalent to saying that 
the AG factor has a positive alpha when regressed on market, size, profitability 
and either of the five alternative measures of investment.
12 Again, ignoring the aforementioned complication arising from the forma-

tion of HXZ-style factors, these results are approximately equivalent to saying 
that the HXZ-style CAPX, PPE, TOTK, PHK, and INTK investment factors can not 
be spanned by the market, size and profitability factors (second row results) or 

by the FF3F factors (third row results).
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Fig. 1. Performance of HXZ and FF5F using Alternative Investment Factors. Note: This figure plots the performance of HXZ-style models (top panel) and FF5F-style 
models (bottom panel) obtained by replacing the asset-growth-based investment factor in HXZ and FF5F, with a factor based on one of 144 alternative measures of 
investment. The figures report histograms of maximum squared Sharpe ratios that can be obtained with the factors in each alternative model. As reference points, the 
red vertical lines show the performance of the original, asset-growth-based HXZ and FF5F models and the blue lines show the performance of the models obtained 
using the percentage change in PPE to construct the investment factor. (For interpretation of the colors in the figure(s), the reader is referred to the web version of 
this article.)
2.2. A data–mining approach

To verify that the main findings of our analysis are not driven by 
our particular choice of alternative investment measures, we extend 
the analysis in the previous section by considering 144 different mea-

sures of investment. To construct our set of investment measures we 
start with three different measures of investment in physical capital 
(CAPX, change in gross PPE, and CAPX net of PPE sales). We then con-

sider several other investments that the firm could make: change in 
inventory, change in goodwill, change in capitalized knowledge cap-

ital and change in capitalized organizational capital [the latter three 
measures are calculated as in Peters and Taylor (2017)]. For each of 
the three choices of physical capital investment, we add every possi-

ble combination of the additional four types of investment. This yields 
3 ×2 ×2 ×2 ×2 = 48 different investment measures. Finally, we use three 
different lagged normalizing variables [total assets, gross PPE and to-

tal capital as measured in Peters and Taylor (2017)], which leads us to 
48 × 3 = 144 investment variables.

Next, we follow the same approach as in Section 2.1 and we ana-

lyze how the performance of the HXZ and FF5F models changes if the 
asset-growth factor is replaced with a factor based on one of our 144 dif-
5

ferent measures of investment. Because the purpose of this exercise is 
strictly to compare model performance, we follow Barillas and Shanken 
(2017) and restrict our attention to a single key performance measure: 
the maximum squared Sharpe ratio that can be obtained with the fac-

tors in each model.

Fig. 1 shows histograms of these 144 Sharpe ratios from both HXZ-

style models (top panel) and FF5F-style models (bottom panel). The 
vertical lines marked “AG” show the maximum squared Sharpe ratio of 
the HXZ model (in the top panel) and the FF5F model (in the bottom 
panel). As a reference point, the lines marked “d.PPE/l.PPE” show the 
maximum squared Sharpe ratio that can be obtained if we use the per-

centage change in PPE as our investment measure, rather than AG. The 
results in Fig. 1 clearly show that the AG-based HXZ and FF5F models 
are extreme outliers in terms of performance: the HXZ model outper-

forms every single one of our 144 alternative investment models, and 
the FF5F model outperforms all but 5 of the 144 models (in unreported 
results we verify that the difference in performance between these 5 
models and AG is not statistically significant).

3. Building factors using subcomponents of asset growth

Our results so far suggest that the investment factor is arguably not 

driven by traditional measures of investment. Our first step toward ob-
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Table 2

Using Sharpe Ratio Tests to Compare HXZ and FF5F to Models Based on Subcomponents of AG.

Panel A1: Comparing HXZ-like models using LHS components of AG

Baseline model Statistic None CASH INVT AREC PPE INTAN OTHER

HXZ(AG) Δ(𝑚𝑎𝑥𝑆𝑅2) -0.078*** -0.068*** -0.021 -0.018 -0.057*** -0.079*** -0.058***

p-value (0.002) (0.004) (0.385) (0.327) (0.006) (0.002) (0.003)

None Δ(𝑚𝑎𝑥𝑆𝑅2) 0.010 0.057*** 0.060*** 0.021 -0.000 0.020

p-value (0.184) (0.010) (0.006) (0.148) (0.962) (0.150)

FF3F Δ(𝑚𝑎𝑥𝑆𝑅2) 0.026 0.036 0.084*** 0.087*** 0.048* 0.026 0.047*

p-value (0.303) (0.165) (0.008) (0.003) (0.082) (0.298) (0.071)

Panel A2: Comparing FF5F-like models using LHS components of AG

Baseline model Statistic None CASH INVT AREC PPE INTAN OTHER

FF5F(AG) Δ(𝑚𝑎𝑥𝑆𝑅2) -0.037** -0.037** 0.000 -0.008 -0.035** -0.037** -0.037**

p-value (0.037) (0.049) (0.996) (0.597) (0.031) (0.032) (0.024)

None Δ(𝑚𝑎𝑥𝑆𝑅2) -0.000 0.037** 0.028* 0.002 -0.001 -0.001

p-value (0.919) (0.032) (0.072) (0.731) (0.473) (0.671)

FF3F Δ(𝑚𝑎𝑥𝑆𝑅2) 0.025 0.024 0.062*** 0.053** 0.027 0.024 0.024

p-value (0.124) (0.149) (0.007) (0.014) (0.124) (0.139) (0.143)

Panel B1: Comparing HXZ-like models using RHS components of AG

Baseline model Statistic None COLIAB NCOLIAB DBT EQ RE

HXZ(AG) Δ(𝑚𝑎𝑥𝑆𝑅2) -0.078*** -0.053*** -0.087*** -0.045* -0.038* -0.022

p-value (0.002) (0.004) (0.001) (0.065) (0.060) (0.339)

None Δ(𝑚𝑎𝑥𝑆𝑅2) 0.025* -0.009** 0.033** 0.040** 0.057**

p-value (0.065) (0.034) (0.026) (0.014) (0.012)

FF3F Δ(𝑚𝑎𝑥𝑆𝑅2) 0.026 0.051** 0.017 0.060** 0.067** 0.083**

p-value (0.303) (0.046) (0.481) (0.049) (0.018) (0.012)

Panel B2: Comparing FF5F-like models using RHS components of AG

Baseline model Statistic None COLIAB NCOLIAB DBT EQ RE

FF5F(AG) Δ(𝑚𝑎𝑥𝑆𝑅2) -0.037** -0.039** -0.039** 0.030 -0.035** -0.038**

p-value (0.037) (0.024) (0.021) (0.223) (0.025) (0.026)

None Δ(𝑚𝑎𝑥𝑆𝑅2) -0.002*** -0.003 0.067*** 0.001 -0.002

p-value (0.009) (0.153) (0.009) (0.812) (0.143)

FF3F Δ(𝑚𝑎𝑥𝑆𝑅2) 0.025 0.023 0.022 0.091*** 0.026 0.023

p-value (0.124) (0.159) (0.158) (0.002) (0.141) (0.154)

Note: In this table we use maximum Sharpe ratio tests as in Barillas et al. (2020) to compare the performance of 
the HXZ and FF5F models with that of models based on subcomponents from the left-hand-side (panels A1 and A2) 
and the right-hand-side (panels B1 and B2) of the balance sheet. On the left-hand side of the balance sheet, we use 
changes in cash (“CASH”), inventory (“INVT”), accounts receivable (“AREC”), property, plant, and equipment (“PPE”), 
intangibles (“INTAN”), and other assets (“OTHER”, i.e., total assets minus the previous categories). On the right-hand 
side, we use changes in current operating liabilities (“COLIAB”), non-current operating liabilities (“NCOLIAB”), debt 
(“DBT”), common equity (“EQ”), and retained earnings (“RE”). In each panel, we report the difference in squared 
maximum Sharpe ratios between the model specified in the column header and the model specified in the row header. 
Columns and rows labeled “None” use no investment factor at all. Panels A1 and B1 construct factors as in HXZ and 
panels A2 and B2 construct factors as in FF5F. p-values are reported in parentheses and are calculated as in Barillas et 

al. (2020).

taining a better understanding of what may be driving the explanatory 
power of the AG factor is to investigate what would happen if we con-

structed the factor using subcomponents of AG rather than AG itself. 
We decompose a firm’s growth in total assets into changes in items from 
both the left-hand side and the right-hand side of the balance sheet. On 
the left-hand side, we use changes in cash (“CASH”), inventory (“IN-

VT”), accounts receivable (“AREC”), property, plant, and equipment 
(“PPE”), intangibles (“INTAN”), and other assets (“OTHER”, i.e., total 
assets minus the previous categories). On the right-hand side, we use 
changes in current operating liabilities (“COLIAB”), non-current operat-

ing liabilities (“NCOLIAB”), debt (“DBT”), common equity (“EQ”), and 
retained earnings (“RE”).13 All eleven growth measures are normalized 
by lagged total assets. As a result, the sum of all the subcomponents on 
each side of the balance sheet amounts to the firm’s percentage growth 
in total assets.

13 Current operating liabilities are current liabilities minus long-term debt due 
within a year. Noncurrent liabilities are total liabilities minus current liabilities 
6

minus long-term debt. Debt is calculated as long-term debt plus debt due within 
In Table 2, we perform formal model comparison tests based on 
the maximum squared Sharpe ratio measure detailed in Barillas and 
Shanken (2017) and Barillas et al. (2020). These tests are analogous 
to the ones presented in Table 1, the difference being that in Table 2

we compare the HXZ and FF5F models with their counterparts using 
subcomponents of AG to form the investment factor. In Panels A1 and 
B1, we compare HXZ-style models and in Panels A2 and B2 we compare 
FF5F-style models. In Panels A1 and A2, we create factors based on the 
decomposition of AG into its subcomponents from the left-hand-side 
of the balance sheet, and in Panels B1 and B2 we use subcomponents 
from the right-hand-side of the balance sheet. Each estimate in the table 
represents the difference in maximum squared Sharpe ratio that can be 
obtained using the factors of the model in the column header minus 
the analogous figure for the model in the row header. For example, the 
−0.068 estimate in the “CASH” column in Panel A1 tells us that the 
maximum squared Sharpe ratio we can obtain using the factors in the 
HXZ model where the investment factor is built using growth in cash 

a year plus preferred stock. Common equity is total assets minus total liabilities 

minus preferred stock minus retained earnings.
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holdings is 0.068 lower than the maximum squared Sharpe ratio that 
can be obtained with the factors in the original HXZ model.

