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MAXIMUM LIKELIHOOD ESTIMATION OF LINEAR EQUATION
SYSTEMS WITH AUTO-REGRESSIVE RESIDUALS!

By GrREGORY C. CHow anDp Ray C. Fair

This paper applies Newton's method to solve a ser of normal equaiions when the residuals follow an
autoregressive scheme. It is shown that this rechnigue for computing maximum likelihood estimates can
be applied to the “seemingly unrelated regression” model. An eight equation quarterly forecasting model
of the 1.8, economy is then used to illustrate the method described in the paper.

1. InTRODUCTION

The problem considered in this paper is the maximum iikelihcod estimation of a
system of linear stochastic equations in which the residuals follow an autoregressive
scheme. This problem has been studied previously by Sargan [10] and more
recently by Hendry [5]. The former formulated the problem and provided numer-
ical solution to a special case. The latter applied an algorithm of Powell [8] to
this problem, an algorithm that does not require the use of first or second deriva-
tives. The present paper provides an alternative method of computing the maximum
likelihood estimates. It applies Newton’s method to solve a set of normal equations
and is a generalization of the well-known Cochran-Orcutt technigue to deal with
autoregressive residuals in a regression. Thus our method is traditional in con-
ception. Our experience, which is partly reported below, is that this method works
well. However, whether it is computationally better than Hendry’s or other
methods remains to be investigated.

In Section 2 a set of normal equations for the unknown coefficients in a linear
econometric system is presented for the case in which the residuals are serially
uncorrelated. The equations are first set forth without the imposition of linear
restrictions, and then a method to deal with linear restrictions is discussed. A
previous work, Chow [2], dealt only with linear restrictions on the coefficients
within a single equation, and the method in Section 2 deals with linear restrictions
on coefficients possibly belonging to different equations. The normal equations
are nonlinear in the unknown coefficients, and both a direct iterative method and
Newton’s method have been tried for solving them. As discussed in Chow [2],
Newton's method appears to converge more often and faster than the direct
iterative method, and it is the method considered in this paper.

In Section 3 the analysis is expanded to the case in which the residuals follow
an auto-regressive scheme. The main point of this section is that this more general
statistical problem can be decomposed into two sub-problems, each of which can
be solved by the method in Section 2. The decomposition is based on the observa-
tion that, given the coefficients of the auto-regressive scheme, the coefficients of
the structural equations can be estimated by the method of Section 2, and, given

! The research described in this paper was supported by NSF Grant GS-2799 and the computer
work by NSF Grant GJ-34.
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the latter coefficients, the former coefficients can be estimated likewise. The result-
ing solution of the more general problem is thus merely a two-step application of
Newton’s method and poses no additional computational difficulties.

A special case of the model considered in Section 3 is the case where the co-
efficient matrix of the endogenous variables is an identity matrix. The model
then reduces to the “'seemingly unrelated regression™ model analyzed by Zellner
[11], Parks [7], and others. Neither the two-step procedure suggested by Zellner
for the serially uncorretated case nor the three-step procedure suggested by Parks
for the first order serially correlated case is a maximum likelihood procedure,
but it can easily be shown, as is done in Section 4, that both of the procedures
become maximum likelihood procedures if one dogs not stop after the second or
third step but continues to iterate until convergence is reached. It is also shown in
Section 4 that iterating with the Zellner or Parks procedure is equivalent to solving
the set of normal equations of the system by the direct iterative method. Since
Newton’s method appears to be more useful in practice than the direct iterative
method, the better way of obtaining the maximum likelihood estimates of the
seemingly unrelated regression model appears to be to use the method discussed
in Sections 2 and 3, which is based on Newton’s method, rather than to iterate with
the Zellner or Parks procedure.

The method described in this paper is quite general and can handle most of
the problems associated with estimating linear equations systems. Linear restric-
tions on the coefficients can be handled, first and higher order auto-regressive
properties of the residuals can be handled, and various special cases can be con-
sidered. Some of the more interesting special cases are the seemingly unrelated
regression model, the case where the residuals obey a first-order auto-regressive
scheme with a diagonal coefficient matrix, and the case where identities are present.

In order to illustrate the use of the method described in this paper, a numerical
example is provided in Section 5. An eight equation model is estimated in which
the residuals obey a first-order auto-regressive process with a diagonal coeflicient
matrix. There are also linear restrictions on the coefficients of one of the equations
in the model, and one of the equations in the model is an identity. The model has
33 structural parameters and 7 auto-regressive parameters to be estimated.

