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METHODS OF ESTIMATION FOR MARKETS IN 
DlSEQUlLlBRlUM: A FURTHER STUDY 

BY RAY C. FAIR AND HARRY H. KELUIAN 

This pqm is concerned with the problem of estimating demand and supply schedules 
in disequilibrium markets. The resuli~ of Fair and Jafiee are expanded in three ways. (I) 
Their directional method I is modified to yield consistenf estimates. (2) A maximum like& 
hood alrernative to their quantitative mcthod is proposed. (3) The price equation is 
generalized to be a multivariale. stochaslic function, and a method is propOSed for esti- 
mating demand and wj,,,,y scheduk in this case. 

IN A RECENT paper Fair and Jaffee [4] considered the problem of estimating demand 
and supply schedules in disequilibrium markets. They suggested four possible 
methods of estimation: a general maximum likelihood method for finding the 
optimal separation of the sample period into demand and supply regimes; two 
“directional” methods, which relied on price-setting information to separate 
the sample period ; and a “quantitative” method, which relied on price-setting 
information to adjust the observed quantity for the effects of rationing. The Fair- 
Jaffee study is subject to several limitations. First, Fair and Jaffee found that the 
general maximum likelihood method was not computationally feasible. Second, 
their directional method I, although yielding a correct sample separation under 
the assumptions of the model, does not yield consistent estimates. Finally, their 
quantitative method is based on a rather strict assumption about price-setting 
behavior, namely that price changes are strictly proportional to excess demand. 

The purpose of this paper is to expand upon the results of Fair and Jaffee in 
three ways. First. their directional method I will be modified to yield consistent 
estimates, and then this modified technique will be used to estimate a particular 
model so that these estimates can be compared to the directional method 1 esti- 
mates. Second, a maximum likelihood alternative to the quantitative method 
will be proposed under the same strict assumption that price changes are pro- 
portional to excess demand. Third, and most important, the strict assumption 
about price-setting behavior will be relaxed and a method will be proposed for 
estimating supply and demand schedules under the much weaker assumption 
that the price equation is a multivariate and stochastic relationship. 
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The Model 

The model under consideration in this section is” 

(la) 

(lb) 

(lc) 

and 

D, = X& + P,-rl& + ~1,: 

S, = X,‘P, + P,- 18, + u2*. 

AP, = P, - p,_ I = f(D, - S,), 

(Id) Q, = min {D,, S,] (t= 1,2,..._T), 

where, at time t, D, and S, are the quantities demanded and supplied respectively, 
Q, is the actual quantity observed, P, is the price, X,, and X,, are vectors of pre- 
determined variables, and ulr and us, are the disturbance terms. The vectors p, 
and & arevectorsofparameters, conformably defined. The stochasticassumptions 
are 

(2) 4u,,lX,l = ~[%,lKl = 0, 
E[u:,IX,I = d* .E[I&X,] = CT:. 

where X, = (X,,, I’,,, P, _ ,); ult and I+, are assumed to be continuous. 
The problem of estimation concerning the parameters of( la) and (lb) is that the 

price equation, (1~). implies that prices do not adjust in every period in such a 
manner as to equate D, and S, Therefore, unless some adjustments are made, all 
of the observations on Q, cannot be used in the estimation of equations (la) and 

(lb). 

Directional Method I 

Fair and Jaffee‘s directional method I is based on the assumption that .f’(D, - 
S,) 5 0 when D, - S, 5 0. Under this assumption, if AP, > 0, then Q, = S,: if 
AP, < 0, then Q, = D, ; and if AP, = 0, then Q, = D, = S,. Directional method 1 
takes those sample points for which AP, > 0 and estimates the supply equation, 
and takes those sample points for which AP, < 0 and estimates the demand 
equation. 

Although directional method I yields a correct sample separation under the 
above assumptions, the coefficient estimates are not consistent. For instance, 
according to the method 

(3) Q, = D, = X,,B, + I’-,& + ul,, whendP, < 0, 

and 

(4) Q, = S, = X2,/& + PC_,& + Us,, when AP, 3 0. 

