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METHODS FOR COMPUTING OPTIMAL CONTROL SOLUTIONS

ON THE SOLUTION OF OPTIMAL CONTROL PROBLEMS AS
MAXIMIZATION PROBLEMS

BY Ray C. Far*

In this paper the problem of obtaining optimal controls for econometric models is treated as a simple
unconstrained nonlinear maximization problem. Various maximization algorithms are tested, and the
results indicate that quite large problems can be solved. For deterministic problems it appears feasible to
compute optimal controls for most econometric models encountered in practice. Stochastic problems can
also be solved by the approach of this paper by means of stochastic simulation.

I. INTRODUCTION

There appears to be among many economists the view that the computation of
optimal controls for moderate- to large-scale nonlinear econometric models is
not feasible. Pindyck [19], for example, has questioned whether “nonlinear
optimization [is] worth all of the computational difficulty that it entails,”* and
Shupp [24] has stated that “the size and complexity of these models preclude
formal optimization.” ? The results presented in this paper indicate that this view
is not correct, even for models of up to 100 or 200 equations. The results suggest
that it is feasible to compute optimal controls for most econometric models
encountered in practice.’

Historically, optimal control problems have been formulated in continuous
time and have been looked upon as problems in choosing furctions of time to
maximize an objective function, Fairly advanced mathematical techniques are
required to solve these problems. For discrete-time models, however, which
include virtually all large-scale econometric models, optimal control problems
can also be looked upon as problems in choosing variables to maximize an
objective function. The number of variables to be determined is equal to the
number of control variables times the number of time periods chosen for the
problem. From this perspective, optimal control problems are straightforward
‘maximization problems, and in attempting to solve problems in this way, one
can take advantage of the recent advances that have been made in computational
algorithms for maximizing nonlinear functions of variables. This approach, of
treating optimal control problems as problems of maximizing a nonlinear function
of variables, is the approach taken in this paper.

* Department of Economics, Princeton University. I would like to thank Gregory C. Chow,
Kenneth 3. Garbade, Stephen M. Goldfeld, 2and Richard E. Quandt for many helpful comments.

! Pindyck [19], p. 388.

* Shupp [24], p. 94.

2 See also Holbrook [13] for a method of controlling a nonlinear system with a guadratic objective
function.
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2. THE GENERAL METHOD OF SOLUTION

Assume that the model under consideration is deterministic*

equations. Write each equation for each period of time as

and has g

i=1,...,8:

{1 fér(}}l’zf’x"air)w(}: t=1,...,T;

where v, is a vector of observations for period ¢ on the g endogencus variabies in
the model, z, is a vector of observations for period t on the noncontrol, pre-
determined variables in the model, x, is a vector of observations for period ¢ on
the control variables in the model. and «;, is a vector of nonzero parameters that
are included in equation i for perfod t. The t subscripts in %;, and f;, allow for the
possibility that some parameters and some functional forms are changing over
time.® Lagged endogenous variables are included in the z, vector. T is the total
number of periods to be considered in the control problem.

The meodel in (1) is assumed to be such that, for cach ¢, given values for z,,
x,and o, (i = 1,..., g), one can solve numerically for y,. In practice, most large-
scale econometric models.are solved each period by some version of the Seidel
method.® Further, one can frequently isolate each component of the y, vector on
one side of one equation, which greatly aids in the solutien of the model. If the
model issolved for more than one period, then the solution values of the endogenous
variables for previous periods are used, when appropriate, as values for the lagged
endogenous variables in the z, vector. For Hnear models, of course, values of v,
are merely obtained from reduced form equations.

For a time horizon of T periods, the objective function, k, is taken to bé a
function of y,,z,,and x, r = 1,..., T):

(2 W= h{y .. . ¥Vr 2 200 Xyae X1,

where W, a scalar, is the value of the objective function corresponding to values
of y,z,and x, (r = 1,..., T}

The optimal control problem for this discrete-time, deterministic model is
to choose values of x;,..., x; 50 as to maximize W subject to the equation-
constraints in (1). The givens of the problem are the value of each g, the values
for each period of the purely exogenous variables, and initial values for the lagged
endogenous variables. Assume that x, 18 of dimension &, so that there are kT
control values to determine. Let x be a kT-component vector denoting these
values: x = (x,,...,xrh MNow, for each value of x, one can compute a value of
W by first solving the model i {1} for y,, ..., ¥y and then using these values along
with the values for z,....,z; and x to compute W in (2). The optimal control
problem can thus be looked upon as a problem in choogsing variables (the elements
of x) to maximize an unconstrained nonlinear function. By substitution, the con-
strained maximization problem is transformed into the problem of maximizing

4 Stochastic models are discussed in Section 7.

5 It is assumed throughout this paper that the values of &, and the values of the exogenous variables
in the z, vector are known with certainty.

5 See, for example, Fromm and Klein [10], pp. 373-382,
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an unconstrained function of the control variables:
W = ¢(x),

where ¢ stands for the mapping x —= X, ¥y .. ¥y, 200. .., 2p = W In general it
will not be possible to express'y, explicitly in terms of z,.x,, and ,, so that in
general it witl not be possible 1o write W in (2) explicitly as a function of z,, x,,
and a, (r=1,.... T). Nevertheless, given values for 'z, and o, (t = 1,....T),
values of W can be obiained numetically for different values of x.

" 'Thete are many algorithms available for maximizing {or minimizing) non-
~linear functions of variables. Since W cannot in general be written as an explicit
* function of x, it will in general be difficult to obtain analytically the partial deriva-
tives of h with respect to the elements of x. Therefore, in attempling to solve optimal
control problems by treating them as problems in maximizing a nonlinear function
of variables one will usually be required either to use algorithms that do not
require derivatives or else to.compute derivatives numerically. Both approaches
have been followed for the results in Sections 4 and 5.

Algorithms that do not require derivatives and algorithms for which deriva-
tives are obtained numerically spend most of their time doing function evaluations.
For the results in Sectiéns 4 and 5, over 75 percent of the time was spent doing
function evaluations for all atgorithms tried except in two cases, where the figures
were 52and 353 percent. Oneé function evaluation in the present context corresponds
" to the soiutmn_"‘ofa g equat}on ‘model for T periods (plus the rather trivial com-
_putatmn once y Yreies Vi are determmed of Win(2)). It is therefore quiite important

to solve a model ini the most efficient way possible, since for one solution of the

optimal control problem a model will usually be solved hundreds or thousands
of times. Some suggestions are presented in Section 6 for efficient ways of solving
models.