2. A METHOD oF MaxiMUM LIKELIHOOD ESTIMATION OF LINEAR EQUATION
SysTeEMS WITH LiNgar RESTRICTIONS ON THE COEFFICIENTS

Let the linear system of structural equations be
2.1 YB = ZI” + U,

~with ¥ and Z denoting T x G and T x K matrices of observations on the G
dependent variables and the K predetermined variables, U/ denoting a T'x G
matrix of residuals, and B’ and I" (prime for transpose) denoting G x G and
K x G matrices of coefficients (the ith columns of B and I'” being the coefficients
of the ith equation). Assume that the T rows of U are uncorrelated, and that the
G elements of each row satisfy a multivariate normal distribution with mean 0
and covariance matrix Z. Then the log concentrated likelihood function can be
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written as [1, 2]

L = const. — glogﬂ;(BY' - FZuyYs - ZI"}l/}—lfBY’YB’\}
(2.2)

T
= const. — Eiog {181AW]}.

If all the variables with zero coefficients in the ith equation are excluded and if
B.; Is set equal to 1, then the ith equation of (2.1} can be written as

(23) ¥ = }’;ﬁ: + Z:Y; + Uiy (l = 1, sy G)a

where f§; and y; are column vectors of the remaining unknown coefficients in the
ith equation.

Setting the partial derivatives of (2.2) with respect to these unknown co-
efficients equal to zero yields the following system of normal equations [2, equation

(2.8)],

(YL Y Y Y, sUYZe Y| (R [T e |
h
oYY . qYsYs sOYGZ, . 5%V eZ | | B Yo ¥ q"y,
h
(2.4) =
sURZYVY, 5020y, sMZVZ, L s 202 i Z\ Y 5"y,
h
sOZLY, . S99ZLY,  S'SZ,Z, .. 592076 | | v L Za > sy,
L J LVl A i

or

fla) =0,

where s and w¥ are respectively the i — j elements of the inverses of § and W as
defined by (2.2), ¢ = (s” — w"), and « stands for the vector of all of the unknown
coefficients in the system,

Newton’s method can now be applied to solve the system of normal equations
(2.4). Let F be the matrix of partial derivatives of the elements of f with respect
to the elements of &, as given explicitly in Chow [2], equations {4.8}-{4.10), and let
o be the value of  in the rth iteration. Newton’s method iterates by the formula®

(2.5) : ot =a — [Fl)]7 fle).

If there are linear restrictions on the elements of o (these elements may be
coefficients in different structural equations), one has to modify the vector f(x}

2 In the programming of Newton's method for the work in Chow [2] and for the work here, the
actual value of x for the r + 1 iteration is taken to be o' + k(o™ "' — o). If the likelihood is larger for
k= 1,thenh = 1.25,{1.257, ... is tried until the likelihood decreases. If the Jikelihood is not larger for
h =1 then h = 0.8, —0.8,(0.8)%, —(0O.8 .. .istried in an attempt to find a larger likelihood. If a Jarger
likelihood is not found and if the difference between ¢" *! {as computed in (2.5)) and a" is stili sizeable,
then the program breaks down.
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and the matrix F(x) in equations (2.4) and (2.5). The modifications required can
be seen by considering the restriction

(2.6) o = ca; + dog.

The unknown ; will be eliminated, since it is a known linear function of two of
the remaining unknowns o; and a,. The likelihood function L will be replaced by
a new function L* of a new set of variables a* {(having one fewer element than &),
by substituting the right-side of (2.6} for «; in L. By (2.6) and the chain rule of
differentiation, the new f*(a*) = 0 will contain the following equations

SL* SL + 8L
du; B du; By

27 SL* 8L 6
L L L
el o i = O
o, oy * S, =9,
where it is understood that the argument.«, of any derivative of L is replaced by the
right side of (2.6)—likewise for equations {2 8) and (2.9) below, If f{a) has nelements,
say, then f*(x*) and f(a) are related by the equation

(2.8) fHa*) = Mf{a),

where M is an (n — 1) ¥ n matrix which is constructed from the n x n ideniity
matrix by (1) eliminating its ith row, (2) replacing the zere in the ith position of the
Jjth row by ¢, and (3) replacing the zero in the ith position of the kth row by 4.

