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1. INTRooucnoN 

The problem considered in this paper is the maximum likelihbod estimation of a 
system of linear stochastic equations in which the residuals follow an autoregressive 
scheme. This problem has been studied previously by Sargan [lo] and more 
recently by Hendry [5]. The former formulated the problem and provided numer- 
ical solution to a special case. The latter applied an algorithm of Powell [S] to 
this problem, an algorithm that does not require the use of first or second deriva- 
tives. The present paper provides an alternativemethod ofcomputing themaximum 
likelihood estimates. It applies Newton’s method to solve a set ofnormal equations 
and is a generalization of the well-known Cochran-Orcutt technique to deal with 
autoregressive residuals in a regression. Thus our method is traditional in con- 
ception. Our experience, which is partly reported below, is that this method works 
well. However, whether it is computationally better than Hendry’s or other 
methods remains to be investigated. 

In Section 2 a set of normal equations for the unknown coefficients in a linear 
econometric system is presented for the case in which the residuals are serially 
uncorrelated. The equations are first set forth without the imposition of linear 
restrictions, and then a method to deal with linear restrictions is discussed. A 
previous work, Chow [2], dealt only with linear restrictions on the coefficients 
within a single equation, and the method in Section 2 deals with linear restrictions 
on coefficients possibly belonging to different equations. The normal equations 
are nonlinear in the unknown coefficients, and both a direct iterative method and 
Newton’s method have been tried for solving them. As discussed in Chow [2], 
Newton’s method appears to converge more often and faster than the direct 
iterative method, and it is the method considered in this paper. 

In Section 3 the analysis is expanded to the case in which the residuals follow 
an auto-regressive scheme. The main point of this section is that this more general 
statistical problem can be decomposed into two sub-problems, each of which can 
be solved by the method in Section 2. The decomposition is based on the observa- 
tion that, given the coefficients of the auto-regressive scheme, the coefficients of 
the structural equations can be estimated by the method of Section 2, and, given 
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the latter coefficients, the former coefficients can be estimated likewise. The result- 
ing solution of the more general problem is thus merely a two-step application of 
Newton’s method and poses no additional computational difficulties. 

A special case of the model considered in Section 3 is the case where the co- 
efficient matrix of the endogenous variables is an identity matrix. The model 
then reduces to the “seemingly unrelated regression” model analyzed by Zellner 
[11], Parks [7], and others. Neither the two-step procedure suggested by Zellner 
for the serially uncorrelated case nor the three-step procedure suggested by Parks 
for the first order serially correlated case is a maximum likelihood procedure, 
but it can easily be shown, as is done in Section 4, that both of the procedures 
become maximum likelihood procedures if one does not stop after the second or 
third step but continues to iterate until convergence is reached. It is also shown in 
Section 4 that iterating with the Zellner or Parks procedure is equivalent to solving 
the set of normal equations of the system by the direct iterative method. Since 
Newton’s method appears to be more useful in practice than the direct iterative 
method, the better way of obtaining the maximum likelihood estimates of the 
seemingly unrelated regression model appears to be to use the method discussed 
in Sections 2 and 3, which is based on Newton’s method, rather than to iterate with 
the Zellner or Parks procedure. 

The method described in this paper is quite general and can handle most of 
the problems associated with estimating linear equations systems. Linear restric- 
tions on the coefficients can be handled, first and higher order auto-regressive 
properties of the residuals an be handled, and various special cases can b-e con- 
sidered. Some of the more interesting special cases are the seemingly unrelated 
regression model, the case where the residuals obey a first-order auto-regressive 
scheme with a. diagonal coefficient matrix, and the case where identities are present. 

In order to illustrate the use of the method described in this paper, a numerical 
example is provided in Section 5. An eight equation model is estimated in which 
the residuals obey a first-order auto-regressive process with a diagonal coefficient 
matrix. There are also linear restrictions on the coefficients of one of the equations 
in the model, and one of the equations in the model is an identity. The model has 
33 structural parameters and 7 auto-regressive parameters to be estimated. 