One of the main findings in Panel A1 of Table 2 is in the first row, 
columns “INVT” and “AREC”. The fact that those estimates are statisti-

cally insignificant tells us that, if we build the HXZ model using either 
the inventory component (INVT) of AG, or the accounts receivable 
(AREC) component, we obtain models that do not perform significantly 
differently from HXZ, regardless of the test assets we use. In contrast, 
the “PPE” and “INTAN” columns show (in the first row) that when the 
HXZ model is built using measures of investment in long-term assets, be 
they physical (PPE) or intangible (INTAN), we obtain models that per-

form significantly worse than the original HXZ model. In fact, the sec-

ond row in Panel A1 shows that, if we build the investment factor using 
subcomponents other than inventory or accounts receivable, we obtain 
models that perform no better than if we had no investment factor at 
all. Panel A2 show that the exact same conclusions apply when we com-

pare FF5F-style models. Table E9 in the Appendix shows how all these 
alternative models perform when explaining common anomaly portfo-

lios and bivariate-sort test assets. The same general conclusions apply. 
The performance of models based on inventory and accounts receivable 
is close to the original HXZ and FF5F models, while the models based on 
all the other left-hand-side subcomponents perform significantly worse.

Comparing the performance of models based on right-hand-side sub-

components of AG yields a less unified picture between HXZ- and FF5F-

style models. This is the main reason why, going forward, we will focus 
mostly on the left-hand-side decomposition. The first row in Panel B1 
shows that when we build the HXZ model using retained earnings (RE) 
for the investment factor, we obtain a model that does not perform sig-

nificantly worse than HXZ. The same can not be said about the other 
four subcomponents. Panel B2 shows that if we were to build the FF5F 
model using changes in debt, we do not lose performance with respect 
to the original model, but performance does deteriorate significantly 
when using any of the other four subcomponents.

3.1. Inventory and accounts receivable factors span the asset growth factor

The results in Table 2 show that the performance of the HXZ and 
FF5F models does not drop significantly if their “investment” factor 
is constructed using inventory-growth (INVT) or accounts-receivable 
growth (AREC) instead of AG. In this section, we show that the pric-

ing information that the AG factor contributes to the HXZ and FF5F 
models, is in fact spanned by the INVT and AREC factors (but not by 
the other subcomponents of AG).

We begin by running spanning regressions of the form:

𝑅𝐴𝐺,𝑡 = 𝛼 + 𝛽𝐼𝑁𝑉 𝑇 𝑅𝐼𝑁𝑉 𝑇 ,𝑡 + 𝛽𝐴𝑅𝐸𝐶𝑅𝐴𝑅𝐸𝐶,𝑡 + 𝛾𝑋𝑡 + 𝜖𝑡 (1)

where 𝑅𝐴𝐺,𝑡, 𝑅𝐼𝑁𝑉 𝑇 ,𝑡, and 𝑅𝐴𝑅𝐸𝐶,𝑡 represent the returns on the AG, 
INVT, and AREC factors, respectively, and the 𝑋𝑡 term encompasses the 
returns on all remaining factors in the HXZ model (as presented in Panel 
A of Table 3) or the FF5F model (as presented in Panel B of Table 3). It 
is important to control for these additional factors as our investigation 
is focused on the pricing power of the AG factor within the context 
of the HXZ and FF5F models, rather than its performance in isolation. 
Therefore, it is essential to take into account the correlation of the AG 
factor with the other existing factors in those models.

The results obtained from estimating Equation (1) are presented in 
the first column of Table 3. The alpha coefficients are statistically in-

significant in both panels, which suggests that the pricing information 
that the AG factor contributes to the HXZ and FF5F models is captured 
by the joint presence of INVT and AREC factors. In Table E10 in the Ap-

pendix, we run similar spanning regressions to test if the AG factor is 
spanned by any one of its individual subcomponents and we find that 
this is not the case. Hence, the INVT and AREC factors are both needed 
to span the AG factor. In the remaining columns of Table 3, we use 
different subcomponents of AG (from the left-hand side of the balance 
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sheet) as the dependent variable in Equation (1). The alphas continue to 
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Table 3

Spanning Regressions of AG factor and Subcomponents on Inventory and Ac-

counts Receivable Factors.

Dependent Variable: 𝑅𝐴𝐺 𝑅𝐶𝐴𝑆𝐻 𝑅𝑃𝑃𝐸 𝑅𝐼𝑁𝑇 𝐴𝑁 𝑅𝑂𝑇 𝐻𝐸𝑅

Panel A: HXZ-Style Models

𝛼 0.001 -0.000 0.001 -0.000 0.000

(1.64) (-0.11) (1.29) (-0.36) (0.86)

𝑅𝑀𝐾𝑇 -0.026∗ -0.021 -0.003 0.025 -0.017

(-1.88) (-1.51) (-0.15) (1.44) (-1.21)

𝑅𝑀𝐸 0.075∗∗ 0.074∗∗∗ 0.105∗∗∗ 0.086∗∗∗ 0.011

(2.49) (3.27) (3.50) (3.48) (0.34)

𝑅𝑅𝑂𝐸 0.034 0.013 0.055 0.050 0.035

(0.79) (0.52) (1.50) (1.22) (0.84)

𝑅𝐼𝑁𝑉 𝑇 0.310∗∗∗ -0.042 0.171∗∗ 0.013 0.012

(6.23) (-0.82) (2.57) (0.23) (0.26)

𝑅𝐴𝑅𝐸𝐶 0.631∗∗∗ 0.280∗∗∗ 0.262∗∗∗ 0.177∗∗∗ 0.338∗∗∗

(8.95) (5.93) (5.80) (3.09) (6.53)

Obs 564 564 564 564 564

R2 0.648 0.197 0.192 0.109 0.292

Panel B: FF5F-Style Models

𝛼 0.001 -0.000 0.000 -0.000 -0.000

(1.27) (-1.10) (0.43) (-0.53) (-0.61)

𝑅𝑀𝐾𝑇 -0.024 -0.016 0.024 0.045∗∗∗ -0.008

(-1.36) (-0.84) (1.22) (3.48) (-0.57)

𝑅𝑀𝐸 0.063∗∗∗ 0.062∗∗ 0.071∗∗ 0.095∗∗∗ 0.031

(3.94) (2.32) (2.39) (3.71) (1.60)

𝑅𝐵𝑀 0.205∗∗∗ 0.119∗∗∗ 0.256∗∗∗ 0.061∗∗ 0.129∗∗∗

(8.13) (5.19) (6.12) (2.09) (3.81)

𝑅𝑃𝑅𝑂𝐹 -0.012 0.017 0.025 0.136∗∗∗ 0.085∗∗∗

(-0.42) (0.40) (0.65) (3.41) (2.79)

𝑅𝐼𝑁𝑉 𝑇 0.323∗∗∗ -0.042 0.265∗∗∗ 0.010 0.006

(8.76) (-1.01) (2.88) (0.15) (0.14)

𝑅𝐴𝑅𝐸𝐶 0.472∗∗∗ 0.131∗∗∗ -0.032 0.118∗∗∗ 0.220∗∗∗

(9.17) (2.96) (-0.38) (2.68) (3.85)

Obs 564 564 564 564 564

R2 0.740 0.236 0.320 0.183 0.331

Note: This table presents estimates from regressing the returns of the AG, 
CASH, PPE, INTANT, and OTHER factors, on the returns of the INVT and 
AREC factors, and the remaining factors in the HXZ model (Panel A) or the 
FF5F model (Panel B). See Equation (1) for details. All regressions use monthly 
data from 1972 to 2018. Standard errors are corrected for heteroskedasticity 
and autocorrelation using the Newey and West (1987) procedure with up to 12 
lags. t-statistics are reported in parentheses. *, **, and *** indicate statistical 
significance at the 10%, 5% and 1% level, respectively.

remain insignificant in all of these specifications, which indicates that 
the INVT and AREC factors (used together) also capture the pricing in-

formation of all other AG subcomponent factors.

We next test whether the INVT and AREC factors are spanned by any 
of the subcomponents of AG. Specifically, in Table 4, we run regressions 
of the following form:

𝑅𝐼𝑁𝑉 𝑇 ,𝑡 = 𝛼 + 𝛽𝑆𝑈𝐵𝑅𝑆𝑈𝐵,𝑡 + 𝛾𝑋𝑡 + 𝜖𝑡 (2)

where each column in the table uses a different subcomponent of AG 
(𝑆𝑈𝐵) from the left-hand-side of the balance sheet (i.e., CASH, AREC, 
PPE, INTAN, or OTHER) as the main explanatory variable. To control 
for the possibility that some information may be lost by splitting the in-

dividual subcomponents of AG, we also construct a factor using growth 
in all assets but inventory (we call this the 𝐴𝐺 − 𝐼𝑁𝑉 𝑇 factor). Once 
again, Panel A reports results using HXZ–style factors and Panel B re-

ports results using FF5F–style factors and the 𝑋𝑡 term contains all the 
remaining factors in the HXZ model (in Panel A) or the FF5F factor (in 
Panel B).

The results in Table 4 indicate that the alpha coefficients are statisti-

cally significant in all specifications, which supports the conclusion that 
the INVT factor is not spanned by any of the other individual subcom-

ponent of AG, or by all of them summed up into the 𝐴𝐺− 𝐼𝑁𝑉 𝑇 factor 

(last column in the table). In Table 5, we use returns on the AREC factor 
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Table 4

Spanning Regressions of the Inventory Factor on AG Subcomponents.

