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There appears to be among many economists the view that the computation of 
optimal controls for moderate- to large-scale nonlinear econometric models is 
not feasible. Pindyck [19], for example, has questioned whether “nonlinear 
optimization [is] worth all of the computational difficulty that it entails,“’ and 
Shupp [24] has stated that “the size and complexity of these models preclude 
formal optimization.“’ The results presented in this paper indicate that this view 
is not correct, even for models of up to 100 or 200 equations. The results suggest 
that it is feasible to compute optimal controls for most econometric models 
encountered in practice.-’ 

Historically, optimal control problems have been formulated in continuous 
time and have been looked upon as problems in choosing.fuunctions of time to 
maximize an objective function. Fairly advanced mathematical techniques are 
required to solve these problems. For discrete-time models_ however. which 
include virtually all large-scale econometric models, optimal control problems 
can also be looked upon as problems in choosing aoriahles to maximize an 
objective function. The number of variables to be determined is equal to the 
number of control variables times the number of time periods chosen for the 
problem. From this perspective, optimal control problems are straightforward 
maximization problems, and in attempting to solve problems in this way, one 
can take advantage of the recent advances that have been made in computational 
algorithms for maximizing nonlinear functions of variables. This approach, of 
treating optimal control problems as problems of maximizing a nonlinear function 
of variables, is the approach taken in this paper. 
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Assume that the model under consideration is deterministic4 and has g 
equations. Write each equation for each period of time as 

i= l,...,g: 
(1) .&,()J 2 Y a;*) = 0: /t /.. I> 

t= l,...,T; 

where y, is a vector of observations for period f on the g endogenous variables in 
the model, z, is a vector of observations for period t on the noncontrol, pre- 
determined variables in the model; x, is a vector of observations for period t on 
the control variables in the model, and xi, is a vector of oonzero parameters that 
are included in equation i for period f. The f subscripts in zil and,h, allow for the 
possibility that some parameters and some functional forms are changing over 
time5 Lagged endogenous variables are included in the z, vector. 7” is the total 
number of periods to be considered in the control problem. 

The model in (1) is assumed to be such that, for each t, given values for i,, 
Y,, and S(~, (i = 1, , g), one can solve numeri4ly for yt. In practice, mosf large- 
scale econometric models are solved each period by some version of the Seidel 
method..6 Further, one can frequently isolate each component of the y, vector on 
one side of one equation. which greatly aids in the solution of the model. If the 
modelissolvedformore thanoneperiod,then thesolutionvaluesoftheendogenous 
variables for previous periods are used, when appropriate, as values for the lagged 
endogenous variables in the zC vector. For linear models. of course, values of y, 
are merely obtained from reduced form equations. 

For a time horizon of T periods, the objective function, h, is taken to be a 
function of y,. z,, and xc (I = 1,. , T): 

(2) W=k(y ,.... ;y,:z,. .,., z~:x,>...;.Y~). 

where W, a scalar, is the value of the objective function corresponding to values 
ofy,,zl,andu,(t=l ,..., ‘I-). 

The optimal control problem for this discrete-time, deterministic model is 
to choose values of x,, , xI. so as to maximize W subject fo the equation- 
constraints in (1). The &ens of the problem are the value of each Q, the values 
for each period of the purely exogenous variables, and initial values for the lagged 
endogenous variables. Assume that xS is of dimension k, so that there are kT 
control values to determine. Let x be a kT-component vector denoting these 
values: x = (x,, ,x7). Now. for each value of x, one can compute a value of 
W by first solving the model in (1) for y, , , y, and then using these values along 
with the values for z,, . zT and x to compute W in (21. The optimal control 
problem can thus be looked upon as a problem in choosing variables (the elements 
of x) to maximize an unconstrained nonlinear function. By substitution, the con- 
strained maximization problem is transformed into the problem of maximizing 
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an unconstrained function of the control variables: 

w = $6(s), 

where 4 stands for the mapping x -+ I, JJ,, , yTr z, , _, z1 --) W. In general it 
will not be possible to express y, explicitly in terms of I,; x~, and ait, so that in 
general it will not be possible to write Win (2) explicitly as a function of :,, x,, 
and ai, (t = 1.. , T). Nevertheless, given values for z, and a, (t = 1,. _ T), 
values of Wean be obtained numerically for different values of x. 

There are many algorithms available for maximizing (or minimizing) non- 
linear functions of variables. Since W cannot in general be written as an explicit 
function of x, it will in general be difficult to obtain analytically the partial deriva- 
tives of h with respect to the elements of x. Therefore, in attempting to solve optimal 
control problems by treating them as problems in maximizing a nonlinear function 
of variables one will usually be required either to use algorithms that do not 
require derivatives or else to compute derivatives numerically. Both approaches 
have been followed for the results in Sections 4 and 5. 

Algorithms that do not require derivatives and algorithms for which deriva- 
tives are obtained numerically spend most oftheir time doing function evaluations. 
For the results in Sections 4 and 5, over 75 percent of the time was spent doing 
function evaluations for all algorithms tried except in two cases, where the figures 
were 52 and 53 percent. One function evaluation in the present context corresponds 
to the solution of a g-equation model for Tperiods (plus the rather trivial com- 
putation, oncey, ~. , y,~aredetermined,of Win (2)). It is thereforequiteimportant 
to solve a model in the most efficient way possible, since for one solution of the 
optimal control problem a model will usually be solved hundreds or thousands 
of times. Some suggestions are presented in Section 6 for efficient ways of solving 
models. 