2. A METHOD OF MAXIMUM LIKELIHOOD ESTIMATION OF LINEAR EQUATION 
SYSTEMS W,TH LINEAR RESTRICTIONS ON THE COEFFICIENTS 

Let the linear system of structural equations be 

(2.1) YB' = zr + u, 

with Y and Z denoting T x G and T x K matrices of observations on the G 
dependent variables and the K predetermined variables, U denoting a T x G 
matrix of residuals, and B’ and r’ (prime for transpose) denoting G x G and 
K x G matrices of coefficients (the ith columns of B’ and r’ being the coefficients 
of the ith equation). Assume that the T rows of U are uncorrelated and that the 
G elements of each row satisfy a multivariate normal distribution with mean 0 
and covariance matrix Z. Then the log concentrated likelihood function can be 
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written as [l, 21 

L = comt. - ; log 

(2.2) 

{I+ - 1-Z)(YF - r/~fRY,YR.I) 

= const. - ; log {lSi/lWl}. 

If all the variables with zero coefficients in the ith equation are excluded and if 
fljj is set equal to 1, then the ith equation of (2.1) can be written as 

(2.3) y,= &&+Ziy;+Ui, (i = 1,. , G). 

where 0; and $ are column vectors of the remaining unknown coefficients in the 
ith equation. 

Setting the partial derivatives of (2.2) with respect to these unknown co- 
efficients eaual to zero yields the following system of normal equations [2, equation 
(WI, - 

r 
q”Y;YE...pY;YG S”Y,Z1...SG’Y’Z L c 

q’“Y;Y,...pY;;Y, s’GY;;Z*...sGGY& 

(2.4) 
s”z; Y, s”‘z’ Y. i (r s”Z;z, SC’Z’ z I G 

s’?z; Y, s”“z’ Y (i G S’GZGZ, P.Z~Z, 

where 8 and wii are respectively the i - j elements of the inverses of S and Was 
defined by (2.2), q” = (sij - w”), and a stands for the vector of all of the unknown 
coefficients in the system. 

Newton’s method can now be applied to solve the system of normal equations 
(2.4). Let F be the matrix of partial derivatives of the elements off with respect 
to the elements of OL, as given explicitly in Chow [2], equations (4.X)-(4.10), and let 
c(’ be the value of x in the rth iteration. Newton’s method iterates by the formula’ 

(2.5) NV+’ = a” - [F(S)]- ‘f(a’). 

If there are linear restrictions on the elements of a (these elements may be 
coefficients in different structural equations), one has to modify the vector f(a) 

2 In the programming ol Newton‘s method for the work in Chow [Z] and for the work here. the 
actual value of a for the r + 1 iteration is taken to be 6 + h(d” - cz’j If the likelihood is larger for 
h = I, then h = 1.25, (LZS)‘, is tried until the likelihood decreases. lltbe likelihood is not larger for 
h = 1, then h = 0.8, -0.8, (O.S)“, -(0.8)2 is tried in an attempt to find a larger likelihood. If a larger 
likelihood is not Found and if the 2iiTerence between d+ ’ (as computed in (2.5)) and cr is Gili sizeable, 
then the program breaks down. 
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and the matrix F(z) in equations (2.4) and (2.5). The modifications required can 
be seen by considering the restriction 

(2.6) xi = cczi + da, 

The unknown xi will be eliminated, since it is a known linear function of two of 
the remaining unknowns xi and a,. The likelihood function I. will be replaced by 
a new function L* of a new set of variables x* (having one fewer element than a), 
by substituting the right-side of (2.6) for ai in L. By (2.6) and the chain rule of 
differentiation, the new f’*(r*) = 0 will contain the following equations 

(2.7) 

where it is understood that the argument ai of any derivative of L is replaced by the 
right side of (~2.6t-_likewise for equations (2.8) and (2.9) below. Iff(a) has n elements, 
say, then f*(a*) and f’(a) are related by the equation 

(2.8) i’*@*) = MSW, 

where M is an (n - I) x n matrix which is constructed from the n x n identity 
matrix by (1) eliminating its ith row, (2) replacing the zero in the ith position of the 
.jth row by c, and (3) replacing the zero in the ith position of the kth row by d. 

By differentiating the elements of f*(cc*) with respect to the remaining n - 1 
variables, one can obtain the new matrix F*(x*) of second partial derivatives: 

(2.9) F*(a*) = MF(a)M’. 