2 In this section the price terms are assumed to enter the demand and supply equarions with a lag 
rather than contemporaneously. In Sections 3 and 4 the price terms are allowed lo enter the demand 
and supply equations contemporaneously. 
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Now. the ordinary least squares parameter estimates of(3) and (4) are inconsistent 
because the means of the disturbance terms are no longer independent of X,,, 
X,,, and P,_ 1 over the relevant sample points. To see this, consider E[u,,lX,. 
AP, < 01. In light of (lc), (Id), and the assumption that f’(D, - S,) 5 0 when 
D, - s, $ 0: 

(5) E[u,,IX,,dP, G 01 = ~[u,,IX,,D, G &I. 
LetDT = XJ, + P,_,p,,andS: = X2& + P,_,p,.Thenfrom(la),(5)maybe 
written as 

(6) E[u,,lu,, - ~26 < S: - D:_X,l. 
Now, if the joint density of u,~ and uzI, conditional on X,, is specified, the con- 
ditional density of 4, = uil - u2,, say g,(&iX,), may be derived. and the joint 
conditional density of u,, and $,, say g,(u,,, 4,1X,), may be derived. Therefore, 
16) can be evaluated as3 

Clearly, the expectation in (7) will not, in general, be independent of X, unless uli 
and 4, are independent, in which case g, factors. 

A Consistent Method of Estimation 

The demand and supply equations, (3) and (4), can be consistently estimated 
by a maximum likelihood technique that is conditional on the segmentation of the 
sample. Let g&&tP, < 0, X,) be the conditional density of ult given X, and 
AP, < 0, an6 let g,(u,,@P, > 0, X,) be the conditional density of u2, given X, and 
AP, 2 0. !n view of the above assumptions, these conditional densities can be 
written as g (u 14 < S: - 0:,X,) and g,(u,,& > SF - 0:,X,) respectively. 3 It *. 
Now, the maximum likelihood estimators of the parameters pII b2, f13. fl,,, a:, 
c:, and v,z, can be obtained by maximizing the likelihood function 

(8) 9 = ,,F, g&0< < S: - D:, X,) n g,(u,,/A > S: - 0:. Xx), 
dP, .0 

where u,, = Q, - D:, uzi = Q, - S, , * and the products are taken, respectively. 
cwer the periods for which AP, < 0 and AP, > 0. Equation (8) is defined in terms of 
strict inequalities because the disturbance terms are assumed to be continuous 
and thus the probability that AP, = 0 is zero. 

Empirical Results 

The likelihood technique can be implemented a~ f0110w~: First, note that 

(9) 
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where, as above, g,(u,,+ $,1X,) is the joint density of uIz and &, given X,. Likewise, 

where g,(u,,, $,1X,) is the joint density of I+ and 4,. given X,. If the joint density 
of u,! and uzi, conditional on X,_ is specified to be normal; then g,(4AX,) will be 
normal and g,(u,,, 4,1X,) and gj(uzf, &,,iX,) will each be jointly normal. Therefore, 
since it is quite easy numerically to evaluate normal integrals, an attempt can be 
made to maximize the likelihood function in (8) using a nonlinear maximization 
program. Note that the parameters pl. p2, &. and p4 enter both the limits of the 
integral and the integrand. The parameters G:, u:, and viz enter only into the 
integrand. 

Inordertoseewhetherit isfeasibletomaximize(S), thehousingstartsmodel that 
Fair and Jaffee used as an example in their study was also used as an example in 
this study. The model consists ofone demand equation and one supply equation: 

and 

(12) HS: = tie + $,t + $,DF6,_, + $,DHF3,_, + $,RM,_, + uzi> 

whereHSPandHS”denotethedemandforandsupplyofhousingstartsrespectively, 
RM,_ , and RM,_, denote the mortgage rate lagged one and two months re- 
spectively, DF6,_ i denotes the six-month moving average of the flow of deposits 
into savings and loan associations (SLAs) and mutual savings banks lagged one 
month, and DHF3,_, denotes the three-month moving average of the flow of 
borrowings by SLAs from the Federal Home Loan Bank lagged two months.“ 
Fair and J&e assumed that the error terms, u,< and uz,, were first-order serially 
correlated, but for present purposes serial correlation problems will be ignored. 
Serial correlation questions will be considered at the end of this section. Fair 
and Jaffee also used seasonally unadjusted data and seasonal dummy variables, 
but for purposes here seasonally adjusted data were used. 