Main RHS Factor: 𝑅𝐼𝑁𝑉 𝑇 𝑅𝐼𝑁𝑉 𝑇 𝑅𝐼𝑁𝑉 𝑇 𝑅𝐼𝑁𝑉 𝑇 𝑅𝐼𝑁𝑉 𝑇 𝑅𝐼𝑁𝑉 𝑇

Panel A: HXZ-Style Models

𝛼 0.003∗∗∗ 0.002∗∗ 0.003∗∗∗ 0.003∗∗∗ 0.003∗∗∗ 0.002∗∗

(4.55) (2.37) (3.68) (4.93) (4.01) (2.42)

𝑅𝑀𝐾𝑇 -0.087∗∗∗ -0.029 -0.079∗∗∗ -0.099∗∗∗ -0.074∗∗∗ -0.044∗∗

(-3.91) (-1.60) (-3.75) (-4.62) (-3.57) (-2.19)

𝑅𝑀𝐸 -0.095∗∗∗ -0.051∗∗ -0.112∗∗∗ -0.100∗∗∗ -0.084∗∗∗ -0.105∗∗∗

(-2.87) (-1.98) (-3.40) (-3.29) (-2.69) (-3.53)

𝑅𝑅𝑂𝐸 0.010 0.039 0.004 -0.001 0.007 0.028

(0.19) (1.04) (0.09) (-0.02) (0.16) (0.67)

𝑅𝐶𝐴𝑆𝐻 0.206∗∗

(2.31)

𝑅𝐴𝑅𝐸𝐶 0.487∗∗∗

(8.52)

𝑅𝑃𝑃𝐸 0.333∗∗∗

(4.47)

𝑅𝐼𝑁𝑇 𝐴𝑁 0.203∗∗

(2.04)

𝑅𝑂𝑇 𝐻𝐸𝑅 0.356∗∗∗

(5.07)

𝑅𝐴𝐺−𝐼𝑁𝑉 𝑇 0.423∗∗∗

(7.13)

Obs 564 564 564 564 564 564

R2 0.137 0.353 0.208 0.136 0.180 0.304

Panel B: FF5F-Style Models

𝛼 0.002∗∗∗ 0.002∗∗∗ 0.002∗∗∗ 0.002∗∗∗ 0.002∗∗∗ 0.002∗∗∗

(4.33) (3.62) (4.04) (4.37) (4.27) (3.67)

𝑅𝑀𝐾𝑇 -0.059∗∗∗ -0.037∗∗ -0.060∗∗∗ -0.061∗∗∗ -0.056∗∗∗ -0.043∗∗

(-3.20) (-2.15) (-3.30) (-3.13) (-2.91) (-2.23)

𝑅𝑀𝐸 -0.160∗∗∗ -0.149∗∗∗ -0.168∗∗∗ -0.168∗∗∗ -0.163∗∗∗ -0.173∗∗∗

(-4.74) (-4.57) (-4.97) (-5.19) (-4.84) (-5.44)

𝑅𝐵𝑀 0.241∗∗∗ 0.182∗∗∗ 0.176∗∗∗ 0.231∗∗∗ 0.220∗∗∗ 0.139∗∗∗

(7.83) (4.54) (4.90) (7.17) (6.19) (3.22)

𝑅𝑃𝑅𝑂𝐹 -0.215∗∗∗ -0.163∗∗∗ -0.211∗∗∗ -0.223∗∗∗ -0.219∗∗∗ -0.184∗∗∗

(-4.53) (-3.59) (-4.51) (-5.47) (-4.81) (-4.14)

𝑅𝐶𝐴𝑆𝐻 -0.019

(-0.27)

𝑅𝐴𝑅𝐸𝐶 0.232∗∗∗

(2.97)

𝑅𝑃𝑃𝐸 0.199∗∗∗

(2.99)

𝑅𝐼𝑁𝑇 𝐴𝑁 0.077

(0.68)

𝑅𝑂𝑇 𝐻𝐸𝑅 0.099

(1.35)

𝑅𝐴𝐺−𝐼𝑁𝑉 𝑇 0.245∗∗∗

(3.23)

Obs 564 564 564 564 564 564

R2 0.360 0.396 0.393 0.362 0.364 0.397

Note: This table presents estimates from regressing the returns of the INVT factor, on the re-

turns of each of the subcomponents of AG (CASH, INVT, AREC, PPE, INTAN, and OTHER), 
and the remaining factors in the HXZ model (Panel A) or the FF5F model (Panel B). In 
the last column of the table, we use as explanatory variable a factor constructed based 
on growth in all assets but inventory (i.e., using 𝐴𝐺 − 𝐼𝑁𝑉 𝑇 as the sorting variable). All 
regressions use monthly data from 1972 to 2018. Standard errors are corrected for het-

eroskedasticity and autocorrelation using the Newey and West (1987) procedure with up 
to 12 lags. t-statistics are reported in parentheses. *, **, and *** indicate statistical signifi-

ivel
cance at the 10%, 5% and 1% level, respect

as the dependent variable in Equation (2) and perform tests analogous 
to the ones in Table 4. We find that the AREC also can not be spanned 
by any other subcomponent of AG, introduced either individually or as 
a sum (i.e. the 𝐴𝐺 −𝐴𝑅𝐸𝐶 factor in the last column).14

14 Table E11 in the Appendix shows that the AG, INVT, and AREC factors 
are also not spanned by the other subcomponents of AG (CASH, PPE, IN-

TAN, and OTHER) when all those subcomponent factors are introduced as 
8

explanatory variables in our spanning regressions at the same time. Specifi-
y.

We believe that, taken together, the results in this section show con-

vincingly that the INVT and AREC factors (together, but not separately) 
contain the lion’s share of the pricing information that the AG factor 
contributes to the HXZ and FF5F models. Not only do the INVT and 
AREC factors span the returns of the AG factor, but they themselves 

cally, all alpha estimates in regressions of the form 𝑅𝐹,𝑡 = 𝛼 + 𝛽𝐶𝐴𝑆𝐻 𝑅𝐶𝐴𝑆𝐻,𝑡 +
𝛽𝑃𝑃𝐸𝑅𝑃𝑃𝐸,𝑡 + 𝛽𝐼𝑁𝑇 𝐴𝑁 𝑅𝐼𝑁𝑇 𝐴𝑁,𝑡 + 𝛽𝑂𝑇 𝐻𝐸𝑅𝑅𝑂𝑇 𝐻𝐸𝑅,𝑡 + 𝛾𝑋𝑡 + 𝜖𝑡 are statistically sig-
nificant, whether the dependent variable factor 𝐹 is AG, INVT, or AREC.
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Table 5

Spanning Regressions of the Accounts Receivable Factor on AG Subcomponents.

Main RHS Factor: 𝑅𝐴𝑅𝐸𝐶 𝑅𝐴𝑅𝐸𝐶 𝑅𝐴𝑅𝐸𝐶 𝑅𝐴𝑅𝐸𝐶 𝑅𝐴𝑅𝐸𝐶 𝑅𝐴𝑅𝐸𝐶

Panel A: HXZ-Style Models

𝛼 0.003∗∗∗ 0.002∗∗ 0.003∗∗∗ 0.003∗∗∗ 0.002∗∗∗ 0.001∗∗

(4.46) (2.36) (3.84) (4.63) (4.29) (2.44)

𝑅𝑀𝐾𝑇 -0.109∗∗∗ -0.086∗∗∗ -0.116∗∗∗ -0.141∗∗∗ -0.093∗∗∗ -0.061∗∗∗

(-4.87) (-3.85) (-4.76) (-5.96) (-4.34) (-2.81)

𝑅𝑀𝐸 -0.091∗∗∗ -0.006 -0.096∗∗∗ -0.093∗∗∗ -0.058∗∗ -0.076∗∗∗

(-2.90) (-0.21) (-3.43) (-3.08) (-2.06) (-2.91)

𝑅𝑅𝑂𝐸 -0.018 -0.009 -0.029 -0.041 -0.029 -0.016

(-0.32) (-0.17) (-0.48) (-0.71) (-0.73) (-0.43)

𝑅𝐶𝐴𝑆𝐻 0.557∗∗∗

(8.24)

𝑅𝐼𝑁𝑉 𝑇 0.546∗∗∗

(9.44)

𝑅𝑃𝑃𝐸 0.413∗∗∗

(6.49)

𝑅𝐼𝑁𝑇 𝐴𝑁 0.398∗∗∗

(3.91)

𝑅𝑂𝑇 𝐻𝐸𝑅 0.692∗∗∗

(13.00)

𝑅𝐴𝐺−𝐴𝑅𝐸𝐶 0.615∗∗∗

(13.14)

Obs 564 564 564 564 564 564

R2 0.270 0.371 0.266 0.208 0.348 0.464

Panel B: FF5F-Style Models

𝛼 0.002∗∗∗ 0.002∗∗∗ 0.002∗∗∗ 0.002∗∗∗ 0.002∗∗∗ 0.002∗∗∗

(4.29) (3.00) (3.99) (4.09) (4.49) (3.49)

𝑅𝑀𝐾𝑇 -0.085∗∗∗ -0.076∗∗∗ -0.091∗∗∗ -0.098∗∗∗ -0.080∗∗∗ -0.071∗∗∗

(-5.10) (-3.80) (-5.17) (-5.75) (-4.62) (-3.91)

𝑅𝑀𝐸 -0.068∗∗∗ -0.015 -0.055∗∗ -0.075∗∗∗ -0.063∗∗∗ -0.056∗∗

(-3.30) (-0.67) (-2.43) (-3.53) (-2.65) (-2.42)

𝑅𝐵𝑀 0.208∗∗∗ 0.184∗∗∗ 0.233∗∗∗ 0.220∗∗∗ 0.175∗∗∗ 0.112∗∗∗

(7.50) (5.52) (8.17) (7.03) (5.05) (2.71)

𝑅𝑃𝑅𝑂𝐹 -0.224∗∗∗ -0.173∗∗∗ -0.225∗∗∗ -0.250∗∗∗ -0.238∗∗∗ -0.194∗∗∗

(-5.55) (-4.05) (-5.23) (-5.89) (-6.47) (-4.93)

𝑅𝐶𝐴𝑆𝐻 0.229∗∗∗

(3.25)

𝑅𝐼𝑁𝑉 𝑇 0.240∗∗∗

(3.20)

𝑅𝑃𝑃𝐸 0.025

(0.37)

𝑅𝐼𝑁𝑇 𝐴𝑁 0.228∗∗∗

(2.79)

𝑅𝑂𝑇 𝐻𝐸𝑅 0.361∗∗∗

(3.73)

𝑅𝐴𝐺−𝐴𝑅𝐸𝐶 0.302∗∗∗

(3.53)

Obs 564 564 564 564 564 564

R2 0.370 0.387 0.352 0.370 0.404 0.403

Note: This table presents estimates from regressing the returns of the AREC factor, on the re-

turns of each of the subcomponents of AG (CASH, INVT, AREC, PPE, INTAN, and OTHER), and 
the remaining factors in the HXZ model (Panel A) or the FF5F model (Panel B). In the last col-

umn of the table, we use as explanatory variable a factor constructed based on growth in all 
assets but accounts receivable (i.e., using 𝐴𝐺 − 𝐴𝑅𝐸𝐶 as the sorting variable). All regressions 
use monthly data from 1972 to 2018. Standard errors are corrected for heteroskedasticity and 
autocorrelation using the Newey and West (1987) procedure with up to 12 lags. t-statistics are 
reported in parentheses. *, **, and *** indicate statistical significance at the 10%, 5% and 1% 
level, respectively.
are not spanned by any other subcomponent of AG (either introduced 
individually or as a group).

