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METHODS OF ESTIMATION FOR MARKETS IN
DISEQUILIBRIUM: A FURTHER STUDY

By Ray C. Fair anp Harry H. KeLeEsan?

This paper is concerned with the problem of estimating demand and supply schedules
in disequilibrium markets. The resulis of Fair and Jaffee are expanded in three ways. (1)
Their directional methed I is modified to yield consistent estimates. (2) A maximum likeli-
heood alternative to their quantitative method is proposed. (3) The price equation is
generalized to be a multivariate, stochastic function, and a method is proposed for esti-
mating demand and supply schedules in this case.

1. INTRODUCTION

IN A RECENT paper Fair and Jaffee [4] considered the problem of estimating demand
and supply schedules in disequilibrium markets. They suggested four possible
methods of estimation: a general maximum likelihood method for finding the
optimal separation of the sample period into demand and supply regimes; two
“directional” methods, which relied on price-setting information to separate
the sample period; and a “quantitative” method, which relied on price-setting
information to adjust the observed quantity for the effects of rationing. The Fair-
Jaffee study is subject to several limitations. First, Fair and Jaffee found that the
general maximum likelithood method was not computationally feasible. Second,
their directional method 1, although yielding a correct sample separation under
the assumptions of the model, does not yield consistent estimates. Finally, their
quantitative method is based on a rather strict assumption about price-setting
behavior, namely that price changes are strictly proportional to excess demand.

The purpose of this paper is to expand upon the results of Fair and Jaffee in
three ways. First, their directional method I will be modified to yield consistent
estimates, and then this modified technique will be used to estimate a particular
model so that these estimates can be compared to the directional method 1 esti-
mates. Second, a maximum likelihood aiternative to the quantitative method
will be proposed under the same strict assumption that price changes are pro-
portional to excess demand. Third, and most important, the strict assumption
about price-setting behavior will be relaxed and a method will be proposed for
estimating supply and demand schedules under the much weaker assumption
that the price equation is a muitivariate and stochastic relationship.

! The authors would like to thank Dwight M. Jaffee for helpful comments. He is not, of course,
responsible for any shortcomings of this paper.
P
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178 R. C. FAIR AND H. H. KELEHAN

2. DIRECTIONAL METHODS OF ESTIMATION
The Model
The model under consideration in this section is?
(1a) D =X+ P ffy + uy.
(1b} S, = X, B+ P_ fs + uy,
(lc) AP, =F —P_, = f(D, —5).

(1)  Q,=min{D,.5} (t=12...T),

where, at time ¢, D, and §, are the quantities demanded and supplied respectively,
0, is the actual quantity observed, P, is the price, X' |, and X ,, are vectors of pre-
determined variables, and u,, and u,, are the disturbance terms. The vectors f,
and fi, are vectors of parameters, conformably defined. The stochastic assumptions
are

20 Elw)X] = El1,)X] =0,
EwdjX]) =02,  E[d|X] = ol

where X, = (X, X, P,- ) 1, and u,, are assumed to be continuous.

The problem of estimation concerning the parameters of (1a) and (1b) is that the
price equation, (1c), implies that prices do not adjust in every period in such a
manner as to equate D, and S,. Therefore, unless some adjustments are made, all
of the observations on @, cannot be used in the estimation of equations (1a) and
(1b).

Directional Method I

Fair and Jaffee’s directional method I is based on the assumption that f(D, —
S$) = 0 when D, — §, Z 0. Under this assumption, if 4P, > 0, then Q, = S, if
AP, < 0, then Q, = D, and if AP, = 0, then @, = D, = §,. Directional method 1
takes those sample points for which 4P, > 0 and estimates the supply equation,
and takes those sample points for which AP, < 0 and estimates the demand
equation.

Although directional method 1 yields a correct sample separation under the
above assumptions, the coefficient estimates are not consistent. For instance,
according to the method

(3) Q,=D,=X B, +P_,f, +u,, whendP, <0,
and
(4) Q =8 =X;B;+ P_1f, +uy, whendp, = 0.