Much of the engineering literature on optimal control is concerned with 
continuous-time models and so is not of direct concern here. Polak [20], however, 
does present a good discussion of the discrete optimal control problem in engin- 
eering.’ The discrete-time model considered by P&k differs from the standard 
econometric model considered in this paper in that his model is already in reduced 
form. In the notation of this paper, each component of y, would be written as an 
explicit function of z,, x,. and a, for P&k’s model. The fact that the derivatives 
of y1 with respect to z, and xz can be directly obtained for Polak’s model allows 
Polak to obtain fairly easily the derivatives of the objective function with respect 
to the values of the control variables. Polak also reports that the time horizon 
for the problems he is considering may be as large as 1,000 periods,’ which is 
much larger than the time horizon for most problems in economics, where the 
horizon is likely to be much less than even 100 periods. The discrete optimal 
control problem in economics is thus on the one hand easier than the corresponding 
problem in engineering in that the time horizon appears to be much smaller 
and on the other hand more difficult in that analytic derivatives of the objective 

137 



function with respect to the values of the control variables are not easy to obtain 
because of the non-reduced-form nature of most econometric models. 

3. THE COMPUTATIONAL ALGORTHIMS USED 

Three basic algorithms were used for the results in Sections 4 and 5. The first 
is the 1964 algorithm of Powell [21], which does not require any derivatives. The 
second is a gradient algorithm, which requires first derivatives. The third is the 
quadratic hill-climbing algorithm of Goldfeld, Quandt, and Trotter [12], which 
requires both first and second derivatives. The gradient algorithm that was used 
in this study is a member of the class of algorithms considered by Huang [15J9 
The algorithms within this class basically differ from each other in how the 
approximation to the inverse of the matrix of second partial derivatives is updated 
after each iteration. One member of this class is the well-known DFP variable 
metric algorithm.‘0 Some results using the DFP algorithm are reported below, 
but the main gradient algorithm that was used in this study is the one that updates 
by means of the “rank one correction formula.“” This algorithm appears to 
give the best results. Some results using one other member of the class ofalgorithms 
considered by Huang are also reported below. ” All three ofthe gradient algorithms 
considered in this study use linear searches on each iteration. 

All of the computer programs were compiled in FORTRAN-H and were 
run on an IBM 360-91 computer at Princeton University.‘” All derivatives for 
the gradient and quadratic hill-climbing algorithms were computed numerically. 
For the gradient algorithms the derivatives were computed in two ways. For one 
set of runs derivatives were obtained for each iteration by computing two function 
evaluations per variable, each variable being perturbed by equal amounts around 
the value available from the previous iteration. For the other set ofruns derivatives 
were obtained for each iteration by computing only one function evaluation per 
variable. The percentage amount by which variables were perturbed (0.01 percent) 
was not varied from iteration to iteration. I4 Stewart [25] has proposed a more 
sophisticated way of computing numeric derivatives when using gradient 
algorithms. but his method was not tried in this study. For the quadratic hill- 
climbing algorithm first derivatives were always obtained by computing two 
function evaluations per variable, as these computations had to be made anyway 
to obtain the own second derivatives, but the cross partial derivatives were com- 
puted in two ways. For one set of runs the cross partial derivatives were obtained 
by computing four extra function evaluations per set of two variables, and for the 
other set of runs the derivatives were obtained by computing only one extra 

138 



function evaluation per set of two variables.‘5 The reason two methods were 
used to obtain derivatives for the gradient and quadratic hill-climbing algorithms 
-one more expensive but likely to be more accurate and one less expensive but 
likely to be less accurate-was to see how sensitive the results were to the way 
in which the derivatives were obtained. Box, Davies, and Swarm [5], for example, 
report that their experience is that “gradient methods employing numerical 
differentiation are (with the exception of Stewart, 1967) usually inferior to the best 
direct search methods, and therefore not recommended.“‘b The results in this 
study do not confirm this view. 

In the programs, the algorithms were taken to have converged when the 
absolute value of the difference between the value of each variable on successive 
iterations was within a prescribed tolerance level. The Powell algorithm was 
generally more sensitive to the particular tolerance level used than were the gradient 
and quadratic hill-climbing algorithms, and for the results in Section 4 two sets 
of runs were obtained using the Powell algorithm, corresponding to two different 
tolerance levels. 

Studies that have been done comparing different computational algorithms 
have tended to limit the size of the problems considered to 20 variables or less. 
This is true, for example, of the comparisons in Bard [3], Box [4], Goldfeld and 
Quandt [ll], Kbwalik and Osborne [16], Murtagh and Sargent [17], Pearson 
[18]. and Stewart [25]. Powell [22] reports that the DFP algorithm using analytic 
derivatives has been successful for problems ofsize 100 and that his 1964 algorithm 
and the DFP algorithm using numeric derivatives in the manner proposed by 
Stewart have solved problems of size 20. ” Wolfe [26] states that the upper limit 
to the size of problems that can be solved in which derivatives can be calculated 
analytically is around 100. For problems in which derivatives cannot be calculated. 
Wolfe’s diagram indicates that the upper limit is about 10.‘” The results reported 
below indicate that the upper limit to the size ofproblems that can be solved when 
derivatives are not calculated analytically is much larger than 10 or 20. The largest 
problem solved below was of size 239, and a number of problems between sire 
59 and 100 were solved. In fact, one of the main reasons why the method proposed 
in this paper appears feasible for most econometric models is the ease in which 
algorithms appear to be able to solve large problems even when analytic derivatives 
are not calculated. 

