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THE ESTIMATION OF SIMULTANEOUS EQUATION MODELS 
WITH LAGGED ENDOGENOUS VARIABLES AND FIRST ORDER 

SERIALLY CORRELATED ERRORS 

BY RAY C. FAIR' 

In this paper various methods for the estimation of simultaneous equation models with 
lagged endogenous variables and lirst order serially correlated errors are discussed. The 
methods differ in the number of instrumental variables used. The asymptotic and small 
sample properties of the various methods are compared, and the variables which must be 
included as instruments to insure consistent estimates are derived. A suggestion on how to 
estimate the approximate covariance matrix of the estimators is made. 

1. INTRODUCTION 

RECENTLY SARGAN [8] has proposed various maximum likelihood estimators for 
the estimation of simultaneous equation models with serially correlated errors, 
and Amemiya [l] has considered the two stage least squares analogue to one of 
Sargan’s estimators and has proposed a modified version of this analogue. Because 
of the large number of instrumental variables which it uses, Sargan’s method (or 
the two stage least squares analogue) is likely to be of limited practical use, and 
this paper discusses which of Sargan’s instrumental variables should be retained 
in order to insure consistent estimates. One method is proposed that is asymptotic- 
ally equivalent to Sargan’s method, but which uses fewer instrumental variables 
and may have less small sample bias. Further suggestions are made for substantially 
decreasing the number of instrumental variables with perhaps small loss of 
asymptotic efficiency. Amemiya’s method is then briefly discussed and compared 
with the methods proposed in this paper. The paper concludes with a discussion 
of the asymptotic covariance matrices of the estimators. 

2. ‘IXE MODEL 
The model to be estimated is 

(1) AY+BX=U, 

where 

(2) U = RU-l _t E. 

Y is an h x T matrix of endogenous variables ; X is a k x T matrix of predeter- 
mined (i.e., both exogenous and lagged endogenous) variables; U and E are h x T 
matrices of disturbance terms; and A, B, and R are h x h, h x k, and h x h coef- 
ficient matrices respectively. T is the number of observations. The subscript - 1 for 
U_ 1 denotes the one period lagged values of the terms of U. 

Write E as E = (e(l) e(2). . . e(T)), where e(t) = (et(t) e&) . . . e,(t))’ is an h x 21 
vector of the tth value of the disturbance term. The following assumptions about 

’ I would like to thank F. M. Fisher and H. Kelejian for helpful comments on an earlier draft of this 
paper. 
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the model are made : 
(i) 8(E) = 0; 
(ii) &e(t)e’(t) = Z, t = 1,2,. . . , T, II: positive definite; 
(iii) de(t)e’(t’) = 0, t, t’ = 1,2, . . . , T, t # t’ ; 
(iv) plim T-‘XE’ = 1’ p im T-‘X_lE’ = plim T-lY_iE’ = 0; 
(v) the moment matrix of the endogenous, lagged endogenous, predetermined, 

and lagged predetermined variables is well behaved in the limit $ 
(vi) R is a diagonal matrix of elements between minus one and one ; 
(vii) A has an inverse. 
The estimation of the first equation in (1) is the focus of attention. Rewrite this 

equation as 

(3) y1 = -A,Y, - B,Xl + u1, 

where 

(4) Ul = ~llUl_* + el; 

y1 is a 1 x Tvector of values of yi, ; Y, is an ki x T matrix of endogenous variables 
(other than the first) included in the first equation; Xl is a Ict x T matrix of 
predetermined variables included in the first equation ; u1 and el are 1 x Tvectors 
of disturbance terms ; rI 1 is the element in the first row and first column of R ; and 
A, and B1 are 1 x hl and 1 x kl vectors of coefficients corresponding to the 
relevant elements of A and B respectively. 

From (1) and (2) the reduced form for Y is 

(5) Y = -A-rBX + A-‘RAY_l + A-‘RBX_, + A-‘E. 

Equations (3) and (4) can be written for any value of t : 

(6) Yl - rYl_1 = -4ui - rr,_,) - B1WI - ‘Xl-,) 

+ Ckll - W_I + &I. 

3. ESTIMATION METHODS 

In (6) e, is correlated with Yl , and u1 I ;is correlated with Y1 _ I and with the 
lagged endogenous variables in Xi and X1_,. The equation can be consistently 
estimated, however, by the following procedure. 