Much of the engineering literature on -optimal control is concerned with
continuous-time models and so is not of direct concern here. Polak [20], however,
does present a good discussion of the discrete optimal control problem in engin-
eering.” The discrete-time model considered by Polak differs from the standard
econometric model considered in this paper in that his model is already in reduced
form. In the iotation” of this’ paper, each component of y, would be written as an

- sxplicit function of z;7x%,; anid u;; for Polak’s model. The fact that the derivatives
" of y, with respect to z; and x, can be directly obtained for Polak’s modetl allows
“Polak to obtain’ farrfy easily ihe derivatives of the objective function with respect
16 the' values of the’ controI va'nables Polak al$o reports that the time horizon
for the problems he is ¢onsidering may be as large as 1,000 periods,® which is
much larger than the time horizon for most problems in economics, where the
horizon is likely to be much less than even 100 periods. The discrete optimal
control problem in economics is thus on the one hand easier than the corresponding
problem in engineering in that the time horizon appears to be much smaller
and on the other hand more difficult in that analytic derivatives of the objective

¥ See especially pp. 66-71. See also Athans [1] for a discussion of the lincar—quadratic-Gaussian
. stochastic control problem for discrete-time models.
® Polak [20], p. 67. Polak does not, however, report on any actual solutions of problems of this
sort in His book.
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function with respect to the values of the control variables are not easy to obtain
because of the non-reduced-form nature of most econometric models.

3. Tee COMPUTATIONAL ALGORTHIMS USED

Three basic algorithms were used for the results in Sections 4 and 5. The first
is the 1964 algorithm of Powell [21], which does not require any derivatives, The
second is a gradient algorithm, which requires first derivatives. The third is the
quadratic hill-climbing algorithm of Goldfeld, Quandt, and Trotter [12], which
requires both first and second derivatives. The gradient algorithm that was used
in this study is a member of the class of algorithms considered by Huang [15].%
The algorithms within this class basically differ from each other in how the
approximation to the inverse of the matrix of second partial derivatives is updated
after each iteration. One member of this class is the well-known DFP variable
metric algorithm.'® Some results using the DFP algorithm are reported below,
but the main gradient algorithm that was used in this study is the one that updates
by means of the “rank one correction formula.”!" This algorithm appears to
give the best results. Some results using one other member of the class of algorithms
considered by Huang are also reported below.!? All three of the gradient algorithms
considered in this study use linear searches on each iteration.

All of the computer programs were compiled in FOGRTRAN-H and were
run on an IBM 360-91 computer at Princeton University.!? All derivatives for
the gradient and quadratic hill-climbing algorithms were computed numerically.
For the gradient algorithms the derivatives were computed in two ways. For one
set of runs derivatives were obtained for each iteration by computing two function
evaluations per variable, each variable being perturbed by equal amounts around
the value available from the previous iteration. For the other set of runs derivatives
were obtained for each iteration by computing only one function evaluation per
variable. The percentage amount by which variables were perturbed (0.01 percent)
was not varied from iteration to iteration.'* Stewart [25] has proposed a more
sophisticated way of computing numeric derivatives when using gradient
algorithms, but his method was not tried in this study. For the quadratic hill-
climbing algorithm first derivatives were always obtained by computing two
function evaluations per variable, as these computations had to be made anyway
to obtain the own second derivatives, but the cross partial derivatives were com-
puted in two ways. For one set of runs the cross partial derivatives were obtained
by computing four extra function evaluations per set of two variables, and for the
other set of runs the derivatives were obtained by computing only one extra

? See Powell [23] for an excellent summary of Huang’s theory.

19 See Davidon [71 and Fletcher and Powell [9].

1 See Powell [23), p. 41.

2 See Powell [23], equations (31) and (32), p. 41, for a presentation of this aigorithm.

'3 The Powell and quadratic-hill-climbing algorithms were programmed by Stephen M. Goldfeld
and Richard E. Quandt. The three gradient algorithms were programmed by Thomas Russell.

' Let f(4, b) be a function of two variables. Then the formulas that were used to obtain the partial
derivative of f with respect to a for the twa runs are (f(2 + &, 1 — f(a — &, B)/2e and ( f{a + ¢, b} ~
fla, bl)e, where & = 6.0001a or 0.000001, whichever is larger. For all of the runs the problems were
set up so that the solution values of the variables would be between about 0.1 and 10.0.
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function evaluation per set of two variables.!® The reason two methods were
used to obtain derivatives for the gradient and quadratic hill-climbing algorithms
—one more expensive but likely to be more accurate and one less expensive but
likely to be less accurate—was to see how sensitive the resnlts were to the way
in which the derivatives were obtained. Box, Davies, and Swann [5], for example,
report that their experience is that “gradient methods employing numerical
differentiation are (with the exception of Stewart, £967) usually inferior to the best
direct search methods, and therefore not recommended.”!® The results in this
study do not confirm this view.

In the programs, the algorithms were taken to have converged when the
absolute value of the difference between the value of each variable on successive
iterations was within a prescribed tolerance level. The Powell algorithm was
generally more sensitive to the particular tolerance level used than were the gradient
and quadratic hill-climbing algorithms, and for the results in Section 4 two sets
of runs were obtained using the Powell algorithm, corresponding to two different
tolerance levels.

Studies that have been done comparing different computational algorithms
have tended to limit the size of the problems considered to 20 variables or less.
This is true, for example, of the comparisons in Bard [3], Box [4], Goldfeld and
Quandt [11], Kowalik and QOsborne [16], Murtagh and Sargent [17], Pearson
[18). and Stewart [25]. Powell [22] reports that the DFP algorithm using analvtic
derivatives has been successful for problems of size 100 and that his 1964 algorithm
and the DFP algorithm using numeric derivatives in the manner proposed by
Stewart have solved problems of size 20.!7 Wolfe [26] states that the upper limit
to the size of problems that can be solved in which derivatives can be calculated
analytically is around 100. For problems in which derivatives cannot be calculated,
Wolfe’s diagram indicates that the upper limit is about 10.'® The results reported
below indicate that the upper limit to the size of problems that can be solved when
derivatives are not calculated analytically is much larger than 10 or 20. The largest
problem solved below was of size 239, and a number of problems between size
59 and 100 were solved. In fact, one of the main reasons why the method proposed
in this paper appears feasible for most econometric maodels is the ease in which
algorithms appear to be able to solve large problems even when analytic derivatives
are not calculated.