4. Ah. EXAMPLE Uswc A LINEAR MODEL WITH A QUADRATIC 
OBJECTIVE FUNCTION 

The method proposed in Section 2 was first used to solve one of the optimal 
control problems solved by Chow [6] for his nine-equation, linear econometric 

‘I Using the notation in footnote 14. the formula used Ior the own second derivatives is 
(f,e + x. b) - 2,(a, h, + ,(a - F, b)).r2. The two formulas used for the cross partial derivatives are 
,f(a + F; b + q) - f(a - F. h + r,) - f(u + E> b - q) + f(rr - E. b - r,)f,kq and (I’@ + E, b + r,) 
f(a, b + q) - f(u + ~,b) + f(n’; b))iq,where~ = 0.0001bor0.~1,uvhicheverislarger.lnthesecond 
formula. values for T,a, b + r,, and,@ + c. blare available from the own second derivative calculations. 

I6 Box, Davies. and Swan” [S]. p. 32 
ii Powell [**I, p. 95 
I8 Wolfe [36], pp. xi-xii. It should be noted, however, that it is not clear from Wolfe’s notes whether 

for these particular figures Wolfe is ako including problems in which there are inequality constraints. 
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model. The model has two control variables. Chow solved various IO-period 
optimal control problems corresponding to different quadratic objective functions 
(to be minimized). The problem chosen to solw in this study is the second problem 
in Table 3 of Chow [6]. Two control variables and ten periods means that there 
are 20 \,ariables to be determined. The initial values for the 20 variables were 
chosen to be xro, although in practice one could obviously choose better initial 
values than these. The results of solving this problem are presented in the first 
cow of Table 1. Two runs for the Powell algorithm are reported, one which used 
a tolerance level of 0.0005 and one which used a tolerance level of O.OO#l. Two 
runs each for the gradient and quadratic hill-climbing algorithm are also reported. 
corresponding to the two ways ofcomputing derivatives. The latter two algorithms 
used a tolerance level of O.OWOl. 

Powell’s no-derivative algorithm required 1687 function evaluations to attain 
the optimum using a tolerance level of0.0005 and 2,633 function evaluations using 
a tolerance level of 0.00001. The value of the objective function at the stopping 
point was smaller for the smaller tolerance level, but only by a very small amount. 
The corresponding variable values for the two runs agreed to three significant 
digits, with the largest difference being O.OOO15 (0.70272 vs. 0.70287). The gradient 
algorithm required 614 function evaluations to attain the optimum using one 
function evaluation per derivative per variable and 1,033 function evaluations 
using two. The value of the objective function at the stopping point was smaller 
for the second run. but again by only a very small amount. The corresponding 
variable values for these two runs also agreed to three significant digits. The 
quadratic hill-climbing algorithm required 929 function evaluations to attain the 
optimum using one function evaluation per cross derivative and 3,209 function 
evaluations using four. For these two runs the values of the objective function at 
the stopping point were the same. The time per function evaluation for the Chow- 
model, lo-period problem was 0.0018 of a second. The optimum obtained for 
this problem was the same as Chow had obtained. 

The optimal control problem for the Chow model was next made progressively 
larger by increasing the time horizon. The largest problem considered was a time 
horizon of 50 periods, which meant that there were 100 variables to estimate. 
The results for 40,60, X0, and 100 variables are presented in rows 2 through 5 in 
Table 1 respectively. For the various problems the gradient algorithm clearly 
dominated Powell’s in terms of speed of convergence. The use of the smaller 
tolerance level for the Powell algorithm increased the number of function evalua- 
tions considerably, and the vzalues of the objective functions at the stopping points 
were only slightly larger for the larger tolerance level. Likewise, for the gradient 
algorithm the values of the objective functions at the stopping points were only 
slightly larger for the runs using one function evaluation per derivative. For the 
quadratic hill-climbing algorithm no accuracy at all was lost using one function 
evaluation per cross derivative. The quadratic hill-climbing algorithm was not 
tried after 40 parameters, although the use of the algorithm for problems of, say, 
size 100 is not completely out of the question. Using the less expensive way of 
obtaining cross derivatives, it requires 0.5N2 + 1.5N function evaluations to 
compute the vector of first derivatives and the matrix of second partial derivatives 
per iteration (where N is the number of variables). If four iterations are required 
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to attain convergence, then roughly 20,600 function evaluations would be required 
to solve the lOO-variable problem. 