(a) First stage regression: Choose a set of instrumental variables which are 
uncorrelated with el and which at least include y1 _ 1, Yi _ 1, X1 , and X1 _ , ; regress 
each row of Yl on this set and calculate the predicted values of Y1 (denoted as 
Q) from these regressions. 

(b) Second stage regression : For a given r estimate equation (6) by ordinary 
least squares, using p1 - r Yl _ , in place of Y, - r Y, _ 1, and calculate the sum of 
squared residuals of the regression. 

’ See Christ [2, p. 3541. It should be noted that in general some of the same variables are included 
in both the predetermined and lagged endogenous matrices (X and Y_,), but in the moment matrix 
referred to in assumption (v) these variables are obviously included only once. Likewise, the constant 
term is included only once, even though strictly speaking it is included in both X and X- 1. 
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(c) Scanning or iterative procedure: Repeat (b) for various values of r between 
minus one and one (or use an iterative procedure),3 and choose that r and the 
corresponding estimates of A1 and B1 which yield the smallest sum of squared 
residuals of the second stage regression. 

Consistency of this procedure can be seen heuristically as follows. Let 

~~ = Y, - $. Then the equation estimated in the second stage regression is 

(7) yl - ryl_, = -A,(P, - rY,_,) - &(X1 - rX,_,) 
+ [(r11 - rL1 + el - A,Q. 

From (3), ul-, = YI-, + A~YI-, + IV_,, and since yl_,, Yl_,, and X,_, are 
used as instruments in the first stage regression, by the property of least squares 
u1 _ I and v1 are orthogonal. By assumption, u1 _ , and e, are uncorrelated. There- 
fore, the minimum sum of squared residuals of (7) occurs at the point where r 
equals rll, leaving as the error term el - A,pl, which is uncorrelated with 
Y, - rY,_, and X1 - rX,_,.4 

Itisnowclearwhyy,_,, Y1_,,andX,_, must be used as instruments in the first 
stage regression: unless p1 is orthogonal to al_, , the minimum sum of squared 
residuals does not necessarily occur at the point where r equals rI 1 . Another way 
of looking at this is the following. Rewrite equation (7) as 

(8) * YI = rllyl_l -AI& + rllA1K_, - &Xl + rll&X1_, + (el - Al Pd. 
The general estimation method outlined above consists of choosing estimates of 
r11,A,,andB,(say311, A,, and B,) such that the sum of squared residuals in (8) 
is at a minimum. The case where rll is assumed to be zero corresponds to the 
ordinary two stage least squares method. The error term el - A1 v1 in (8) has 
zero expected value (pl has zero mean value by the property of least squares) and 
is not correlated with y, _ , , pi, Y, _ , , X1, and X, _, (PI is orthogonal to these 
variables since y, _ , , Y1 _ 1, X, , and X, _ , are used as instruments in the first stage 
regression). Equation (8) can thus be considered a nonlinear equation with an 
additive error term whose properties are sufficient for insuring consistent estimates 
by minimizing the sum of squared residuals.5 

3 An iterative procedure which can be used is the following. From initial estimates of A, and B, 
(say A’?’ and B!? calculate - _ _ 

(Yl., + 4°‘Yl_, + By’X,_,)(y, + &py, + @Fp’X,) r(l) = ~~ 
(Y’L, + AWL, + BpX,_,)(y,_, + ‘q-y,_, + gpx,_,)’ ; 

use this value of r(‘) to compute new estimates, A\” and B\“, of A, and B, ; use these estimates to com- 
pute r(‘); and SO on until two successive estimates of r are within a prescribed tolerance level. In practice, 
this technique has been found to converge quite rapidly. 

’ For the single equation case (i.e., where A, = 0) see Malinvaud [6, p. 469, n. r ] for an outline of the 
proof that a procedure as in (c) yields consistent and, if e, is normally distributed, asymptotically 
efficient estimates. 