4, Ax ExampPLE USING A LINEAR MODEL WITH A QUADRATIC
OBIECTIVE FUNCTION

The method proposed in Section 2 was first used to solve one of the optimal
control problems solved by Chow [6] for his nine-equation, linear econometric

15 Using the notation in footnote i4, the formula used for the own second derivatives is
(fla + &, b} — 2{(a, B) + fla — & b))/e?. The two formulas used for the cross partial derivatives are
Ja+eb+p—Sfla—eh+m—fla+eb-—m+fla—eb—yhden and (fla+e.b+m—
fla.b + n) — fla + & b} + fla, b}/en, wheren = 0.0001b or 0.000001, whichever is larger. In the second
formula, values for (g, b + #)and f(z + &. b} are available from the own second derivative calculations.

16 Box, Davies, and Swann {5], p. 32

17 Powell {22}, p. 95

12 Wolfe [36], pp. xi—xii. It should be noted, however, that it is not clear from Wolfe’s notes whether
for these particular figures Wolfe is also including problems in which there are inequality constraints,
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model. The model has two control variables. Chow solved various 10-period
optimal control problems corresponding to different quadratic objective functions
(to be minimized). The problem chosen to solve in this study is the second problem
in Table 3 of Chow [6]. Two control variables and ten periods means that there
are 20 variables to be determined. The initial values for the 20 variables were
chosen to be zero, although in practice one could obviously choose better initial
values than these. The results of solving this problem are presented in the first
row of Table 1. Two runs for the Powell algorithm are reported, one which used
a tolerance Jevel of 0.0003 and one which used a tolerance level of 0.00001. Two
runs each for the gradient and quadratic hill-climbing algorithm are also reported,
corresponding to the two ways of computing derivatives. The latter two algorithms
used a tolerance level of 0.00001.

Powell's no-derivative algorithm required 1687 function evaluations to attain
the optimum using a tolerance level of 0.0005 and 2,633 function evaluations using
a tolerance level of Q00001 The value of the objective function at the stopping
point was smaller for the smaller tolerance level, but only by a very small amount.
The corresponding variable values for the two runs agreed to three significant
digits, with the largest difference being 0.00015 (0.70272 vs. 0.70287), The gradient
algorithm required 614 function evaluations to attain the optimum using one
function evaluation per derivative per vanable and 1,033 function evaluations
using two. The value of the objective function at the stopping point was smaller
for the second run, but again by only a very small amount. The corresponding
variable values for these two runs also agreed to three significant digits. The
quadratic hill-climbing algorithm required 929 function evaluations to attain the
optimum using one function evaluation per cross derivative and 3,209 function
evaluations using four. For these two runs the values of the objective function at
the stopping point were the same. The time per function evaluation for the Chow-
model, 10-period problem was 0.0015 of a second. The optimum obtained for
this problem was the same as Chow had obtained.

_The optimal control problem for the Chow model was next made progressively
larger by increasing the time horizon. The largest problem considered was a time
horizon of 50 periods, which meant that there were 100 variables to estimate,
The results for 40, 60, 80, and 100 variables are presented in rows 2 through 5in
Table 1 respectively. For the various problems the gradient algorithm clearly
dominated Powell’s in terms of speed of convergence. The use of the smaller
tolerance level for the Powell algorithm increased the number of function evalua-
tions considerably, and the values of the ebjective functions at the stopping points
were only slightly larger for the larger tolerance level. Likewise, for the gradient
algorithm the values of the objective functions at the stopping points were only
shghtly larger for the runs using one function evaluation per derivative. For the
quadratic hill-climbing algorithm no accuracy at all was lost using one function
evaluation per cross derivative. The quadratic hill-climbing algorithm was not
tried after 40 parameters, although the use of the algorithm for problems of, say,
size 104 is not completely out of the question. Using the less expensive way of
obtaining cross derivatives, it requires 0.5N% + 1.5N function evaluations to
compute the vector of first derivatives and the matrix of second partial derivatives
per iteration (where N is the number of variables). If four iterations are required
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TABLE 1
Resurts rorR CHOW MODEL

Powel} Gradient Hill-Climbing
4 =
, i
3 B = = g ‘ =) 2 ) = Lf“g
‘E g 'E E If - - .L{;‘ g —_ "ﬁ :5“ — % ; 3 na;l
S £ = » 2§ & & £ 55 5 & & 55 8.8 _E w5 58
GRS R T ST R ¢ TE 3% 2 ¢ °§ %E 0 3L 2z
2 2 £ & €4 w 2& £E Zg = 52 FE 28 £ F2 £ 25 Sz
1 2 10 0 0's 0.0018 327 1,687 14 0.12494578 133 614 pal 0.12494570 321 329 4 0.12494558 £ BERI0R
470 2633 23 0.12494358 1.96 1,033 2} 012494538 .07 3.209 4 0.124943558
2 2 20 40 s 0.0034 17.38 4,752 20 047827735 6.44 £,575 32 0.47827742 2221 3450 4 047827668 44.715432
23,51 6,762 30 0.47827668 10.42 2,854 32 0.47427668 5541 12,810 4 0.47827608
3 2 30 60 0's 0.00350 41.7% 7820 22 14724707 17.81 2945 42 1.4724725 nc 149.58890
54.37 18830 32 1.4724700 29.95 5465 42 1.4724700
4 2 44 20 s 0.0067 81.29 10,980 23 4.2400571 34.27 4,432 49 4.2406653 e 463.37069
10283 15371 34 4.2400560 6342 8517 50 42400560
5 2 50 100 0's 0.0085 129.94 14,483 2 11875411 57.54 5,854 53 11875442 ne £,376.3241
167.62 19893 35 11875411 104.55 11,156 53 11.875411
& 240 80 a 0.0067 42,60 6,253 15 4.2400580 12.04 1.3%6 16 42400573 ne 4. 5208593
42.60 6,253 15 4,2400580 20.22 2,842 17 4.2400560
*7 2 30 60 0's 0.0050 26,14 4,499 64 14724720 145. 38890
. 40,28 74358 57 1.4726138
8’ 2 kh] 50 s 0.0050 — 27.69 4836 i3] 14724713 149 58890
47.57 8,79 47 1.4724700

Notes:
Poweil = Poweil {213

Gradient — Gradient algorithm that uses rank one correction formula. See Powell (23],

p. 41,
Hill-climbiag = Goldfeld, Quandt, and Trotter {12].
ne = not computed.
® Angswer 1o 3 plus trend values otherwise.

