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I. INTRODUCTION

At the end of their debate with R. H. Strotz, F. M. Fisher and
J. Rothenberg make a plea for going beyond the Pareto optimality
criterion in analyzing issues in welfare economics.! The present
study is in the spirit of this plea: an attempt is made in this paper
to derive bounds on the optimal distribution of income under a
particular set of value judgments. Because of a general reluctance
of economists to make value judgments and to engage in inter-
personal comparisons of utility, there has actually been little work
done on the question of the optimal distribution of income. Most
of the work that has been done in that area has been concerned with
analyzing the determinants of income distribution.? Karl Marx, of
course, felt that income ought to be distributed according to need,?
but even here it is not clear without knowing how needs are
distributed what kind of income distribution this tenet implies.
Plato is perhaps one of the few who have been explicit on the ques-
tion of the optimal distribution of income. He felt that no one in

1. Franklin M. Fisher and Jerome Rothenberg, “How Income Ought to
be Distributed: Paradox Enow,” Journal of Political Economy, LXXX (Feb.
1962), 93. See also Robert H. Strotz, “How Income Ought to be Distributed:
A Paradox in Distributive Ethics,” Journal of Political Economy, LXVI
(June 1958), 189205, and “How Income Ought to be Distributed: Paradox
Regained,” ibid.,, LXIX (April 1961), 271-78, and Fisher and Rothenberg,
“How Income Ought to be Distributed: Paradox Lost,” ibid., LXIX (April
1961), 162-80. :

2. For an early review of previous studies of the determinants of income
distribution, see Hans Staehle, “Ability, Wages, and Income,” The Review of
Economics and Statistics, XXV (Feb. 1943), 77-87.

3. “. . . only.then can the narrow horizon of bourgeois right be fully
left behind and society inscribe on its banners: from each according to his
ability, to each according to his needs!” (Robert Freedman, ed., Marz on
Economics; New York: Harcourt, Brace and World, 1961, p. 277.)
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a society should be more than four times richer than the poorest
member of society, for “in a society which is to be immune from
the most fatal of disorders which might more properly be called
distraction than faction, there must be no place for penury in any
section of the population, nor yet for opulence, as both breed either
consequence.” *

In Section II of this paper a general optimization model is
developed, and then in Section III alternative sets of assumptions
about the key functions and parameters in the model are formulated.
The approach followed in Section III is to make at least two of the
sets of assumptions extreme enough in both directions so that the
real world situation appears likely to be bounded by them. In
Section IV the results of solving the model under the alternative sets
of assumptions are presented and analyzed. The sensitivity of the
optimal distribution of income to the key parameters of the model
is examined, and the actual distribution of income in the United
States is compared with the computed optimal distributions. The
paper concludes in Section V with a discussion of the limitations of
the present analysis and of various extensions that might be made.

II. Tue GENERAL MODEL
The Individual Utility Functions

This study is concerned with the lifetime distribution of income
of members of society. Let Y; denote the after-tax lifetime income
of individual ¢, H; the number of hours worked by individual
during his lifetime, and T the total number of possible working
hours in his lifetime. The first assumption of the model is that each
individual’s lifetime utility, U, is a function of his income, Y;, and
leisure, T;— H;:

(1) Ui=f(Y;, Ti—H)), 1=1,2,...,n,

where 7 is the number of individuals under consideration and where
the © subseript on f denotes the fact that f may vary from individual
to individual. Note that equation (1) ignores the problem of time
discounting and implicitly assumes that lifetime utility is indepen-
dent of the time distribution of income and leisure.

The Individual Earnings Functions
It is next assumed that everyone in society receives at least the
equivalent of a high school education — either an academic or

4. Plato, The Laws, trans. A. E. Taylor (New York: E. P. Dutton and
Co., 1960), p. 127.

.
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vocational education. After high school an individual has the choice
of furthering his education or beginning work immediately. E; will
be used to denote the number of hours individual % spends in educat-
ing himself beyond high school. The number of hours spent in
education beyond high school will be assumed to be hours spent in
work.®

Each individual is assumed to be born with a certain innate
ability, denoted as A;. Innate ability is meant to refer to innate
“productivity” and not merely to innate IQ intelligence. Innate
ability is likely to be a function of such things as innate physical
strength and stamina and innate organizational and administrative
ability as well as of innate IQ intelligence.

Let YE, denote the lifetime, before-tax (earned) income of
individual 7. Then YE;/(H;—E,) is individual ¢’s average (over his
lifetime) hourly productivity. H;—E; is the number of hours in-
dividual ¢ actually works earning income as opposed to educating
himself beyond high school, the latter also being counted as work-
ing. The average hourly productivity of individual 7 is assumed to
be a function of his innate ability and of his education beyond high
school:

(2) YE/(H,—E;)=g(4;, E;), 1=1,2,...,n
Equation (2) will be referred to as the individual’s “earnings fune-
tion.” The functional form of g will be discussed in Section III.
Since a given level of education is likely to have more effect on
actual productivity for an individual of high innate ability than
for one of low innate ability, the specification of ¢ must be made
with some care.

The Individual Tax or Distribution Functions

After-tax income, Y, is assumed to be related to before-tax
income by the following tax equation:

YE:
3) Y;=YG+YE;,—f t(YE,;)dYE,, 1=1,2, ..., n
[

Y@ in (3) is the minimum guaranteed level of lifetime income for
an individual: if an individual earns nothing during his life, he will
still receive YG' amount of income. ¢(YE;) in (3) is the marginal
tax rate function, the marginal tax rate being assumed to be a func-

5. Conceivably, E. should be treated partly as a consumption good as
well as an investment good, which would mean that E: should also enter the
utility function (1) in a positive way. It was felt, however, that this addition
would unduly complicate the model with little change in the final conclusions
and results, and so E: was kept merely as an investment good.
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tion of the level of earned income. The integral in (3) specifies the
amount an individual with YE; income will pay in taxes over his
life. Equation (3) can be considered to be a general distribution
equation in that it is both a “positive” and “negative” income tax
equation. Depending on YE; YG, and t(YE;), Y;—YE; can be
either negative or positive, and thus individuals may receive “neg-
ative” income tax payments under (3).

The Individual Behavioral Assumption

* The basic behavioral assumption of the model is as follows.
Individuals are assumed to take Y@ and t(YE;) as given and to
choose E; and H; so as to maximize their lifetime utility. Choosing
E; and H; leads through the earnings function (2) to YE;, which
leads through the distribution equation (3) to Y;, which then leads
through the utility function (1) to U;. U; is thus seen to be a func-
tion of the endogenous variables E; and H; and (from the point of
view of the individual) the exogenous variables YG, t(YE;), and A,.

The Social Welfare Function and the Government Behavioral
Assumption

Social welfare, SW, is taken to be a function of the individual
lifetime utilities: N
4)  SW=h(Uy, U, ... Uy).

The particular form of h used in this study will be discussed in
Section III. }

Given the form of h, the government is assumed to choose the
minimum guaranteed income level, Y@, and the marginal tax rate
function, t(YE;), such that SW is at a maximum, subject to the
constraint that each individual maximizes his own utility and
subject to the lifetime budget constraint:

(5). _21 Yi=.21 YE,.
The budget .constraint (5) says that the sum of after-tax income is
equal to the sum of before-tax or earned income.®

Solution of the M odel'

Aside from specifying the distribution of A; and the form of
the various ft_mctions, both of which will be done in Section III, the

6. The budget constraint will be made slightly more complicated in
Section III to incorporate the case of public goods.
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model is complete. Individuals take YG and t(YE;) as given and
choose the values of E; and H; that maximize their utility functions.
The government chooses YG and ¢(YE;) that maximize SW, subject
to the budget constraint and subject to the constraint that each
individual maximizes his own utility. The individual maximization
equations are

(6) oU/9H;=0, 1=1,2,...,n,

(7) oUi/9E;=0, 1=1,2,...,n

and the overall constrained maximization problem can be set up as
the problem of maximizing the following Lagrangian:

(8) L=h(Uy, Uy, ..., U,

_iél"[/i( g][ﬁ _O) _iél 4’*(2_;: -0 )

M 3Yi— SYE).
i i=1

i=1

The problem in (8) is to maximize h subject to the 2n+1 con-
straints. The y;, ¢;, and X variables in (8) are the 2n+41 Lagrangian
multipliers. Theoretically, then, the model can be solved by differ-
entiating L with respect to the 4n43 unknowns, H;, E, Vi, bi,
t(YE;), YG, and A, and solving the resulting set of 4n+3 equations
for the 4n+3 unknowns. In practice, the model had to be solved by
solving a subset of the 4n+3 equations and scanning for the remain-
ing values. The process by which the model was solved is discussed
in the Appendix.