2 In this section the price terms are assunted to enter the demand and supply equations with a lag
rather than contemporaneously. In Sections 3 and 4 the price terms are allowed to enter the demand
and supply eqeations contemporaneously.
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Now, the ordinary least squares parameter estimates of (3) and (4) are inconsistent
because the means of the disturbance terms are no longer independent of X,
X,,, and P, over the relevant sample points. To see this. consider Efu, X, .
AP, < (7. In light of (1¢), (1d), and the assumption that f(D, — S,) = 0 when
D, -85,z 0:

(5) Efu i X,, AP < 0] = Elu, |X,,D. < §].

let ¥ = X .8, + P_,fBs,and §F = X, f, + P._ f,. Then from (1a), (5} may be
written as

©  Eluyluy — ua, < SF — DA X,

Now, if the joint density of «,, and u,,, conditional on X,, is specified, the con-
ditional density of ¢, = u,, — u,,, say g,(¢,]X,), may be derived. and the joint
conditional density of u,, and ¢,, say g.(u,. ¢}/X,), may be derived. Therefore,
{6) can be evaluated as®

ji}m J‘{?;Drullgl(uln ¢,|X,} dd)r dulz
PP g(d)X) de,

Clearly, the expectation in (7) will not, in general, be independent of X, unless u,,
and ¢, are independent, in which case g, factors.

{7 Elu, |, < SF — DF, X ] =

A Consistent Method of Estimation

The demand and supply equations, {(3) and (4), can be consistently estimated
by a maximum likelihood technique that is conditional on the segmentation of the
sample. Let gi(u;JAP, < 0, X} be the conditional density of u,, given X, and
AP, < 0, and let g,(u,JAP, = 0, X ) be the conditional density of u,, given X, and
AP, 2 0. In view of the above assumptions, these conditional densities can be
written as gy{u, ¢, < 5% — D¥ X,) and g, lu,|¢, = 5F — D¥ X} respectively.
Now, the maximum likelihood estimators of the parameters 8, 8,, 5. f.. 07,
o3, and ¢, ,, can be obtained by maximizing the likelihood function
(8) L = ] egalwld, <8} =DM X) ] galuzld, = SF — DE X)),

AP <0 APy =0
where u,, = Q, — D¥, u,, = @, — 5% and the products are taken, respectively,
over the periods for which AP, < 0 and AP, > 0. Equation (8) is defined in terms of
strict inequalities because the disturbance terms are assumed to be continuous
“and thus the probability that AP, = 0 is zero.

Empirical Results
The likelihood technique can be implemented as follows: First, note that
J'S—F_;DF gz(”n- ¢I|X[) d¢"r
P g (dd Xy de, T

¥ See Moad and Grayhill [12, Chs. 1-5] for a discussion of the concepts in the development up
through {7

(9) gluld, < §F — DF X} =
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where, as above, g {u,,. ¢, X,) is the joint density of u,, and ¢,, given X, Likewise,

’ ‘”_ g5(“21’ d)rixt) d¢(
(10) gy, = S* — D* X)) = S5t -1
o JS%—D! gl(‘brin) d¢r

where g:{u,,, 9, X,} is the joint density of u,, and ¢,, given X,. If the joint density
of u,, and u,,, conditional on X, is specified to be normal, then g,(¢ X ) will be
normal and g,{u,,, ¢|X,) and g4{u,,. ¢]X,} will each be jointly normal. Therefore,
since it is quite casy numerically to evaluate normal integrals, an attempt can be
made to maximize the likelihood function in (8) using a nonlinear maximization
program. Note that the parameters §,. fi,, 4. and fi, enter both the limits of the
integral and the integrand. The parameters 61, 63, and o, , enter only into the
integrand.

In order to see whether it is feasible to maximize (8), the housing starts model that
Fair and Jaffee used as an example in their study was also used as an example in
this study. The model consists of one demand equation and one supply equation:

=1
(11) HSP = oy + oyt +a, 3 HS, + asRM, , +uy,,
=

:

and

{12} HS}S = Lb(} + #‘Ht + szFQ—l + ¢3DHF31-2 + lp'd.Rszgl + Uzps

where HS? and HS? denote the demand for and supply of housing starts respectively,
RM,_, and RM, _, denote the mortgage rate lagged one and two months re-
spectively, DF6, _, denotes the six-month moving average of the flow of deposits
into savings and loan asscciations (SLAs) and mutual savings banks lagged one
menth, and DHF3,_, denotes the three-month moving average of the flow of
borrowings by SLAs from the Federal Home Loan Bank lagged two months.*
Fair and Jaffee assumed that the error terms, u,, and u,,, were first-order serially
correlated, but for present purposes serial correlation problems will be ignored.
Serial correlation guestions will be considered at the end of this section. Fair
and Jaffee also used seasonally unadjusted data and seasonal dummy variables,
but for purposes here seasonally adjusted data were used.