Adding extra periods for the Chow model in general had little effect on the 
optimal variable values of previous periods, so that, for example, the answer to 
the W-variable problem was close to the answer to the SO- or lOWvariable problem 
for the first 60 variables. In view of this, the answer to smaller problems should 
be a good starting point for larger problems. and so to test this_ the answer to the 
ho-variable problem was used as a starting point for the first 60 variables of the 
SO-variable problem. Starting points for the other 20 variables were obtained by 
letting the values of the two control variables grow by 6 and 5 percent respectively, 
these figures being obtained by observing how the control variables were growing 
in the answer to the 60-variable problem. The results of this test are presented 
in row 6 ofTable 1. For the gradient algorithm the number of function evaluations 
was cut by about a factor of 3 (from 4,432 to 1,396 and from 8,517 to 2,842), a 
substantial savings. For the Powell algorithm the number of function evaluations 
was cut from 10,960 to 6,253 using the larger tolerance level and from 15,371 to 
6.253 using the smaller tolerance level. In both cases for the Powell algorithm, a 
slightly smaller value ofthe objective function was obtained by starting the variable 
values from zero. 

As a final test using the Chow model, two other gradient algorithms were 
tried for the 60.variable problem. The results are reported in rows 7 and 8 of 
Table 1. Neither algorithm worked as well as the rank one algorithm. The DFP 
algorithm required about 1,554 more function evaluations than did the rank-one 
algorithm for the run using one function evaluation per derivative. For the run 
using two function evaluations per derivative, the DFP algorithm did not quite 
attain the optimum. 

5. AK EXAMPLE USING A NONLINEAR MODEL WITH A NON QUADRATIC 
OBJECTIVE FUNCTION 

The method of Section 2 was next used to solve a more complicated optimal 
control problem. The model used was the Fair model [S], less the monthly housing 
starts sector. The model used consists of 19 equations, is nonlinear, has lags of 
up to eighth order, and was estimated under the assumption of first-order serial 
correlation of most of the error terms. I9 The initial period was taken to be 1962111 
and the horizon for the various runs was either 10, 20, 25, or 60 quarters. The 
number of control variables was varied between one and four. Government 
spending was always taken to be a control variable. The other three variables 
that weresometimes used as control variables were the level ofconsumer sentiment, 
plant and equipment investment expectations, and nonfarm quarterly housing 
starts. These latter three variables are clearly not variables under the direct control 
of the government, but for purposes of illustrating the method of solution, there 
is no harm in treating them as if they were. The objective function was deliberately 
chosen to be non-quadratic in the variables of the model. The objective function 

“The coefficients were taken from Table t t-4 in [8], 
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(to be minimized) was : 

2 
IO(g,,J* + lO!UR, - C1.030,~ + 0.094 

2 
_____ 0.275 - 9 - GNP, 0.257 

+ 
i 

IP, -- 0.101 
GNP, 

where g,,, is the rate of growth (at an annual rate) of the private output deflator. 
UR, is the unemployment rate, and the five ratios are the ratios of durable con- 
sumption, non-durable consumption, service consumption, plant and equipment 
investment, and housing investment to gross national product respectively. The 
slashes around UR, - 0.030 denote the fact that /UR, - 0.030, was taken to be 
equal to UR, - 0.030 if UR, 2 0.030 and zero otherwise. In other words, welfare 
was not improved for an unemployment, rate below 0.030, but it was not decreased 
either, as a straight quadratic function would imply. The objective function is 
non-quadratic in this respect, as well as in targeting ratios of the various com- 
ponents of GNP to GNP itself. The rate of inflation and the unemployment rate 
were weighted ten times more heavily in the objective function than were the 
ratios. It should be noted that the welfare function is not differentiable at 
UR, = 0.030. In the present ease, however, the optimum valuez of UR, were always 
greater than 0.030, and the lack of differentiability at UR, = 0.030 did not appear 
to be a problem for the algorithms for which numeric derivatives had to be com- 
puted. In general, if the lack of differentiability of either the model or the welfare 
function appears to be important (as it might be, for example, for models in which 
capacity ceilings play an important role), then algorithms that do not require the 
computation of derivatives may be better choices than those that do, 

The results for the various runs using the Fair model are presented in Table 2. 
The second control variable, the level of consumer sentiment, does not enter the 
model currently, but only with lags of one or more periods, so when this variable 
was used as a control variable, the number of values of this variable to be deter- 
mined was one less than the number of periods. Except for lines 7 and 8_ historic 
values were used as starting points for the values of the control variables. Again, 
two runs each for the gradient and quadratic hill-climbing algorithms are reported. 
corresponding to the two ways of computing derivatives. The tolerance level used 
for these two algorithms was O.tXlOO5. The tolerance level used for the Powell 
algorithms was 0.000005. 

From the results in Table 2, it can be seen that the gradient algorithm worked 
better than Powell’s. The number of function evaluations was usually less for the 
gradient algorithm, and for the problems of greater than 20 variables the Powell 
algorithm did not quite attain the optima that the gradient algorithm did. For 
the 39- through 99-variable problems, the largest differences between the variable 
values computed by the Powell algorithm and the corresponding variable values 
computed by the gradient algorithm were 26, 8, 34, and 88 percent respectively. 
An even smaller tolerance level was tried for some of the runs using the Powell 
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algorithm (O.OOOOtMl vs. O.ONU05) to see if this resulted in a smaller value of the 
objective function, but the results were not improved using the smaller tolerance 
levels. For the gradient algorithm the use of the less expensive way of obtaining 
derivatives resulted in virtually no loss in accuracy for any of the runs. For the 
quadratic hill-climbing algorithm the use of the less expensive way of computing 
cross partial derivatives resulted in no loss in accuracy at all and, of course, 
substantial savings on cost. For the problem of 4 control variables and 25 periods 
(99 variables), the gradient algorithm using the less expensive way of computing 
derivatives required 10,181 function evaluations and took about 3.4 minutes to 
attain the optimum. 