The results of estimating equations (11) and (12) by directional method 1 and 
by the consistent likelihood technique are presented in Table I. The price variable 
in the model is the mortgage rate. Two nonlinear maximization techniques were 
tried in the maximization of the likelihood function: the quadratic hill-climbing 
technique of Goldfed, Quandt, and Trotter [9] and the technique of Powell [13]. 
The quadratic hill-climbing technique requires first and second derivatives, and 
for this purpose numerical first and second derivatives were used. The normal 
integrals were evaluated using the ERF function in the FORTRAN library. It 
turned out that the likelihood function was not very well behaved. The function 



was very flat with respect to the parameter ellr for example, and the function 
appeared to have many local maxima. The quadratic hill-climbing technique and 
Powell’s technique worked about equally well in their ability to find local maxima. 
The maximum likelihood estimates presented in Table I correspond to the largest 
value of the likelihood function found after considerable experimentation, but 
there is no guarantee that this is the global maximum. 

Co&icient 
Directional Maximum Likelihood 
Method I Method 

The maximum likelihood estimates in Table I are quite close to the directional 
method I estimates, which suggests that for this particular example the bias using 
directionalmethod Idoesnot appear to beverygreat. Whetherthis is trueingeneral 
is, of course, not clear. 

Serial Correlation Questions 

If the error terms in equations [la) and (lb) are serially correlated, then it turns 
out that the coefficients of (la) and (lb) are not identified if it is assumed that u,, 
and uxl are continuous random variables. Assume, for example, that the error terms 
are first-order serially correlated: 

(13) 

and 

(14) U2r = %.F IP2 + 82,. 

where the assumptions in (2) now pertain to E,, and c2, rather than to uI, and Q,. 
Using (13) and (14), equations (la) and (lb) can be written: 

(15) D, = D,~,P, + X,,Dl - ~,,-,B,P, + P,-,& - PC-Z&P, + 61,. 



The problem with estimating equations (15) and (16) is that the explanatory 
variables D,_ , and S,_ , will generally not be observed at the same time. For 
instance, given the above assumptions, only if dP,_ 1 = 0 are both S,_ I and D,_, 
observed; otherwise only one of them is observed. However, if u,! and uJ1 are 
continuous random variables, the probability that LIP, = 0, for any t, is zero. 
Consequently, as the sample size approaches infinity, that portion of it corre- 
sponding to time periods for which d P, = 0 will remain finite. Now, if it is recalled, 
from either (7) or (9) and (lo), that a consistent estimation technique. for either or 
both equations, necessarily involves observations on all of the predetermined 
variables, the result concerning lack of identification follows.’ The same situation 
also holds if D,_ 1 and S,_ , enter directly as explanatory variables in equations 
(la) and (lb) rather than entering indirectly by way of the serial correlation 
assumption. 

3. Q”ANTITATl”E METHODS OF ESTIMATION 

The Model 

The model under consideration in this section is 

(17b) s, = x*,/L + M, + u2r 

(174 LIP, = ;I(LJ - S,), 

and 

(17d) Q, = min ID<, S,j (t = I, 2,. , T). 

The model in this section differs from the model in Section 2 in that the price term 
is allowed to enter contemporaneously in the demand and supply equations and 
the change in price is assumed to be directly proportional to the level of excess 
demand. The model is assumed to be identified. Fair and Jaffee demonstrated that 
the above model can be estimated by relating Q, to D, and S, by means ofequations 
(l7~)and(17d).~ 

s For directional method I this problem ofidentification doa nor arise since one ignores the problems 
that arise because of sample segmentation and one chooses as sample paints for, say, the demand 
equation only those poiols for which bath D, and D,_ I are observed. This sample segmentation requires 
throwing away one observation for every switching point. Fur their empirical u’ork using directional 
method I. Fair and Jaffee did not actually throw away the requisite number of observations, but 
assumed that at a switching point both D, and D,. , or S, and S,- , WCIC observed. 