* Grudient = DI'P vanable meric algorithm, See Powell [23], p. 37,

+ Gradient = Algorithm presented in equations {31) and {32) in Poweil (23], p. 41
Chow mode!: 9 equations; Hinear; lags of first order; welfare function is quadratic.
First run for Powell for eack probiem vsed telerance Jevel of 0.0005. Second ran used
0.00001.
First run for Gradient for esch problem used less expensive way of obtaining first
derivatives. Second run used more expensive way.
Firgt ran for Hill-climbing for each problem used less expensive way of obtaining cross
partial derivatives. Second run used more expensive way.
Tojerance level for Gradient and Hilkclimbing was 000048,



to attain convergence, then roughly 20,600 function evaluations would be required
to solve the 100-variable problem.

Adding extra periods for the Chow model in general had little effect on the
optimal variable values of previous periods, so that, for example, the answer to
the 60-variable problem was close to the answer to the 80- or 100-variable problem
for the first 60 variables. In view of this, the answer to smaller problems should
be a good starting peint for larger problems. and so to test this, the answer to the
60-variable problem was used as a starting point for the first 60 variables of the
80-variable problem. Starting points for the other 20 variables were obtained by
letting the values of the two control variables grow by 6 and 5 percent respectively,
these figures being obtained by observing how the control variables were growing
in the answer to the 60-variable problem. The results of this test are presented
in row 6 of Table 1. For the gradient algorithm the number of function evaluations
was cut by about a factor of 3 (from 4,432 to 1,396 and from 8,517 to 2,842), a
substantial savings. For the Powell algorithm the number of function evaluations
was cut from 10,960 to 6,253 using the larger tolerance level and from 15,371 to
6,253 using the smaller tolerance level, In both cases for the Powell algorithm, a
slightly smaller value of the objective function was obtained by starting the variable
values from zero.

As'a final test using the Chow model, two other gradient algorithms were
tried for the 60-variable problem. The results are reported in rows 7 and 8 of
Table 1. Neither algorithm worked as well as the rank one algorithm. The DFP
algorithm required about 1,554 more function evaluations than did the rank-one
algorithm for the run using one function evaluation per derivative. For the run
using two function evaluations per derivative, the DFP algorithm did not quite
attain the optimum,.

5. AN ExampLE UsiNG A NONLINEAR MODEL WITH A NON QUADRATIC
OBIECTIVE FUNCTION

The method of Section 2 was next used to solve a more complicated optimal
control problem. The model used was the Fair model [8], less the monthly housing
starts sector, The model used consists of 19 equations, is nonlinear, has lags of
up to eighth order, and was estimated under the assumption of first-order serial
correlation of most of the error terms.'® The initial period was taken to be 1962111
and the horizon for the various runs was either 10, 20, 25, or 60 quarters. The
number of control variables was varied between one and four. Government
spending was always taken to be a control variable. The other three variables
that were sometimes used as control variables were the level of consumer sentiment,
plant and equipment investment expectations, and nonfarm quarterly housing
starts. These latter three variables are clearly not variables under the direct control
of the government, but for purposes of illustrating the method of solution, there
is no harm in treating them as if they were. The objective function was deliberately
chosen (o be non-quadratic in the variables of the model. The objective function

!9 The coefficients were taken from Table 11-4 in [8).
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{to be minimized) was:

. 2
W= [; { IO_(gp})t)z + IOi’rUR; - 0030/[2 (GNP — (){]94)
CN, 2.4 C8, 2
(GNP 0_”5} * (W T 0257)
f TP, o IH, 2
+ o~ 010] s, - o0ne]

where gpp, is the rate of growth (at an annual rate) of the private output deflator,
UR, is the unemployment rate, and the five ratios are the ratios of durable con-
sumption, non-durable consumption, service consumption, plant and equipment
investment, and housing investment to gross national product respectively. The
slashes around UR, — 0.030 denote the fact that /UR, — 0.030/ was taken to be
equal to UR, — 0.030 if UR, > 0.030 and zero otherwise. In other words, welfare
was not improved for an unemployment rate below 0.030, but it was not decreased
either, as a straight guadratic. function would imply. The objective function is
- nen-quadratic in this respect, as well. as in-targeting ratios of the various com-
ponents of GNP to GNP itself, The rate of inflation and the unemployment rate
- were weighted ten-tinves more heavily in the objective function than were the
ratibs: It should be hoted that the welfare functien is not differentiable at
UR, = 0.030, In the présénit case; howévér, the optimum values of UR, were always
greater than 0.030; and the Tack of differentiability at UR, = 0.030 did not appear
to be a problem for the algorithms for which numeric derivatives had to be com-
puted. In general, if the lack of differentiability of either the model or the welfare
function appears (o be important (as it might be, for example, for models in which
capacity ceilings play an important role), then algorithms that do not require the
computation -of derivatives may be better choices than those that do,

The resuits for the various runs-using the Fair model are presented in Table 2.
The: second contro} variable; the-Jevel of copsumer sentiment; does not enter the
- model curréntly, but-only with-fage of one or more periods, so when this variable
- wak psed as a-control varkable the-number of values of this variable to be deter-
‘miined was ode less than the number of periods. Except for lines 7 and 8. historic
“values were used as startmg points for the values of the control variables. Again,
two runs each for the gradient and quadratrc hill-climbing algorithms are reported.

o corres;;ondmg to the two ways of computing derivatives. The tolerance level used

for these two algorithms was 0.00005. The tolerance level used for the Powell
" algorithms was 0.000005,