When the 79.variable problem was started from the answer to the 59-variable 
problem plus historical values otherwise (line S), the speed of convergence was 
only slightly increased for the gradient algorithm. The number of function evalua- 
tions fell from 7,314 to 7,047 for the one run and from 12.807 to 12,793 for the 
other. The number of function evaluations fell substantially for the Powell 
algorithm, but the optimum was still not attained. 

When the other two gradient algorithms were tried for the 59.variable 
problem (lines 9 and 10); the resnlts were virtually the same as for the rank one 
algorithm. For this problem there is nothing to choose among the three algorilhms. 

The largest problem tried for the Fair model was four control variables and 
60 periods (1962111-197711) for a total of 239 variables. The answer to the 99- 
variable problem was used as a starting point plus historical or extrapolated 
values otherwise. Only the gradient algorithm using the less expensive way of 
obtaining derivatives was tried for this problem. The program was allowed to 
run for approximately 20 minutes. At the end of 20 minutes and 104 iterations. 
the value of the objective function was changing only in the eighth decimal place 
between iterations and the largest difference between any corresponding parameter 
values on the last two iterations was O.ooO7. The value of the objective function at 
the starting point was 0.80730797 and the value after 104 iterations was0.58885958. 
The starting point turned out to be fairly far away from the stopping point, with 
unemployment rates of about 7 percent near the end of the horizon compared 
with the stopping-poinl values of around 5 percent. The stopping-point values 
for the 239.variable problem appeared to be in line with what would be expected 
from observing the answers to the smaller problems. The Powell algorithm was 
started from the values attained by the gradient algorithm on the 53rd iteration 
(an objective-function value of 0.5X890611) to see if it would go anywhere. A 
tolerance level of O.oooOO5 was used. The algorithm went one iteration, lowered 
the objective function to 0.58890571, and stopped (the convergence criterion 
having been met for all parameters), a clear failure in view of the value obtained 
by the gradient algorithm. One other result is also of interest to note here. The 
gradient algorithm was also started from the values attained on the 53rd iteration. 
A tolerance level of 0.00005 was used. The algorithm went one iteration. lowered 
theobjectivefunction to0.58890575,and stopped (theconvergencecriterion having 
been met), also a clear failure. By starting the gradient algorithm over on the 53rd 
iteration, one lost the approximation to the inverse of the matrix of second partial 
derivatives that had been developed over 53 iterations. which in the present case 
was obviously quite important. A similar result occurred when experimenting 
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with the 99-variable problem. These results suggest that if one contemplates having 
to restart the gradient algorithm for one reason or another (like running out of time 
on the computer), one ought to save the latest approximation to the inverse of 
the matrix of second partial derivatives to be used when the algorithm is restarted. 
The results also suggest, oddly enough, that when using the gradient algorithm 
one ought not to start the algorithm too close to the (presumed) optimum for fear 
that the algorithm will get stuck before it has a chance to build up a good approxi- 
mation to the inverse of the matrix of second partial derivatives. 

The answers to the problems for the Fair model were characterized by a 
large value of government spending in the first period (compared with the historical 
value) and large values near the end of the time horizon. In the model employment 
responds faster to government spending than does the price level, and so the 
relatively large values of government spending for the last few periods of the 
horizon are taking advantage of this fact and lowering the unemployment rate 
without having too much effect on the price level. zo The large value of spending in 
the first period is apparently designed to lower the unemployment rate quickly 
from its relatively high historic level. Excluding beginning and ending effects, the 
particular objective function used resulted in an unemployment rate of about 
5.0 percent and an annual rate of inflation of about 2.2 percent. The IPJGNP, 
and IHJGNP, ratios were met almost exactly when plant and equipment invest- 
ment expectations and housing starts were used as control variables, as would be 
expected. The three consumption ratios were not met as exactly when consumer 
sentiment was used as a control variable since in this case there was, in effect, 
only one main control variable influencing three ratios. 

In Table 3 are presented estimates for each run in Tables 1 and 2 of the per- 
centage of time that was spent doing function evaluations. The estimates were 
obtained by multiplying the time per function evaluation by the number offunction 
evaluations and dividing this figure by the total time for the job. For the Fair 
model abnormal exits sometimes occurred from the function-evaluation program 
(before all of the computations were performed), which causes some of the per- 
centages for the Fair model in Table 3 to be too high. Abnormal exits occur when 
variable values imply that the logarithm of a negative number should be taken. 
The estimates in Table 3 are also subject to error for reasons that have to do with 
the way that computation time in the computer is estimated. In general, the 
percentages are quite high in Table 3, indicating the importance of writing efficient 
programs for evaluating functions. 