’ Minimizing the sum of squared residuals of (8) with respect to r 1 1, A,, and B, yields the following 
equation for ?, , : 

P - (Yl_, + A^,&_, + B,X,_,)(Y, + A,% + B,X,) 

,,-(Y,_, +‘%y,.,+&x,_,)(Y,_, +A^,y,_,+B,x,_,),’ 
Since 8 = Y, - p, and since 0, is orthogonal to y, ~, , Y1 I, and X, _ , , this equation can be written : 

P,, = (Yl., +Ay,., +B,xL,)(y'+d,Y, +B,x,) 
(Yl-, + A^lY,_, +&x,_,)(y,_, i&Y,_, + B,x,_,y’ 

which is the formula used to calculate successive values of r in the iterative technique described in foot_ 
note 2. 
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In estimating (6a), S2SLS would use as instruments yzt- 1, y2r_2, ylr_ 1, Y~~_.~, 
xlt, G-I, ~2~~ XWI, Xsf, and at-l. As was seen. above, Y~~-~, ylt-2, Y~~-~, 
Xtr, Xlt-13 X2?, and x2t_l must be used as instruments to insure consistent esti- 
mates. Notice, however, that x3t and xgt_ 1 do not enter as separate variables in the 
reduced form (5b), but only as xJr - t22~3t- 1. If a consistent estimate of rz2 were 
available (say 3,,), then knowledge of this restriction could be used, and xJt and 
x~~__ 1 need enter the first stage regression only as xgt - P22~3t _ 1. This suggests the 
following procedure. First estimate each equation separately by S2SLS, and then 
re-estimate each equation using knowledge of the reduced form and of the estimates 
of the rii coefficients to decrease the number of instruments used in the first stage 
regression. Providing it converges, this procedure can be repeated until the esti- 
mates of the rii coefficients from two successive trials are within a prescribed 
tolerance level. This iterative procedure will be denoted as 12SLS.’ Notice from 
the example just given that 12SLS saves instruments only to the extent that a given 
exogenous variable appears in only one equation of the model. In macroeconomic 
models, however, with income identities, the possibilities for decreasing the 
number of instrumental variables used for any one equation (given estimates of 
the rii coefficients) are usually greater, as an examination of the reduced form will 
reveal. 

Both S2SLS and 12SLS yield consistent estimates. With respect to asymptotic 
efficiency, the difference between S2SLS and 12SLS is that S2SLS in effect adds 
instruments which (in the limit) do not add anything to the explanation of the en- 
dogenous variables in the reduced form and which are uncorrelated with the 
reduced form error term. Instruments which add nothing to the explanation of 
the endogenous variables in the reduced form and which are uncorrelated with the 
reduced form error term will be referred to as “unnecessary” instruments. It is 
shown in the Appendix that adding unnecessary instruments in the two stage least 
squares technique does not change the asymptotic covariance matrix of the 
estimator. This implies, therefore, that S2SLS and 12SLS have the same asymptotic 
efficiency. Even though S2SLS fails to account for certain restrictions in the re- 
duced form, this has no detrimental effect on its asymptotic efficiency. 

With respect to small sample properties, the Appendix shows, using a theorem 
of Nagar [7], that adding unnecessary instruments in the two stage least squares 
technique increases the bias, to the order T- ‘, of the estimator.8 This result is not 
too surprising, since for small samples adding unnecessary instruments uses up 
degrees of freedom and does not seem likely to be of any positive benefit. Since 
S2SLS in effect adds unnecessary instruments only in the limit, it does not neces- 
sarily follow from this result that 12SLS has less small sample bias that S2SLS. 
In the above example, only if r 22 were known (as opposed to a consistent estimate 
being available), could the result in the Appendix be directly applied to conclude 
(footnote 8 aside) that 12SLS had less small sample bias than S2SLS. Intuitively, 

’ IZSLS can be considered to be a special case of the iterative method developed by Nagar and dis- 
cussed in Theil [9, pp. 354-3551. 

s The theorem of Nagar used in the Appendix has only formally been proven for the caSe where 
there are no lagged endogenous variables among the predetermined variables in the model. 
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however, it would seem that with respect to small sample properties the advantage of 
saving a degree of freedom by using 12SLS would outweigh the disadvantage of 
having only a consistent estimate of r22 available. 

Unlike S2SLS, 12SLS requires knowledge of the reduced form. It is also com- 
putationally more expensive and, as mentioned above, in general saves instruments 
only to the extent that a given exogenous variable appears in only one equation of 
the model. An alternative method is thus proposed which uses substantially fewer 
instrumental variables and does not require knowledge of the reduced form. 