The results of estimating equations (11) and (12) by directional method 1 and
by the consistent likelihood technique are presented in Table I. The price variable
in the model is the mortgage rate. Two nonlinear maximization techniques were
tried in the maximization of the likelihood function: the quadratic hill-climbing
technique of Goldfed, Quandt, and Trotter [9) and the technique of Powell [13].
The quadratic hill-climbing technique requires first and second derivatives, and
for this purpose numerical first and second derivatives were used. The normal
integrals were evaluated using the ERF function in the FORTRAN library. It
turned out that the likelihood function was not very well behaved. The function

* See Fair [3, Ch. 8] for a more complete description of this model.
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was very flat with respect to the parameter o,,, for example, and the function
appeared to have many local maxima. The quadratic hill-climbing technique and
Powell’s technique worked about equally well in their ability to find local maxima.
The maximum likelihood estimates presented in Table I correspond to the largest
value of the likelihood function found after considerable experimentation, but
there is no guarantee that this is the global maximum.

TABLE 1

ESTIMATES OF THE HOUSING $TARTS MODEL

Directional Maximum Likelihood
Coefficient Method 1 Method
g 2237 7234
oy 2,428 2429
oy — (188 —.0119
oy —.2032 Rk
Vo 15.53 15.49
¥, —.195 - 200
W, 0515 03521
¥y 0469 0519
i, 1017 1019
o} 151.04 22290
a2 76.39 69.06
612 — 59.92

The maximum likelihood estimates in Table I are quite close to the directional
method I estimates, which suggests that for this particular example the bias using
directional method I does not appear to be very great. Whether this is true in general

is, of course, not clear.
Serial Correlation Questions

If the error terms in equations (1a) and (1b) are serially correlated, then it turns
out that the coefficients of (1a) and (1b) are not identified if it is assumed that u,,
and u,, are continuous random variables. Assume, for example, that the error terms
are first-order serially correlated :

S (13) Wy, = Uy Py + £y,
and
(14) Hy = U 12 + Ez2¢s

where the assumptions in (2) now pertain to ¢,, and ¢,, rather than to u,, and u,,.
Using (13} and (14}, equations (1a) and (1b) can be written;

(15) D,=D, 1py+ X~ Xyoibor + Po By — P_ofop + E1ps
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and
(16) Se=8_1p2+ X3 By — Xg-Baps + P By — FrosBups + &5

The problem with estimating equations (15) and (16) is that the explanatory
variables D,_, and §,_, will generally not be observed at the same time. For
instance, given the above assumptions, only if AF,_; = Gare both §,_, and D, _,
observed ; otherwise only one of them is observed. However, if u;, and u,, are
continuous random variables, the probability that 4P, = 0, for any t, is zero.
Consequently, as the sample size approaches infinity, that portion of it corre-
sponding to time periods for which AP, = 0 will remain finite. Now. if it is recalled,
from either (7) or (9} and (10), that a consistent estimation technique, for either or
both equations, necessarily involves observations on all of the predetermined
variables, the result concerning lack of identification follows.” The same situation
also holds if D,_, and §,_, enter directly as explanatory variables in equations
(1a) and (1b) rather than entering indirectly by way of the serial correlation
assumption.

3. QUANTITATIVE METHODS OF ESTIMATION
The Model
The model under consideration in this section is
{17a) D,= X, B+ P+ uy,
(17b) S, = XpBs + BBy + vs,
(17¢) 4B = (D, — §),
and
(17d)  Q, = min{D,, 5} (t=12..T)).

The model in this section differs from the model in Section 2 in that the price term
is altowed to enter contemporaneousty in the demand and supply equations and
the change in price is assumed to be directly proportional to the level of excess
demand. The model is assumed to be identified. Fair and Jaffee demonstrated that
the above model can be estimated by relating @, to D, and S, by means of equations
(17¢) and (17d).°

* For directional method I this problem of identification does not arise since one igrores the problems
that arise because of sample segmentaiion and one chooses as sample points for, say, the demand
equation only those points for which both D, and D, | are observed, This sample segmentation requires
throwing away one observation for every switching point. For their empirical work using directional
method I, Fair and Jaffee did not actually throw away the requisite number of observations, but
assumed that a1 a switching point both D, and D, or §, and §,_ | were observed,