6. AN EVALUATION OF THE PRACTICAL USEFULNESS OF THE METHOD 

The results in Sections 4 and 5 are very encouraging as to the feasibility of 
using the method proposed in Section 2 even for large-scale models. For a 20. 
period problem the 19-equation Fair model takes 0.0148 of a second per function 
evaluation on the IBM 360-91 computer. The Fair model can be solved without 
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the use of the Seidel method since the nonlinear part of the model is recursive. 
If a 1GCequation model could be solved in the same way, it should take only 
about five times longer to solve this model than it takes to solve the Fair model 
since the number of computations per equation is not likely to vary much from 
model to model. Econometric models tend to be larger because of more equations 
and not because of more variables per equation. If the Seidel method must be 
used to solve a model and if for each iteration for each period the entire model 
must be passed through, then the cost per solution of the model is increased in 
proportion to the number of iterations that are required to solve the model each 
period. If, for example, it takes five iterations to solve a lO@equation model each 
period, it should take about 25 times longer to solve this model than it takes to 
solve the Fair model. Since algorithms that do not require derivatives or for which 
derivatives are computed numerically spend most of their time doing function 
evaluations, the total time that it takes to solve a control problem for a IOO- 
equation model that requires five iterations per solution of the model should be 
about 25 times greater for the same problem than thecorresponding time in Table 2 
for the Fair model. A 20-period problem with one control variable should thus 
take about 2.0 minutes using the gradient algorithm and the less expensive way 
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of obtaining derivatives (25 x 4.78 seconds). A 20.period problem with two 
control variables should take about 8.7 minutes(25 x 20.83 seconds). The problem 
offollrcontrolvariablesand25periodsshould takeabout 85,2minutes(25 x 204.47 
seconds). 

Although the times just mentioned are not completely out of the range of 
practicality, it is possible that in practice the times can be substantially cut down. 
First, good starting points can be quite important, and significant time may be 
saved by first solving a small problem (say one control variable), using the answer 
to this problem as a starting point for a somewhat larger problem (say two control 
variables),and so on. building up to the largest problem that one want5 to consider. 
Also, once one has solved a particular optimal control problem once, the answer 
to this problem may be a good starting point for a slightly different problem (say, 
a slight change in the objective function). In other words, it may not be too costly 
to experiment with different objective functions or a slightly different specification 
of the model once one solution to a particular problem has been obtained. It may 
also be the case that from a welfare point of view or from the point of view of 
Feasibility one wants to keep the control variables within certain bounds. This 
can be done by including control variables in the objective function and penalizing 
deviations of the values of the control variables from target values. If this is done, 
one has a natural starting point for the control variables~~~ the target values-and 
this may significantly increase the speed ofconvergence of the algorithm being used, 
in addition perhaps to decreasing the likelihood that the algorithm goes to a local 
but not the global optimum. 

A second way in w~hich much time might be saved by models that need to be 
solved by the Seidel method is by choosing good initial values of the endogenous 
variables to begin the solution of the model each period. Since most algorithms 
perturb the variables (in the presence case, the values of the control variables) only 
a slight amount between function evaluations. particularly when derivatives are 
being computed, a good choice For the initial values of the endogenous variables 
is likely to be the solution values obtained in the process of computing the previous 
function evaluation. It is possible that this choice can cut the number of iterations 
needed per solution of the model per period to two or three, which would greatly 
save on cost. 

A third way in which time can be saved is to write the program that does 
Function evaluations in such a way that no computations are performed other 
than those that are absolutely needed in going from values of the control variables 
to the value of the objective function. For example, any sets of calculations using 
exogenous variables that are not changed as a result of changes in the values 
of the control variables should not be done in the function~evaluation prog- 
ram, but only once before the solution of the optimal control problem begins. 
This kind of efficient programming was not done for the results in Tables 1 
and 2. 

If for a IOO-equation model one could. by following the above suggestions, 
cuf the number of iterations using the Seidel method to an average of 2.5 and 
could further cut the time per function evaluation by 25 percent, then the times 
quoted above (2.0, 8.7, and 85.2minutes) would be cut to 0.75, 3.3, and 32.0 
minutes respectively. These times may be further cut by a factor of 2 or more 
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by better choices of initial parame~r values than those used for the results in 
Table 2.” 

In terms of the size of the problems that the method proposed in this paper 
can handle. there is an obvious tradeoff between the size of the model. the number 
of control variables, and the length of the decision horizon. It is hard to establish 
any precise rules as to what problems are practicai to solve and what are not 
because no two models and problems are the same. Furthermore, for some 
problems one algorithm may work best and for others another may work best. 
Each person must to some extent determine for oneself through experimentation 
the practical limits to the size of problems that one can solve. Nevertheless. the 
results in this study can give some indication of the likely cost of various problems. 
One important question in this regard is how rapidly the number of function 
evaluations increases as the number of variables to be estimated increases. From 
the results in Tables 1 and 2 one can compute the extra number of function 
evaluations required per additional variable (AFE/AN, where FE is the number 
of function evaluations and N is the number of variables) and observe how this 
quantity varies as the total number of variables varies. These computations are 
presented in Table 4. For the quadratic hill-climbing algorithm. AFEIAN clearly 
increases as N increases since the number of function evaluations required to 
compute first and second derivatives per iteration increases as the square of N. 
From the results for the Chow model there is only a slight tendency for AFE/AN 
to increase as N increases for the Powell and gradient algorithms. From the results 
for the Fair model there is somewhat more of a tendency in this direction for the 
two algorithms, but this tendency is far from being uniform. In general, the results 
in Table 4 indicate that there is only a slight tendency for AFEjAN to increase as 
N increases for the Powell and gradient algorithms. 