From (1) and (2) for any value r. 

(9) A(Y- s,Y-1) + B(X - r,X_,) = (R - r,Z)U_, + E, 

where Z is the h x 12 identity matrix. Therefore, 

(10) Y = roY_, - A-‘&X - roX_J + [A-‘(R - roZ)U_1 + AmlE]. 

Equation (10) states that any endogenous variable, such as yi,, can be expressed as 
a ftmction of rey,_ t, of all of the predetermined variables in the form Xit - roxit _ 1 , 
and of an error term. When all of the serial correlation coefficients in the model are 
equal (to r0 say), then R equals r,,Z, and the error term in (10) reduces to that in (5). 
While it is unrealistic to assume that all of the serial correlation coefficients in the 
model are equal, in many cases it may not be too unrealistic to assume that they 
are nearly equal (to r0 say) so that A- ‘(R - r,Z)U_ 1 in (10) is reasonably small. 
If this is true, it suggests that in the estimation of equation (6) the first stage re- 
gression should consist of r Y, - r,Y,_,onX - r,X_, toget Y1 - roYI_, 
and then computing 2; as Y, - r. Y1 _ I + r. Y, _ , . It was seen above, however, that 
Yl_1, K_,P X1, and X,-i must be included as separate instruments to insure 
consistent estimates. Thus the suggestion should be modified to state that in the 
first stage regression Y1 should be regressed on y1 _ 1, Y, _ , , Xi, X, _ 1, and X2 - 
bXZ-lr where X2 denotes all the variables in X which are not in X, .’ Since the 
number of variables in X1 is likely to be small relative to the number in X,, the 
number of instruments saved by using X2 - r,X, _ 1 instead of Xz and X,_, 
separately is likely to be substantial. Notice also that the only lagged endogenous 
variables which are used as instruments, other than y, _ I and Y1 _, , are those in Xi 
and X, . 

This technique (which will be denoted as XZSLS) is asymptotically less efficient 
than S2SLS or I2SLS since in general the error term in (10) is larger than the one 
in (6). lo Since X2SLS uses substantially fewer instr~ental variables and thus sub- 
stantially fewer degrees of freedom, however, it may, depending on how nearly equal 

’ The value of re must be chosen in advance when using this technique. In an earlier draft of this 
paper the suggestion was made that for each iteration on r, X, - rX, _ , be used as instruments for Yi 
in the thirst stage regression. In this case, however, the r which minimizes the sum of squared residuals 
of equation (7) will not necessarily equal rr, , since pi in (7) will be a function of r and there is no 
guarantee that p, will be at a minimum for r equal to rl f. 

lo In fact t X2SLS does not yield consistent estimates of the reduced form coef&ients, since U- 1 
in (10) is correlated with the lagged endogenous variables in the model. Even though the first stage 
estimates are inconsistent, the estimates of the coefficients of(7) in the second stage will be consistent as 
long as the error in the second stage is uncorrelated with all of the instrumental variables (which it is at 
the point where r equals rI 1 in (7)). The proofs of consistency of two stage least squares given in two 
leading econometric texts, Christ [2] and Goldberger [J], use the assumption that the first stage estimates 
are consistent, but it is easy to show that this assumption is not necessary. 
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R and roZ are, have better (or at least not worse) small sample properties than 
S2SLS or 12SLS. From a more practical point of view, if the number of instruments 
proposed by S2SLS must be reduced because it exceeds or nearly exceeds the 
number of observations, decreasing the number in the manner suggested by 
X2SLS may (again depending on how nearly equal R and r,,Z are) lead to a smaller 
efficiency loss than excluding particular variables in Xz and X2 _ 1 . 