% For example, if AP, = 0, then 5, = @, and B, = Q, + (1/)4P_.
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The model in (17a)«(17d) can also be estimated by the maximum likelihood
technique in a manner similar to that done for the model in Section 2. First, the
sample can be partitioned as follows:

(18) Q= X8 + Py + uy,,

1

1
Q1=X11ﬁ1+Pz ﬁzm—)_P;t-—l"i' Higs WhEI’lAP,BO.,
¥ ¥

and

i

(19) Qr X}zﬁi + PNBZ + “n:

1
Q1 = inBz + Pr(ﬁ@ - %} - P,—l; + ty,, when AP, < 0.

Consider the equations in {18) corresponding to the sample segmentation,
AP, = 0. These equations can be considered as a two equation system in the
variables ¢, and P,. Therefore, the hikelihood function for the equations of (18),
given the sample segmentation, is based on the joint conditional density of u,,
and u,, given X, and 4P, 2 0, where, as in Section 2, X, = (X, X,,,F,_ ) Let
this density be go(u,,. 42 4P, = 0, X,). Then, in a manner not dissimilar from that
of Section 2,

(20} gﬁ{uzn HZIEAPI ? G’ Xt) = gﬁ{uin uztlDz 2 Sl’ Xr)
= goluy, Uy X ( By + BBy + uy, = Xofs
+ P:Bti- + uzreXt)

= goltty,, uy o uy, + oty = GIX), X,),

where the last step of (20} is obtained by replacing P, by its reduced form expression
in u,,, 1;,, and the predetermined variables, putting all terms not involving u,, or
u,, on the right hand side, and denoting the resulting expression as G(X ). The
parameters x,; and o, are functions of the parameters in equations (17a}{17¢).

The likelihood function for the equations of (19), given the sample separation, is
based on the joint conditional density of u,, and u,, given X, and 4P, > 0. Let this
density be g,(uy,, uylAP, 2 0, X,). The derivation of g {u,.4,|4P, < 0,.X,) is
almost identical to that for g¢(u,,. uy|AP, = 0, X,). Now, the maximum likelihood
estimators of the parameters of equations (17a}-(17¢) are obtained by maximizing
the likelihood function

(2£) "‘C'P - H gé(ulr*uhldﬂ = Oaxr}‘}i » l_[ g'?(uln ullidﬂ s 01 X[)Jza

AP =0 AP <0

where u,, and u,, are replaced in both products of (21) by their corresponding
exptessions in (18) and (19), and J, and J, are the corresponding Jacobians of
transformation from u,, and u,, to @, and P,. '
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The likelihood technigque can be implemented in a manner similar to that
described in Section 2, although the situation is somewhat more complicated in
the present case. The joint conditional density g4, for example, can be obtained as
(22) gﬁ(“EnuZz%o{]ul; + Ealdy, 2 G(Xr)'l Xx)

— g8(u1nu2:|Xr}
.”(a.u“ T auzez 60x Sl tg Xo) vty du,

where gg(u,,, 1, X,) is the joint density of v, and u,, conditional on X, and where
the double integral in the denominator represents the probability that o« 1, +
iy, = GIX)). A similar expression c¢an be derived for the joint conditional
density g-. If the joint density of u,, and u,,, conditional on X, is specified to be
normal, then it is possible to evaluate numerically the double integral in (22).
It is thus possible to attempt to maximize the likelihood function in (21) using a
nonlinear maximization program.

4. A MEFHQD OF ESTIMATION FOR THE GENERALIZED MODEL
The Generalized Model

The models described in Sections 2 and 3 contain price equations which are
nonstochastic functions of only one variable, namely excess demand. In this
section the price equation is generalized to be a multivariate, stochastic function.
The model is taken to consist of equations (17a), (17b), (17d), and

(EF"'C’) 4P, = ﬁS(Dt = S5)+ X:ﬁ:ﬁé + Uy,

where X 4, is a vector of predetermined variables and f§, is a vector of parameters.

A Method of Estimation

Because the price equation is multivariate and stochastic, the observed quantity,
Q,, cannot be strictly identified with either D, or S, on the basis of observed price
changes. Hence, @, must be related to D, and §, probabilistically on the basis of
observed price changes. Define a selector variable r,, where

(23) r,=1 ifD, > 3§, r,=0 ifD, <8’
Using this variable, equations {17a), {17b}, and (17d) can be written as
(24) Q =rS +(1—r)D.