III. SpECIFICATION OF THE MODEL

Both questions of value and questions of fact are involved in
specifying the above model. Questions of fact are involved in
specifying the form of the individual utility functions, the distribu-
tion of innate ability, and the form of the earnings functions; and
questions of value are involved in specifying the form of the social
welfare function. Value judgments are also involved in the assump-
tion that people have the freedom to maximize their utility subject
only to the tax constraint and in the assumption that everyone
receives (at public expense) the equivalent of a high school educa-
tion.

The Individual Utility Functions

The f; functions in (1) are assumed to be Cobb-Douglas
functions in income and leisure, and individuals are assumed to
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differ only in the weight they attach to income and leisure in their
functions. In particular, it is assumed that

ot 1—-6¢
(9) U£=BYi (T‘l_Hi) ) i=1; 2) R
where the parameter §; can differ from individual to individual. The
constant B in equation (9) is assumed to be the same for all in-
dividuals. Individuals with the same & parameter and the same
income and leisure, for example, are assumed to have the same
utility. Individuals, in other words, are assumed to have (aside
from possibly differing 8; coefficients) the same capacity for absorb-
ing utility; some are not assumed to be more absorptive (better?)
than others.

The specification of the §; parameters is of considerable im-
portance in the model. §; is the measure of how much individual ¢
values income relative to leisure in his utility function. To get an
idea of what 8; might be, assume that there is no tax function (so
that Y;=YE;) and that income is just a simple function of the
number of hours worked: Y;=w;H;. w; is the wage rate for in-
dividual 7. Then Y; can be eliminated from the utility function to

& & 1-0¢
yield U;=w; H; (Ts—H;) . On the assumption that the in-
dividual maximizes U; with respect to H;(w; and T; being taken to
be exogenous), U; can be differentiated with respect to H;, set equal
to zero, and solved for H;. This yields H;=8§T;, or 8 =H;/T;. & in
this simple example is thus the percentage of the total possible work-
ing time individual ¢ actually works.

In Table I three values of H;/T; are presented for three different

TABLE 1
VaLues oF H: UNDER VARIOUS ASSUMPTIONS
Assumption about work effect Hq Hi/Ts
Below 4 hours a day, 20 days a month,
average: 12 months a year, 43 years 41280 0.133
Average: 8 hours a day, 20 days a month,
12 months a year, 48 years 92160 0.297
Above 10 hours a day, 25 days a month,
average: 12 months a year, 53 years 159000 0.513

a. T+ = (53 years) (365.25 days) (16 hours) = 309892 hours.
assumptions about work effort.” If an individual works the equiv-

7. It is assumed in this study that 7', the maximum working lifetime of
each individual, extends from the age of 18 to the age of 70. It is also
assumed that each individual needs 8 hours of sleep a day. This then leaves (563
years) (36525 days) (16 hours) = 309,892 possible working hours in each in-
dividual’s lifetime.
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alent of 8 hours a day, 20 days a month, 12 months a year, for 48
years (say, ages 18-65), then H;/T; is equal to 0.297. If, on the
other hand, an individual is less industrious and works only the
equivalent of 4 hours a day, 20 days a month, 12 months a year, for
43 years (say, ages 18-60), then H;/T; is equal to 0.133. Finally,
if an individual is quite industrious and works the equivalent of
10 hours a day, 25 days a month, 12 months a year, for 53 years
(say, ages 18-70), then H/T; is equal to 0.513. Under the above
simple model, therefore, §; would seem to range from about 0.1 for
very unindustrious individuals to about 0.5 for highly industrious
ones, with the average appearing to be about 0.3. The simple no-tax
model is, of course, quite crude, but the above analysis is designed
merely to give an indication as to the possible range of values of the
8; coefficients.

In this study three different assumptions about the §; coefficients
have been used. The first assumption is that §; is equal to 0.3 for
all individuals. The second assumption is that for the first one-
fifth of the population §; is equal to 0.2, for the second fifth to 0.25,
for the third fifth to 0.3, for the fourth fifth to 0.375, and for the

~last fifth to 0.45. The third assumption is similar to the second,
with the respective values of §; being 0.15, 0.225, 0.3, 0.4, and 0.5.
There is thus no variation in individuals’ degrees of industriousness
under the first assumption, a moderate to large amount of variation
under the second assumption, and a rather large amount of varia-
tion under the third assumption.

The Dastribution of Innate Ability

From the time of Galton on, the assumption has been commonly
made that innate characteristics of human beings are normally dis-
tributed. Indeed, Hans Staehle has stated that “Since Galton pub-
lished Hereditary Genius, the assumption that individuals are dis-
similar as to their ‘natural ability,’ or ‘general aptitudes,” and that
their distribution according to these general aptitudes is essentially
normal, has never been seriously contested.”® That assumption
will not be contested in this study either, and innate ability, 4;, will
be assumed to be normally distributed. Remember, however, that
ability is not meant to refer merely to IQ intelligence, but also to
such things as physical strength and stamina and organizational
ability. The assumption that A4; is normally distributed is thus
probably stronger than, say, the assumption that innate intelligence
or physical strength is normally distributed.

8. Op. cit., p. 77.
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The mean of A; is arbitrarily taken to be 100. With respect to
the standard deviation of A;, information can perhaps be gleaned
from observing the standard deviations that have been measured
in various psychological tests. From a perusal of a text on psycho-
logical testing by F. S. Freeman,® the measured standard deviations
(with the mean taken to be 100) seemed to range between about
12 and 20, with a median of about 16. Argument by analogy would
thus indicate that the standard deviation of A; should be about 16,
although there is no compelling reason for feeling that innate in-
telligence (or whatever it is that psychologists test) and innate
ability are identically distributed.! In line with the methodology of
the study, three different assumptions about the standard deviation
of A; have been used: the standard deviation has been assumed to be
either 8, 16, or 32.

The Individual Earnings Functions

It is assumed in the general model above that everyone receives
the equivalent of a high school education, whether it be an academic
or vocational type of education. The quality of education is assumed
to be uniform, and education through high school is conceived of as
being necessary to keep the distribution of 4; the same at the time
of high school graduation as it was at birth. Individuals, in other
words, are assumed to be born with a certain potential innate ability,
where it takes the equivalent of a high school education to make this
potential a reality. Education before high school graduation is also
taken to include family upbringing, and if for some reason an indi-
vidual receives an inadequate education or upbringing, then his
actual ability at the time of high school graduation will be less than
his potential ability was at birth.

Let 20 denote the actual productivity (output per hour) of in-
dividual ¢ at the time of high school graduation (E; equal to zero).
Then the above assumption is that z; and A; are identically distrib-
uted. This is the first step in specifying the earnings function (2).