Amemiya’s modification of Sargan’s method (which Amemiya [l] denotes as 
MS2SLS) consists in dropping Y_ 1 from Sargan’s list of instrumental variables and 
in the first stage regression, for each value of r, regressing Y, - r Y, _ , on X and 
X-, to yield Y, - rY,_, to be used in the second stage regression. If there are no 
lagged endogenous variables in X, which Amemiya implicitly assumes, then this 
technique will result in consistent-s of A1 and B1 in (7) regardless of the 
value of r chosen, since neither Y1 - rY, _, nor X1 - rX, _1 will be correlated 
withul_,, e, , and vi. Given consistent estimates A, and fi, of A 1 and B, , rl 1 can 
be consistently estimated by the second equation in footnote 4. If there are lagged 
endogenous variables in X, then Amemiya’s method can be modified by treating 
all of these variables as “endogenous” as well.’ ’ 

Amemiya’s method (as just modified to include the case where there are lagged 
endogenous variables in X) uses fewer instrumental variables than MSLS, but 
considerable loss of efficiency is likely to result by treating all of the lagged endo- 
genous variables in the model as endogenous. Against first order serial correlation, 
Amemiya’s method is thus likely to be much less efficient than X2SLS. It does have 
the one advantage of yielding consistent estimates of A, and B, under more 
general assumptions about the autoregressive properties of the errors in the model. 

4. ASYMPTOTIC COVARIANCE MATRICES 

Let C, equal the 1 x (h, + k,) vector (A, Br) and let C, equal (A, &), where C, 
denotes the S2SLS, 12SLS, or X2SLS estimate of C1 when rll is known. When 
rl 1 is known the asymptotic covariance of ,,/?(&r - C,) is 

(11) asy cov [J?-< C, - CJ, ,/&C, - CJI = gll plim &Q’d-“, 
where Q; is the T x (h, + k,) matrix (Y’, - rllY’, , X’, - r, ,X’, _ ,) and (r, I is the 
element in the first row and first column of E. & is equal to Y,Z’(ZZ’)-‘Z, where 
Z is the k. x T matrix of instrumental variables used by the particular method. 
From the result in the Appendix, it follows that plim T(QrQ;)-’ is the same for 
S2SLS and 12SLS. 

Define the T x T matrix P1 such that 

+(T -[ -I##. _!I. 

I1 This technique of treating lagged endogenous variables as endogenous is used by Fisher [4]. 
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Let W; equal the T x (h, + k,) matrix (Z’(ZZ’)- ‘ZY’, X’J. Then P; W; equals 
(Z’(.ZZ’)-lZY’l - rl,Z’(ZZ’)-‘ZY; _, X; - r,,X’_,) except for the first row 
of P; W; . Since the variables in Y1 _ t are used as instruments and are thus in 
Z, Z’(ZZ’)- ’ Y; _ 1 equals Y1 _ , , and so P; W; equals Q’, except for the first row of 
P; W; . Therefore, QIQ; approximately equals WIPIP; W; in (11). It can be 
shown from the assumptions in Section 2 that &(u~u~) = al,SZ,, where 
PrP; = 52; ‘. Therefore, the asymptotic covariance of J?‘cC, - C,) in (11) 
approximately equals 

(12) (rll plim T(WISZ;’ W;)-‘.I2 

c, 
Equation (11) was defined for r1 1 known. For purposes of this discussion let 
denote the S2SLS, 12SLS, or X2SLS estimates of C1 when only a consistent 

. estimate rll of rll is available. Let D, equal the 1 x (h, + kl + 1) vector (Cl rll) 
and let B, equal (c, Pi,). The asymptotic covariance of ,,/?(D, - D1) can be 
derived by approximating equation (8) by the linear terms of the Taylor series 
expansion about ,6, and then deriving the asymptotic covariance matrix from the 
resulting linear equation. This produces 

(13) asy cov [JT(b, - Dl)‘, JT(B, - &)I 

= CT~ r plim T QIQ; Qtk, 
~,_,Q'I Ul- 

I 
,“l-I 

If the przbability limit of T- ‘Q,u; _ 1 were zero, then the asymptotic covariance 
of fl(C, - C,) in (13) would reduce to (11). But plim T-‘Q,u;_, is not zero 
since Ql includes lagged endogenous variables.’ 3 It is easy to show by taking the 
inverse of (13) that (rl 1 plim T(QIQ;)- ’ differs from the true asymptotic covariance 
of fi(?, - C,) by a positive semidefinite matrix and thus that (11) underestimates 
the asymptotic covariance of J’l’(e, - C,).r4 Since plim T-‘Q,u;_, is compli- 
cated to evaluate (note that lagged endogenous variables are included among the 
instrumental variables as well), in practice it probably should be assumed to be zero 
and the approximate covariance of El estimated as 8,,(QIQ’r-‘, where 
Qr = P; - PilY;_,x; - e,,x;_ ,), 8, 1 = T-‘QICi;, and ii1 = y1 - P, lyl _1 + 
Al(Y, - P;lY,_,) + $r(X, - P,,X,_,). Since plim T-lul_lu~_, equals 
a,,/(1 - rT1), in practice the approximate variance of P,, can be estimated as 
T-‘(1 - Pf,). 