4. Asset growth and macroeconomic factors

The fact that the AG-based HXZ and FF5F models perform so well 
in describing the cross-section of stock returns suggests that the AG 
factor does a good job of capturing some macroeconomic source of 
comovement that, given the results in the prior three sections, (i) is 
9

not captured by other measures of investment (e.g., PPE growth), but 
(ii) is captured by the factors based on inventory growth (INVT) and 
accounts-receivable growth (AREC). Hence, one approach to gaining a 
deeper understanding of the economic mechanisms responsible for the 
superior performance of the AG factor, is to look at which macroeco-

nomic shocks are significant drivers for AG–, INVT– and AREC–sorted 
portfolio returns, but not for returns of PPE-sorted portfolios.15

15 To keep the size and number of tables manageable, we chose PPE (growth) 

as a representative member of all the alternative measures of investment we 
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The literature studying macroeconomic shocks that can generate 
cross-sectional risk dispersion is vast, and we do not claim to have 
fully covered it in our tests below. Nevertheless, we believe we have 
put together a representative list of variables that could be driving the 
comovement captured by the AG variable. Specifically, as detailed in 
the list below, we use macroeconomic measures of shocks to produc-

tivity, consumption, liquidity, uncertainty, financing costs, production 
networks, and market sentiment:

1. TFP is the measure of utilization-adjusted TFP shocks from Fernald 
(2012).

2. IST is the investment-specific technology factor from Papanikolaou 
(2011).16

3. RD is an innovation factor based on Elsaify (2017).17

4. CAY is the consumption-wealth ratio from Lettau and Ludvigson 
(2001).

5. LIQ is the aggregate liquidity factor of Pastor and Stambaugh 
(2003).

6. UNC is the macroeconomic uncertainty factor of Jurado et al. 
(2015).

7. ICS is the measure of aggregate equity financing shocks from Belo 
et al. (2019).

8. LEV is the financial intermediary leverage factor of Adrien et al. 
(2014).

9. CRAT is the financial intermediary capital ratio factor of He et al. 
(2017).

10. RS: is the production network risk factor of Grigoris et al. (2023).18

11. BW is the equity–market sentiment measure from Baker and Wur-

gler (2006).

12. HYS is the “high-yield share” measure used to proxy for credit–

market sentiment in Greenwood and Hanson (2013).19

The ICS factor comes at an annual frequency, the TFP, CAY, LEV, 
and HYS factors come at a quarterly frequency, and the rest of the fac-

tors have a monthly frequency. For CAY, UNC, BW, and HYS, we use 
AR(1) residuals instead of levels (to approximate the unexpected com-

ponent of the factors). The remaining factors are either return spreads 
(RD, IST, and RS) or are constructed as innovations to begin with (TFP, 
LIQ, ICS, LEV, CRAT).

For each macroeconomic factor (𝑀𝐴𝐶𝑅𝑂) from the list above, we 
hypothesize a stochastic discount factor (𝑀) of the form:

𝑀𝑡 = 1 − 𝑏𝑀𝐾𝑇 𝑀𝐾𝑇𝑡 − 𝑏𝑀𝐴𝐶𝑅𝑂𝑀𝐴𝐶𝑅𝑂𝑡, (3)

where 𝑀𝐾𝑇 is the (demeaned) excess return on the value-weighted 
market portfolio, and the time period 𝑡 has the same frequency as the 
𝑀𝐴𝐶𝑅𝑂 factor (i.e., for annual and quarterly factors, 𝑀𝐾𝑇𝑡 stands 
for the cumulative returns on the market portfolio in period 𝑡). The 
𝑀𝐴𝐶𝑅𝑂𝑡 factor is also demeaned (after extracting the AR(1) resid-

ual, when appropriate, as explained above). It is important to note that 
the factor loadings 𝑏𝑀𝐾𝑇 and 𝑏𝑀𝐴𝐶𝑅𝑂 are not the risk premia on the 
𝑀𝐾𝑇 and 𝑀𝐴𝐶𝑅𝑂 factors, but a transformation of these premia that 
takes into account the correlation between the factors. As explained in 
Cochrane (2005), pages 260-261, each factor’s SDF loading measures 

employed in the prior three sections. All results in this section are qualitatively 
unchanged if we use one of those alternative measures instead of PPE.
16 Specifically, we use the measure based on the return spread between 
investment- and consumption-good producing firms.
17 This is calculated as the spread between the value-weighted returns of firms 
in the top decile and bottom decile of R&D intensity. Following Elsaify (2017), 
R&D intensity is calculated as R&D divided by CAPX plus R&D.
18 This is calculated as the return spread between firms with high (top decile) 
receivables-to-sales ratios and with low (bottom decile) receivables-to-sales ra-

tios.
19 This measure is calculated as the aggregate share of high-yield bonds as a 
10

percentage of the total dollar amount of new bond issuance in a given quarter.
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the extent to which that factor contains information (relevant for pric-

ing the test assets) that is not already captured by the other factors in 
the SDF.

As test assets, we use four different groups of portfolios sorted on 
profitability and either AG, INVT, AREC, or PPE growth. As explained 
for example in Kogan and Papanikolaou (2012), investment-based mod-

els predict a negative relation between investment and discount rates 
only when we control for profitability. Since we are interested in testing 
whether the AG, INVT, AREC, and PPE factors are in fact capturing this 
investment-risk relation, controlling for profitability is essential.20 We 
measure profitability using the same variable used to construct the FF5F 
profitability factor (to match the annual frequency of the AG variable 
and its subcomponents), and we use NYSE cutoffs to form the portfolios 
(to be consistent with the methodology used to construct factors and 
anomalies in the rest of our paper).

In Table 6, we estimate the factor loadings 𝑏𝑀𝐾𝑇 and 𝑏𝑀𝐴𝐶𝑅𝑂 by 
first-stage GMM, using the identity matrix to weigh moment restric-

tions. We use the standard moment conditions 𝔼[𝑀𝑡𝑟
𝜖
𝑖,𝑡
] = 0, where 𝑟𝜖

𝑖,𝑡

represents the excess returns on a test asset 𝑖. Each column in the table 
corresponds to a different model (i.e., a different choice of 𝑀𝐴𝐶𝑅𝑂 fac-

tor in Equation (3)), and each panel uses a different set of test assets to 
estimate each model. Specifically, each panel prices 25 portfolios con-

structed with 5 by 5 bivariate sorts of profitability by AG (Panel A), 
INVT (Panel B), AREC (Panel C), or PPE growth (Panel D). As measures 
of fit, we report the sum of squared (pricing) errors (SSQE) implied from 
each model, as well as the mean absolute pricing errors (MAPE).21 As 
a point of reference, in the first column of each panel, we also report 
results using the CAPM (i.e., no 𝑀𝐴𝐶𝑅𝑂 factor in Equation (3)).

One of the key findings in Table 6 is that almost all macro fac-

tors have significant pricing power in the cross-section of AG-based 
assets (Panel A), the only exception being the liquidity (LIQ) and credit-

market sentiment (HYS) factors. This helps to at least partially explain 
why the AG-based HXZ and FF5F models do such a great job in describ-

ing the cross-section of stock returns. More importantly though, since 
our paper focuses on the difference in performance between factor mod-

els using traditional investment measures like PPE growth, and models 
using AG, INVT, and AREC, the key insights for our paper come from 
analyzing how the results in panels A, B, and C are similar to each other, 
and how they are different from the results in Panel D.

From this point of view, Table 6 conveys two main findings. First, 
while the technology-shock factors (TFP, IST, and RD) are significant 
across the AG, INVT, and AREC cross-sections (except TFP in Panel B), 
they are also significant in the cross-section of PPE portfolios. This sug-

gests that the inferior performance of the PPE-based factor models is 
unlikely to be caused by its lower ability to capture macro technology 
shocks (i.e., the kind of shocks employed in production-based models 
like Tobin’s Q or extensions thereof). Second, as a group, the AG, INVT, 
and AREC portfolios seem to capture financing-related macro shocks 
(ICS, LEV, CRAT, BW) better than the PPE portfolios.

The CAY, UNC, and RS factors are also significant in the cross-

section of AG portfolios. However, we do not believe they are respon-

sible for the superior performance of AG-based models, for two main 
reasons. First, the RS factor is also significant in the cross-section of PPE 
portfolios. Second, as we showed in Section 3.1, the INVT and AREC fac-

tors (together) should account for all the pricing power of the AG factor 
within the HXZ and FF5F models. However, Table 6 shows that the CAY 
and UNC factors are not significant in either Panels B or C.

20 Nevertheless, we find that our results are qualitatively similar if the test 
assets are single-sorted portfolios based on AG, INVT, AREC, and PPE growth. 
See Table E12 in the Appendix for details.
21 Both measures of fit have been annualized so they can be compared across 
models (columns) with different frequencies. When estimating each model, the 
returns of the test assets and the market portfolio are compounded to match the 

frequency of the 𝑀𝐴𝐶𝑅𝑂 factor included in the SDF.
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Table 6

Pricing Double Sorted VW Portfolios using Macroeconomic Variables.