’ For example, if LIP, 2 0, then S, = Q, and D, = Q, + (1l$dP,. 
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The model in (17a)+17d) can also be estimated by the maximum likelihood 
technique in a manner similar to that done for the model in Section 2. First, the 
sample can be partitioned as follows: 

(18) Q, = X,,P, + P,lL + uzr* 

Q, = X,,P, + P, Bz -; -La;.+ uic> 
! i 

when AP, > 0, 
I 

(19) Qr = Xiifli + PA + uit> 

e,=UL+P,P4-; -L;+u,,, 
i ! 

when AP, < 0. 

Consider the equations in (18) corresponding to the sample segmentation, 
AP, 3 0. These equations can be considered as a two equation system in the 
variables Q, and P,. Therefore, the likelihood function for the equations of (18), 
given the sample segmentation, is based on the joint conditional density of uil 
and uzI given X, and AP, > 0, where, as in Section 2, X, = (X,,, X,, , P,_ ,). Let 
this density be g,(u,,. IQ~IAP, > OI X,). Then, in a manner not dissimilar from that 
of Section 2, 

(20) 

where the last step of(20) is obtained by replacing P, by its reduced form expression 
m u,*, tlzi, and the predetermined variables, putting all terms not involving u,~ or 
uZ, on the right hand side, and denoting the resulting expression as G(X,). The 
parameters z, and u2 are functions of the parameters in equations (17aH17c). 

The likelihood function for the equations of (19), given the sample separation, is 
based on the joint conditional density of u,, and u2, given X, and AP, > 0. Let this 
density be g,(u,,, u,,lAP, > 0, X,). The derivation of g,(u,,, u,,lAP, < 0; X,) is 
almost identical to that for g,(u,,_ tr,,lAP, > 0, X,). Now, the maximum likelihood 
estimators of the parameters of equations (17aH17c) are obtained by maximizing 
the likelihood function 

(21) A&>0 
40 = n g&,,.&W > O,X,)J, x ,rr, ‘?,(ulr. u,,ldP, < 4 X,)J,> 

where u,, and u2, are replaced in both products of (21) by their corresponding 
expressions in (18) and (19), and .I, and J, are the corresponding Jacobians of 
transformation from u,, and uLl to Q, and P,. 
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The likelihood technique can be implemented in a manner similar to that 
described in Section 2, although the situation is somewhat more complicated in 
the present case. The joint conditional density g,, for example, can be obtained as 

(22) 

where g,(u,,, uJX,) is thejoint density ofu,, and uzr conditional on X, and where 
the double integral in the denominator represents the probability that z,u,, + 
aluzt > G(X,). A similar expression can be derived for the joint conditional 
density g,. If the joint density of IL,, and uzI, conditional on X,, is specified to be 
normal, then it is possible to evaluate numerically the double integral in (22). 
It is thus possible to attempt to maximize the likelihood function in (21) using a 
nonlinear maximization program. 

The models described in Sections 2 and 3 contain price equations which are 
nonstochastic functions of only one variable, namely excess demand. In this 
section the price equation is generalized to be a multivariate, stochastic function. 
The model is taken to consist of equations (17a), (17b), (17d), and 

(17c’) AP, = Bs(D~ - S,) + X& + ~2 

where X,, is a vector of predetermined variables and & is a vector of parameters. 

A Method of Estimution 

Because the price equation is multivariate and stochastic, the observed quantity, 
Q,, cannot be strictly identified with either D, or S, on the basis of observed price 
changes. Hence, Q, must be related to D, and S, probabilistically on the basis of 
observed price changes. D&me a selector variable I,, where 

(23) r,=l ifD,>S,, rz = 0 if D, i S,.’ 

Using this variable, equations (17a), (17b), and (17d) can be written as 

(24) Q, = r,S, + (1 - r,)D,. 