Now, from (17¢Y r, = 1 if AP, > X8 + uy, and r, = 0 if AP, < X386 + us,.
In light of these relations, the conditional density of r, given AP, and X,, where X,

? Since the disturbarnce terms of the model are assumed to be continuous variables, the probability
is zero that D, will equal 5,. Thus, the problem of defining r, when D, = §, can be ignored.
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now includes X5, as wellas X,,, X,,.and P,_ ,, can be expressed as
(25 prob{r, = 1|4F,. X,) = H(4P,, X,),
pI’Ob (rp = GIAPuX.c} =1 H(AF. X)),

where H(4P,, X,} = prob (u;, € AP, — X3,f4F,. X,).

The probability statement, prob (uy, € AP, — X, f¢4P,, X,}. can be obtained
from the conditional density of u,, given 4P, and X,. This density in turn depends
upon the joint density of 4P, and u,, and the marginal density of AP,, both condi-
tional on X,. Finally, these densities can be derived if the joint density of the
disturbance terms is specified.® Thus, if the joint density of the disturbance terms
is specified, the functional form of H(4P,, X,) is determined.”

Assuming that the joint density of the disturbance terms is specified, the estima-
tion of the model can now be considered. The model under consideration is

{26a) Q,=rS + (1 —rib,

(26b} D, = X, + BB, + uy,,

{26¢) S, = X8+ BB, + uy,,

(26d) AP, = Bs(D, — 8) + X384 + ts,
and

(26e) r, = H(AP, X ) + vy,

where, in light of (253, u,, is 2 random variable such that Efu,J4P,, X,] = 0. Since
observations on D,, §,, and r, are not available, these variables will first be
eliminated from the model. For the sake of having a compact notation, let D} =
Xlaﬁi + P:;BZs S? = Xz:ﬁa + Ptﬁm and H: = H(AP”X:}' NOW.- Dz: Sn and J’!
can be eliminated from (26a}-{26¢) to get

(27a} Q.= HSY + Df — HD} + €, + e,
and
(270) AP, = B(DF ~ S} + Xy fe + €30

where Q, = H(uy, — uy,), ey, = Uy, + uy (S, — D)), and e,, = uy, + (4, — uz:)‘ It
is clear that E[e,|X,] = 0. Also, since E{u,,|4P, X,] = Ofor any values of X5, and

# As an example, the reduced form equation for AP, is linear in the elements of X and u,,, u,,, and
iy, If the disturbance terms are assumed to be normatly distributed and independent of X, then the
conditional density of AP, and w,, is also normal and, therefore, is completely specified by two con-
ditional means and variances and by the covariance of AP, and u,,. The mean and variance of 14, are
given by the specifications of the model; the mean and variance of 4F,, as well as the covariance of
AP, with u,,, are easily derived from the reduced form equation for 4P,,

? Note that for certain specifications of the disturbance terms (e.g.. normality) this function will
involve integrals. More will be said concerning this function below.
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uy,, it follows from the price equation that Efu, (D, — §), X,] = 0. Therefore,
Ele, | X,] = 0. Thus, ¢,, and e,, can be considered as disturbance terms.

Unlike the remaining terms of (27a) and (27b), 2, depends directly upon the
disturbance terms u,, and u,,. Therefore £, cannot be considered as part of the
regression function ; 2, also cannot be considered as a disturbance term because
it involves the product of H, and (u,, — u,,) and so will not in general have a mean
ofzero. The procedurehere, therefore, will be to abstract the mean of @, , conditional
on AP, and X, and incorporate it within the regression function so as to end up
with a two-equation sysiem based on the two endogenous variables, Q, and AP,
or,since AP, =P, — P_,,onQ, and P,.

Since the expectation of one variable conditional upon a set of others is, in
general, a function of the conditioning variables, it follows that

(28) E[CAF. X ] = H.E[u;, — u, |F, X,] = HL(F,, X)),

where I{F,, X,) is a function of the elements of X, and P,. It is interesting to note
that if u,,, u,,, and u5, are assumed to be jointly normal, the joint distribution of
(43, — uy,) and P, will be normal and, therefore, the conditional distribution of
Uy, — 1, given P, will be normal; hence, the function L in (28} will be linear in
F,and X,. In any event, the parameters of L will be functions of the parameters of
thedemand, supply, and price equations, as well as of the variances and convariances
of u,,, u,,, and u;,.
In light of equation (28), it follows that £, can be expressed as

299 @ =HLP,X)+ 0,

where E{#|P,, X,] = 0, and so E[6|X,] = (. Therefore, equations (27a) and (27b)
can be expressed as

(303) QI=H151*+D:*“H1DI‘*+H1L(Plﬁxr)+wz
and
(30 AP, = B(D}¥ — S}) + X386 + ey,

= Xi(BsB1) + P{fsF2) — X2BsB3) — PifsBa) + X3 fs + €2,

where, = ¢, + 0,,and so E[¢ | X,] = 0.