The next question is how education beyond high school affects
productivity. It is quite likely that the degree to which a person’s
productivity is affected by his education beyond high school is a
function of his innate ability. If this possibility is ignored for the

9. Frank 8. Freeman, Psychological Testing (New York: Henry Holt
and Company, 1955). :

1. There is also the danger that psychological tests are designed, either
explicitly or implicitly, to result in a standard deviation of about 16. If this
practice is widespread, then little information about the standard deviation
of A can be gleaned from the results of psychological tests.
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moment, however, some information on the effect of college educa-
tion on productivity can perhaps be gathered from the studies of
G. S. Becker, Z. Griliches, G. Hanoch, H. P. Miller, and T. P.
Schultz.2 In these studies the mean incomes of high school and
college graduates were computed for various groups and years. Some
of the results of these studies are summarized in Table II. The

TABLE II

Rario oF THE MEAN INcOME oF COLLEGE GRADUATES TO THE MEAN INCOME
or HigH ScHOOL GRADUATES COMPUTED FROM VARIOUS STUDIES

A. Becker: Urban, native, white males

Year/Age 23-24 25-29 30-34 35-44 45-54 55-65
1939 1.04 129 147 1.56 1.59 1.53
1949 0.84 1.08 142 1.86 2.00 1.85

B. Griliches: Males

All Ages/Year 1939 1949 1958 1959 1963 1966

1.57 1.63 165 1.51 145 1.52

C. Hanoch: White, northern males

Year/Age 27 37 47 57 67 77
1959 126 144 161 1.61 1.53 1.62

D. Miller: White, northern males

Year/Age 18-24 25-34 3544 45-54 55-65 2564
1959 . 121 1.19 161 183 1.86 1.57

E. Schultz: Males

Year/Age 25-29 30-34 3544 45-54 55-64 65-74
1959 1.12 13¢ 150 1.62 1.62 1.90

_ Sources: A. Becker, Human Capital, op. cit., Table 1, p. 71 and Table 3, p. 77. B.
Griliches, “Notes on the Role of Education,” op. cit., Table 6, p. 23. C. Hanoch, “An Eco-
nomic_Analysis of Earnings and Schooling,” op. cit., Table 2, p. 316. D. Miller, Income Dis-
tribution in the United States, op. cit., Table IV-3, p. 139. E. Schultz, Statistics on the Size
Distribution of Personal Income, op. cit., Table 1, p. 43.

ratio of the mean income of college graduates to the mean income of
high school graduates is presented in Table II for various age groups
and years from each of the studies. The results presented in Table
1T are by no means meant to be a complete summary of the work in
the field, but are meant to be used only to give a rough indication
of how education affects earnings or productivity.

2. Gary S. Becker, Human Capital (New York: National Bureau of
Economic Research, 1964). Zvi Griliches, “Notes on the Role of Education in
Production Functions and Growth Accounting,” paper presented to the Con-
ference on Research in Income and Wealth, Nov. 15-16, 1968. Giora Hanoch,
“An Economic Analysis of Earnings and Schooling,” The Journal of Human
Resources, II (Summer 1967), 310-29. Herman P. Miller, Income Distribution
in the United States, a 1960 Census monograph (Washington, D.C.: US.
Government Printing Office, 1966). T. Paul Schultz, Statistics on the Size
Distribution of Personal Income in the United States, prepared for the Joint
Economic Committee of the U.S. Congress (Washington, D.C.: U.S. Govern-
ment Printing Office, 1965).
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With the figures in Table II as a guide, the assumption was
made in this study that a college education (or the equivalent in
advanced vocational training) increases the average lifetime hourly
productivity of an individual of average ability (4; equal to 100) by
30 percent. This corresponds to a productivity ratio of college to high
school graduates of 1.30 for those of average ability. The 1.30 figure
is smaller than most of those in Table II because of the feeling that
the figures in Table II partly reflect differences in innate ability.

There is, unfortunately, even less information available on the
effect of a graduate school education on productivity. The informa-
tion that is available from the studies of Hanoch and Miller is sum-
marized in Table III. The ratio of the mean income of those with

TABLE III ,
Rar10 OF THE MEAN INCOME OF THOSE WITH MORE THAN
A Four-YEAR CoLLEGE EpucaTioN T0 THE MEAN INCOME
oF THose wiTH ONLY A CoLLEGE EpucaTion

A. Hanoch: White, northern males

Year/Age 37 47 57 67 77
1959 111 120 1.18 134 1.59
B. Miller: White, northern males
Year/Age 18-24 25-34 35-44 45-54 55-64 25-64

1959 .. .. .. .. 101 101 1.16 129 122 118

Sources: See Table II.

more than a four-year college education to the mean income of those
with only a college education is presented in Table III for various
age groups from each of the two studies. The figures in Table III
are again meant to be used only as a rough guide. With the
figures as a guide, the assumption was made in this study that a
graduate school education increases the average lifetime hourly pro-
ductivity (from what it was at the time of college graduation) of an
individual of average ability. (4; equal to 100) by 23 percent. This
corresponds to a productivity ratio of graduate school to college
graduates of 1.23 for those of average ability, or a productivity
ratio of graduate school to high school graduates of 1.60 for those
of average ability.

The next problem is to decide how the 1.3 and 1.23 ratios are
affected by the level of innate ability of the individual. There is
again very little evidence one can use for guidance on this question.
In his review article, Griliches cites a study by Wolfe, which con-
cludes that those with the highest ability receive the greatest return
from their education, but the data from Malmo, Sweden, on income,
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education, and IQ at the age of ten, which Griliches presents, shows
no evidence that returns to education are a function of 1Q.2 Becker
presents some evidence from a study of Minnesota males that indi-
cates that those of higher IQ receive a greater return to education,*
but the evidence presented in the same table on a study of Rochester
males gives no indication that this is true. Nevertheless, it will be
assumed here that returns to educdtion (or advanced vocational
training) do vary by ability, and iri line with the methodology of
this paper three alternative assumptions will be made.

Let 2;c denote the average lifetime hourly productivity of indi-
vidual ¢ with a college education; let z;¢ denote the average lifetime
hourly productivity of individual ¢ with a graduate school education,
and let z; continue to denote the average lifetime hourly produec-
tivity of individual ¢ with a high school education. Since 2, and
A, are assumed to be identically distributed, zi can be set equal to
A; with no loss of generality. (Remember that A4; is assumed to
have mean 100 and standard deviation either 8, 16, or 32.) It will
also be convenient to define a new variable, @;, which is
(10)  Q;=100+4p3(4;—100),
where B is either 0.5, 1.0, or 2.0, depending on whether the standard
deviation of 4; is 32, 16, or 8, respectively. @Q;, in other words, is
always assumed to have a standard deviation of 16.

The first assumption that is made concerning the effect of edu-
cation beyond high school on productivity is the following:

(11) 210/24o=maX[1.0, 13+13y(Q1/100—- 1)],

i=1,2,...,n,
(12) zig/2ic=max[1.0, 1.234+1.23y(Q;/100—1) ],

i=1,2,...,n,
where y is equal to 1. What (11) and (12) say is that the effect of
education on productivity is never less than zero and that the effect
of education increases with the level of innate ability. For a person
of average ability (Q; or A4; equal to 100), zic/zi0 and zie/zic are
1.30 and 1.23, respectively, whereas for a person of, say, an ability
level corresponding to a @; of 130, the ratios are 1.69 and 1.60,
respectively.® (The ratio of zi to 2 for a person of an ability level
corresponding to a Q; of 130 is thus (1.69) (1.60) =2.70, as opposed
to 1.60 for a person of ability level 100.)

3. Griliches, op. cit., Table 8, p. 35.

4. Becker, op. cit., Table 5. .

5. From the definition of Q. in (10), an ability level corresponding to a
Q. of 130 is either 160, 130, or 115, depending on whether the standard devia-
tion of A is 32, 16, or 8, respectively.
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The second assumption that is made about the effect of ability
on the return to education is that y is equal to 2 in equations (11) and
(12). Under this assumption z;0/z; and z;g/2:;0 are still equal to
1.30 and 1.23, respectively, for a person of average ability, but now
for a person of an ability level corresponding to a Q; of 130, the ratios
are 2.08 and 1.97, respectively. The third assumption is that y is
equal to 0.5 in equations (11) and (12). In this case, for a person
of an ability level corresponding to a Q; of 130, the ratios z;0/2: and
2ia/2ic are 1.50 and 1.40, respectively, relative to the same 1.30 and
1.23 ratios for a person of average ability. The last two assumptions
about .y were felt to be extreme enough that the true situation should
fall somewhere in between. The assumption that y is equal to 2
seems perhaps to be more extreme in the one direction than the as-
sumption that y is equal to 0.5 is in the other direction.