From the results in Table 2, it can be seen that the gradient algorithm worked
better than Powell's. The number of function evaluations was usually less for the
gradient algorithm, and for the problems of greater than 20 variables the Powell
algorithm did not quite attain the optima that the gradient algorithm did. For
the 39- through 99-variable problems, the largest differences between the variable
“'yalues cotputed by the Powell algorithm and the corresponding variable values
computed by the gradient algorithm were 26, 8, 34, and 88 percent respectively.
~Ad even smaller tolerance level was tried for some of the runs using the Powell

143



a4

TABLE 2
REesULTS ror Faix MODEL

Powell Gradient L Hill-Climbirig
bl w
= g Fl 2z
T @ I = 2 ) . . wg
SR § -~ 3 = R g )
o £ 7 % ge 3 a4 & 52 § & 2 % 5 & & 42 -
B % 8 £ 2% 2 B4 5% g% PRS- T gk 't Ty B g 55
Z2. F Z & EZ g 22 2% F8 £ 22 £& 28 £ - £2 2& 33 3
T 1 0 W hist.  0.0072 .49 1123 12 0.076917053 L35 163 @ 0.076%17048 233 %9 a4 0076217047 . : :
S © oval LBO 228 8 GOTEO1TOAE 643 8o 4 ©0.076%17647 - Q1051447
2 1 20 29 hist.  0.0148 3267 2132 12 0.16427133 478 Eliz it (L.16427053 15.43 929 4 016427052
val. &mn 573 12 0.§6427052 216 3,209 4 0.16427052 0.2008097
3 2 20 39 hist.  0.014% 4846 3142 10 .16380396 20,83 1371 19 016373695 6136 3,284 4 0.£6373693
val. 40.39 2,756 32 016373693 198,52 12,176 4 0.16373693 0.2008057
4 3 20 59 hist.  0.0148 84.36 5,380 10 016290711 3582 2,344 35 016288105 ac
val. 7384 4787 38 16288104 0.2008097
5 4 21 hist.  (.0148 15620 10.513 0 15 Q16250254 11382 . 7314 84 016234170 . ) ne
C Lo val. 197.26 . 12,807 b 0.16234169 o 2.2008087
T 6. <4 25 99 hist. 00181 234D 12,822 14 . 020624895 20447 10481 95 020511032 . nc ’ B
S . val. 38473 19631 93 20511030 o - 0.30350185
ST 4 60238 a 0.0439 ne L1951 . 25661 104 0.58R%5958 o ome ' :
oL . e . o o O.K073080
g8 4 20 " h 0.0148 911 2,615 4 016249898 11060 7,047 K1 0.16234170 . .nc- :
P T 19645 - 12,793 77 0.16234169 ) ’ {.162881¢
*B 3 20 » hist.  0.0148 — 3512 2,305 34 0.16288106 s
val. 7308 4,821 3% 0.16288104 4.2008097
g 3 et 9 hist.  0.0148 - 3353 2,336 35 0.16288E05 -—
val. 72.55 4777 38 0.16288104 0. 2008097
Notes: 1 Gradient = Algorithm presented in equations {31) and (32) in Powel i (23], p. 41.
See Tabie 1. . ® Answer 1o 6 plos trend values otherwise,
- Toleranice-level for Powell was 0.060003. ® Answer 1o 4 plus historical values otherwise.
Tolerapce leved for Gradient and Hitl-climbing was 0.60005, Fair mode! ; 19 equations; nonlinesr ; fags of up to eighth order; first-order serial correla-

* Gradient = DFP variable metric algorithm, tion of the error terms in most of the equations; welfare function is not quadratic.
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algorithm {0.0000001 vs. 0.000005) to see if this resulted in a smaller value of the
objective function, but the results were not improved using the smaller tolerance
levels. For the gradient algorithm the use of the less expensive way of obtaining
derivatives resuited in virtually no loss in accuracy for any of the runs. For the
quadratic hill-climbing algorithm the use of the less expensive way of computing
cross partial derivatives resulted in no loss in accuracy at all and, of course,
substantial savings on cost. For the problem of 4 control variables and 25 periods
{99 variables), the gradient algorithm using the less expensive way of computing
derivatives required 10,181 function evaluations and took about 3.4 minutes to
attain the optimum.

When the 79-variable problem was started from the answer to the 59-variable
problem plus historical values otherwise {line 8), the speed of convergence was
only slightly increased for the gradient algorithm. The number of function evalua-
tions fell from 7,314 to 7,047 for the one run and from 12,807 to 12,793 for the
other. The number of function evaluations fell substantially for the Powell
algorithm, but the optimum was still not attained.

When the other two gradient algorithms were tried for the 59-variable
problem (lines 9 and 10}, the results were virtually the same as for the rank one
algorithm. For this problem there is nothing to choose among the three algorithms.

The largest problem tried for the Fair model was four controi variables and
00 periods (19621H-197711) for a total of 239 variables. The answer to the 99.
variable problem was used as a starting point plus historical or extrapolated
values otherwise. Only the gradient algorithm using the less expensive way of
obtaining dertvatives was tried for this problem. The program was allowed to
run for approximately 20 minutes. At the end of 20 minutes and 104 iterations,
the value of the objective function was changing only in the eighth decimal place
between iterations and the largest difference between any corresponding parameter
values on the last two iterations was 0.0007. The value of the objective function at
the starting point was (,80730797 and the value after 104 ilerations was (.588583938.
The starting point turned out to be fairly far away from the stopping point, with
unemployment rates of about 7 percent near the end of the horizon compared
with the stopping-point values of around 5 percent. The stopping-point values
for the 239-variable problem appeared to be in line with what would be expected
from observing the answers to the smaller problems. The Powell algorithm was
started from the values attained by the gradient algorithm on the 53rd iteration
{an objective-function value of 0.58890611) to see if it would go anywhere. A
tolerance level of 0.000005 was used. The algorithm went one iteration, lowered
the objective function to 0.58890371, and stopped (the convergence criterion
having been met for all parameters), a ciear failure in view of the value obtained
by the gradient algorithm. One other result is also of interest to note here. The
gradient algorithm was also started from the values attained on the 53rd iteration.
A tolerance level of 0.00005 was used. The algorithm went one iteration, lowered
the objective function to 0.58890575, and stopped (the convergence criterion having
been met), also a clear failure. By starting the gradient algorithm over on the 53rd
iteration, one lost the approximation to the inverse of the matrix of second partial
derivatives that had been developed over 53 iterations, which in the present case
was obviously quite important. A similar result occurred when experimenting
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with the 99-variabie problem. These results suggest that if one contemplates having
to restart the gradient algorithm for one reason or another (like running out of ime
on the computer), one ought to save the latest approximation to the inverse of
the matrix of second partial derivatives to be used when the algorithm is restarted.
The results also suggest, oddly enough, that when using the gradient algorithm
one ought not to start the algorithm too close to the (presumed) optimum for fear
that the algorithm will get stuck before it has a chance to build up a good approxi-
mation to the inverse of the matrix of second partial derivatives.