Princeton University 
Manuscript received July, 1968 ; revision received February, 1969. 

I2 When all of the serial correlation coefficients in the model are known and are equal (so that 
dzr = 0, = . . . = fit,), (12) is equivalent to equation (6.149) in Theil[9, p. 3451, which is the asymptotic 
covariance matrix of Theil’s “generalized two stage least squares” estimator. 

t3 For Amemiya’s method (as modified above) plim ‘I’-‘Q,u’, _, is zero, since for this method Qt 
includes predicted (as opposed to actual) values of the lagged endogenous variables, the predicted values 
being uncorrelated with u, _ , 

I4 Cooper [3] in an unpublished note has derived the exact expression for the probability limit of the 
off-diagonal expression for the single equation model with one lagged dependent variable. He assumes 
that the errors are normally distributed and works with the likelihood function. The results here are 
essentially an extension of Cooper’s results to the simultaneous equation case, except that here no 
simple expression for the probability limit of the off-diagonal matrix can be found. Also, due to the 
nature of the error term in (8), the estimates here cannot be considered to be maximum likelihood 
estimates. 
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APPENDIX 

First we show that adding unnecessary instruments (i.e.. ;:i‘;tri(nir’i::i rrh~!: diid norhiny !o the 
explanation of the endogenous variables in the reduced form and which are uncarrelated with the re- 
duced form error term) in the first stage of the two stage least squares procrdurc li::s ~ii) e&ct on the 
asymptotic covariance matrix of the estimator. For purposes of the discussion in this Appendix, assume 
that equation (3) is to be estimated where u f = e, and that tbe overall model 1s ii) where c’ = E: (i.e., 
no serial correlation problems). Write the reduced form for Y, as 

(Al) Y, = n,,x + v,, 

where Jllz is an h, x k matrix of reduced form coefficients and V, is a h, x T matrix of reduced form 
disturbance terms. The asymptotic covariance of ,/?(e, - C,) isI 

(A2) 6, 1 plim T 
( 

P,r; r,x; -I 

x,y; x1x; 1 ’ 
where ?, = Y, X’(XX’)-‘X. 

Now assume that unnecessary instruments are added to the first stage regression and let W denote the 
k, x Tmatrix of these instruments. Wand V, are assumed to uncorrelatcd. Write (Al) as 

(A3) Yl = n1,z + v,, 
where IT Iz = (n,, 0) and z’ = (X’ W’). The predicted values of Y, from tbe first stage regression using Z 
as instruments are 

(A4) K = Y*z’(zz)-‘2. 

Using r, in place of Y, in equation (3) in the second stage regression results in the following asymptotic 
covariance of fi(C, - C )( 1 using the fact that y,Y; = F1Y; = Yly’; and Xiyl = X,Yi): 

(As) 61 1 plim T 
( 

i?,r; Ylx; -I 

. x,y; x,x; 1 
It is easy to show that plim T-‘9, Y‘l = plim T-‘p; Y, = II,, plim T-‘XX’JI’,,, so that (A2) and (A5) 
are the same. 

Heuristically this proof says that since the reduced form coefficient matrix is consistently estimated 
regardless of how many unnecessary instruments are added, nothing is changed in the limit by adding 
the extra instruments. 

With respect to small sample properties, Nagar [7] has shownI that the bias, to the order T-‘, of 
the two stage least squares estimator is (L - l)Qq, where 

:;,)-’ and q = T-’ 
1 1 

L is the total number of predetermined (instrumental) variables in the model less the number of co- 
efficients in the equation being estimated, and if, = ll,,X. Adding unnecessary instruments increases L, 
but has no effect on Q or q. Therefore, adding unnecessary instruments increases the absolute value of 
the bias, to the order T-‘, of the estimator. 
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