Equations (2.8) and (2.9) can then be used to modify equation (2.5) in order to 
perform iterations by Newton’s method. if there is a second linear restriction, 
then another matrix, say M*, can be used to multiply f* and F* in the same way 
as M was used in equations (2.8) and (2.9) to multiply f and F. This process can be 
repeated for any number of linear restrictions. Setting a coefficient equal to a 
constant c amounts to setting it equal to c times the dummy variable 1 in the list 
predetermined variables; similarly, non-homogeneous linear restrictions can be 
treated by using this dummy variable. 

Two other points about the above method should be noted. First, as discussed 
in Chow [2, p. 1071, identities can be quite easily handled by the above method. 
Secondly, the covariance matrix of the estimates of c( can be consistently estimated 
by~the inverse of -F evaluated at the maximizing value of cr. 

3. MAXIMUM LIKELIHCW ESTIMATKXV OF Lnw.~ EQUATIUN SYS~M WKTH 
AUTO-REGRESSIVE RESIDUALS 

Now let the model (2.1) be modified by assuming that its residuals U obey 
an auto-regressive scheme such as 

(3.1) U = U_,R’, + U_,R; f E, 
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where the G columns of U- , and U-, are the residuals ofthe G structural equations 
lagged one period and two periods respectively,3 R, and R, are matrices of co- 
efficients ofthe auto-regressive scheme, and the residuals E satisfy the same assump 
tions originally made for U in the model (2.1). It will be shown in this section that 
the method of Section 2 can be applied to obtain maximum likelihood estimates 
of the matrices B, f, R, and R, in this model. To simplify matters of exposition 
without loss of generality, R, will be assumed to be zero. 

Since the model lagged one period satisfies 

(3.2) Y-J? = z_,r + K,, 

the equation system (2.1) and (3.1) can be written as (with R, = 0) 

(3.3) YB’ = Y_,B’R; + Zr - Z_,T’R; + E 

= Y_,B’, + ZI-’ - Z_,l-‘, + E. 

The log concentrated likelihood function for this model, by (2.2), is simply 

(3.4) 

where E denotes 

(3.5) YB’ - Y_,B’R; - Zr + Z_,T’R;, 

with B, r, and R, treated as unknowns and Y, Y_ , , Z, and Z_ 1 treated as given 
data. 

To maximize (3.4) with respect to these unknowns, consider first the partial 
maximization with respect to B and I-, given R, From the second line of (3.3), 
this amounts to maximization with respect to B, F, B,, and rl subject to the linear 
restrictions 

(3.6) B, = R,B; l-, = R,l-. 

This problem can be solved by the method of Section 2. 
Now consider the maximization of (3.4) with respect to R,, given B and r. 

With B and r treated as given, the model can be written as, by rearrangement of 
(3.3), 

(3.7) (YB’ - Zl-‘) = (Y_,B’ - Z_,l-‘)R’, + E, 

with the terms in parentheses being treated as matrices of observed variables and 
R’, being treated as a matrix of coefficients. Maximizing (3.4) partially with respect 
to R, amounts to maximizing 

(3.8) 

since I(l/r)BY’YBl is a constant. But (3.8) is precisely the log concentrated like- 
lihood function for the model (3.7), and the method of Section 2 can be applied to 
maximize this likelihood function with respect to the coefficient matrix R,. Of 

3 Because of (3.1), one observation is of course lost for each order of the auto-regressive scheme. 
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course, if there are no restrictions on R,, the estimates are simply least squares 
estimates. In this case ( Y_ ,B’ - Z _ ,r”) is the matrix of the predetermined variables, 
and (YB’ - ZT’) is the matrix of the dependent variables whose coefficient matrix 
is restricted to be the identity matrix. 

The maximum likelihood estimates of E, r, and R, in the model (3.3) can be 
obtained as follows. Start with an initial value for R, , possibly 0, and maximize the 
likelihood function with respect to B and r by the method of Section 2; take these 
values of B and r as given and maximize the likelihood function with respect to 
RI, again by the method of Section 2; repeat this two-step process until conver- 
gence is reached. Convergence will be reached using this process if the method 
of Section 2 converges for the problem that it is supposed to solve, since the method 
of this section amounts simply to repeated applications of the method of Section 2. 