Now, from (17~‘) I* = 1 if AP, > X& + uj, and r, = 0 if AP, < X3,& + us,. 
In light of these relations, the conditional density of I~ given AP, and X,, where X, 

? Since t,be disturbance term of the model are assumed to be continuous variables, the probability 
is zero that D, will equal S,. Thus, the problem of defining rc when D, = S, can be ignored. 
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now includes X,, as well as X,, , X,,. and PC_, , can be expressed as 

(25) prob (I, = IlAP,, X,) = H(AP,, X,), 

prob(r, = OjAP,,X,) = 1 - ff(AP,;X,), 

where H(AP,, X,) = prob (ujx < AP, - X,,&IAP,, X,). 
The probability statement, prob (I+ G LIP, - X&IdF,, X,). can be obtained 

from the conditional density of ujf given AP, and X,. This density in turn depends 
upon the joint density of AP, and ujt and the marginal density of AP,, both condi- 
tional on X,. Finally, these densities can be derived if the joint density of the 
disturbance terms is specified.8 Thus, if the joint density of the disturbance terms 
is specified, the functional form of H(AP,. X,) is determined.’ 

Assuming that the joint density of the disturbance terms is specified, the estima- 
tion of the model can now be considered. The model under consideration is 

(26a) Q, = r,S, i (1 - r,)D,, 

(26b) D, = X,,P, + P,& + ~lr. 

(264 s, = X,$3 + P,P4 + U2‘. 

(26d) Ap, = Ps(R - S,) + X,8, + ~ljr> 

and 

(26e) rt = H(AP, I X,) + L(?, , 

where, in light of (25), 11~~ is a random variable such that E[u,,(dP,, X,] = 0. Since 
observations on D,, S,, and rC are not available. these variables will first be 
eliminated from the model. For the sake of having a compact notation. let D: = 
XJ, + P&, S: = X2,& + f’&,. and H, = H(AP,,X,). Now. D,, S,, and I, 
can be eliminated from (26atf26e) to get 

(27a) Q, = H,S: + D: - H,D: + R, + e,, 

and 

(27b) 4 = MW - S:) + X& + ez,, 

where a, = H,(u,, - G)> erz = ~1, + u,,(S, - Da), and ez, = ~a + (u,i - 4. It 
is clear that E[e,,lXC] = 0. Also, since E[u,,~AZ’~, X,] = 0 for any values of X,, and 

’ As an example, the reduced form equation for AP, is linear in the elements of X, and u,, u2,, and 
u,,. If the disturbance terms are assumed to be normally distributed and independent of X,. then the 
conditional density 01 dP, and u,, is also normal and, ther&ore, is completely specified by two con- 
ditional means and variances and by the cwariance of dP, and ujv The mean and variance of I(,, are 
given by the specifrcrtions of the model: the mean and variance of dP,, as well as the covariance of 
LIP, with u,~, are easily derived from the reduced form equation for AP,. 
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use, it follows from the price equation that E[u,,l(D, - S,), X,] = 0. Therefore, 
E[e,,IX,] = 0. Thus, e,, and e2, can be considered as disturbance terms. 

Unlike the remaining terms of (27a) and (27b), 62, depends directly upon the 
disturbance terms u,$ and u2,. Therefore Q2, cannot be considered as part of the 
regression function; R, also cannot be considered as a disturbance term because 
it involves the product of H, and (u2, - u,,) and so will not in general have a mean 
ofzero.Theprocedurehere, therefore, will betoabstractthemeanofL’, ,conditional 
on AP, and X,, and incorporate it within the regression function so as to end up 
with a two-equation system based on the two endogenous variables, Q, and AP,, 
or, since AP, = P, - P,-, , on Q, and P,. 

Since the expectation of one variable conditional upon a set of others is, in 
general, a function of the conditioning variables, it follows that 

(28) WWP,, X,1 = W[u,, - u,,lPs X,1 = ff,UP, X,), 

where L(P,, X,) is a function of the elements of X, and P,. It is interesting to note 
that ifu,,, u2,, and us, are assumed to be jointly normal, the joint distribution of 
(u,, - u,J and P, will be normal and, therefore, the conditional distribution of 
uzz - II,, given P, will be normal; hence, the function L in (28) will be linear in 
P, and X,. In any event, the parameters of L will be functions of the parameters of 
thedemand,supply,andpriceequations,as wellasofthevariancesandconvariances 
ofu ,,r uz,r and ujr. 