There are nine different earnings functions implicit in the
above specifications. Three assumptions have been made about the
distribution of innate ability, and three assumptions have been made
about how the level of innate ability (as reflected through the Q;
variable) affects the relationship between education beyond high
school and actual productivity. The nine earnings functions are,
of course, not analytic, but before discussing how the functions
were made analytic, it will be useful to define some units of mea-
surement.

Individuals going to college or graduate school are assumed to
work the equivalent of 8 hours a day, 20 days a month, 12 months
a year. A college education is thus assumed to require (8 hours)
(20 days) (12 months) (4 years)=7680 hours, and a graduate
school education the same amount.® An individual with average
ability level (4;=100) and no education beyond high school (E;=0)
is assumed to make 4 dollars an hour. Finally, 50 individuals are
assumed to be enough to approximate the normal distribution of
abilities, the individuals being placed between equal areas along
the normal curve.

The nine earnings functions are presented and numbered in
Table IV. To get a better indication of how the functions differ,
the average hourly productivity of the least able individual with
only a high school education and the average hourly productivity
of the most able individual with a graduate school education are
presented in Table IV for each of the functions. For earnings
function 1 there is very little variation, with the most productive

6. For the computations below, the hours figures have been divided by
1000 to make them more manageable.
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individual being only 3.3 times more productive than the least pro-
ductive. For earnings function 9, on the other hand, the most pro-
ductive individual is 33.4 times more productive than the least

TABLE 1V
Tue NINE EaRNINGS FuNcTIONS

Average lifetime hourly productivity
(in dollars per hour,

Number assigned Least able Most able
to earnings individual, individual,
function SD of As® ¥ Ei=0% E¢=15360 ¢

1 8 05 325 10.68

2 8 10 325 14.30

3 8 20 : 325 23.12

4 16 05 251 12.36

5 16 1.0 2,51 16.55

6 16 20 251 26.76

7 32 05 1.02 15.72

8 32 10 1.02 21.04

9 32 20 1.02 34.02

a. SD denotes standard deviation.

b. Least able individual corresponds to an A¢ of 25.44, 62.72, or 81.36, depending on
whether the standard deviation of At is 32, 16, or 8, respectively.

c. Most able individual corres| onds to an At of 174.56, 137.28, or 118.64, depending on
whether the standard deviation of A+ is 32, 16, or 8, respectively. E+ equal to 15360 corresponds
to a graduate school education.

productive. For the “median” earnings function 5, the most and
least productive individuals differ by a factor of 6.6.

Each of the functions in Table IV consists of a table of 150
values: for each of the 50 values of 4; and for each of the 3 values
of E; (E;=0, 7680, 15360), there corresponds one hourly productivity
rate. In order to make the functions usable in the model, each one
had to be approximated by a differentiable function. This was done
in the following manner. Under the specification of the model, pro-
ductivity should be zero when E; is less than zero, and so to ap-
proximate this situation, 50 more points (for the 50 values of A;)
were added to each of the nine tables, each point corresponding to an
E; of —3000 and an hourly productivity rate of zero. It should also
be the case that further education beyond graduate school (15360
hours) produces no further gain in productivity, and so to approxi-
mate this situation, 50 more points were added to each of the nine
tables, each point corresponding to an E; of 18360 and an hourly
productivity rate the same as the rate for E; equal to 15360. Each
table then consisted of 250 points, and for these observations for
each table, hourly productivity was regressed against various
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polynomials in 4; and E; until a good fit was achieved. The sim-
plest polynomial that gave good fits was the following:

(13) YEi/(Hi—E:) =bo+b,E;+bsAi+ b3 EiAi+ b E%A;+bsE A2,
+06E% A%+ b1 B3 A+ bsE4 A1+ by E%+ by o B3;
+ b1 B4
In some cases simpler polynomials than the one in (13) gave results
almost as good, but (13) seemed to be quite accurate in all nine
cases, and it was chosen to be used for all of the cases. There ap-
peared to be no serious outliers or series of outliers for any of the
functions that would indicate that the polynomial approximations
were diverging from what was required of them.

Equation (13) can be solved for YE;, and it is now the case that
the derivatives of YE; with respect to H; and E;, which are needed
in the solution of the model, are well defined. The realism of the
model or lack thereof is not likely to be seriously affected by any
errors made in the polynomial approximations. What is of much
more importance is how accurately the earnings tables have been
specified and whether the real world situation has been bracketed
by the extreme earnings tables.

This completes the specification of the individual earnings
functions, but before continuing with the analysis, it is worthwhile
to compare how the work here relates to the work of Thomas Mayer.?
Mayer presents a number of theoretical arguments for why a normal
distribution of ability may lead to a skewed distribution of earnings.
He defines ability as the “probability of completing a given task
successfully,” 8 and he argues that even if ability is normally dis-
tributed, scale of operation effects are likely to lead to a skewed
distribution of earnings. The work in this study is not inconsistent,
with Mayer’s arguments. In the final analysis, because of the as-
sumptions made about how education beyond high school affects
actual productivity (and thus earnings), the distribution of actual
productivity (and earnings) will be skewed.

The Marginal Tax Rate Function

With respect to maximizing social welfare, the best policy the
government could follow would be to assign lump sum grants or
taxes to individuals and avoid altogether the use of any kind of a
distribution equation as in (3). This would have no adverse effect
on incentives, so that the sum of earned income would be at a maxi-
mum. It is unlikely that a lump sum tax scheme could be carried out

7. Thomas Mayer, “The Distribution of Ability and Earnings,” The

Review of Economics and Statistics, XLII (May 1960), 189-95.
8. Ibid., p. 190.
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in practice, however, and that is the reason why a more standard
tax structure was used in this model.

The form chosen for the marginal tax rate function, t(YE;),
is the logarithmic form. The equation for ¢t(YE;) is

(14)  t(YE:) =aolog(YE:+1),

where qo is the tax parameter under the control of the government.
Other functional forms for ¢(YE;) could have been chosen — a qua-
dratic or cubic equation is an obvious possibility, but (14) has the
advantage that it depends on only one parameter. The model be-
comes much more difficult to solve if there is more than one param-
eter in (14). It should be kept in mind, however, that were it not
for computational constraints, better optima than those achieved
below could be achieved by allowing the functional form of ¢(YE;)
to have more flexibility.? Substituting equation (14) into equation
(3) and integrating ! yields
(15) Yi=YG+YEi+aYEi—ao(YE;+1)log(YE+1),
i=1,2,...,n.
Equation (15) thus relates after-tax income to before-tax income

and the tax parameters YG and ao. Y@ is the minimum guaranteed
level of income.

The Social Welfare Function

Tt seems to be part of the national heritage of the United States
that all people should be given an equal opportunity in life. If
people were given an opportunity to choose that social welfare func-
tion they would most like to see maximized from a number of dif-
ferent social welfare functions (with different weights attached to
different groups), it is likely that many, if not most, would choose
that function that had equal weights for all. One possible choice
for the social welfare function is thus the sum of the individual

lifetime utilities: g U.. The problem with this function, however, is

=1

that it does not gﬁarantee that someone will not receive zero lifetime
utility. It is indifferent, for example, between a situation where in-
dividuals 1 and 2 each receive 10 utils and a situation where indi-
vidual 1 receives 0 utils and individual 2 receives 20 utils. This
function was thus rejected as being inconsistent with what seem to be
most people’s ethical views. The function that was chosen as the

0. A linear function for (14) (ie. t(YE:)=aYE:) was also tried in
some of the initial runs of this study, but the marginal tax rate approached

one too quickly to allow a solution to be achieved.
1. Note that f log (z + 1)dz = (z+1) log (z+ 1) — z - constant.
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social welfare function is the product of the individual lifetime

utilities: ﬁ Ui. This function avoids the above-mentioned problem

=1 .
and seems to be consistent with commonly held ethical views.2

The Budget Constraint

The actual budget constraint was made slightly more compli-
cated than the one specified in (5). The constraint was taken to be

n n 1 n n
(16) 3 Y= % YE—L3% YE—Py 3 E,
i=1 =1 5 i=1 i=1

As in (5) the budget constraint (16) basically says that the sum
of after-tax income cannot be greater than the sum of before-tax
or earned income. It has been made slightly more complicated in
the following two respects. First, the society is assumed to have
made a decision ahead of time to devote one-fifth of its income
to public goods, this income being taken away from the individuals
and not given back in the form of ¥; type income. It is instead
given back indirectly through the production of public goods. The
decision is assumed to have been made ahead of the rest of the
analysis, and thus public goods have not been included in the in-
dividual utility functions. Once the decision is made, individuals
proceed with their utility maximization on the assumption that they
can have no further say in how much of society’s income is devoted
to public goods.