Panel A: Risk premia using VW returns on 25 AG–PROF portfolios

CAPM TFP IST RD CAY LIQ UNC ICS LEV CRAT RS BW HYS

𝑏𝑀𝐴𝐶𝑅𝑂 -0.16* -9.13*** -3.92** 124.24** 15.92 -52.61* 0.08* 0.14** 11.35* -18.54*** 6.75*** 4.23

(-1.69) (-3.70) (-2.10) (2.16) (1.57) (-1.83) (1.95) (2.07) (1.94) (-3.02) (2.68) (1.13)

𝑏𝑀𝐾𝑇 2.79** 2.80*** 6.55*** 5.67*** 5.86*** -3.27 -0.87 1.99 1.83 -9.37 9.49*** 4.16** 1.35

(2.52) (2.69) (4.31) (3.43) (2.85) (-0.72) (-0.48) (1.54) (1.14) (-1.44) (3.63) (2.04) (0.76)

SSQE 1.95 1.87 0.86 0.75 1.46 1.44 1.56 1.82 1.20 1.53 1.09 0.70 3.01

MAPE 2.12 2.00 1.37 1.38 1.95 1.83 1.79 2.03 1.80 1.89 1.48 1.30 2.68

Panel B: Risk premia using VW returns on 25 INVT–PROF portfolios

CAPM TFP IST RD CAY LIQ UNC ICS LEV CRAT RS BW HYS

𝑏𝑀𝐴𝐶𝑅𝑂 -0.08 -7.73*** -3.38** -7.47 4.18 10.92 0.04 0.00 3.94 -9.63** 4.76*** 5.11

(-0.96) (-2.77) (-2.07) (-0.23) (0.87) (0.93) (1.18) (0.15) (1.05) (-2.43) (2.67) (1.62)

𝑏𝑀𝐾𝑇 2.57** 2.39** 5.90*** 5.18*** 1.99* 0.94 3.32*** 2.00* 2.22** -1.55 6.38*** 3.74** 0.86

(2.32) (2.41) (3.47) (3.26) (1.69) (0.40) (2.80) (1.95) (2.35) (-0.36) (3.42) (2.19) (0.50)

SSQE 1.87 1.90 1.16 0.99 1.93 1.84 1.86 2.01 1.99 1.85 1.92 1.36 2.84

MAPE 1.97 1.99 1.69 1.57 2.03 1.88 1.92 2.06 2.12 2.04 2.12 1.77 2.72

Panel C: Risk premia using VW returns on 25 AREC–PROF portfolios

CAPM TFP IST RD CAY LIQ UNC ICS LEV CRAT RS BW HYS

𝑏𝑀𝐴𝐶𝑅𝑂 -0.18* -8.35*** -3.22* 5.94 7.35 -39.16 0.01 0.07 11.34* -13.76*** 4.82*** -0.70

(-1.66) (-3.07) (-1.88) (0.23) (1.34) (-1.38) (0.53) (1.53) (1.95) (-3.44) (2.86) (-0.30)

𝑏𝑀𝐾𝑇 2.64** 2.75** 6.17*** 5.07*** 2.43** -0.21 -0.06 2.18** 2.03* -9.44 7.84*** 3.81** 2.96**

(2.39) (2.50) (3.78) (3.09) (1.97) (-0.08) (-0.04) (2.36) (1.74) (-1.48) (3.96) (2.11) (2.27)

SSQE 1.63 1.48 0.61 0.74 1.64 1.52 1.45 1.80 1.51 1.26 1.19 0.85 2.90

MAPE 1.96 1.89 1.29 1.41 1.95 1.92 1.84 2.06 1.86 1.87 1.69 1.53 2.73

Panel D: Risk premia using VW returns on 25 PPE–PROF portfolios

CAPM TFP IST RD CAY LIQ UNC ICS LEV CRAT RS BW HYS

𝑏𝑀𝐴𝐶𝑅𝑂 -0.15* -6.45** -2.78* 45.57 10.86** -5.34 0.02 0.06 5.40 -13.29** 2.19 2.70

(-1.93) (-2.19) (-1.74) (1.46) (2.10) (-0.34) (0.62) (1.38) (1.19) (-2.03) (1.64) (1.01)

𝑏𝑀𝐾𝑇 2.69** 2.67** 5.38*** 4.76*** 3.56*** -1.61 2.31 2.18** 2.08* -3.01 7.66*** 3.19** 1.72

(2.39) (2.50) (3.14) (3.04) (2.77) (-0.59) (1.58) (2.33) (1.78) (-0.59) (2.96) (2.43) (1.26)

SSQE 1.13 1.03 0.71 0.69 1.08 0.66 1.12 1.22 1.05 1.06 1.10 1.05 2.07

MAPE 1.57 1.51 1.12 1.18 1.65 1.29 1.55 1.62 1.57 1.44 1.49 1.47 2.16

Note: This table presents GMM estimates of the SDF factor loadings and pricing errors from asset pricing models (Equation (3)) in which the SDF 
is a linear combination of the market factor (𝑀𝐾𝑇 ) and an additional macroeconomic shock (𝑀𝐴𝐶𝑅𝑂). Each column in the table corresponds to 
a different model (i.e., different choice of 𝑀𝐴𝐶𝑅𝑂) from the following list: (1) TFP: utilization-adjusted total factor productivity shocks [Fernald 
(2012)], (2) IST: investment-specific technology shocks [Papanikolaou (2011)], which we estimate as the return spread between investment- and 
consumption-good producing firms, (3) CAY: consumption-wealth ratio [Lettau and Ludvigson (2001)], (4) LIQ: aggregate liquidity [Pastor and 
Stambaugh (2003)], (5) UNC: macroeconomic uncertainty shocks [Jurado et al. (2015)], (6) ICS: aggregate equity financing shocks [Belo et al. 
(2019)], (7) LEV: financial intermediary leverage factor [Adrien et al. (2014)], (8) CRAT: financial intermediary capital ratio factor [He et al. (2017)], 
(9) RS: production network risk factor [Grigoris et al. (2023)], which we estimate as the return spread between firms with high vs low receivables-to-

sales ratios, (10) BW: equity market sentiment [Baker and Wurgler (2006)], (11) HYS: credit market sentiment, which we measure using the aggregate 
share of high-yield new bond issuances as in Greenwood and Hanson (2013). Each panel uses a different set of test assets to estimate each model. 
We use 25 test assets in each panel, constructed using 5 by 5 bivariate (independent) sorts on profitability and one of AG, INVT, AREC, and PPE 
respectively. We use NYSE quintile cutoffs to form the test asset portfolios. As measures of fit, we report the sum of squared (pricing) errors (SSQE) 
implied from each model, as well as the mean absolute pricing errors (MAPE). These measures of fit have been annualized, so they are comparable 
across models. As a point of reference, we also report results using the CAPM (i.e., no macro factor 𝑀𝐴𝐶𝑅𝑂 in Equation (3)) in the first column of 
each panel. t-statistics are reported in parentheses. *, **, and *** indicate statistical significance at the 10%, 5% and 1% level, respectively.
Overall, the results in Table 6 suggest that the superior performance 
of the AG, INVT, and AREC factors over traditional investment factors is 
likely related to their ability to capture aggregate financing shocks, not 
productivity/technology shocks. Digging a bit deeper, the only factor 
that significantly helps price the AG, INVT, and AREC assets but not

the PPE assets is the equity-market sentiment (BW) factor. As such, we 
go one step further, and test if this factor captures independent pricing 
information not already contained in the other macroeconomic factors 
used in our tests. To this end, we build three-factor SDFs of the form:

𝑀𝑡 = 1 − 𝑏𝑀𝐾𝑇 𝑀𝐾𝑇𝑡 − 𝑏𝐵𝑊 𝐵𝑊𝑡 − 𝑏𝑀𝐴𝐶𝑅𝑂𝑀𝐴𝐶𝑅𝑂𝑡, (4)

where 𝑀𝐴𝐶𝑅𝑂𝑡 is one of the factors used in our prior tests. We then re-

peat the tests in Table 6 using the same moment restrictions 𝔼[𝑀𝑡𝑟
𝜖
𝑖,𝑡
] = 0

applied to the same four groups of 25 test assets.

The results are reported in Table 7. The key takeaway from this table 
is that, in almost all models (columns), the BW factor loading remains 
11

significant when pricing AG, INVT, and AREC portfolios (Panels A, B, 
and C), and insignificant when pricing PPE portfolios (Panel D). The 
one exception is in Panels A and C, when the 𝑀𝐴𝐶𝑅𝑂 factor in the 
SDF is the equity-issuance cost (ICS) factor of Belo et al. (2019). This 
result is perhaps not surprising since, as Belo et al. (2019) point out, the 
ICS factor should capture all drivers of equity issuance costs, including 
equity market sentiment. Table 7 also shows that the BW factor drives 
out the pricing power of almost all other factors for AG, INVT, and 
AREC portfolios (with the lone exceptions being ICS in Panel A, IST, 
RD, and RS in Panel B, and IST and RS in Panel C). Importantly for our 
study, this is not the case for PPE portfolios (Panel D), where the TFP, 
IST, RD, CAY, LIQ, and RS factors are still significant.

5. Investigating the economic mechanism

Our main result, that the superior performance of the AG, INVT, 
and AREC factors seems to be driven by aggregate financing shocks, 

can in principle be rationalized by models as in Belo et al. (2019) and 
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Table 7

Pricing Double Sorted VW Portfolios using Macroeconomic Variables: Three Factor Models.