Let 6 denote the vector of all of the unknown coefficients in the system in- 
cluding the coefficients in R,, let h(d) = 0 stand for the system of normal equations 
derived from differentiating the likelihood function (3.4) (as f(a) = 0 stood for 
the system of normal equations derived from differentiating the likelihood function 
(2.2)). and let H be the matrix of partial derivatives of the elements of h with respect 
to the elements of 6. Then the covariance matrix of the estimator of 6 can be con- 
sistently estimated by the inverse of -H evaluated at the maximizing value of S. 
The derivatives involved in such a procedure are quite complicated, however, and 
so an alternative procedure is recommended. This procedure is to compute the 
covariance matrix of the estimates of I3 and r under the assumption that R, 
is known (and equal to its estimate) and to compute the covariance matrix of the 
estimator of R, under the assumption that B and r are known (and equal to their 
estimates). These two estimates of the covariance matrices fall out of the two-step 
process above (since the matrix F-’ in (2.5) is computed in both steps) and so 
pose no further computational burden. These estimates will, of course, be an 
underestimate of the actual covariance matrix, since the stochastic nature of the 
estimator of I? and r and the stochastic nature of the estimator of R, are not 
considered together. 

The comments made in Section 2 about the ability of the method to handle 
various problems generally pertain to the two-step process in this section as well. 
In particular, linear restrictions on the coefficients B and r can be handled (in- 
cluding, of course, the restrictions in (3.6)), and linear restrictions on the co- 
efricients of R, can be handled. The one type of restriction that cannot be handled 
by the two-step process is a restriction between the coefficients of B or r and the 
coefficients of R, The process cannot handle, in other words, a restriction that 
says that a given element of R, is a linear combination of given elements of B or r. 
In practice, however, this is not likely to be a serious limitation of the method. 
The matrix R, can, of cowse, be restricted to be diagonal, and for many problems 
it may be advisable to do this. Otherwise, with R, unrestricted, a large number of 
coefficients will have to be estimated for even moderately sized models, and it may 
be difficult to obtain estimates of this many coefficients. 

4. A SPECIAL CASE: &X?MINGLY UNRELATED REGRESSIONS 
If 8 is an identity matrix, then (2.1) reduces to the “seemingly unrelated 

regression” model analyzed by Zellner [11], Parks [7], and others. The basic 
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method proposed by Zellner for the case in which the residuals are serially un- 
correlated consists in obtaining a consistent estimate of the variance-covariance 
matrix, S, ofthe residuals U and then using this estimate to compute the generalized 
least squares estimate of r. A consistent estimate of S can be obtained by estimating 
each equation of the model by ordinary least squares and using the estimated 
residuals from these equations to estimate S. 

The estimates obtained from Zellner’s procedure are not maximum likelihood 
estimates, but it can be shown that if one continued to iterate on S and achieved 
convergence, then the resulting estimates would be maximum likelihood estimates. 
When B’ is an identity matrix, then the system of normal equations (2.4) reduces to 
the block of equations in the lower right-hand corner of (2.4). Solving this block 
for &, , y;, yields : 

Equation (4.1) is the same as the equation for the generalized least squares estimator 
presented in Zellner [ll], p. 351, equation (2.7). One possible way to try to solve 
this system of equations is to iterate on the elements of X4 This iterative method 
is equivalent to the direct iterative method discussed in Chow [2], and to the 
extent that the method converges, iterating in this manner produces maximum 
likelihood estimates. 

As discussed in Chow [2], Newton’s method appears to work better than the 
direct iterative method, and thus the better way of obtaining the maximum likeli- 
hood estimates of the seemingly unrelated regression model would appear to be 
to use Newton’s method rather than the direct iterative method. The computational 
burden involved in computing the maximum likelihood estimates by Newton’s 
method does not appear so great that one has to rely on Zellner’s simpler two-step 
procedure to estimate the seemingly unrelated regression model. 

Parks expanded the analysis of the seemingly unrelated regression model to 
include the case in which the residuals are first order serially correlated, that is, 
to include the case in which R, is diagonal and R, is zero in (3.1). His method 
consists in obtaining consistent estimates of the serial correlation coefficients, 
using these estimates to obtain a consistent estimate of the variance-covariance 
matrix, and then using both of these sets of estimates to compute the generalized 
least squares estimate of IY. Estimates of the serial correlation coefficients carp be 
obtained from the ordinary least squares residuals of each equation. 