The second complication in (16) is that each hour of educa-
tion beyond high school (education through high school is counted
directly as a public good) costs the society Py dollars, the total cost

to society of education beyond high school being Py '§1 E,;. The cost

to the individual of his education beyond high school is thus only the
cost of foregone earnings: society pays for the other costs (teachers’
salaries, buildings, etc.). This assumption may not be too far re-
moved from the current situation in the United States, since much
of college and graduate school education is subsidized. Pz has been
taken to be 4 dollars an hour. -

The two complications of the budget constraint in (16) are
not really critical to the analysis and conclusions of the model;
similar conclusions would result if different budget constraints
were used. The particular constraint in (16) was chosen as approxi-

2. Solutions of the model were actually obtained using both social

welfare functions, and, as discussed below, it turned out that the results were
not very sensitive to the particular function used.
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mating in some loose sense the present situation in the United
States.

The Number of Individuals in the Model

Since 50 individuals are used to approximate the normal distri-
bution of innate ability and since five different values of the &
coefficients have been specified under two of the three assumptions
above, this means that there are 250 different individuals in the
model? The §; coefficients were distributed equally by ability: no
assumption was made, for example, that those of higher ability
tend to have a larger or smaller value of §; than do those of lower
ability. No particular assumption appeared to be any more reason-
able than any other in this regard, and so the simple assumption
that §; is distributed independently of A; was made.

Conclusion

This completes the specification of the model. It will be the
objective of Section IV to see what kind of income distribution is
implied by the model under the various sets of assumptions that have
been made. From the utility functions in (9), it can be seen that for
a given amount of leisure, the marginal utility of income decreases
as income increases, which by itself tends to pull in the direction of
an equal distribution of income. Maximizing the product of utilities
also tends to pull in a similar direction, that of an equal distribu-
tion of utility. Pulling in the other direction, however, is the fact
that as the tax parameters YG and ao increase (thus making the in-
come distribution more equal), there is less incentive for people to
work and educate themselves, which causes earned income (and
thus the total amount of income available for distribution) to de-
crease. The object of the model is thus to find the optimal point
between the extremes of a completely equal distribution of income
(or utility) and of an income distribution that is the same as the
distribution of earned income.

IV. Tue RESULTS

The Basic Results

Since there are 9 different earnings functions and since 3 differ-
ent assumptions about the §; coefficients have been made, this gives
3. For reasons of programming symmetry, even under the first assump-

tion that &: is equal to 0.3 for everyone, 250 individuals were included in the
model. In this case, of course, there are really only 50 different individuals.
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TABLE V

FOR THE 27 CASES

Assumption about the utility functions

Earnings 61=0.3, 0.3, 0.3, 0.3, 0.3 81=0.2, 0.25, 0.3, 0.375, 0.45 81=0.15, 0,225, 0.3, 0.4, 0.5

function Gye® Gyt ao* YG* e GyEe® Gy? ao* YG GyEer Gy? ao* Ygre
1 0.106 0.099 0.045 0 0.211 0.199 0.044 0 0271 0.257 0.044 0
2 0.182 0.167 0.048 5 0.257 0.235 0.048 10 0.309 0.284 0.048 10
3 0.284 0.233 0.059 45 0.343 0.283 0.058 50 0.395 0.318 0.060 60
4 0.153 0.143 0.045 0 0.236 0.223 0.044 0 0.295 0.275 0.045 5
5 0.237 0.209 0.053 20 0.303 0.261 0.055 30 0.357 0.304 0.056 35
6 0.340 0.262 0.065 65 0.391 0.304 0.060 70 0.442 0.335 0.065 80
7 0.260 0215 0.060 35 0.326 0.268 0.059 40 0.382 0.310 0.065 45
8 0.347 0.264 0.068 60 0.398 0.305 0.067 65 0.454 0.336 0.070 75
9 0.448 0.310 0.074 100 0.491 0.340 0.073 110 0.544 0.366 0.076 120

a. Gyg is the Gini concentration coefficient of before-tax income.
b. Gy is the Gini concentration coefficient of after-tax income.

c. YG* is in thousands of dollars.

899
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27 cases to analyze. The central question for each case is how after-
tax income is distributed among the 250 individuals.. Also of interest
are the optimum values of the tax parameters a9 and YG and the
optimum values of the H; and E; variables. The summary results
for each of the 27 cases are presented in Table V. Presented in the
table are the optimal tax parameters, a*o and YG¥, and the Gini
concentration coefficients of before-tax and after-tax income, Gyg
and Gy.4

The concentration coefficient of before-tax income ranges from
0.106 for earnings function 1 and §;=0.3, 0.3, 0.3, 0.3, 0.3 to 0.544
for earnings function 9 and §;=0.15, 0.225, 0.3, 0.4, 0.5. The con-
centration coefficient of after-tax income in turn ranges from 0.099
to 0.366 for the same two cases. For the “median” case of earnings
function 5 and §;=0.2, 0.25, 0.3, 0.375, 0.45, the before-tax coeffi-
cient is 0.303 and the after-tax coefficient 0.261. The tax parameter
ao in Table V ranges from 0.044 to 0.076 and the minimum guaranteed
level Y@ from 0 to 120 thousand dollars.

Some Detatled Results

Due to space limitations, the detailed results of all of the cases
cannot be presented. Of the nine earnings functions, functions 5
and 8 were singled out, and more detailed results for these two
functions are presented in Tables VI and VII. Values of Hi/T, E;,
YE; Y. (YE;—Y,)/YE; and U; are presented in the tables for
each value of & for individuals with the lowest, the average, and
the highest level of innate ability. H,/T; is the percent of possible
working hours that the individual spends working, and (YE;—Y;)/
YE, is the individual’s average tax rate.’

The results in the two tables are as expected. Individuals with
greater ability work more, other things being equal, than those with
lesser ability and also educate themselves more. More industrious
individuals (as measured by the §; coefficients) work more, other
things being equal, than less industrious ones. These two results
are quite evident for earnings function 8, where low-ability indi-
viduals are considerably less productive than those with high ability.
As can be seen in Table VII, for earnings function 8 low-ability in-
dividuals with low levels of industriousness work very little: their

4. In a Lorenz diagram, the Gini concentration coefficient is the ratio of
the area between the diagonal and the Lorenz curve to the total area below
the diagonal. For a perfectly equal distribution the Gini coefficient is zero.

5. For the computations, the constant B in equation (9) was taken to

be 1. Also, as mentioned above, the values of H:, Es, and T have been
divided by 1000, which also means that YE: and Y have been divided by 1000.