Equations (30a) and (30b) form a simultaneous two-equation system for Q,
and P,, which is nonlinear in the parameters and also in one of the endogenous
variables, P,.'° Aside from the maximum likelihood technique, general results
concerning the estimation of such systems are not available. The difficulty in
applying the maximum likelihood technique to the system (30a}-(30b) is that the
joint distribution of ¥, and e,, will be, for just about any specification of u,,, ug,,
and u,,, quite complicated. However, a consistent estimation technique can be

1% Note that although P, does rot depend directty on @, in (30b), the system is fully simultaneous
because i, and ¢, are correlated, e.g., they both contain u,,.
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developed, subject to certain approximations, using the method of moments
because E[y|X,] = E[e,|X,] = 0.

First, it will be assumed that u,,, 1,,, and u,, are jointly normal so that L(P,, X))
is linear in P, and X, . Second, it will be assumed that the error of approximation in
the expansion of H, (as a function of P, and X,) in a Taylor series is negligible after
a finite number of terms.'! Now, substituting the expression for L(P,, X)) and the
polynomial expansion of H, into (30a) yields an equation of the form

(303’) Qt = le?l + ZZ[?Z + 'j}t’

where £, is a row vector of observations on known pelynomial functions of the
predetermined variables, X, and Z,, is a row vector of observations on known
polynomial functions of the endogenous variable P, and predetermined variabies
X,.'* The vectors y; and 7, are vectors of parameters, the elements of which are
nonlinear functions of §, through ¢ and of the variances and covariances of u,,
s, and uy,. The order of these vectors depends on the degree of the polynomial
expansion.

Equations (30a" and (30b) form a two-equation system that contains nonlinear,
but known, endogenous functions and nonlinear restrictions on the parameters—
a system, in other words, that is nonlinear in both variables and parameters. The
system may be consistently estimated by a nonlinear two-stage least squares
procedure. Specifically, since Z,, is the vecior of endogenous functions in (30a"),
each element of Z,,, one of which is P,, can be regressed on the elements of Z,, and
on the predetermined variables in (30b) as well as on powers of these variables.!?
Let Z,, and P, denote the predicted values of the elements of Z,, and P,. Now, as
will be shown below, the basic parameters of the system f, through 8, and the
variances and covariances of u,, u,,. and u,,, can be estimated by minimizing

(31) S=Q ~ Z,y; — Z37:0Q — Z,7, — Zavy) + 4P — X BsB,
— PBsBy + X BsBy + PPsPa — X3B6)(4P — X\ Bsh,
— PBsf, + XaBsBy + PRy — X,oBo).

where 0, Z,.Z2,, AP, X,, X,, X ,,and P are the vectors and matrices of observa-
tions on the corresponding elements, and « is any nonnegative number. If « is taken
to be zero, then only information regarding equation (30a’) is used to obtain the
estimates, whereas if x is taken to be positive, then information regarding equation
{30b) is also used in obtaining the estimates.

! Note, if u,,, u3,, and u,, are jointly normal, H, will be of the form
Ly (Pe.X o}
H={" ez,

where f(Z) is the density for a standard normal variable and L, (P,, X} is lincar in X, and P,; see (25)
and Footnote 7. Therefore, the expansion of H, is straightforward. In 2 sense, most econometric
systems may be considered as depending upon such polynomial approximations; see, for example,
Fisher [6, pp. 127-29].

12 For example, one such function might be P1LX |, where X, is a predetermined variable.

13 See Kelejian [10].
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For a given value of «, the minimization of § in (31) with respect to the para-
meters f#, through 8, and the variances and covariances of u,,, u,,, and u;, is
quite straightforward and should be able to be handled by nonlinear optimization
programs like those used in Section 2. If first and second derivatives of § are
required, these can be computed numerically or else one can go to the bother of
actually differentiating § twice with respect to §, through ;. Indeed, the problem
of minimizing § in (31) does not appear to be as difficult as was the problem of
maximizing % in (8)since the maximization of & required the evaluation of normal
integrals, where the limits of the integrals were themselives functions of some of the
parameter values. The steps invelved in computing the estimates of the parameters
of equations (30a) and (30b) are tedious because of the need to expand H, in a
Taylor series and the need to express L(F,, X} as an explicit function of P, X,, and
the parameter values, but aside from the tediousness the computation of the
estimates does not appear infeasible or impractical.