The answers to the problems for the Fair model were characterized by a
large value of government spending in the first period (compared with the historical
value) and large values near the end of the time horizon. In the model employment
responds faster to government spending than does the price level, and so the
relatively large values of government spending for the last few periods of the
horizon are taking advantage of this fact and lowering the unemployment rate
without having too much effect on the price level.? The large value of spending in
the first period is apparently designed to lower the unemployment rate quickly
from its relatively high historic level. Excluding beginning and ending effects, the
particular objective function used resulted in an unemployment rate of about
5.0 percent and an annual rate of inflation of about 2.2 percent. The 1P,/GNP,
and IH,/GNP, ratios were met almost exactly when plant and equipment invest-
ment expectations and housing starts were used as control variables, as would be
expected. The three consumption ratios were not met as exactly when consumer
sentiment was used as a control variable since in this case there was, in effect,
only one main control variable influencing three ratios.

In Table 3 are presented estimates for each run in Tables T and 2 of the per-
centage of time that was spent doing function evaluations. The estimates wete
obtained by multiplying the time per function evaluation by the number of function
evaluations and dividing this figure by the total time for the job. For the Fair
model abnormal exits sometimes occurred from the function-evaluation program
(before all of the computations were performed), which causes some of the per-
centages for the Fair model in Table 3 to be too high. Abnormal exits occur when
variable values imply that the logarithm of a negative number should be taken.
The estimates in Table 3 are also subject to error for reasons that have to do with
the way that computation time in the computer is estimated. In general, the
percentages are quite high in Table 3, indicating the importance of writing efficient
programs for evaluating functions.

6. AN EVALUATION OF THE PRACTICAL USEFULNESS OF THE METHOD

The results in Sections 4 and 5 are very encouraging as to the feasibility of
using the method proposed in Section 2 even for large-scale models. For a 20-
period problem the 19-equation Fair model takes 0.0148 of a second per function
evaluation on the IBM 360-91 computer. The Fair model can be solved without

*0 To avoid undesirable end-point effects in practice, one can always extend the horizon a few
periods beyond the actual horizon of interest. For the Fair model it appeared that the harizon should
be lengthened by about 5 quarters. Because of the end-point effects, the last few answers to the 9%-variable
problem for each control variable were not used as starting points for the 23%-variable problem.
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TABLE 3
ESTiMATES OF PERCENTAGE OF TIME SPENT DomG FUNCTION EVALUATIONS

From Table 1

Powell Gradient Hill-Climbing

Row (1} 2 {1} 2 {1} 2)
i 93 - 97 83 95 52 82
2 93 95 43 3 53 10
3 94 90 33 91 — —
4 % 92 87 90 — —
5 97 95 86 91 —
6 98 98 78 94 — -
7 — — 86 93 e —
8 — — 87 92 - -

From Table 2

Powell Gradient Hill-Climbing

Row (1} 2 (1} @)
1 96 87 90 83 91
2 97 95 97 89 91
3 a97. 97 101 77 91
4 98 97 96 — —
5 100 95 96 . -
6 100 490 92 - —
7 P 95 — - -
§ 99 94 96 — e
9 — 97 96 — —
10 e 7 97 o —

the use of the Seidel method since the nonlinear part of the model is recursive.
H a 100-equation model could be solved in the same way, it should take only
about five times longer to solve. this model than it takes to solve the Fair model
since the number of computations per equation is not likely to vary much from
model to model. Econometric.models tend to be larger because of more equations
and not because of more variables per equation. If the Seidel method must be
used to solve a model and if for each iteration for each period the entire model
must be passed through, then the cost per solution of the model is increased in
proportion to the number of iterations that are required to solve the model each
period. If, for example, it takes five iterations to solve a 100-equation model each
period, it should take about 25 times longer to solve this model than it takes to
solve the Fair model. Since algorithms that do not require derivatives or for which
derivatives are computed numerically spend most of their time doing function
evaluations, the total time that it takes to solve a control problem for a 100-
equation model that requires five iterations per solution of the model should be
about 25 times greater for the same problem than the corresponding time in Table 2
for the Fair model. A 20-period problem with one control variable should thus
take about 2.0 minutes using the gradient algorithm and the less expensive way
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of obtaining derivatives (25 x 4.78 seconds). A 20-period problem with two
control variables should take about 8.7 minutes (25 x 20.83 seconds). The problem
offourcontrol variables and 25 periods should take about 85.2 minutes (25 » 204.47
seconds).

Although the times just mentioned are not compietely out of the range of
practicality, it is possible that in practice the times can be substantially cut down.
First, good starting points can be quite important, and significant time may be
saved by first solving a small problem (say one contrel variable), using the answer
to this problem as a starting point for a somewhat larger problem (say two control
variables), and so on, building up to the largest problem that one wants to consider.
Also, once one has solved a particular optimal control problem once, the answer
to this problem may be a good starting point for a slightly different problem (say,
a slight change in the objective function). In other words, it may not be too costly
to experiment with different objective functions or a slightly different specification
of the model once one solution to a particular problem has been obtained. It may
also be the case that from a welfare point of view or from the point of view of
feasibility one wants to keep the control variables within certain bounds. This
can be done by including control variables in the objective function and penalizing
deviations of the values of the control variables from target values. If this is done,
one has a natural starting point for the control variables-—the target values—and
this may significantly increase the speed of convergence of the algorithm being used,
in addition perhaps to decreasing the likelihood that the algorithm goes to a local
but not the global optimum.