By differentiating the elements of f*{x*) with respect to the remaining n — |
variables, one can obtain the new matrix F*(a*) of second partial derivatives:

2.9) F*a*) = MF()M'.

Equations (2.8) and (2.9) can then be used to modify equation (2.5) in order to
perform iterations by Newton'’s method. If there is a second linear restriction,
then another matrix, say M*, can be used to multiply /* and F* in the same way
as M was used in equations (2.8} and {2.9) to multiply f and F. This process can be
repeated for any number of lidear restrictions. Setting a coefficient equal to a
constant ¢ amounts to setting it equal to ¢ times the dummy variable | in the list
predetermined variables; similarly, non-homogeneous linear restrictions can be
treated by using this dummy variable.

Two other points about the above method should be noted. First, as discussed
in Chow {2, p. 107], identities can be quite easily handled by the above method.
Secondly, the covariance matrix of the estimates of « can be consistently estirmated
by the inverse of — F evaluated at the maximizing value of x.

3. MaximuM LIKELIHOOD ESTIMATION OF LINEAR EQUATION SYSTEMS WITH
AUTO-REGRESSIVE RESIDUALS

Now let the model (2.1) be modified by assuming that its residuals U obey
an auto-regressive scheme such as

3.1) U=1U_R, + U_,R, +E,
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where the G columns of U _, and U7 _ ; are the residuals of the G structural equations
lagged one period and two periods respectively,” R, and R, are matrices of co-
efficients of the auto-regressive scheme, and the residuals E satisfy the same assump-
tions originally made for U in the model {2.1). It will be shown in this section that
the method of Section 2 can be applied to obtain maximum likelihood estimates
of the matrices B, I', R, and R, in this model. To simplify matters of exposition
without loss of generality, R, will be assumed to be zero.
Since the model lagged one period satisfies

(3.2) Y. B =2Z_I"+U_,
the equation system (2.1) and {3.1) can be written as {with R, = 0)
(3.3) YB =Y_,BR, + ZI" - Z_,['R, + E

=Y B, + Z["— Z_,T, + E.
The log concentrated likelihood function for this model, by (2.2), is simply

;};E’E; /ll?BY'YB';},

(3.5) YB - Y BR, - ZI" + Z_,T'R},

(3.4} ' L = const. — %log{

where E denotes

with B, T, and R, treated as upknowns and ¥, Y_,, Z, and Z_ | treated as given
data.

To maximize (3.4) with respect to these unknowns, consider first the partial
maximization with respect to B and I, given R,. From the second line of (3.3},
this amounts to maximization with respect to B, I, B, and I'; subject to the linear
restrictions

(3.6) B, =R,B; TI,=R,[I

This problem can be solved by the method of Section 2.

Now consider the maximization of (3.4} with respect to R, given BandT.
With B and T" treated as given, the model can be written as, by rearrangement of
(3.3),

(3.7) (YB — ZT")=(Y_,B — Z_,T")R, + E,

with the terms in parentheses being treated as matrices of observed variables and
R, being treated as a matrix of coefficients. Maximizing (3.4) partially with respect
to R, amounts to maximizing

|

—E'E

T \}

since |[(1/T)BY Y B| is a constant. But (3.8) is precisely the log concentrated like-
lihood function for the model (3.7), and the method of Section 2 can be applied to
maximize this likelihood function with respect to the coefficient matrix R,. Of

(3.8) L, = const. — %—iog{

3 Because of (3.1), one observation is of course lost for each order of the auto-regressive scheme.
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course, if there are no restrictions on R,, the estimates are simply least squares
estimates. Inthis case(Y B’ — Z_ T")isthe matrix of the predetermined variables,
and (YB — ZI''} is the matrix of the dependent variables whose coefficient matrix
is restricted to be the identity matrix.

The maximum likelihood estimates of B, I, and R, in the model (3.3) can be
obtained as follows. Start with an initial value for R, , possibly 0, and maximize the
likelihood function with respect to B and I” by the method of Section 2 ; take these
values of B and [ as given and maximize the likelihood function with respect to
R, again by the method of Section 2; repeat this two-step process until conver-
gence is reached. Convergence will be reached using this process if the method
of Section 2 converges for the problem that it is supposed to solve, since the method
of this section amounts simply to repeated applications of the method of Section 2.