In light of equation (28)_ it follows that 1;2, can be expressed as 

(29) a, = fw(P, X,) + 0, I 

where E[OIP,, X,] = 0, and so E[O,lX,] = 0. Therefore, equations (27a) and (27b) 
can be expressed as 

(304 Q, = H,.Y + 0: - H,D: + H&P,, X,) + s.b, 

and 

(30b) AP, = MD: - S:) + X,,p, + eZ* 

= X‘,(/w) + PWM - X,*~P5&) - Pwid + X,,P, + ear 

where $/I, = e,, + B,, and so E[$,/x,] = 0. 
Equations (30.4 and (30b) form a simultaneous two-equation system for Q, 

and P,, which is nonlinear in the parameters and also in one of the endogenous 
variables, Pt.“’ Aside from the maximum likelihood technique, general results 
concerning the estimation of such systems are not available. The difficulty in 
applying the maximum likelihood technique to the system (30aH30b) is that the 
joint distribution of $, and e2, will be, for just about any specification of ulir uxl, 
and L+,: quite complicated. However, a consistent estimation technique can be 

“Note that although P, does not depend directly on Q, in (30b). the system is fully simultaneous 
hecausc *, and ezi are correlated. e.g., fhey both contain u$_. 
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developed, subject to certain approximations, using the method of moments 
because E[$,,lX,] = E[eJX<] = 0. 

First, it will be assumed that u,,, u2*, and ulr are jointly normal so that L(P,, X,) 
is linear in P, and X, Second, it will be assumed that the error of approximation in 
the expansion of H, (as a function ofP, and X,) in a Taylor series is negligible after 
a finite number of terms.” Now, substituting the expression for L(P,, X,) and the 
polynomial expansion of H, into (3Oa) yields an equation of the form 

(3Oa’) Q, = Z,,:.!, + Z,,Y, + tin 

where Z,, is a row vector of observations on known polynomial functions of the 
predetermined variables, X,, and Z,, is a row vector of observations on known 
polynomial functions of the endogenous variable P, and predetermined variables 
Xl.” The vectors y, and ::I are vectors of parameters, the elements of which are 
nonlinear functions of fl, through p6 and of the variances and covariances of u,,, 
uLr, and ujt, The order of these vectors depends on the degree of the polynomial 
expansion. 

Equations (3Oa’) and (30b) form a two-equation system that contains nonlinear, 
but known, endogenous functions and nonlinear restrictions on the parameters-- 
a system, in other words, that is nonlinear in both variables and parameters. The 
system may be consistently estimated by a nonlinear two-stage least squares 
procedure. Specifically, since Z,, is the vector of endogenous functions in (30a’). 
each element ofZ,,, one of which is PC, can be regressed on the elements of Z,, and 
on the predetermined variables in (30b) as well as on powers of these variables.13 
Let 2,, and PC denote the predicted values of the elements of Z,, and P,. Now, as 
will be shown below, the basic parameters of the system /J, through Ph and the 
variances and covariances of II,~, uzt. and ujf, can be estimated by minimizing 

(31) S = (Q - Z,y, - p2~J(Q - Z,?, - z2y2) + a(AP - y,&/3, 

- &M + X&P, + &GL - X,!M(AP - X,&B, 

~ mB2 + X*BsB3 + @5P* - X3&): 

where Q, Z, _ .?I1 AP, X, , X,, X, , and .@ are the vectors and matrices of observa- 
tions on the corresponding elements, and 1 is any nonnegative number. lfa is taken 
to be zero, then only information regarding equation (30a’) is used to obtain the 
estimates, whereas if 1 is taken to be positive, then information regarding equation 
(30b) is also used in obtaining the estimates. 

‘I Note. if u,,, u2$. and u,, are jointly normal. ff, will be althe form 

H, = J~;~“‘.fi%l dZ, 

where .f(z) is the density for a standard normal variable and L,(P,. X,) is linear in A’, and P,: see (25) 
and Footnote 7. Therefore, the expansion of H, is straighliarward. In a sense, most econometric 
systems may be considered as depending upon such polynomial approximations; see, fox example, 
Fisher [6, pp. 127-29,. 