A second way in which much time might be saved by models that need 1o be
solved by the Seidel method is by choosing good mitial values of the endogenous
variables to begin the solution of the model each period. Since most algorithms
perturb the variables (in the presence case, the values of the control variables) only
a slight amount between function evaluations. particularly when derivatives are
being computed, a good choice for the initial values of the endogenous variables
1s likely to be the solution values obtained in the process of computing the previous
function evaluation. It is possible that this choice can cut the number of iterations
needed per solution of the model per period to two or three, which would greatly
save on Cosi.

A third way in which time can be saved 1s to write the program that does
function evaluations in such a way that no computations are performed other
than those that are absolutely needed in going from values of the control variables
to the value of the objective function. For example, any sets of calculations using
exogenous variables that arc not changed as a result of changes in the values
of the control variables should not be done in the function evaluation prog-
ram, but only once before the solution of the optimal control problem begins.
This kind of efficient programming was not done for the results in Tables !
and 2.

If for a 100-equation model one could, by following the above suggestions,
cut the number of iterations using the Seidel method to an average of 2.5 and
could further cut the time per function evaluation by 25 percent, then the times
quoted above (2.0, 8.7, and 85.2 minutes) would be cut to 0.75, 3.3, and 32.0
minutes respectively. These times may be further cut by a factor of 2 or more
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by better choices of initial parameter values than those used for the results in
Table 2.%!

In terms of the size of the problems that the method proposed in this paper
can handle, there is an obvious tradeoff between the size of the model, the number
of control variables, and the length of the decision horizon. It is hard to establish
any precise rules as to what problems are practicai to solve and what are not
because no two models and problems are the same. Furthermore, for some
problems one algorithm may work best and for others another may work best.
Each person must to some extent determine for oneself through experimentation
the practical limits to the size of problems that one can solve. Nevertheless, the
resutts in this study can give some indication of the likely cost of various problems.
QOne impertant question in this regard is how rapidly the number of function
evaluations increases as the number of variables to be estimated increases. From
the results in Tables 1 and 2 one can compute the extra number of function
evaluations required per additional variable (AFE/AN, where FE is the number
of function evaluations and N is the number of variables} and observe how this
quantity varies as the total number of variables varies. These computations are
presented in Table 4. For the quadratic hill-climbing algorithm. AFE/AN clearly
increases as N increases since the number of function evaluations required to
compute first and second derivatives per iteration increases as the square of N,
From the results for the Chow model there is only a slight tendency for AFE/AN
to increase as N increases for the Powell and gradient algorithms. From the results
for the Fair model there is somewhat more of a tendency in this direction for the
two algorithms, but this tendency is far from being uniform. In general, the results
m Table 4 indicate that there is only a slight tendency for AFE/AN to increase as
N increases for the Powell and gradient algorithms.

The time required per function evaluation should be roughly proportional
to the number of periods times the number of equations in the model times the
number of Seidel iterations required to solve the model. The time required to
solve a control problem is roughly equal to the time required per function evalua-
tion times the number of function evaluations. If the number of function evaluations
varies only in proportion to the number of variables (AFE/AN not increasing
as N increases), then the time required to solve a control problem should be
roughly proportional 1o the square of the number of periods times the number of
control variables times the number of equations times the number of Seidel
iterations. In this case, if the number of Seidel iterations required to solve a modei
does not increase as the number of equations of the model increases. then the time

21 Albert Ande has communicated to the author a “‘conservative’ estimate that for the solution
of the 200-equation FMP mode! it takes about 0.00500 of a second per iteration per period on an IBM
370-165 computer. This figure compares with 0.00072 for the solution of the 19-equation Fair model
(divide 0.0072 in Table 2 by 10). Since the FMP model has 10.5 times more equations than the Fair
model, one would expect the time per iteration per period to be about 10.5 times greater for the FMP
madel. The figure supplied by Ando indicates that the time is only 6.9 times greater. Ande’s resulis
thus suggest that the times cited in the text above may be too conservative. It should also be noied
that Ando’s resuits are for a program that was not written with optimal controi problems in mind.

The FMP model usually takes between 14) and 13 iterations to solve per period using ihe Seidel
method. However, the values used as initial values for the endogenous variables are the solution vajues
of the previous guarter, and, as suggested above, in an optimal-control context one should be able to
do much better than this.
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TABLE 4
VALUES oF AFE/AN

From Table 1
Powell Gradient Hill-Climbing
N AN (N {2} {1y (2) (1} 2
26 20 84.4 141.6 30.7 547 46.5 160.5
40 20 1533 216.8 48.1 oL 126.1 480.1
60 20 153.4 214.5 68.5 130.6 . —
80 20 157.0 238.1 74.4 152.6 — —
106 20 196.2 236.1 71.1 132.0 - —
From Table 2
Gradient Hill-Climbing
N AN Powell {1 2) {1} 2)
10 10 1123 163 22.5 26.9 80.9
20 10 1029 14.4 348 66.0 240.0
39 19 52.1 56.0 114.9 1239 4719
59 20 121.9 48.7 1016 — —
7% 20 246.7 248.5 401.0 — o
99 20 115.5 1434 341.2 e e
239 140 — P06 — e s

N = number of variables. FE = number of function evaluaticns.
* The 239-variable run was started from a more accurate point than the others and was terminated
at a tolerance level of only .0007 versus 00005 for the others,

required to solve a control problem should increase only in proportion to the
increase in the number of equations. Otherwise, the time will increase more than
in proportion to the increase in the number of equations.?? The time required to
solve a control problem is proportional to the square of the number of periods
because an increase in the number of periods increases both the number of variables
and the time required per function evaluation. If the number of function evaluations
increases more than in proportion to the number of variables, then the time required
to solve a control problem will increase more than in proportion to the increase
in the square of the number of periods times the number of conirol variables.
Barring further results, some tentative conclusions can be drawn from. the
results in this study as to the size of problems that it appears feasible to solve
using the method discussed in Section 2. For models of about 20 equations, it
appears quite practical te solve problems in which the product of the number of
control variables and the number of periods is greater than 100. For models of
about 100 equations, a product of 100 is probably within the range of practicality.
For models of about 200 equations, a product of 60 may be close to the limit of
practicality. The use of good starting points and efficient programming may, of
course, greatly extend even these limits. Since most econometric models do not
22 1 the objective function to be maximized becomeés less well bebaved as the number of equations
increases, this should also cause the time required to solve a control problem to increase more than
in proportion to the increase in the number of equations. Without further experimentation using other