Let & denote the vector of all of the unknown coefficients in the system in-
cluding the coefficients in R |, let A(8) = 0 stand for the system of normal equations
derived from differentiating the likelihood function (3.4) (as f(x) = O stood for
the system of normal equations derived from differentiating the likelihood function
{2.2)), and let H be the matrix of partial derivatives of the elements of h with respect
to the elements of 4. Then the covariance matrix of the estimator of § can be con-
sistently estimated by the inverse of — H evaluated at the maximizing value of 8.
The derivatives involved in such a procedure are quite complicated, however, and
so an alternative procedure is recommended. This procedure is to compute the
covariance matrix of the estimates of B and I' under the assumption that R,
is known (and equal to its estimate) and to compute the covariance matrix of the
estimator of R, under the assumption that B and I" are known (and equal to their
estimates). These two estimates of the covariance matrices fall out of the two-step
process above (since the matrix F™' in (2.5) is computed in both steps) and so
pose no further computational burden. These estimates will, of course, be an
underestimate of the actual covariance matrix, since the stochastic nature of the
estimator of B and I" and the stochastic nature of the estimator of R, are not
censidered together.

The comments made in Section 2 about the ability of the method to handie
various problems generally pertain to the two-step process in this section as well.
In particular, linear restrictions on the coefficients B and I can be handled (in-
cluding, of course, the restrictions in (3.6)), and linear restrictions on the co-
efficients of R, can be handied. The one type of restriction that cannot be handled
by the two-step process is a restriction between the coefficients of B or T and the
coefficients of R,. The process cannot handle, in other words, a restriction that
says that a given element of R, is a linear combination of given elements of Bor I,
In practice, however, this is not likely to be a serious limitation of the method.
The matrix R, can, of course, be restricied to be diagonal, and for many problems
it may be advisable to do this. Otherwise, with R, unrestricted, a large number of
coeflicients will have to be estimated for even moderately sized models, and it may
be difficult to obtain estimates of this many coefficients.

4, A Special CASE: SEEMINGLY UNRELATED REGRESSIONS

if B’ is an identity matrix, then {2.1) reduces to the “seemingly unrelated
regression”” model analyzed by Zellner [11], Parks [7], and others. The basic
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method proposed by Zellner for the case in which the residuals are serially un-
correlated consists in obtaining a consistent estimate of the variance-covariance
matrix, 8, of the residuals [/ and then using this estitnate to compute the generalized
least squares estimate of I'. A consistent estimate of S can be obtained by estimating
each equation of the model by ordinary least squares and using the estimated
residuals from these equations to estimate S.

The estimates obtained from Zellner’s procedure are not maximum likelthood
estimates, but it can be shown that if one continued to iterate on § and achieved
convergence, then the resulting estimates would be maximum likelihood estimates.
When B is an identity matrix, then the system of normal equations (2.4) reduces to
the block of equations in the lower right-hand corner of (2.4). Solving this block
for yi,..., vy vields:

Y sUZVZ S22 1T 20 ) S
N

o 1G GG . RG
e LR AY AR AV A Zg ZS Yn
A

Equation (4.1) is the same as the equation for the generalized least squares estimator
presented in Zellner [11], p. 351, equation (2.7). One possible way to try to solve
this system of equations is to iterate on the elements of $.* This iterative method
is equivalent to the direct iterative method discussed in Chow [2], and to the
extent that the method converges, iterating in this manner produces maximum
likelihood estimates,

As discussed in Chow [2], Newton’s method appears to work better than the
direct iterative method, and thus the better way of obtaining the maximum likeli-
hood estimates of the scemingly unrelated regression model would appear to be
to use Newton’s method rather than the direct iterative method. The computational
burden involved in computing the maximum likelihood estimates by Newton’s
method does not appear so great that one has to rely on Zellner’s simpler two-step
procedure to estimate the seemingly unrelated regression model.

Parks expanded the analysis of the seemingly unrelated regression model to
include the case in which the residuals are first order serially correlated, that is,
to include the case in which R, is diagonal and R, is zero in (3.1). His method
consists in obtaining consistent estimates of the serial correlation coefficients,
using these estimates to obtain a consistent estimate of the variance-covariance
matrix, and then using both of these sets of estimates to compute the generalized
least squares estimate of T'. Estimates of the serial correlation coeflicients can be
obtained from the ordinary least squares residuals of each equation.