TABLE V1
More DEeraiLep ResuLrs For Earnings FuncrioN 5

6¢=0.3, 0.3, 0.3, 0.3, 0.3: ao*=0.053, YG*=20, Gr=0.209

61=0.3
Variables\ 4+ 62.72 1004 13728
HyT 027 028 032
E; 261 342 1706
YE, 2646 4447 1400.
Y 2198 3439 9555
(YE.—Y.)/YE; 0.17 023 0.32
U 2237 2545 3321
5¢=0.2, 0.25, 0.3, 0.375, 0.45: ao*=0.055, YG*=30, Gr=0.261
51=0.2 51=0.25 5:=0.3 5¢=0.375 51=0.45
Variables\ 4+ 62.72 1004 13728 6272 1004 13728 6272 1004 13728 62.72 1004 13728 6272 1004 13728
H/T,: 0.16 0.18 022 021 022 027 0.26 027 0.32 0.34 0.35 0.38 041 042 045
E; 243 312 1676 253 3290 1694 260 341 1706 267 354 1717 271 362 1724
YE, 1559 276.7 900.7 2048 3572 1142. 2542 4383 1385. 3290 5612 1753. 4048 6855 2126.
Y. 1511 2365 6448 1861 291.7 7949 2208 3462 9431 2724 4274 1163. 3238 5080 1382.
(YE.~Y.)/YE; 003 015 028 009 018 030 0.13 021 032 017 024 034 020 026 035
U, 2325 2512 2927 2279 2520 3096 2262 2560 3317 2283 2676 3755 2358 2862 4349
5¢=0.15, 0.225, 0.3, 0.4, 0.5: ao*=0.058, YG* =35, Gr=0.304
5¢=0.15 51=0.225 5¢=0.3 5¢=0.4 54=0.5
Variables\ 4¢ 62.72 1004 13728 62.72 1004 13728 6272 1004 13728 62.72 1004 13728 6272 1004 13728
H/T: 011 012 018 018 020 025 026 027 031 036 037 041 046 047 050
E; 221 281 1641 247 320 1686 2.59 340 1705 268 356 1719 273 366 1727
YE, 101.7 1905 6518 1748 3109 1013. 2489 4326 1377. 3494 4971 1869 4517 7645 2369.
Y 1159 1802 4881 169.1 2637 7149 2211 3454 9356 2898 4529 1226. 3581 5598 1513.
(YE,—Y,)/YE; neg. 005 025 003 015 029 0.11 020 032 017 024 034 021 027 036
U 2422 2550 2810 2311 2519 3005 2274 2566 3314 2314 2735 3926 2449 3033 483.9

0LG
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TABLE VII
Moge DeraiLep ReEsuLts For EARNINGS FUuNcTION 8

5¢=0.3, 0.3, 0.3, 0.3, 0.3: ao*=0.068, YG*=60, Gr=0.264
6¢=0.3

Variables\ A¢ 2544 1008 174.56
H/T. 0.16 0.25 0.30
E; 276 334 1708
YE, 688 3923 1632.
Y. 1133 3184 9771
(YE(— Yc)/YE¢ neg. 0.19 040
U 202.1 2563 3400
5¢=0.2, 0.25, 0.3, 0.375, 0.45: ac*=0.067, YG*=65, Gvr=0.305
51=0.2 5¢=0.25 5:=0.3

Variables\ 4¢ 9544 1008 17456 2544 1008 17456 2544 1008 174.56 2544 100.8
H/T: 0.05 0.15 021 0.10 0.20 026 0.16 020 0.34 0.24
E; 1.88 295 16.75 251 3.18 16.96 2.74 333 17.08 2.89
YE: 190 2279 1045. 421 3082 1339. 653 389.5 1636. 1013 5136 2087.
Y. 813 2252 695.1 99.1 2757 8516 1161 3253 1003. 1415 3988 1228.
(YE:.—Y:)/YE: neg. 0.01 0.33 neg. 0.11 0.36 neg. 0.16 0.39 neg.
Ui 2974 2559 3006 2147 2555 3189 2050 2583 3424 1951

S 54=0.15, 0.225, 0.3, 0.4, 0.5: ao*=0.070, YG*=75, Gr=0.336

8§1=0.15 61=10.225 61=0.3

Variables\ 4¢ 2544 1008 17456 2544 1008 17456 2544 1008 17456 2544 1008
HT. 0 009 016 006 016 023 013 024 030 024
E, 0 245 1631 198 303 1685 266 331 1707 290
YE: 0 1340 7277 210 2530 1165. 556 3744 1606. 104.1
Y. 750 1722 5186 927 2476 7470 1185 3204 9660 1522 4156 1251.
(YE.—Y:)/YE:neg. neg. 029 neg. 002 036 neg. 0.14 040 neg.
U 2500 2617 2872 2260 2567 3080 2100 2593 3400 1973 2728 4029

AWOONI 40 NOILNIIYISId TVIAILLIO HH.L

1LS



572 QUARTERLY JOURNAL OF ECONOMICS

earned income is thus quite small, and their after-tax income is not
much larger than the minimum guaranteed level of income.

The level of education beyond high school has a range of 0 to
17270 hours in the two tables. (Remember that 7680 hours is the
equivalent of a college education, and 15360 hours the equivalent
of a_college plus graduate school education.) From the complete
set of results, it was observed that the number of hours spent in
education tended to change suddenly at a particular level of ability
from about 4000 hours to about 16000 hours. The particular level
of ability varied from case to case, but a sudden jump always oc-
curred somewhere for each case. This result is no doubt due to the
sharp jumps that are inherent in the tables and that are captured
quite well by the polynomial approximations. A more detailed
specification of the tables would probably have lessened those jumps.
It is still true, however, that the results indicate that people choose
to receive either about two years of college education or about eight
years, with few choosing something in between. The results thus
indicate that the specification of the returns for a graduate school
education in the earnings tables may be too high relative to the
specification of the returns for a college education. Increasing the
returns for a college education and decreasing the returns for a
graduate school education in the earnings tables would tend to im-
prove matters in this respect and would tend to make the resulting
income distribution more equal. Moderate changes in the specifica-
tion of the relative returns in each of the tables should, however,
have only a small effect on the general results for each case.

Sensitivity of the Results to the Different Parameter Values

The sensitivity of the optimal Gini concentration coefficient
of after-tax income, Gy, to the different parameters of the model
is examined in Table VIII. The values of Gy in Table VIII are a
rearrangement of the values in Table V. In section A of the table
the sensitivity to the standard deviation of A; is examined; in sec-
tion B the sensitivity to the values of the coefficient y in equations
(11) and (12) is examined; and in section C the sensitivity to the
assumption about the §; coefficients in the utility function is ex-
amined. The values of Gy in each section should be examined
down columns. From the results in Table VIII, Gy appears to be the
least sensitive to the change in the standard deviation of 4; from
8 to 16 and the most sensitive to the change in §; from 0.3 for all
individuals to 0.2, 0.25, 0.3, 0.375, and 0.45, respectively, for each
fifth of the population. Otherwise, the sensitivity of Gy appears



TABLE VIII

SENSITIVITY OF Gy FROM TABLE V T0 THE DIFFERENT PARAMETER VALUES OF THE MODEL

A. Sensitivity to the standard deviation of A;:

8¢=0.2, 0.25, 0.3, 0.375, 0.45

Standard 5.=0.3, 0.3, 0.3, 0.3 0.3 5¢=0.15, 0.225, 0.3, 0.4, 0.5
deviation v=0.5 v=1.0 y=2.0 v=0.5 y=1.0 y=2.0 v=0.5 v=1.0 y=2.0
of A4 Gr AGr Gy AGy Gy AGy Gr AGr Gy AGy Gr AGy Gy AGy Gvr AGy Gy 4Gy
8 099 — 167 — 233 — 199 — 235 — 283 — 257 — 284 — 318 —
16 143 044 209 042 262 .029 223 024 261 .026 304 021 275 018 304 020 335 .017
32 215 072 264 055 310 .048 268 .045 305 044 340 .036 310 035 336 .032 366 .031
Average AGy from 8 to 16 = .038 Average AGy from 8 to 16 = 024 Average AGy from 8 to 16 = 018
Average AGYy from 16 to 32 = .058  Average AGy from 16 to 32 = .042 Average AGy from 16 to 32 = .033
Average AGy from 8 to 16 over all nine cells = 0.027
Average AGy from 16 to 32 over all nine cells = 0.044
B. Sensitivity to v:
5¢=0.3, 0.3, 0.3, 0.3 0.3 5¢=0.2, 0.25, 0.3, 0.375, 0.45 51=0.15, 0.225, 0.3, 0.4, 0.5
Value SD=8§ SD =16 Sh=32 SD=8 SD=16 SD=32 SD=8 SD =16 SD =32
of v Gy AGy Gy AGy Gy AGy Gy AGy Gy AGy Gy AGy Gy AGy Gy AGy Gy AGy
05 099 — 143 — 215 — 199 — 223 — 268 — 257 — 275 — 310 —
10 167 068 209 .063 264 .049 235 036 261 038 305 .037 284 027 304 029 336 .026
20 233 066 262 053 310 .046 283 048 304 043 340 035 318 034 335 031 366 .030