The time required per function evaluation should be roughly proportional 
to the number of periods times the number of equations in the model times the 
number of Seidel iterations required to solve the model. The time required to 
solve a control problem is roughly equal to the time required per function evalua- 
tion times thenumberoffunctionevaluations. Ifthenumber offunction evaluations 
varies only in proportion to the number of variables (AFE/AN not increasing 
as N increasesj. then the time required to solve a control problem should be 
roughly proportional to the square of the number of periods times the number of 
control variables times the number of equations times the number of Scidel 
iterations. In this case, if the number of Seidel iterations required to solve a model 
does not increase as the number of equations of the model increases, then the time 

a1 Albert Ando has communicated t0 the author a “c0nserrative’~ estimate that for the solution 
of the 2Wequaiion FMP model ii taker about O.OOXKl ot a second per iteration per period on an IBM 
370.LhS computer. This figure compares with MOW? for the solution of the 1%equation Fair modei 
Kiividc 0.0072 in Table 2 by 10). Since the FMP model has 10.5 times more equations than the Fair 
model. one would expect the time per iteration per period to be about 10.5 rimes greater for the FMP 
model. The figure supplied by Ando indicates that the time is only 6.9 times greater. Ando‘s results 
thus suggest that the times cited in the text above may be too conservative. It should also be noted 
that Ando’s results are for a program that WOE not written with optimal control problems in mind 

The FMP model usually takes between 10 and 15 iterations to solve per period using the Seidel 
method However. the values used as initial t,alues ior the endogenous variables are the solution values 
oE the previous quarter, and, as suggested above. in an optimal-control context one should be able to 
do much better than this. 
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From Table 1 

Powell Gradient Hill-Climbing 

N &v (1, (2, 11) (21 (1) (2) 

20 20 84.4 141.6 30.7 51.7 46.5 160.5 
40 : 153.3 216.8 48.1 PI.1 126.1 480.1 
60 153.4 214.5 68. 
80 2o 157.0 2381 74. 

100 20 1962 236.1 71. 

5 130.6 - _ 
4 152.6 
1 132.0 _ -. 

Fmm Table 2 

Gradient Hill-Climbing 

N AN POW11 (1) (2) (1) (21 

10 
20 
39 
59 
7P 

2:: 

10 
to 
19 
20 
20 
20 

140 

112.3 
102.9 
52.1 

121.9 
246.1 
115.5 

16.3 22.5 26.9 80.9 
14.4 348 66.0 24(10 
56.0 114.9 123.9 471.9 
48.7 tot.6 _ 

248.5 401.0 
143.4 341.2 _ 
t 10.6’ _ - - 

required to solve a control problem should increase only in proportion to the 
increase in the number of equations. Otherwise, the time will increase more than 
in proportion to the increase in the number of equations.‘* The time required to 
solve a control problem is proportional to the square of the number of periods 
because an increase in the number ofperiods increases both the number of variables 
and the time required per function evaluation. If the number of function evaluations 
increases more than in proportion to the number of variables, then the time required 
to solve a control problem will increase more than in proportion to the increase 
in the square of the number of periods times the number of control variables. 

Barring further results, some tentative conclusions can be drawn from the 
results in this study as to the size of problems that it appears feasible to solve 
using the method discussed in Section 2. For models of about 20 equations, it 
appears quite practical to solve problems in which the product of the number of 
control variables and the number of periods is greater than 100. For models of 
about 100 equations, a product of 100 is probably within the range of practicality. 
For models of about 200 equations, a product of 60 may be close to the limit of 
practicality. The use of good starting points and efficient programming may, of 
course, greatly extend even these limits. Since most econometric models do not 
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exceed 200 equations and since the number of control variables in any one model 
can usually be kept under, say, five without seriously restricting the problem, the 
method considered in this paper should be able to handle most problems of interest 
to policy makers who use econometric models in their decision-making process. 
It should also be noted that the method considered in this paper requires relatively 
little human effort. All one has to do is write a program to solve the model and com- 
pute the objective function. No derivatives are required, no analytic approxima- 
tions have to be made, and the model does not have to be set up in any special form. 

The results in Tables 1 and 2 indicate that the gradient algorithm using the 
less expensive way of obtaining derivatives is the most efficient. Slightly more 
accuracy may be obtained by using the more expensive way of obtaining derivatives 
or by using the quadratic hill-climbing algorithm, but in genera1 this increased 
accuracyisnot likelytobeworththecost.Forthequadratichill-climbingalgorithm 
no accuracy was gained using the more expensive way of computing cross partial 
derivatives, and so this way is not recommended. The Powell algorithm was 
generally more expensive than the gradient algorithm, and for the Fair model it 
had a tendency to get close to but not quite to the optimum. The results in the 
two tables do, of course, indicate that quite large problems can be solved even 
when derivatives are obtained numerically. In practice, it may be desirable, after 
having attained an answer from one algorithm, to start another algorithm from 
this answer to be more certain that the true optimum has been attained. The 
quadratic hill-climbing algorithm, while being the most expensive for large 
problems, is likely to be the most robust to attaining the true optimum. 