“For example. one such function might be PfX,,, where A’,, is a predetermined variable. 
“See Kelejian [Ill]. 



For a given value of CI, the minimization of S in (31) with respect to the para- 
meters fll through & and the variances and covariances of u,*, I+, , and us1 is 
quite straightforward and should be able to be handled by nonlinear optimization 
programs like those used in Section 2. If first and second derivatives of S are 
required, these can be computed numerically or else one can go to the bother of 
actually differentiating S twice with respect to fi, through &. Indeed, the problem 
of minimizing S in (31) does not appear to be as difficult as was the problem of 
maximizing 97 in (8) since the maximization of 9 required the evaluation of normal 
integrals, where the limits of the integrals were themselves functions of some of the 
parameter values. The steps involved in computing the estimates of the parameters 
of equations (30a) and (30b) are tedious because of the need to expand If, in a 
Taylor series and the need to express L(P,, X,) as an explicit function of P,, X,, and 
the parameter values, but aside from the tediousness the computation of the 
estimates does not appear infeasible or impractical. 

The choice of the value of a in (31) is somewhat arbitrary. A choice of a value of 
one means that both equations are weighted equally, and this may be as good a 
choice as any. One might also want to consider a two-step procedure in which 
initial estimates of the parameter values are obtained by, say, using a = 1, then 
estimating the variances of $, and e2,, and then reestimating the parameters taking 
OL to be the ratio of the estimated variance of $, to the estimated variance of c~,.‘~ 

It remains to be shown that the minimization of(31) yields consistent parameter 
estimates.Toseethis,let V,, = Z,, - z,,and pz, = P, - PC. Also,rewriteequation 
(30b) as 

(32) AP, = Z,,Y, + KY‘, + ez,r 

where Z,, = (X,,, X,,,X,,) and jr, and y,, are the corresponding vectors of 
parameters, the elements of which are nonlinear functions of j7, through fi6. 
Equations (3Oa’) and (32) can be written: 

(33) Q, = Z,,;JI + 2 21Y2 + *‘ + c;,?* 

and 

(34) Ap, = Z,,Y, + &d + ~2, + 6~4. 

Now. let 

YI 

Yz 

i 73 

74 
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where the dropping of the r subscripts means that the symbols refer to vectors or 
matrices of observations. Equations (33) and (34) can now be written, after (34) is 
multiplied across by ,.G, as 

(36) Y=zy+c+Vy*. 

Using this notation, S in (31) is 

(37) S = (Y - Zy)‘( Y - Zy) 

= Y’Y - 2;‘Z’Y + ;:‘z’Zy. 

Let Bbethevectorofparametersconsistingofp, throughp,and ofthevariances 
and covariances of u,$. uzl, and I+, .” Minimizing S with respect to b yields 

(38) $ = - Q;Z’y + Q;Z’zg = 0, 

where 7 is ;! evaluated at Band .),, is the matrix of partial derivatives >;/a/1 evaluated 
at 8. Linearizing (38) about p yields 

(39) &Z’[Zy + Z~~#(~ - fl) - Y] = 0, 

or, using (36). 

(40) fi - p = (ybZ’Z~& ‘riZ’(c + Py*). 

Since plim,,, 7‘-‘Ze = 0, plim,,, (/ - p) will bezero ifplim,,, T~‘(ybZ’~~y*) 
is zero. Now. 

Since it was assumed that all ofthe predetermined variables were used in construct- 
ing the calculated values, it follows by the least squares property that Z’p = 0: 
therefore, j is consistent. 

The study of the estimation of disequilibrium models has become quite popular 
recently. ” In this paper three methods of estimating disequilibrium models have 
been proposed. The first two methodsPmaximum likelihood methods--are 
concerned with the estimation of models in which the price equation is a non- 
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stochastic function of excess demand. The third method is concerned with the 
estimation of a more general model in which the price equation is allowed to be a 
multivariate, stochastic function. The problems involved in estimating dis- 
equilibrium models turn out to be fairly complicated, and for this reason one may 
in practice want to begin with the estimation of simply-specified models before 
considering more general models. Nevertheless, it is encouraging that the quite 
general model considered in Section 4 of this paper appears capable of estimation. 
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