Average AGy from 0.5 to 1.0 = .060
Average AGy from 1.0 to 2.0 = 055

Average AGY from 0.5 to 1.0 = 037
Average AGy from 1.0 to 2.0 = .042

Average AGy from 0.5 to 1.0 over all nine cells = 0.041
Average AGy from 1.0 to 2.0 over all nine cells = 0.043

Average AGy from 0.5 to 1.0 = 027
Average AGy from 1.0 to 2.0 = 032

C. Sensitivity to & assumptions:

_ SD=8 8D =16 8D =32

& =05 v=10 v=2.0 v=0.5 v=10 ¥=2.0 v=0.5 v=1.0 v=2.0
ptions Gy AGy Gy AGy Gy AGy Gy AGy Gy AGy Gy AGy Gy AGy Gy AGy Gy AGy
3,3.3.3.3 09 — 167 — 233 — 143 — 209 — 262 — 215 — 264 — 310 —
2,25,3,3875,45 199 100 235 068 283 050 223 080 261 052 304 042 268 053 305 041 340 030
15,225,3,4,5 257 058 284 049 318 035 275 052 304 043 335 031 310 042 336 031 366 026
Average AGy from 3...to 2...= 073 Average AGrfrom 3...to 2...= 058 Average AGyfrom 3...to 2...= 041
Average AGy from 2...to 15... = 047 Average AGy from 2...t0 .15... = 042 Average AGy from 2...t0 .15.... = 033

Average AGy from 03...to 02...over all nine cells = 0.057
Average AGy from 0.2 ...t0 0.15... over all nine cells = 0.041

Note: AGy denotes the change in Gy from one cell to the next.
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to be fairly similar with respect to the different parameter values:
the average change in Gy is about 0.04 when going from one assump-
tion or value to the next. The results in Table VIII can be used
to indicate how the value of Gy is likely to vary when values of the
parameters different from the ones considered in this study are used,
although extrapolating outside of the bounds of the parameters
considered here should probably not be attempted.

It should also be pointed out that the results did not change
much when the social welfare function was taken to be the sum of
the individual utilities rather than the product. For earnings func-
tion 1 and §;=0.2, 0.25, 0.3, 0.375, 0.45, for example, the optimum
point was the same for both welfare functions (Gy=0.199). For
earnings function 3 and §=0.2, 0.25, 0.3, 0.375, 0.45, Gy increased
by 0.01 (from 0.283 to 0.293) when the sum of utilities was used as
the welfare function. For earnings function 7 and 8;=0.2, 0.25, 0.3,
0.375, 0.45, Gy also increased by 0.01 (from 0.268 to 0.278), and for
earnings function 9 and §=0.2, 0.25, 0.3, 0.375, 0.45, Gy increased
by 0.016 (from 0.340 to 0.356).

Comparison of Actual versus Optimal

The data on the actual distribution of income in the United
States are not very good, but they can be used to give a general indi-
cation of how the actual distribution in the United States compares
with the computed optimal distributions. I. B. Kravis has under-
taken a very careful study of income distribution in the United
States,® and his results will be used for the comparisons here. Using
U.S. Department of Commerce data on after-tax income for 1950,
Kravis reports a Gini coefficient for the United States of 0.38. For
before-tax income, the coefficient is 0.41.7 Both after-tax income and
before-tax income include transfer payments; the former differs
from the latter only in the exclusion of personal income taxes. There
are many problems associated with any estimate of the size distri-
bution of income, as Kravis is well aware, but his general results and
the results of others do seem to indicate that the Gini coefficient for
the United States is presently around 0.40. Unfortunately, all of
these estimates are for a particular year and do not measure the
lifetime distribution of income. Kravis reports, however, that
lengthening the accounting period to three or four years only de-
creases the inequality measures between about 10 to 15 percent.®

6. Irving B. Kravis, The Structure of Income (Philadelphia: University
of Pennsylvania, 1962).

7. Ibid., Table 6.1, pp. 184-85.
8. Ibid., p. 275. For similar tests and results, see James Morgan, “The
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This means that a 0.40 one-year Gini coefficient would be decreased
to about 0.35. This is, of course, still not a measure of the lifetime
distribution of income. At the present time there do not appear to
be enough data available to measure the actual lifetime distribution
of income in the United States.

For lack of more information, it will be assumed for the follow-
ing comparisons that the lifetime Gini coefficient for the United
States is around 0.35. Is this coefficient near the optimum? From
the results for Gy in Table V, the answer appears to be no. Only
for the “doubly extreme” case of earnings function 9 and §=0.15,
0.225, 0.3, 0.4, 0.5 is the optimal Gini coefficient larger than 0.35,
and even for a reasonably extreme case like earnings function 8
and §,=0.2, 0.25, 0.375, 0.45 the optimal Gini coefficient is only
0.305. (Remember that earnings functions 7, 8, and 9 all assume that
productivity at the time of high school graduation is distributed
with a standard deviation of 32, which is a rather large variation.)
For the “median” case of earnings function 5 and §;=0.2, 0.25, 0.3,
0.375, 0.45 the optimal Gini coefficient is, of course, much lower, at
0.261. It is thus apparent that one has to make rather extreme
assumptions about the variation of the productivity and industrious-
ness of people before the optimal Gini coefficient approaches 0.35.

Why the Actual May Differ from the Optimal

There are a number of reasons why the actual distribution of
income in the United States may differ from the optimal distribu-
tions computed above. First, it should be noted that in the model
everyone is assumed to face the same earnings function. Individual
differences in productivity occur because of differences in ability
and educational levels, but not because of different forms of the
earnings function. To the extent that in the real world some indi-
viduals or groups of individuals face different earnings functions
because of discrimination or other social restrictions, the actual
distribution of income will be less equal than the optimal distribu-
tions computed in this study.?

Second, it should be stressed that the model relies heavily
on the assumption that the distribution of actual productivity at
age eighteen is the same as the distribution of potential produc-
Anatomy of Income Distribution,” The Review of Economics and Statistics,
XLIV (Aug. 1962), 270-83.

9. Note that the figures in Tables II and III, upon which the specification
of the earnings function is based, are primarily for white males. White males

were used to lessen the chance of the figures being affected by discriminatory
practices.
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tivity at birth. To the extent that the quality of upbringing and
education through age eighteen is not sufficient in society to allow
all individuals to achieve their potential, the actual distribution of
income will be less equal than the computed optimal distributions.
The value judgment that everyone should be given an equal op-
portunity to achieve his or her potential is thus quite important and
may be a major cause of the difference between the actual and com-
puted optimal distributions.

Third, the government behavioral assumption in the model may
be a poor approximation of the way the government behaves. To the
extent that some people or groups of people of above-average income
are given more weight in the social welfare function than others,
the actual distribution of income, other things being equal, will
be less equal than the optimal distributions computed above.

Finally, it is possible that the real world situation has not been
bounded by the extreme sets of assumptions about the parameter
values. It may be, for example, that the distribution of potential
productivity at birth is skewed or has a larger standard deviation
than 32. It may also be that people differ more in their tradeoff
between income and leisure than is implied by the assumption that
8; equals 0.15, 0.225, 0.3, 0.4, and 0.5, respectively, for each fifth of
the population. If the real world has not been bounded by these as-
sumptions, then the actual distribution will differ from the com-
puted optimal distributions even if all of the other assumptions and
value judgments of the model hold.!