Panel A: Risk premia using VW returns on 25 AG–PROF portfolios

TFP IST RD CAY LIQ UNC ICS LEV CRAT RS HYS

𝑏𝐵𝑊 13.27** 4.58** 4.13** 11.75** 5.98*** 6.56*** -0.97 10.24* 6.85*** 3.96** 10.99*

(2.00) (2.04) (2.00) (1.97) (3.06) (2.93) (-0.17) (1.91) (2.75) (1.99) (1.85)

𝑏𝑀𝐴𝐶𝑅𝑂 -0.06 -4.35 -2.15 69.90 7.21 -4.80 0.08* 0.08 -0.13 -11.34 -2.99

(-0.42) (-1.12) (-1.10) (1.16) (0.93) (-0.21) (1.84) (1.17) (-0.03) (-1.50) (-1.00)

𝑏𝑀𝐾𝑇 2.29 5.52*** 5.22*** 4.12* 1.26 3.79* 2.02 1.86 4.41 8.22*** 4.17*

(1.27) (2.75) (2.66) (1.76) (0.36) (1.67) (1.63) (0.98) (0.87) (2.98) (1.94)

SSQE 0.87 0.58 0.52 0.73 0.61 0.69 1.82 0.72 0.70 0.85 1.66

MAPE 1.53 1.10 1.15 1.36 1.12 1.28 2.05 1.38 1.30 1.30 1.96

Panel B: Risk premia using VW returns on 25 INVT–PROF portfolios

TFP IST RD CAY LIQ UNC ICS LEV CRAT RS HYS

𝑏𝐵𝑊 10.63** 2.82* 2.73** 10.14*** 4.72*** 4.86*** 8.48*** 10.92** 4.94*** 5.01** 8.42***

(2.44) (1.73) (2.02) (2.68) (2.61) (2.74) (3.17) (2.51) (2.69) (2.48) (2.95)

𝑏𝑀𝐴𝐶𝑅𝑂 0.08 -6.02* -2.81* 10.62 3.25 16.25 -0.01 -0.05 -1.44 -10.32* 2.57

(0.95) (-1.90) (-1.69) (0.26) (0.64) (0.96) (-0.20) (-0.99) (-0.31) (-1.81) (0.90)

𝑏𝑀𝐾𝑇 1.97 5.85*** 5.41*** 2.48 2.46 4.89** 1.85* 2.43 5.42 8.21*** 2.11

(1.24) (3.12) (3.01) (1.59) (0.87) (2.56) (1.92) (1.56) (1.00) (2.97) (1.10)

SSQE 0.96 1.01 0.85 0.98 1.35 1.33 1.82 0.92 1.35 1.25 1.78

MAPE 1.62 1.55 1.45 1.59 1.67 1.70 1.94 1.52 1.75 1.79 2.23

Panel C: Risk premia using VW returns on 25 AREC–PROF portfolios

TFP IST RD CAY LIQ UNC ICS LEV CRAT RS HYS

𝑏𝐵𝑊 7.44** 2.31* 2.55* 7.94** 4.71*** 4.76*** 0.43 7.58** 4.44*** 3.27** 7.50**

(2.52) (1.69) (1.80) (2.40) (2.66) (2.95) (0.10) (2.44) (2.64) (2.42) (2.49)

𝑏𝑀𝐴𝐶𝑅𝑂 -0.15 -6.22** -2.19 -18.74 5.90 -2.06 0.01 0.02 2.40 -10.27** -1.78

(-1.40) (-1.98) (-1.32) (-0.48) (0.95) (-0.10) (0.40) (0.38) (0.53) (-2.28) (-0.71)

𝑏𝑀𝐾𝑇 2.61* 5.83*** 4.91*** 1.68 1.49 3.65* 2.17** 2.16 1.23 7.70*** 3.61**

(1.87) (3.31) (2.77) (0.97) (0.48) (1.71) (2.40) (1.59) (0.25) (3.49) (2.22)

SSQE 0.99 0.49 0.61 1.10 0.78 0.85 1.80 1.10 0.84 0.85 1.95

MAPE 1.56 1.12 1.18 1.69 1.45 1.54 2.05 1.65 1.52 1.53 2.35

Panel D: Risk premia using VW returns on 25 PPE–PROF portfolios

TFP IST RD CAY LIQ UNC ICS LEV CRAT RS HYS

𝑏𝐵𝑊 3.91 0.22 1.03 5.51 1.75 2.44* -2.70 1.36 1.78 1.64 5.72

(1.20) (0.19) (0.86) (1.63) (1.04) (1.90) (-0.61) (0.46) (1.41) (1.23) (1.61)

𝑏𝑀𝐴𝐶𝑅𝑂 -0.17* -6.33** -2.64* 72.79* 10.56** 6.63 0.02 0.06 4.28 -12.05* 2.40

(-1.90) (-2.16) (-1.75) (1.66) (2.14) (0.50) (0.75) (1.37) (1.03) (-1.85) (0.84)

𝑏𝑀𝐾𝑇 2.73** 5.39*** 4.90*** 4.31** -1.09 3.72*** 2.25** 2.09* -1.40 7.76*** 2.08

(2.19) (3.14) (2.91) (2.47) (-0.41) (2.73) (2.50) (1.74) (-0.30) (2.96) (1.29)

SSQE 0.96 0.71 0.67 0.96 0.61 1.04 1.20 1.04 1.01 1.05 1.86

MAPE 1.45 1.12 1.14 1.62 1.21 1.48 1.52 1.55 1.43 1.47 2.07

Note: This table presents GMM estimates of the SDF factor loadings and pricing errors from asset pricing models (Equation (4)) in 
which the SDF is a linear combination of the market factor (𝑀𝐾𝑇 ), the equity-market sentiment (BW) factor, and an additional 
macroeconomic shock (𝑀𝐴𝐶𝑅𝑂). Each column in the table corresponds to a different model (i.e., different choice of 𝑀𝐴𝐶𝑅𝑂) 
from the following list: (1) TFP: utilization-adjusted total factor productivity shocks [Fernald (2012)], (2) IST: investment-specific 
technology shocks [Papanikolaou (2011)], which we estimate as the return spread between investment- and consumption-good 
producing firms, (3) CAY: consumption-wealth ratio [Lettau and Ludvigson (2001)], (4) LIQ: aggregate liquidity [Pastor and 
Stambaugh (2003)], (5) UNC: macroeconomic uncertainty shocks [Jurado et al. (2015)], (6) ICS: aggregate equity financing shocks 
[Belo et al. (2019)], (7) LEV: financial intermediary leverage factor [Adrien et al. (2014)], (8) CRAT: financial intermediary capital 
ratio factor [He et al. (2017)], (9) RS: production network risk factor [Grigoris et al. (2023)], which we estimate as the return 
spread between firms with high vs low receivables-to-sales ratios, (10) BW: equity market sentiment [Baker and Wurgler (2006)], 
(11) HYS: credit market sentiment, which we measure using the aggregate share of high-yield new bond issuances as in Greenwood 
and Hanson (2013). Each panel uses a different set of test assets to estimate each model. We use 25 test assets in each panel, 
constructed using 5 by 5 bivariate (independent) sorts on profitability and one of AG, INVT, AREC, and PPE respectively. We use 
NYSE quintile cutoffs to form the test asset portfolios. As measures of fit, we report the sum of squared (pricing) errors (SSQE) 
implied from each model, as well as the mean absolute pricing errors (MAPE). These measures of fit have been annualized, so they 
are comparable across models. As a point of reference, we also report results using the CAPM (i.e., no 𝐵𝑊 and 𝑀𝐴𝐶𝑅𝑂 factors in 
Equation (4)) in the first column of each panel. t-statistics are reported in parentheses. *, **, and *** indicate statistical significance 
at the 10%, 5% and 1% level, respectively.
Bolton et al. (2013) where firms must respond to stochastic financing 
conditions, not just productivity shocks. The main challenge is to un-

derstand why, in the context of such models, the performance of the 
PPE-based factor is inferior to that of the AG, INVT, and AREC-based 
factors. While we acknowledge the difficulty of ruling out alternatives, 
below we discuss a few possible explanations for our main findings 
12

building on several results from the extant literature.
We believe that, in the context of our study, a key difference be-

tween short-term assets (INVT and AREC) and long-term assets (PPE) 
is their differential value as collateral for debt financing. We hypothe-

size that a firm’s AREC and INVT may provide more information about 
the firm’s ability to access the debt market than its PPE based on the 
evidence in Berger et al. (1996). The authors use data on the proceeds 

from discontinued operations for a sample of manufacturing firms from 
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1984 to 1993 and show that the recovery value for a dollar of fixed as-

sets (PPE) is lower than that of a dollar of accounts receivable (AREC) 
or inventory (INVT). Campello and Hackbarth (2012) use this idea to 
construct a firm-level index of asset tangibility as a proxy for the fir-

m’s ability to pledge collateral. Based on the evidence in Berger et al. 
(1996), and consistent with our hypothesis, the collateralizability proxy 
constructed by Campello and Hackbarth (2012) is more sensitive to 
changes in AREC and INVT than to changes in PPE.

Ai et al. (2020) argue that asset collateralizability should command 
a negative premium and they show empirical evidence consistent with 
this idea. They point out that many macroeconomic models featuring 
financing frictions predict that financial constraints are more binding 
in recessions and therefore can worsen economic downturns. Through 
their ability to relax financial constraints, collateralizable assets should 
provide a hedge against the risk of becoming financially constrained in 
recessions. Hence, firms with more collateralizable assets should be less 
exposed to aggregate financing shocks. If, consistent with Berger et al. 
(1996) and Campello and Hackbarth (2012), AREC and INVT provide 
a better proxy than PPE for the firms’ collateralizable capital, then the 
results in Ai et al. (2020) could explain why we find a stronger link 
between financing shocks and AREC and INVT. In the Ai et al. (2020)

framework, the AREC and INVT (and, by extension AG) factors would 
simply be better proxies for the collateralizability premium.

Nevertheless, since the Ai et al. (2020) study does not model the role 
of equity financing costs in particular, it can not explicitly account for 
the central role the equity-market sentiment factor plays in our main 
findings. We believe that the economic mechanism proposed in Belo 
et al. (2019) may close that gap. The authors suggest (and find evi-

dence consistent with) the idea that high-investment firms should have 
a lower sensitivity to aggregate equity financing costs because they are 
less collateral constrained than low-investment firms. This means they 
should be better able to substitute equity for debt financing when faced 
with increases in the costs of equity financing. Hence, firms with more 
collateralizable assets should be less exposed to aggregate equity financ-

ing shocks.

While Belo et al. (2019) use investments in long-term assets (CAPX) 
in their study, we argue that their mechanism should apply to all the 
other collateralizable assets of the firm. Furthermore, since, based on 
Berger et al. (1996), INVT and AREC are more collateralizable than 
PPE, sorting on INVT, and AREC (and, by extension, AG) could simply 
provide more accurate sorts on the extent to which firms are collateral 
constrained. Put differently, the inferior performance of the PPE-based 
factor may be due to its larger measurement error as a proxy for firms’ 
ability to substitute equity for debt.

We explore this channel in Table 8 where we report average debt 
and equity issuance levels for firms in the top and bottom quintiles of 
AG (Panel A), INVT (Panel B), AREC (Panel C), and PPE growth (Panel 
D).22 Following the methodology in Belo et al. (2019), we control for 
the effect of business cycle shocks on issuance activity by orthogonal-

izing each quintile-level time-series of average issuance on the annual 
growth in real GDP.23 We then report averages for these orthogonalized 
series, calculated separately for periods with high versus low sentiment 
shocks. Periods with high (low) sentiment shocks are the years falling 
in the top (bottom) decile with respect to the BW factor employed in 
our GMM tests (averaged out over the year). All numbers reported are 
in percentage points.