The estimates obtained from Parks’ procedure are not maximum likelihcod
estimates, but again it can be shown, in a manner similar to that done above
for Zellner’s procedure, that iterating on the serial correlation coefficients and
the elements of the variance-covariance matrix leads to maximum likelihood

# Iterating in this manner was suggested by Zellner and Theil [12], p. 78, within the context of the
three-stage least squares techrique.
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estimates.® Again, the computational burden involved in computing the maximum
likelihood estimates does not appear so great that one has to rely on Parks’
three-step procedure, or some guasi-iterative version of it, to estimate the seemingly
unrelated regression model with serially correlated residuals. The method proposed
in Section 3 of this paper also has the advantage that linear restrictions on the
coefficients can be easily handled and that more general auto-regressive properties
of the residuals can be considered.

5. AN ExaMpPLE

The model estimated in this section is the simultaneous part of the forecasting
maodel developed in Fair [3]. The model is quarterly and consists of eight equations
~—ggven equations explaining seven components of current dollar GNP and a
GNP identity. The seven components are durable consumption, non-durable
consumption, service consumption, plant and equipment investment, nonfarm
housing investment, inventory investment, and imports. Government spending,
exports, and farm housing investment are taken to be exogenous. The model is
presented in Table 1. A detailed description of the eight-equation model is presented
in [3], along with a description of the overall forecasting model, and this description
will not be repeated here.

The model was estimated for the 1960 1-1970 111 period,® and the results are
presented in Table II. The model was estimated both by the full information
maximum likelihood technique described in Sections 2 and 3 of this paper and by
the two-stage least squares technique adjusted to account for first order serial
correlation of the residuals. A description of this latter technique can be found in
Fair [4]. The two-stage least squares estimates were used as initial values for the
maximum likelihood technique.

Given the initial two-stage least squares values, it took three iterations for
the estimates of the £’s and y’s to converge within a tolerance level of 0.1 percent
{ie., 0.0D1 percentage points). The values of A’ for these three iterations were
0.191, 0.919, and 1.003. Given these new values of the #’s and 7%, it then took two
tterations for the estimates of the r’s to converge within the same tolerance level.
The values of h for these two iterations were 0.902 and 0.997. The resulting es-
timates from this first application of the two-step process are presented in Table I1

§ Parks did not propose any iterative procedure, but one of the methods considered by Kmenta
and Gilbert [6] in this context is equivalent to iterating on the serial correlation coefficients. Kmenta
and Gilbert did not propose iterating on the variance—covariance matrix, however. It should also be
noted that Parks’ procedure does not vield consistent estimates if there are lagged dependent variables
among the predetermined variables in the system, since in this case not all of the estimates of the serial
correlation coefficients are consistent. In this case one must resort to an iterative procedure on the
serial correlation coefficients in order to achieve consistent estimates,

¢ The model could aot be estimated before 1960 because of lack of good data on housing starts,
Most of the equations in [3] were estimated beginning in 1956 1, but for the work here it was not possible
to do this, since it was not possible to estimate some equations over different sample periods than others.
For the work in [3], observations were omitted from all of the eguations for the automobile strike in
1964 and observations were omitted from the import equation for the dock strike in 1968-1969. For
the work here, no observations were omitted becauvse of strikes, but rather dummy variables were used
in those equations most affected by the strikes, The dummy variables used are listed in Table 1. For
the work in [3] the sample period ended in 1969 IV, but for the work here the sample period ended in
1970 II1.

7 See Footnote 2.

24



Tapte 1
THE E1GHT EQUATION MODEL

Endogenous Variables

CD CN CSs 1P IH V-V, IMP GNP
oD 1 i) 0 0 0 0 0 Bus
CN 0 1 0 0 0 0 0 Bas
cs$ 0 0 1 0 0 0 0 Bas
P 0 0 0 1 0 0 D Bas
H 0 0 0 0 1 0 0 Boy
V-V, Bas Bes 0 0 0 1 0 0
IMP 0 0 0 D 0 0 i Brs
GNP H 1 i 1 1 1 -1 1

Predetermined Variables

Cnst. G MOOD_, MOOD_, PE2 HSQ HSQ._, HSQ ,
¢D 711 it Yia Yis 0 0 0 0
CN 0 0 0 Yaa 0 0 0 ]
Cs 0 0 0 ¥ 0 0 0 0
P Yar 0 0 0 Vas 0 0 0
IH V51 0 0 0 0 Ve Y57 V58
V-V, Yor 0 0 0 0 0 0 0
IMP Yoy 0 0 0 0 0 0 0
GNP 1 0 0 0 0 0 0