V. CoNcLuUsIONS

In this study an attempt has been made to provide bounds on
the optimal distribution of income. Much more empirical work is
needed on the question of how innate ability is distributed and how
education and innate ability affect productivity before more precise
answers can be given. More information is also needed on how
much people vary in their tradeoff between income and leisure and
how their work effort responds to the structure of taxes.

The study has been based on a particular set of value judgments.
It has been assumed that everyone should be weighted equally in

1. The concentration of property income in the United States, which the
model ignores, may also cause the actual distribution of income to be more
unequal than the computed optimal distributions. Kravis, op. cit., p. 197,
reports, however, that the concentration of property income in the United

States is not very important in determining the overall degree of income
inequality.
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the social welfare function, that all people should be given an equal
opportunity to achieve their potential, and that all people should
be given the freedom to maximize their individual utility functions.
This set of value judgments seems to be consistent with many
people’s ethical views, but it cannot be defended in any absolute
sense.

Given that the particular set of value judgments is to be ac-
cepted, there are a number of possible biases in the model that
should be considered for future work. One possible bias relates to
the specification of the individual utility functions. An individual’s
utility has been assumed to be a function of his own income and
leisure, but not of other people’s income. If his utility is influenced
by other people’s income in that he dislikes people’s having a lot
more income than he has and dislikes seeing people with very small
amounts of income, then the optimal distribution of income will be
more equal than the present model implies it is, since there will be
more of a tendency toward the equalization of incomes. On the other
hand, if some individuals have increasing marginal utility of income,
which they are assumed not to have in the model, this will cause the
optimal distribution of income to be less equal than the present
model implies it is. '

There may also be a bias toward equality in the model be-
cause the model does not consider wealth and inheritance taxes.
The model essentially assumes that everyone begins life with a zero
amount of wealth. The inheritance tax rate, in other words, is as-
sumed to be 100 percent. Work effort is assumed to be unaffected
by this rate, and to the extent that work effort does respond to in-
heritance taxes, the optimal income distribution is less equal than the
model .implies it is.

The model also avoids any consideration of saving and invest-
ment decisions. It may be that the amount of savings and invest-
ment in a society is a positive function of the degree of income in-
equality in the society and thus that the growth rate of income
is a positive function of the degree of inequality. If this is true, then
leaving the constraint out of the model will result in an income dis-
tribution that is more equal than the true optimal distribution. The
problem may be less pronounced for a wealthy country like the
United States, however, than for less developed countries. It is
also possible, of course, for the government to do much of the sav-
ing by distributing less of the before-tax income back to the people
and then either investing the savings directly or loaning the money
to businessmen and corporations to do the investing.
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Finally, there may be some bias against equality in the model
by using only two parameters to determine the entire tax structure.

Much more work clearly needs to be done in a number of areas
before any definitive answers can be given to the question of how
equal the distribution of income in a society should be. What this
study has tried to do is to provide a general framework for analyz-
ing the question.

APPENDIX

From the general model in Section II and the detailed specifi-
cation in Section III, the Lagrangian to be maximized is

(A1) L= il:Il Ui—iél ‘IH( :IZ: _0) —i=§1 ¢i( ?al;: —0)

n n 1 n n
—)\(.2 Yi— 3 YE+—3 YE;+Pp3 Ei)-
i=1 i=1 5i=1 i=1

There are 4n+3 unknowns, the H;, E;, s, ¢: (t=1, 2, . . . , n), and
Y@, ao, A. The various variables are defined in the main body of
the text. For the work here n was equal to 250. Differentiating L
with respect to the 4n+3 unknowns and setting the results equal to
zero gave 4n+3 nonlinear equations for which no solution could be
obtained.2 The model was solved, however, in the following manner.
(For all of the computations, the constant B in the utility functions
in (9) was assumed to be 1 and was dropped from the analysis.)

Differentiating L with respect to y; and ¢; and setting the results
equal to zero yields the 2n equations: :

(A2) QU./oH;=0, 1=1,2,...,n
(A3) 2Ui/2E;=0, 1=1,2, ..., n
From (A2) it can be seen that

2. The technique used to solve (or attempt to solve) the equations was
the standard Seidel method. Assume that the following two equations are to
be solved for z; and z.:

(1) fl(Ix, Z2) =0,

(ll) fz(:t;, x3) =0.

The first step is to solve the first equation for z; in terms of z: and z» and the
second equation for z; in terms of z, and z:

(111) 131=01($1, 332), .

(iv) To=ga(11, T2).

Then from initial values of z; and z., say 7. and 2, equations (iii) and
(iv) can be solved to yield new values of z: and x,, say, . and .. These
new values can be used to solve the equations again, and the cycle can be re-
peated until two successive sets of solution values are within a preseribed
tolerance level of each other. One modification of this method, which was
used in this study, is to take as the change in the value of, say, z, in any one
step a fraction of the solution change. For example, ;> would be taken to be
(v) 7,0 =2, 4 (g, (2., 20) —2,),

where e is positive but less than one. None of the attempts at solving the com-
plete set of the 4n4-3 or 1003 equations by this method resulted in a convergent
solution, even for small values of e and (it was thought) cleverly arranged
orders of solving the equations.
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)
(A4) H;=Ti;—Y; (1-8)/RuRasRs, 1=1,2,...,n,

03
where RBy;=0Y,; /9Yi, Ryi=0Yi/QYE;, Ru=03YE:/oH; Y R,
and Ry; are, of course, functions of H;. All that has been done in
(A4) is to isolate one term in H; on the left-hand side. From (A3)
it can be seen that
(A5)  (Ti—Hi)'~%RyRsdYE,/QE;=0, 1=1,2,...,n
Since none of the terms left of 9YE;/9E; in (A5) can be zero, (A5)
implies that 9YE;/9E;=0. From equation (13) it can be seen that,
given H;, A;, and the b; coefficients, 9 YE;/QE; is merely a fourth-
degree polynomial in E;, from which one term in E; can be isolated
on the left-hand side. Write this latter equation as

(A6) Ei=g(Ai Hiy E;, by, by, . . ., bu), 1=1,2,...,n
Differentiating L with respect to A and setting the result equal to
zero yields an equation that can be solved for ao explicitly:

-él( YG+PEE¢+i5YEi)
(A7) ao= — .

551 [YE;— (YE;+1)log(YE;+1)]

Equations (A4), (A6), and (A7) consist of 2n41 equations
in the 2n+2 unknowns, H;, E;, ay, and YG. The Lagrangian multi-
pliers, in other words, are not included in any of the equations.
Another equation cannot be found by differentiating L with respect
to any of the remaining variables in which H;, E;, o, and YG
appear without one or more of the Lagrangian multipliers also
appearing. Therefore, an equation for Y@ in terms of the H;, E;,
and ao 2lone cannot be found. Since the entire set of 4n4-3 equations
could not be solved, the model was solved by solving the 2n4-1
equations for H;, E;, and «o for given values of ¥YG and choosing
that Y@ and the corresponding values of H;, E;, and 0 that led to

the largest value of the objective function, I”[ U;. About 10 values

i=1
of Y@ were tried for each of the 27 cases, which required about 270
solutions of the 2n+-1 or 501 equations.

Even the 2n+1 equations were not easy to solve, since the
equations in (A4) and (A6) are highly nonlinear. They were
finally solved by first solving for H; in (A4) using given values of
E; and ay, then solving for E; in (A6) using the given value of
ap and the solution values of H;, then solving for ap in (A7) using
the solution values of H; and E;, and then going back to (A4) with
the new values and repeating the entire process. The value of ¢ (see
note 2, page 578) used for H; had to be as low as 0.1 in many cases;
the value of € for E; was less critical and was generally taken to be
0.3. The computing time on an IBM 360-91 computer averaged
about 10 seconds per solution. The 270 solutions thus took about
45 minutes of machine time.
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