22 Equity issuance is calculated as the sale of common and preferred stock 
(SSTK) minus the purchase of common and preferred stock (PRSTK). Debt is-
suance is calculated as the change in total long-term debt outstanding (DLTT) 
plus the change in long-term debt due within one year (DLC). Both issuance 
variables are scaled by lagged total assets and are winsorized at the 1st and 
99th percentiles.
23 Specifically, each orthogonalized series is obtained by taking the intercept 
plus the residual from a regression of the non orthogonalized average-issuance 
13

series on real GDP growth.
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Table 8

Average Issuance Conditioning on Equity-Market Sentiment.

Panel A: Average issuance by AG quintile

Equity issuance Debt issuance

AG(Q1) AG(Q5) AG(Q1) AG(Q5)

High sentiment periods (BW) 6.71 8.09 -0.03 5.01

Low sentiment periods (BW) 4.24 4.03 -0.01 5.81

High - Low -2.48 -4.05 0.02 0.80

Percent change -36.88 -50.12 76.06 15.86

Panel B: Average issuance by INVT quintile

Equity issuance Debt issuance

INVT(Q1) INVT(Q5) INVT(Q1) INVT(Q5)

High sentiment periods (BW) 3.49 5.85 0.50 3.26

Low sentiment periods (BW) 2.22 3.28 0.61 4.30

High - Low -1.27 -2.57 0.11 1.05

Percent change -36.33 -43.89 22.54 32.17

Panel C: Average issuance by AREC quintile

Equity issuance Debt issuance

AREC(Q1) AREC(Q5) AREC(Q1) AREC(Q5)

High sentiment periods (BW) 4.78 5.87 0.80 3.15

Low sentiment periods (BW) 2.82 3.07 0.72 4.44

High - Low -1.96 -2.80 -0.08 1.29

Percent change -41.01 -47.67 -10.06 41.03

Panel D: Average issuance by PPE quintile

Equity issuance Debt issuance

PPE(Q1) PPE(Q5) PPE(Q1) PPE(Q5)

High sentiment periods (BW) 6.04 6.25 0.19 5.57

Low sentiment periods (BW) 3.44 3.70 -0.10 5.91

High - Low -2.60 -2.55 -0.28 0.33

Percent change -43.00 -40.83 -151.00 6.00

Note: This table presents average debt and equity issuance for the top and bot-

tom quintiles of asset growth (Panel A), inventory growth (Panel B) accounts 
receivable growth (Panel C) and PPE growth (Panel D). To obtain these aver-

ages, we first calculate cross-sectional averages of debt and equity issuance at 
the quintile-year level. We then ortogonalize each resulting time-series of aver-

ages by regressing them on a constant and GDP growth and taking the intercept 
plus the residual from these regressions. The table reports the means of these or-

thogonalized series during periods with low equity market sentiment and high 
equity market sentiment. Periods with low (high) sentiment are the years in 
our sample which fall in the bottom (top) decile with respect to the Baker and 
Wurgler (2006) factor described in Section 4. Equity issuance is calculated as 
the purchase of common and preferred stock (SSTK) minus the sale of common 
and preferred stock (PRSTK). Debt issuance is calculated as the change in total 
long-term debt outstanding (DLTT) plus the change in long-term debt due with 
one year (DLC). Both issuance variables are scaled by lagged total assets. The 
sample period is from 1972 to 2018. All numbers reported are in percentage 
points.

Across all panels, the results in Table 8 are consistent with the debt-

substitution channel in Belo et al. (2019). Namely, when faced with 
higher equity financing costs (low sentiment), firms in both quintiles 
(Q1 and Q5) issue less equity, but only firms in the top quintile (Q5) 
are able to substitute that with higher debt issuance. The debt issuance 
of firms in the bottom quintile (Q1) remains virtually unchanged, and 
very close to zero.

Importantly for our study, this substitutability seems to be stronger 
when we use AG, INVT, and AREC sorts (panels A, B, and C) than when 
we use PPE sorts (bottom panel). This result seems to be driven mainly 
by the behavior of firms in Q5 (second and fourth column). Specifi-

cally, during low sentiment periods, firms in AG(Q5), INVT(Q5) and 
AREC(Q5) seem to reduce equity issuance relatively more than firms in 
PPE(Q5) (50%, 43%, and 47% respectively for AG, INVT, and AREC, ver-

sus 40% for PPE) and they seem to increase debt issuance by relatively 
more (15%, 32%, and 41% respectively for AG, INVT, and AREC, ver-

sus only 6% for PPE). This is consistent with our hypothesis that AG, 

INVT, and AREC may simply be better proxies than PPE for the extent 
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Table 9

Using Sharpe Ratio Tests to Compare HXZ and FF5F to Traditional Factor Models Condi-

tioning on DOX.

Panel A1: Comparing HXZ-like models when DOX is above median

Baseline model Statistic CAPM FF3F C4F HXZ FF5F

HXZ(AG) Δ(𝑚𝑎𝑥𝑆𝑅2) -0.125*** -0.103** -0.091*** -0.003

p-value (0.008) (0.012) (0.010) (0.939)

Panel A2: Comparing HXZ-like models when DOX is below median

Baseline model Statistic CAPM FF3F C4F HXZ FF5F

HXZ(AG) Δ(𝑚𝑎𝑥𝑆𝑅2) -0.162*** -0.110* -0.013 -0.067

p-value (0.005) (0.064) (0.823) (0.198)

Panel B1: Comparing FF5F-like models when DOX is above median

Baseline model Statistic CAPM FF3F C4F HXZ FF5F

FF5F(AG) Δ(𝑚𝑎𝑥𝑆𝑅2) -0.122*** -0.101** -0.088** 0.003

p-value (0.007) (0.016) (0.030) (0.939)

Panel B2: Comparing FF5F-like models when DOX is below median

Baseline model Statistic CAPM FF3F C4F HXZ FF5F

FF5F(AG) Δ(𝑚𝑎𝑥𝑆𝑅2) -0.095** -0.043 0.053 0.067

p-value (0.026) (0.196) (0.342) (0.198)

Note: In this table we use maximum Sharpe ratio tests as in Barillas et al. (2020) to com-

pare the performance of the HXZ and FF5F models with that of traditional factor models. 
Specifically, the models we use in these tests are the CAPM, the Fama and French (1993)

three factor model (FF3F), the Carhart (1997) four factor model (C4F), the Hou et al. 
(2015) four factor model (HXZ), and the Fama and French (2015) five factor model 
(FF5F). In each panel, we report the difference in squared maximum Sharpe ratios be-

tween the model specified in the column header and the model specified in the row 
header. These Sharpe ratios are calculated in periods with above-median DOX (i.e., high 
overextrapolation) in panels A1 and B1, and in periods with below-median DOX (i.e., low 
overextrapolation) in panels A2 and B2. Panels A1 and A2 construct factors as in HXZ 
and panels B1 and B2 construct factors as in FF5F. p-values are reported in parentheses 

0).
and are calculated as in Barillas et al. (202

to which firms can substitute equity for debt when facing increases in 
equity financing costs.

It is important to acknowledge that this debt-equity substitution 
channel operates independently of the macroeconomic forces that may 
be causing changes in equity financing costs. As pointed out in Belo 
et al. (2019), this includes forces like time-varying information asym-

metry, agency frictions, liquidity, and risk aversion, but they may also 
include mispricing shocks caused by various investor behavioral biases. 
Our final set of tests explores this idea by using the aggregate “degree 
of overextrapolation” (DOX) metric of Cassella and Gulen (2018) and 
investigating if the performance of the AG-based factor models differs 
based on the degree of overextrapolation in the economy.24

24 Specifically, DOX measures the relative weight investors place on recent ver-

sus distant past returns when forming expectations about future stock market 
returns. It is estimated recursively from surveys of expectations of stock market 
returns in the U.S. modeled as 𝐸𝑥𝑝𝑡 = 𝑎 + 𝑏 

𝐿∑

𝑖=0
𝑤𝑖𝑅𝑡−(𝑖+1)Δ𝑡,𝑡−𝑖Δ𝑡 where 𝑤𝑖 =

𝜆𝑖

𝐿∑

𝑘=0
𝜆𝑘

and 0 ≤ 𝜆 < 1. 𝐸𝑥𝑝𝑡 refers to investors’ survey expectations at time t (taken from 
the survey of retail investors from the American Association of Individual In-

vestors and the Investor Intelligence Survey). 𝑅𝑖,𝑗 is the realized return on the 
S&P 500 index between time 𝑖 and time 𝑗. Δ𝑡 is the frequency of return observa-

tions, and it is set to 1∕4 (i.e., quarterly returns). The model is estimated using 
nonlinear least squares to obtain 𝜆, the (geometric) decay parameter measur-

ing relative weight investors place on recent versus distant past returns. 𝐷𝑂𝑋

is measured as 1 − 𝜆, a higher value of which implies that investors place too 
much weight on recent past and hence high degree of overextrapolation. The 
estimation is done recursively (every month) over three different estimation 
windows 𝐿, and the estimates are combined using the methodology in Pesaran 
and Timmermann (2007) and Capistran and Timmermann (2009). See Cassella 
and Gulen (2018) and Greenwood and Shleifer (2015) for more details on the 
14

estimation method.
In Table 9, we test if the superior performance of HXZ and FF5F 
over the traditional models (CAPM, FF3F, and C4F) varies depending on 
whether we are in a high or low overextrapolation period (i.e., above 
or below-median DOX level). We use model comparison tests based on 
the maximum squared Sharpe ratio analogous to the ones in Table 1, 
the only difference being that in Table 9, the Sharpe ratios are calcu-

lated separately during high DOX times (Panels A1 and B1) and during 
low DOX times (Panel A2 and B2). Panels A1 and A2 use HXZ as the 
baseline model and Panels B1 and B2 use FF5F as the baseline model. 
Panel A1 shows that, when DOX is high, the HXZ model performs sig-

nificantly better than the CAPM, FF3F, and C4F (FF5F performs about 
the same as HXZ). However, Panel A2 shows that, when DOX is low, 
HXZ performs no better than the C4F model and is only marginally bet-

ter than the FF3F model (the difference is significant only at the 10% 
level). Similarly, in Panel B1, when DOX is high, we see that the FF5F 
model performs significantly better than the CAPM, FF3F, and C4F mod-

els. However, Panel B2 shows that, when DOX is low, the FF5F model 
performs no better than the FF3F model or the C4F model. Overall, 
the results in Table 9 suggest that including an AG factor in our mod-

els only provides improvements in pricing when the economy is in an 
overextrapolative state.25

25 In Table E13 in the Appendix, we repeat the test-asset pricing analysis in 
Table E1, this time calculating each test statistic separately during periods of 
high and low DOX. The results show similar conclusions to Table 9: the HXZ 
and FF5F models provide a superior performance to the traditional models only 
during times over high overextrapolation. For example, when DOX is high, us-

ing HXZ (FF5F) we can explain all but one (four) out of our 35 anomalies, 
whereas the best we can do using the traditional models is with the Carhart 
(1997) model (C4F), which explains all but 12 anomalies. However, when DOX 
is low, the HXZ (FF5F) model explains all but 10 (22) anomalies, while the C4F 

model explains all but 14 anomalies.