The estimates obtained from Parks’ procedure are not maximum likelihood 
estimates, but again it can be shown, in a manner similar to that done above 
for Zellner’s procedure, that iterating on the serial correlation coefficients and 
the elements of the variance-covariance matrix leads to maximum likelihood 

a Iterating in this manner WBS suggested by Zellner and Theil[12], p. 78, within the context ol the 
three-stage least squares technique. 
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estimates.’ Again, the computational burden involved in computing the maximum 
likelihood estimates does not appear so great that one has to rely on Parks’ 
three-step procedure, or some quasi-iterative version of it, to estimate the seemingly 
unrelated regression model with serially correlated residuals. The method proposed 
in Section 3 of this paper also has the advantage that linear restrictions on the 
coefficients can be easily handled and that more general auto-regressive properties 
of the residuals can be considered. 

The model estimated in this section is the simultaneous part of the forecasting 
model developed in Fair [3]. The model is quarterly and consists of eight equations 
---seven equations explaining seven components of current dollar GNP and a 
GNP identity. The seven components are durable consumption, non-durable 
consumption, service consumption, plant and equipment investment, nonfarm 
housing investment, inventory investment, and imports. Government spending, 
exports, and farm housing investment are taken to be exogenous. The model is 
presented in Table 1. A detailed description of the eight-equation model is presented 
in [3], along with a description of the overall forecasting model, and this description 
will not be repeated here. 

The model was estimated for the 19M) I-1970 III period,6 and the results are 
presented in Table II. The model was estimated both by the full information 
maximum likelihood technique described in Sections 2 and 3 of this paper and by 
the two-stage least squares technique adjusted to account for first order serial 
correlation of the residuals. A description of this latter technique can be found in 
Fair [4]. The two-stage least squares estimates were used as initial values for the 
maximum likelihood technique. 

Given the initial two-stage least squares values, it took three iterations for 
the estimates of the @‘s and y’s to converge within a tolerance level of 0.1 percent 
(i.e., 0.001 percentage points). The values of h’ for these three iterations were 
0.191,0.919, and 1.003. Given these new values of the p’s and y’s, it then took two 
iterations for the estimates of the r’s to converge within the same. tolerance level. 
The values of h for these two iterations were 0.902 and 0.997. The resulting es- 
timates from this first application of the two-step process are presented in Table II 

S Parks did not propose any iterative procedure, but one of the methods considered by Kmenta 
and Gilbert 161 in this context is equivalent to iterating on the serial correlation coefficients. Kmenta 
and Gilbert did not propose iterating an the variancccovariance matrix, however. It should also be 
noted that Parks’ procedure does not yield consistent estimates if there are lagged dependent variables 
among the predetermined variables in the system, since in this case not all of the estimates of the serial 
correlation coefficients are consistent. In this case one must resort 10 an iterative procedure on the 
serial correlation coefficients in order to achieve consistent estimates. 

6 The model could not be estimated before 1960 because of lack of good data on housing smxt~. 
Most oftheequationsin [3] were&mated beginningin 1956 I, but forthework hereitwasnot possible 
todo this,sinceitwasnotpassibletoestimate someequations overdi~erentsample periods than others. 
For the work in [3], observations were omitted from all of the equations for the automobile strike in 
1964 and observations were omitted from the import equation for the dock strike in 1968-1969. Far 
the work here, no observations were omitted because of strikes, but rather dummy variables were used 
in those equations most affected by the strikes. The dummy variables used are listed in Table I. For 
the work in 131 the sample period ended in 1969 IV, but for the work here the sample period ended in 
1970 III. 