CD_, CN_, CS., V., D64 D65l D634 DI D692
CD 0 0 0 0 Tins  Tiie 0 0 0
CN 0 a0 0 0 )] 0 0 0 0
cs 0 ¢ ¥3,11 ¢ 0 0 0 0 0
P 0 0 0 0 0 0 U] 0 1]
iH 0 0 0 0 0 0 0 ¢ 0
V-V, e Yo, en 0 Ys,02  Yeaz  Yaaa 9 0 0
IMP 0 0 0 0 Y713 V7,14 [ARE Ya,16 Vo117
GNP L 0 g 0 L 0 0 0 0
Restrictions: B, = Be1s Pe10 = Yeo-
R, in (3.1} is assumed to be a diagonal matrix with diagonal elements r,, r;, 753,
TaasTsss Foss AN Fpg,
R, in (3.1} is assurmed to be zero.
The cighth equation is an identity and has no error term associated with it.
Notation:

CD = Durable Consumption Expenditares
CN = Non-Durable Consumption Expenditures
C8 = Service Consumption Expenditures
1P = Plant and Equipment Investment
IH = Nonfarm Housing [nvestment
V — V¥_, = Change in Total Business Inventoties
IMP = Imports
GNP = Gross National Product
G = Government Expenditures plus Farm Housing Investment plus Exports
MOQOD = Michigan Survey Research Center Index of Consumer Sentiment
PE2 = Two-quarter-ahead Expectation of Plant and Equipment Investment
HSQ = Quarterly Nonfarm Housing Starts
V = Stock of Total Business Inventories (arbitrary base period value of zero in 1953 1V)
D644 = Dummy variable that takes on a value of one in the fourth quarter of 1964 and zero
otherwise. Similarly for dummy variables D651, D684, D691, and D692,

Note: The subscript —I or —2 after a variable denotes the one-quarter or two-quarter lagged
value of the variable.



TABLE I
CopspICIENT ESTIMATES OF THE MODEL

Full Information Maximum
Likelihood Estimates

Two-Stage Estimated
Least Squares First Fourth Eleventh Standard Errors

Estimates Pass Pass Pass on Eleventh Pass
Bis 0.1085 0.10869 0.10897 0.10902 000172
Bas 0.0446 0.045252 0.051593 0.054768 0.007782
Bas 00212 0.027339 0.028243 0.029302 0.005707
Ban 0.0801 0.073693 0.072075 0.073092 0.014802
Bax 0.0141 0.014285 0.014340 0.014357 0.000541
Bey —0.2373 0.31191 0.49909 0.55695 0.15600
Baa 0.0859 0.084856 0.084032 0.083556 0.003980
Y11 —34.62 - 38,409 ~41.204 - 41272 4,936
¥ya (.1830 0.19866 0.20761 0.21723 0.05162
Y14 0.0695 0.09280 0.11157 0.10237 0.05769
Y113 -2.32 - 20664 — 1.9956 —2.0604 1.1298
Fita 2.66 3.2085 3.31%0 32581 1.1142
Y24 0.0443 0.052629 0.064539 0.070305 0.012678
Ya.10 0.8207 0.82354 0.79461 0.78022 0.03289
Y3a —0.0233 - 0.023319 - 0023373 —~0,023511 0.002783
Fait 0.9471 092279 091924 191513 0.02208
Yai —-9.74 - 7.8993 77771 - 71009 £.9687
Yas 0.4625 0.51473 0.53308 (.51534 0.13076
¥s1 —~2.92 - 3.2580 --2.7355 —2.4767 1.4295
Vi -0.0660 0.056493 0.055539 00355719 0.009949
Y57 0.0869 0.094790 (.088803 0.087797 0011565
Tsg 00146 0.017996 0019883 0.018326 0.0102338
V51 —87.6% —156.78 —170.72 - 166.57 21753
Yeu 0.8296 0.67225 0.55839 047342 08858
Y1z —0.3198 —0.51522 - 0.53796 --0.52106 0.05949
Ye.13 w127 —-0.077041 0.43839 0.58868 1.70955
Vo.14 6.47 061318 - (68153 — 126762 1.76805
Va1 - 2596 - 25,136 —24.338 - 23893 3.208
Y713 0.55 0.23623 0.22515 0.22055 0.47947
V114 - 1.68 —2.2084 —~2.2363 —2.254% _ 0.4948
Y715 - 1.74 —1.7990 - 1.7376 — 1.7466 0.5411
Trie —6.24 - 6.3386 —6.2616 —6.3141 0.6921¢
Yo7 1.66 1.4813 1.6556 1.5839 0.6908
Fis 0.3862 0.26808 0.22098 0.2367¢ 0.10597
sz —0.2896 - 0.23956 -0.28516 —0.27019 0.08099
33 0.0139 —-0,09524 —0.12780 —{0.12589 0.14360
as 0.8135 0.79745 (3.85375 0.88649 (.10362
Tss 0.3829 0.43100 0.45379 0.44281 0.13285
Tss 0.9104 0.86736 0.712711 0.73130 0.04200
[ 0.8931 0.88680 0.87756 087135 0.03593
10-12 1.283124 1.885751 2124224 2170796 —
{Likelihood