The choice of the value of o in (31} is somewhat arbitrary. A choice of a value of
one means that both equations are weighted equally, and this may be as good a
choice as any. One might also want to consider a two-step procedure in which
imitial estimates of the parameter values are obtained by, say, using « = I, then
estimating the variances of ¢, and ¢,,, and then reestimating the parameters taking
a to be the ratio of the estimated variance of ¥, to the estimated variance of e,,.*

It remains to be shown that the minimization of (31) yields consistent parameter
estimates. Toseethis,let ¥, = Z,, — Z,,and V,, = P, — B Also, rewrite equation
(30b) as

(32) AP = Zyyy + Py, + ey,

where Z,, = (X,,,X,.X;) and y; and y, are the corresponding vectors of
parameters, the elements of which are nonlinear functions of §, through f.
Equations (30a') and (32) can be written:

(33) Q=27 + 221}’2 + 4, + I?n?’z
and
(34) AP, = Z3y; + Pr}’:; + ey + I72:3*’4-
Now, let
71
, z, 7, 0 0 Ly,
3% Y= 2 ’ = . A1, Y= ,
Jaap 0 0 2z, JabP ",
T4
| .
&= fl{f ’ I?xlyl ’_0 4 ,},*mt}z;’
INETH 0 JabF Vs

' Tt should be noted. of course, that the variance of i, is not constant over the sample period, and
so what one is obtaining using this procedure is an estimate of the average variance of i, over the
sample period.
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where the dropping of the ¢ subscripts means that the symbols refer to vectors or
matrices of abservations. Equations (33) and {34) can now be written, after (34} is
multiplied across by V/;, as

(36) Y=2Zy+ ¢+ Py*.
Using this notation, § in (31) is
{37) S={Y -~ Zy(Y — 2y
=YY —-2ZY+ yZZy.

Let 8 be the vector of parameters consisting of |, through j, and of the variances
and covariances of u,,, u,,, and u,,.'> Minimizing § with respect to # yields
a8
op

where 9 is y evaluated at Band?$ o 18 the matrix of partial derivatives ¢y/¢f evaluated
at fi. Linearizing (38) about § yields

(39)  WNZ[Zy+ ZyB— B~ Y]=0,
or, using (36),
40) B — B =(ZZy) 92z + Py

(38) = —25,Z'Y + 1,279 = 0,

Since plimy, . T7'Z'% = 0, plim; ., (8 — f) will be zero if plim,, . T~ '{y;Z' Fy*)
is zero. Now,

Zi o
I A% R |
(41) 'V = Ay
aZ Vs
0 oPV,

Since it was assumed that all of the predetermined variables were used in construct-
ing the calculated values, it follows by the least squares property that Z'V = (;
therefore, fi is consistent.

5, CONCLUSION

The study of the estimation of disequilibrium models has become quite popular
recently.’® In this paper three methods of estimating disequilibrium models have
been proposed. The first two methods—maximum likelihood methods—are
concerned with the estimation of models in which the price equation is a non-

'* The following derivation is similar, although in a differen: contex:, to a derivation given by
Aigner and Goldberger [1, p. 715, n. 1]

¢ In addition to the study of Fair and JafTee [4], the following studies are concerned in ong way or
another with the question of esttmating disequilibrium models : Goldfeld and Quandt [8], Quandt [14],
Goldfeld, Keledian, and Quandt [7). Brown and Durbin [2), Farley and Hinich {5], and MeGee and
Carleton [11]. See Quandt {14] for a bricf review of these studies.
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stochastic function of excess demand. The third method is concerned with the
estimation of a more general model in which the price equation is allowed to be a
multivariate, stochastic function. The problems involved in estimating dis-
equilibrium models turn out to be fairly complicated, and for this reason one may
in practice want to begin with the estimation of simply-specified models before
considering more general models. Nevertheless, it is encouraging that the quite
general model considered in Section 4 of this paper appears capable of estimation.
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