’ See Footnote 2. 
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CD CN CS TP IH v- Y., IMP GNP 

, 0 0 0 0 0 
0 1 :: 0 0 0 0 
0 0 1 0 0 0 
0 0 0 1 t 0 0 
0 0 0 0 1 0 0 

-a 8; P; 0 0 0 1 0 
0 0 0 0 L 

L I 1 1 1 I -1 

Predetermined Variables 

Cnst. G MOOD., MOOD-, PE2 HSQ HSQ.. HSQ_, 

CD Y,, 0 
y; 

yin 0 0 
: 

0 
CN 0 0 72, 0 0 0 
cs 0 0 0 

% 
0 0 0 0 

IP ir, II 0 
‘6 

0 0 0 
IH Yrt 

0” :: 
0 

v- v_, )‘a1 0 0 ‘6 ‘6 ?I 
IMP 

‘;;’ 
0 0 0 0 0 0 0 

GNP 1 0 0 0 0 0 0 

CD-, CF., cs- , v. D644 D651 D684 D691 D692 

R, in (3.1) is assumed to be zero. 
The eighth equation is an identity and has no error term associated with it. 

Notation: 
CD = Durable Consumption Expenditures 
CN = Nan-Durable Consumption Expenditures 
CS = Service Consumption Expenditures 
1P = Plant and Equipment Inve~fment 
IH = Nonfarm Housing investment 

V V_ I = Change in Totai Business Inventories 
IMP = hnports 

GNP = Gross National Product 
G = Government Expenditures plus Farm Housing Investment plus Exports 

MOOD = Michigan Survey Research Center index of Consumer Sentiment 
PE2 = Two-quarter-ahead Expectation of Plant and Equipment investment 

HSQ = Quarterly Nonfarm Housing Starts 
V = Stock &Total Business lnventorien (arbitrary base period value afzro in 1953 IV) 

D&14 = Dummy variable that takes on a value of one in the fourth quarter of 1964 and zero 
otherwise. Similarly for dummy variables D651, D684, 0691, and D692. 



Two-Stage 
Least Squares 
Estimates 

Full lnbmtion Maximum 
Likelihood Estimates 

Estimated 
First F‘Xlrtil Eleventh Standard Errors 
PaSS Pass Pam on Eleventh Pass 

0.1085 
0.0446 
0.021* 
0.0801 
0.0141 

-0.2373 
0.0859 

-34.62 
0.1830 
0.0695 

-2.32 
2.66 
0.0443 
08297 

-0.0233 
0.9471 

-9.74 
0.4625 

-2.92 
0.0660 
im69 
0.0146 

-87.69 
0.8296 

-0.3198 
- 1.27 
6.47 

-25.96 
0.55 

- 1.68 
- 1.74 
-6.24 
1.66 
0.3862 

-0.2896 
0.0139 
0.8135 
0.3829 
0.9101 
08931 
1.283124 

0.045252 
0.027339 
0.073693 
0.014285 
0.31191 
O.OS4856 

-38.409 
0.19866 
0.09280 

-2.0664 
3.2085 
O.052629 
082354 

-0023319 
092219 

-7.8993 
051473 

-3.2580 
0056493 
cm9479O 

-156.78 
0.67225 

-0.51523 
-0.077041 
0.61318 

-25.136 
0.23623 

-2.2084 
-1.7990 
-6.3386 
1.4813 
0.26808 

-0.23956 
m0.09524 
0.79745 
0.43100 
086736 
0.88680 
1.885751 

0. ,089, 0.1G902 
0.051593 0054768 
0.028243 0.029302 
O.OI2OI5 O."I3092 
0.014340 0.014357 
0.499G9 0.55695 
0.084032 0.083556 

-41.204 -41.272 
0.20761 0.21723 
0.11157 0.10237 

- L.9956 -2.0604 
3.3190 3.2581 
0.064539 o.OIo305 
0.79461 0.78022 

-0.023373 -0.023511 
091924 0.91513 

-7.7771 - 7.7009 
0.53308 0.51534 

-2.7355 -2.4761 
0.055539 0.055719 
0.088803 0.087797 
0.019883 0.018326 

- 170.72 -166.57 
0.55839 0.47342 

-0.53796 -0.52106 
0.43839 0.58868 

-0.68113 - 1.26762 
-24.336 -23.893 

0.22515 0.22055 
-2.2363 -2.2541 
- 1.7376 - 1.7466 
-6.2616 -6.3141 
1.6556 1.5839 
cm098 0.23671 

-0.28516 -0.21019 
-0.12780 -0.12589 
085375 0.88649 
0.45379 0.44281 
077271 a.73130 
087756 0.87135 
2124221 2.170796 