Ratio)

under the heading “First Pass”. This first pass increased the likelihood ratio
by about 47 percent from what it was for the two-stage least squares estimates.
By the fourth application of the two-step process, the successive estimates of the
r’s were within a tolerance level of 0.025 (i.e., the difference between the estimate
of r;; on the third pass and the estimate of r,; on the fourth pass was tess than 0.025
for each i). The estimates on the fourth pass are presented in Table II. The likelihood
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ratio increased by a little over one percent between the first and fourth pass.
By the eleventh application of the two-step process, the successive estimates of
the r’s were within a tolerance level of 0.002. The estimates on the eleventh pass
are also presented in Table IL. Within any one application of the two-step process,
it never took more than three iterations for the estimates of the 8’s and y's to
converge within a tolerance level of 0.1 percent, and it never tock more than two
iterations for the estimates of the r’s to converge. Near the end, the estimates
were converging in one iteration. All of the values of h were very close to one after
the first application of the two-step process.

The above resulis thus indicate that the two-step process works quite well.®
It is also encouraging to repoert that the process converged even when the initial
values of the fi’s, y's, and r’s were all taken to be zero. In this case, it took 38
iterations for the estimates of the £’s and 7’s to converge the first time, with small
values of i generally used for the first 34 iterations. Given these estimates of the
B’s and y’s, it then took eight iterations for the estimates of the r's to converge
for the first time, with small values of & used for the first four iterations. The value
of the likelihood ratio after this first pass was 0.750279(1012).

The above model was also estimated under the assumption that R, in (3.1)
is a diagonal matrix. This meant that there were 47 coeffictents to be estimated—
33 coefficients in B and I, 7 coefficients in R,, and 7 coefficients in R,. The full
information maximum likelihood estimates in Table II were used as initial values
for B, T, and Ry, and zeros were used as initial values for R,. Given the initial
values, it took three iterations for the r’s to converge within a tolerance level of
0.1 percent. The values of h for these three iterations were 0.716, 1.000, and 1.000.
After this first pass, it never took more than two iterations for the estimates of the
f’s and +’s or of the 's to converge. All of the values of h were very close to one.
By the eighth pass the successive estimates of the »’s were within a tolerance level
of 0.008. The likelihood ratio after the eighth pass was 3.488035(10'2),

The technique described in this paper thus appears capable of handling
fairly large problems with no difficulty. No problems of convergence were en-
countered with any of the runs using the above model. There is no indication
from the above results that the technique cannot handle problems even double or
triple the size of the current problems. With respect to Hendry’s use of Powell’s
algorithm [5], it should perhaps be mentioned that Powell {9, p. 34] has reported
that the algorithm tends to be inefficient for more than about ten parameters.
However, the computational efficiencies of the algorithm here proposed, as
compared with possible alternatives, remain to be further investigated.®

6. CONCLUSION

Most of the problems involved in estimating linear econometric systems
can be handied by the method described in Sections 2 and 3 of this paper. A
user-oriented computer program has been written to implement the method and

8 It is conceivable, of course, that one could achieve even faster overall convergence by using
larger tolerance levels for the first few passes and then smaller levels after the estimates are close to
converging.

% It should be noted with respect to Hendry's method that Hendry considered only the case of
completely unrestricted autoregressive coefficient matrices (i.e., no zero elements).
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is available from the authors on request.'® To the extent that such a program is
available, one should not have to rely on less satisfactory, but computationally
easier, procedures to estimate linear econometric systems.

Princeton University
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