7. STOCHASTIC MODELS 

In thecase ofalinearmodel withadditiveetror termsandaquadraticobjective 
function it is well known that solving the deterministic control problem derived 
by setting the error terms to their expected values will provide the optimal first- 
period control values for the stochastic, closed-loop, feedback control problem. 
Therefore, if one solves the deterministic contrd problem each period, after 
observations on the state of the system for the previous period become available, 
one will over time make the same decisions regarding the current values of the 
control variables (i.e., the values of the control variables that the decision maker 
actually sets) as would be made by one who had solved the stochastic, closed-loop, 
feedback control problem explicitly in terms of feedback equations. To this extent, 
feedback equations need not be obtained, and one can concentrate on solving 
deterministic control problems as considered in the previous sections of this 

pap-. 23 For most economic applications sufficient time is usually available to 
recompute the entire sequence of optima1 controls each period. 

For nonlinear models the first-period certainty-equivalence property does not 
hold. One procedure that might be followed in this situation is merely to treat 
the nonlinear-model case in the same way as one would treat the linear-model case, 
i.e., setting error terms to their expected values, and solve the deterministic control 

” Knowledge of teedback equations for a particular model may aid one in understanding the 
dynamic properties and other characteristics of the rmxiel~ and for this reason it may be useful to 
compute feedback equations even though they are not actually needed for the solution of the optimal 
control problem. 
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problemeachperiod.Thisprocedureisprobablytheonemost often used in practice 
for solving nonlinear models, although Howrey and Kelejian [14] have shown that 
solving a nonlinear model by setting the error terms equal to their expected values 
is not equivalent to solving the reduced-form equations of the model. 

For a nonlinear model the mean values of the endogenous variables can be 
obtained by means of stochastic simulation. A number of drawings from the joint 
probability distribution of the error terms can be taken, and for each drawing one 
can obtain by solving the model a set of values for the endogenous variables. 
The mean value for each endogenous variable can then be computed as the 
average of the values obtained from solving the model for the various drawings. 
Using the procedure of stochastic simulation, it may be possible for relatively 
small problems to obtain optimal open-loop controls for nonlinear, stochastic 
models in a manner similar to that done above for nonlinear, deterministic models. 
Say the aim were to maximize the expected value of the objective function. For 
each choice ofcontrol values,onecouldcompute by meansofstochasticsimulation 
the mean value of Ii’. The computed mean value of Wwould be the value returned 
to the maximization algorithm, and the algorithm would be used in the usual 
way in an attempt to find that set of control values for which the mean value of 
W were at a maximum. Each function evaluation in the stochastic case would 
correspond to an entire stochastic simulation. If, for example, 50 drawings from 
the joint probability distribution of the error terms were needed to obtain an 
adequate approximation to the expected value of W, then approximately 50 
times more time would be needed per function evaluation for the stochastic 
problem then for the deterministic problem. Even though the cost is high for the 
stochastic problem, it may be feasible for small problems to carry out the above 
suggestion. If one did carry out the above suggestion and found the optimum and 
if one recomputed the entire sequence of optimal controls each period, one would 
over time make the same decisions regarding the current values of the control 
variables as would be made by one who had solved the stochastic, open-loop, 
feedback control problem explicitly in terms of feedback equations. 

For the control problem for nonlinear, stochastic models, Athans [l], [2] has 
suggested first solving thedeterministic control problem (the deterministic problem 
being obtained by setting the error terms equal to their expected values) and then 
linearizing around the deterministic-control paths to obtain linear feedback 
equations around the paths. The aim is over time to keep the actual paths close to 
the deterministic-control paths. While Athans’ suggestion may be useful for 
engineering applications, where reoptimization each period may not be feasible, 
the suggestion is likely to be of less use for economic applications. If sufficient time 
is available to reoptimize each period, then it is much more straightforward just to 
solve the deterministic control problem each period.2” The results in this paper 

‘“These remarks should not be interpreted as meaning that Athans would necessarily disagree 
with them. For example. Athans [I]. p. 449. has stated: “If should he stressed that trends in stochastic 
control research by engineers has been greatly influenced by two iactors : (a) a need 10 minimize on-line 
computations. and Cb) the requirements in man) aerospace applications that the control system be 
realized by analog hardware. 

In economic applicationr these requirements are not present. since the time period between 
decisions does allow for extensive digital computer calculafion~. Thus. one does have the luxury of 
exammmg more sophisticated decision and control algorithms. which however have increased cum- 
putarionai requirements.~’ 
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certainly indicate that it is feasible to reoptimize each period when, say, the 
period is a month or a quarter. The procedure of reoptimizing each period is also 
somewhat more appealing on intuitive grounds than Athans’ procedure. If 
stochastic simulation is ruled out, then both procedures are based on the incorrect 
practice ofsetting error terms equal to their expected values. If one follows Athans’ 
procedure, however, further approximations have to be made that do oat have to 
be made if one reoptimizes each period. 
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