0.00172 
0OQ7782 
0.005707 
0.014802 
Mm941 
0.15600 
0.W3980 
4.936 
0.05162 
005769 
1.1298 
1.1142 
0.012618 
0.03289 
O.M)2783 
0.02208 
6.9681 
0.13076 
1.4295 
O.OO9949 
0.011565 
0.010238 
21.753 
0.08858 
0.05949 
1.70955 
1.76805 
3.208 
a47947 
04948 
0.5411 
0.6921 
0.6908 
0.10597 
0.08099 
0.14360 
0.10362 
013285 
0.042M) 
0.03993 
_ 

under the heading “First Pass”. This first pass increased the Iikelihood ratio 
by about 47 percent from what it was for the two-stage least squares estimates. 
By the fourth application of the two-step process, the successive estimates of the 
r’s were within a tolerance level of 0.025 (i.e., the difference between the estimate 
of vii on the third pass and the estimate of rii on the fourth pass was less than 0.025 
for each i). The estimates on the fourth pass are presented in Table II. The likelihood 
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ratio increased by a little over one percent between the first and fourth pass. 
By the eleventh application of the two-step process, the successive estimates of 
the r’s were within a tolerance level of 0.002. The estimates on the eleventh pass 
are also presented in Table II. Within any one application of the two-step process, 
it never took more than three iterations for the estimates of the /?‘s and y’s to 
converge within a tolerance level of 0.1 percent, and it never took more than two 
iterations for the estimates of the r’s to converge. Near the end, the estimates 
were converging in one iteration. All of the values of h were very close to one after 
the first application of the two-step process. 

The above results thus indicate that the two-step process works quite well.8 
It is also encouraging to report that the process converged even when the initial 
values of the p’s, y’s, and r’s were all taken to be zero. In this case, it took 38 
iterations for the estimates of the p’s and y’s to converge the first time, with small 
values of h generally used for the first 34 iterations. Given these estimates of the 
b’s and y’s, it then took eight iterations for the estimates of the r’s to converge 
for the first time, with small values of h used for the first four iterations. The value 
of the likelihood ratio after this first pass was 0.750279(10’*). 

The above model was also estimated under the assumption that R, in (3.1) 
is a diagonal matrix. This meant that there were 47 coefficients to be estimated- 
33 coefficients in B and r, 7 coefficients in R,, and 7 coefficients in R,. The full 
information maximum likelihood estimates in Table II were used as initial values 
for B, r, and R 1, and zeros were used as initial values for R, Given the initial 
values, it took three iterations for the r’s to converge within a tolerance level of 
0.1 percent. The values of h for these three iterations were 0.716, 1.000, and l.ooO. 
After this first pass, it never took more than two iterations for the estimates of the 
p’s and :“s or of the r’s to converge. All of the values of h were very close to one. 
By the eighth pass the successive estimates of the r’s were within a tolerance level 
of 0.008. The likelihood ratio after the eighth pass was 3.488035(10’2). 

The technique described in this paper thus appears capable of handling 
fairly large problems with no difficulty. No problems of convergence were en- 
countered with any of the runs using the above model. There is no indication 
from the above results that the technique cannot handle problems even double or 
triple the size of the current problems. With respect to Hendry’s use of Powell’s 
algorithm [5], it should perhaps be mentioned that Powell [9, p. 341 has reported 
that the algorithm tends to be inefficient for more than about ten parameters. 
However, the computational efficiencies of the algorithm here proposed, as 
compared with possible alternatives, remain to be further investigated.9 

6. C~NCLLJS~ON 

Most of the problems involved in estimating linear econometric systems 
can be handled by the method described in Sections 2 and 3 of this paper. A 
user-oriented computer program has been written to implement the method and 

’ It is conceivable, of course. that one could achieve even faster overall convergence by using 
larger tolerance levels for the first few passes and then smaller levels after the estimates are close to 
converging. 

9 It should be noted with respect to Hendry’s method that Hendry considered only the case of 
completely unrestricted autoregressive c&iicient matrices (i.e., no zer* elements). 
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is available from the authors on request. ” To the extent that such a program is 
available, one should not have to rely on less satisfactory, but computationally 
easier, procedures to estimate linear econometric systems. 
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