Journal of Financial Economics 151 (2024) 103746M. Cooper, H. Gulen and M. Ion

Table 10

Using Sharpe Ratio Tests to Compare HXZ and FF5F to Models Using Alternative Investment Factors 
Conditioning on DOX.

Panel A1: Comparing HXZ-like models when DOX is above median

Baseline model Statistic None CAPX PPE TOTK PHK INTK

HXZ(AG) Δ(𝑚𝑎𝑥𝑆𝑅2) -0.067* -0.045* -0.060** -0.058** -0.065** -0.062*

p-value (0.051) (0.092) (0.029) (0.024) (0.024) (0.063)

Panel A2: Comparing HXZ-like models when DOX is below median

Baseline model Statistic None CAPX PPE TOTK PHK INTK

HXZ(AG) Δ(𝑚𝑎𝑥𝑆𝑅2) -0.094** -0.024 -0.008 0.000 -0.040 -0.028

p-value (0.025) (0.445) (0.778) (0.993) (0.200) (0.449)

Panel B1: Comparing FF5F-like models when DOX is above median

Baseline model Statistic None CAPX PPE TOTK PHK INTK

FF5F(AG) Δ(𝑚𝑎𝑥𝑆𝑅2) -0.074** -0.067** -0.077** -0.076** -0.074** -0.078**

p-value (0.041) (0.043) (0.030) (0.026) (0.027) (0.034)

Panel B2: Comparing FF5F-like models when DOX is below median

Baseline model Statistic None CAPX PPE TOTK PHK INTK

FF5F(AG) Δ(𝑚𝑎𝑥𝑆𝑅2) 0.001 0.004 0.002 0.002 0.009 -0.003

p-value (0.928) (0.693) (0.830) (0.803) (0.434) (0.728)

Note: In this table we use maximum Sharpe ratio tests as in Barillas et al. (2020) to compare the 
performance of the HXZ and FF5F models with that of models based on alternative investment mea-

sures. In each panel, we report the difference in squared maximum Sharpe ratios between the model 
specified in the column header and the model specified in the row header. These Sharpe ratios are 
calculated in periods with above-median DOX (i.e., high overextrapolation) in panels A1 and B1, and 
in periods with below-median DOX (i.e., low overextrapolation) in panels A2 and B2. Panels A1 and 
A2 construct factors as in HXZ and panels B1 and B2 construct factors as in FF5F. The alternative 
measures of investment we use are: capital expenditures divided by lagged PPE (“CAPX” column), 
the percentage growth in PPE (“PPE” column), the percentage growth in total capital (“TOTK” col-

umn), the change in total physical capital divided by lagged total capital (“PHK” column), and the 
change in total intangible capital divided by lagged total capital (“INTK” column). For the last three 
measures, total capital, total physical capital, and total intangible capital are measured as in Peters 
and Taylor (2017). p-values are reported in parentheses and are calculated as in Barillas et al. (2020).
In Table 10, we look at versions of HXZ and FF5F built using alter-

native measures of investment, and we compare their performance with 
the original models in times of high and low overextrapolation. The fact 
that all the estimates in the first row of Panel A1 are significantly neg-

ative shows that, during high DOX times, the HXZ model constructed 
using any of the alternative investment measures performs significantly 
worse than the original, AG-based HXZ model. Panel A2 shows that this 
is not the case during low DOX periods: the HXZ model performs no 
better whether we use AG to create the investment factor or any of the 
alternative measures of investment. Panels B1 and B2 find the same pat-

tern when we compare FF5F-style models: the AG-based model (FF5F) 
performs significantly better than all the alternatives (Panel B1) in high 
DOX times, but not during low DOX times (Panel B2). These results 
help support the prior finding that the superior performance of the AG-

based models is confined to the half of our sample when the degree of 
overextrapolation is high.26

To alleviate the concern that these results are confined to the five 
specific measures of investment used in Table 10, in Fig. 2 we use all the 
144 alternative measures of investment described in Section 2.2. Specif-

ically, the figure shows histograms of the maximum squared Sharpe 
ratios that can be obtained with the factors in each of the 144 mod-

els, both during high-DOX times (leftmost panels) and during low-DOX 
times (rightmost panels). The top two panels use HXZ-style models and 
the bottom two panels use FF5F-style models. The top-left panel in 
Fig. 2 shows that, during high DOX periods, the HXZ model (marked 

26 In Table E14 in the Appendix, we test model performance conditional on 
overextrapolation using anomaly portfolios and bivariate sorts as test assets. 
The results are consistent with the findings in Table 10. The original AG-based 
models perform significantly better during high-DOX periods but not during 
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low-DOX periods.
with the vertical “AG” line) is an extreme outlier when compared to the 
other 143 models providing a significantly higher maximum squared 
Sharpe ratio. The top-right panel shows that this is not the case during 
low-DOX periods, with the HXZ model performing similarly to the al-

ternative investment models. The bottom panels in the figure show that 
the same finding holds when we compare FF5F-style models. The FF5F 
model is by far the best model when DOX is high (bottom-left panel) but 
about in the middle of the distribution when DOX is low (bottom-right 
panel).

6. Conclusion

Uncovering firm characteristics that predict future stock returns has 
a long tradition in the asset pricing literature. Using these characteris-

tics to construct new factor models usually leads to an improved ability 
to describe the cross-section of average returns, at least in-sample, and 
for a particular subset of test assets. However, without understanding 
the structural mechanisms through which this improved pricing abil-

ity comes about, it is difficult to make prescriptions as to how the new 
models should be used, or to claim that they lend new insights into how 
assets are priced. This motivates us to investigate what may be driving 
the explanatory power of the HXZ and FF5F models, as they are quickly 
becoming the new benchmark factor pricing models.

We focus on the investment factor, which is constructed using 
growth in total assets in the original HXZ and FF5F papers. We start by 
documenting that the performance of this asset growth factor declines 
significantly if it was constructed using virtually any other previously 
proposed measure of investment. Furthermore, breaking the AG mea-

sure down into its main subcomponents and constructing factors using 
those subcomponents reveals a surprising fact: the performance of the 

HXZ and FF5F models deteriorates significantly when the investment 
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Fig. 2. Performance of alternative HXZ- and FF5F-Style Models Conditioning on DOX. Note: This figure plots the performance of HXZ-style models (top panels) and 
FF5F-style models (bottom panels) obtained by replacing the asset-growth-based investment factor in HXZ and FF5F, with a factor based on one of 144 alternative 
measures of investment. The figures report histograms of maximum squared Sharpe ratios (“SRs”) that can be obtained with the factors in each alternative model. In 
the panels on the left, these Sharpe ratios are calculated using time periods when DOX is above its sample median (i.e., high overextrapolation) and in the panels on 
the right, they are calculated using time periods when DOX is below its sample median (i.e., low overextrapolation). As reference points, the red vertical lines show 
the performance of the original, asset-growth-based HXZ and FF5F models and the blue lines show the performance of the models obtained using the percentage 
change in PPE to construct the investment factor.
factor is constructed using growth in PPE but not when using growth 
in inventory (INVT) and accounts receivable (AREC). The finding that 
the performance of the AG factor does not decline when we completely 
ignore information about investment in long-term assets calls into ques-

tion the idea that its explanatory power is primarily attributable to a 
structural link between expected returns and investment activity.

These findings motivate us to investigate a different structural link 
between asset growth and expected returns. We use a broad set of 
macroeconomic factors to price portfolios sorted on AG, INVT, AREC, 
and PPE growth and find that financing shocks help price AG, INVT, and 
AREC portfolios but not PPE portfolios. In particular, the equity-market 
sentiment factor seems to drive out the pricing power of almost all 
other factors when pricing AG, INVT, and AREC portfolios, but not PPE 
portfolios. We argue that this finding is consistent with the economic 
mechanism in Belo et al. (2019), who propose that high-investment 
firms are less exposed to equity financing costs because they are less 
collateral constrained than low-investment firms, and hence can bet-

ter substitute equity for debt financing when equity financing becomes 
more costly. Since INVT and AREC are more collateralizable than PPE, 
16

they (and by extension AG) may provide better proxies than PPE for the 
firm’s sensitivity to equity financing costs. Supporting this hypothesis, 
we find that, compared to PPE sorts, sorting on AG, INVT, and AREC 
provides larger spreads in the extent to which firms substitute equity 
for debt financing when facing low equity market sentiment.

This debt-equity substitution channel linking AG, INVT, and AREC 
to equity financing costs is agnostic to the underlying causes that may 
be driving these financing costs. It is important to acknowledge that 
these underlying causes may very well include systematic behavioral 
biases. We present some suggestive (though by no means causal) evi-

dence to this effect by using an aggregate measure of overextrapolation 
and showing that the superior performance of the asset growth fac-

tor is confined to the half of our sample with above-median levels of 
overextrapolation. In fact, in the sample with below-median overex-

trapolation, HXZ does not perform significantly better than the Carhart 
(1997) model and FF5F does not perform significantly better than the 
Fama and French (1993) model.

Nevertheless, we acknowledge that, in the absence of a structural 
model, it is very difficult to conclude whether a factor model is driven 
by risk or mispricing, and our results suggest that further investigation 

is warranted along these lines with respect to the HXZ and FF5F models. 
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More generally, our findings indicate that caution should be exercised 
when using reduced-form models to interpret the economic forces cap-

tured by asset pricing factors. Though the present value and 𝑞 models 
used in HXZ and FF5F are certainly intuitive, our study shows that the 
investment factor they propose may, in fact, be capturing forces that 
are outside their scope.
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