models it is not clear how seasitive the shape of the objective function is likely to be to the number of
equations in the model.
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exceed 200 equations and since the number of control variables in any one model
can usually be kept under, say, five without seriously restricting the problem, the
method considered in this paper should be able to handle most problems of interest
to policy makers who use econometric models in their decision-making process.
It should also be noted that the method considered in this paper requires relatively
little human effort. All one has to do is write a program to solve the model and com-~
pute the objective function. No derivatives are required, no analytic approxima-
tions have to be made, and the model does not have to be set up in any special form.
The results in Tables 1 and 2 indicate that the gradient algorithm using the
less expensive way of obtaining derivatives is the most efficient. Slightly more
accuracy may be obtained by using the more expensive way of obtaining derivatives
or by using the quadratic hill-climbing algorithm, but in general this increased
accuracy is not fikely to be worth the cost. For the quadratic hill-climbing algorithm
no accuracy was gained using the more expensive way of computing cross partial
derivatives, and so this way is not recommended. The Powell algorithm was
generally more expensive than the gradient algorithm, and for the Fair model it
had a tendency to get close to but not quite to the optimum. The results in the
two tables do, of course, indicate that quite large problems can be solved even
when derivatives are obtained numerically. In practice, it may be desirable, after
having attained an answer from one algorithm, to start another algorithm from
this answer to be more certain that the true optimum has been attained. The
quadratic ‘hill-climbing algorithm, while being the most expensive for large
problems, is likely to be the most robust to attaining the true optimum.

7. STOCHASTIC MODELS

Inthe case of a linear model with additive error terms and a quadratic objective
function it is well known that solving the deterministic control problem derived
by setting the error terms to their expected values will provide the optimal first-
period control values for the stochastic, closed-loop, feedback control problem.
Therefore, if one solves the deterministic controi problem each period, after
observations on the state of the system for the previous period become available,
one will over time make the same decisions regarding the current values of the
contro! variables (i.e., the values of the control variables that the decision maker
actually sets) as would be made by one who had solved the stochastic, closed-loop,
feedback control problem explicitly in terms of feedback equations. To this extent,
feedback equations need not be obtained, and one can concentrate on solving
deterministic control problems as considered in the previous sections of this
paper.”’® For most economic applications sufficient time is usually available to
recompute the entire sequence of optimal controls each period.

For nonlinear models the first-period certainty-equivalence property does not
hold. One procedure that might be followed in this situation is merely to treat
the nonlinear-model case in the same way as one would treat the linear-model case,
i.e., setting error terms to their expected values, and solve the deterministic control

** Knowledge of feedback equations for a particular model may aid one in understanding the
dynamic properties and other characteristics of the model, and for this reason it may be useful to

compute feedback equations even though they are not actually needed for the solution of the optimal
control problem.
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problem each period. This procedure is probably the one most often used in practice
for solving nonlinear models, although Howrey and Kelejian [14] have shown that
solving a nonlinear model by setting the error terms equal to their expected values
Is not equivalent to solving the reduced-form equations of the model.

For a nonlinear model the mean values of the endogenous variables can be
obtained by means of stochastic simulation. A number of drawings from the joint
probability distribution of the error terms can be taken, and for each drawing one
can obtain by solving the model a set of values for the endogenous variables.
The mean value for each endogenous variable can then be computed as the
average of the values obtained from solving the model for the various drawings.
Using the procedure of stochastic simulation, it may be possible for relatively
small problems to obtain optimal open-loop controls for nonlinear, stochastic
models in a manner similar to that done above for nonlinear, deterministic models.
Say the aim were to maximize the expected value of the objective function. For
cach choice of control values, one could compute by means of stochastic simulation
the mean value of W. The computed mean value of W would be the value returned
to the maximization algorithm, and the algorithm would be used in the usual
way in an attempt to find that set of control values for which the mean value of
W were at a maximum. Each function evaluation in the stochastic case would
correspond to an entire stochastic simulation. If, for example, 50 drawings from
the jeint probability distribution of the error terms were needed to obtain an
adequate approximation to the expected value of W, then approximately 50
times more time would be needed per function evaluation for the stochastic
problem then for the deterministic problem. Even though the cost is high for the
stochastic problem, it may be feasible for small problems to carry out the above
suggestion. If one did carry out the above suggestion and found the optimum and
if one recomputed the entire sequence of optimal controls each period, one would
over time make the same decisions regarding the current values of the control
variables as would be made by one who had solved the stochastic, open-loop,
feedback control problem explicitly in terms of feedback equations.

For the contrel problem for nonlinear, stochastic models, Athans [1], [2] has
suggested first solving the deterministic control problem (the deterministic problem
being obtained by setting the error terms equal to their expected values) and then
linearizing around the deterministic-control paths to obtain linear feedback
equations around the paths. The aim is over time to keep the actual paths close to
the deterministic-control paths. While Athans’ suggestion may be useful for
engineering applications, where reoptimization each period may not be feasibie,
the suggestion is likely to be of less use for economic applications. If sufficient time
is'available to reoptimize each peried, then it is much more straightforward just to
solve the deterministic control problem each period.** The results in this paper

2% These remarks should not be interpreted as meaning that Athans would necessarily disagree
with them. For example, Athans [1], p. 449, has stated: It should be stressed that trends in stochastic
control research by engineers has been greatly influenced by two factors: (a) a need to minimize on-line
computations, and {b) the requirements in many aerospace applications that the control system be
realized by analog hardware.

In economic applications these requirements are not present, since the time periad between
decisions does allow for extensive digital computer calculations. Thus, one does have the luxury of
examining more sophisticated decision and contro! algorithms, which however have increased com-
putational requirements.”’
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certamly indicate that it is feasible to rcoptimize each period when, say, the
period is a month or a quarter, The procedure of reoptimizing each period is also
somewhat more appealing on intuitive grounds than Athans’ procedure. If
stochastic simulation is ruled out, then both procedures are based on the incorrect
practice of setting error terms equal to their expected values. If one follows Athans’
procedure, however, further approximations have to be made that do.not have 1o
be made if one reoptimizes each period.

Princeton University
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