Chapter Ten

Some Optimal Control
Results

101 INTRODUCTION

Some results of obtaining optimal contrels for the empirical model are pre-
sented in this chapter. It is now computationally feasible, as discussed in the
next section, to obtain optimal controls for a model of the present size. Solving
optimal control problems for a model is useful in the sense that one may gain
insights into the properties of the model that one would not otherwise have
obtained. It is also useful in allowing one to compare the historical record of
the economy with the record that would have been achieved had some parti-
cular objective function been maximized instead.

in section 10.3 the results of solving six control problems are pre-
sented. Two problems are solved for the period of the Eisenhower Administra-
tions, two for the period of the Kennedy-Johnson Administrations, and two
for the period of the Nixon-Ford Administrations. The objective function for
each problem targets, for each quarter, a given level of real output and a zero
rate of inflation. The two problems for each period differ in the relative weights
attached to the two targets. X and ¥ BG are used as the control variables for
each problem.

The most important property of the model that is revealed from the
work in this chapter is that the cost of increasing output (in terms of additional
inflation generated) is generally much less than the cost of lowering the rate
of inflation {in terms of lower output). The optima tend to correspond to the
output targets being more closely met than the inflation targets. This property,
if true of the real world, has important policy implications,

The optimal control problems that the government is assumed to
be solving in this chapter should not be confused with the eptimal control
problems that the individual behavioral units are assumed to be solving in
making their decisions. The government should be considered to be solving
its control problem subject to the restriction that each behavioral unit in the
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7188 A Mode! of Macraeconomic Activity

economy takes as given the control values chosen by the government and
solves its own control problem on the basis of these and other relevant
‘values.

10.2 THE. COMPUTATION OF THE OPTIMAL CONTROLS

The procedure that was used to solve the optimal control problems for the
model is described in Fair [20]. This procedure is briefly as follows. Consider
the model as represented by the equation system in (3.1) in Chapter Three:

=1,...,C
¢g(}’1z: cons Yoo Xipeoaos Xyps ﬁg) =U g (g =1,..., T)). (3.1}

Assume that the objective function, A, to be maximized is:

W:h(yil’ e Ve e ¥ats oo Vet X s Xips e e Xyps oo xh’?‘)' (30]}

Assume, finally, without loss of generality, that x,,(t =1. ..., T)is the only
control variable. Now, given a set of estimates of the 8, vectors and given
values of the x; (i =1, ..., ¥), the model in (3.1) can be solved numerically
forthe v, (i = 1,..., (), after, say, all of the error terms have been set equal to
zero,

Once the model has been selved for all T periods, the value of W
in {10.1) can be computed. If lagged endogenecus variables are included
among the x;, variables, they are merely updated in the usual way in the course
of solving the model. Given a different set of values of the control variable,
the model can be resolved and a new value of W computed. W can thus be
considered to be an implicit function of the T control values:

W=y(xs, .00, 207) (10.2}

The optimal control problem set up in the above way is simply a
standard nonlinear maximization problem, the problem of finding the T
values of x,,(t =1, 2, ..., T for which ¥ is at a maximum. Consequently,
the maximization algorithms that were discussed in section 3.4 and that
were used in the computation of the FIML estimates can be used to solve
optimal control problems as well. All that one needs to do s to combine one
of the algorithm programs with-a program that solves the model. When using
the maximization algorithms for this purpose, each function evaluation corres-
ponds to salving the model once for T periods and then computing the value
of W. If derivatives are needed for a particular algorithm, they can be com-
puted numerically. Analytic derivatives are generally not available for this
purpose because it is generally not possible to write the function  in (10.2)
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in analytic form. If there are two control variables, say xy, and x,,. then W
in (10.2) is merely a function of both x;, and x, (¢ =1,2, ..., T).

The results in [20] indicate that it is possible to solve quite large
control problems when they are set up in the above way. As mentioned in
section 3.4, in one case a preblem of 239 parameters was solved (four control
variables for 60 periods, less one value that was known because the control
variable entered the model with a lag of one period). Although the discussion
so far has been in terms of solving deterministic control problems, some
suggestions are also presented in [20] on how the above way of setting up the
control problem might be used to solve stochastic control problems through
the use of stochastic simulation. No attempt was made in this study, however,
to solve any stochastic control problems.

The three control periods censidered are 19531H-19601V (30 quar-
ters), 1961119681V (32 quarters), and 1969I-19751 (25 quarters). The first
period covers all the quarters of the two Eisenhower Administrations except
for the first two quarters of the first Administration; the second peried covers
all of the quarters of the Kennedy-Johnson and Johnson Administrations; and
the third period covers all of the quarters of the first Nixon Administration
and the first nine quarters of the Nixon-Ford Administration. The first twe
quarters of the first Eisenhower Administration were not incloded in the first
period because of a lack of enough earlier data.

The basic objective function that was used targets a given level of
real output and a zero rate of inflation for each quarter. It is easiest to con-
sider the objective function to be a loss function that is to be minimized. This
loss function is:

#

i [ / },*Y’ /?w +(%APF1)-2] .7 >0, (10.3)

where ¥¥ = target level of Y,

wa* 2
/Y,—}f;*/-’-_ (‘Y* ‘) if ¥, <Y}
B - " ¥
t

Y*
' 0 if Y, = Y*

PF,
YAPF, = (PF -

[

4
) — 1, (percentage change in PF, at an annual rate).

The loss function penalizes rates of inflation that are both above
and below the target value of zero, but it only penalizes values of Y, that are
below the target. A straight quadratic function in {10.3) would also penalize
values of ¥, that are above the target. There is nothing in the present way of
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solving control problems that requires that the objective function be quadratic,
and the specification in (10.3) seems more reasonable than a straight quadratic
specification. There is also nothing in the present way of solving control
problems that requires that the objective function be a sum over separate
time periods, although the function in {10.3) is.

The target values for real output were computed as follows. Four
quarters were first chosen as benchmark quarters: 19531V, 19571, 19651V,
and 19731V, The unemployment rates in these four quarters were 3.7, 4.0, 4.1,
and 4.7 percent, respectively. The four quarters are quarters in which there
were high levels of economic activity. One may question whether the level of
economic activity in 19731V was as high as the levels in the other three bench-
mark quarters, but for present purposes it is assumed to be so.

The target value of output in each of these quarters was taken to
be the actual value. The target values for the other quarters were then taken to
lie on straight lines between the four benchmark values. The line between
19531V and 19571 was extended backward to get a value for 1953111, and the
line between 1965IV and 19731V was extended forward to get values for
1974E-19750, The target values are presented in Tables 101, 10-2, and 10-3,
below. There are 20 quarters in the 193311119751 period in which the actual
value of output is greater than the target value.

Two variables of the government were used as control variables,
XG and VBG. In order to lessen computational costs, it turned out to be
convenient to have FBG be adjusted each quarter so as to achieve a given
target level of the bill rate. The target bill rate series is a series that has a posi-
tive trend between 193311 and 19701V and then is flat {at 6.3 percent) from
19711 on. The values for the series between 195311 and 19701V were taken to
be the predicted values from the regression of log RBILL, on a constant and
t for the 19521-1970IV period. This is the same regression that is used in the
construction of RBILLY in the model. (See Equation 79 in Table 2-2.)

The treatment of VBG in this way means that monetary policy is
assumed to be accommodating in the sense of always achieving the given target
level of the bill rate each quarter regardless of the value of XG chosen. Al-
though XG is the only fiscal policy variable used, the following resulis would
not be changed very much if more than one variable were used. Given that the
objective function targets only real output and the rate of inflation, adding,
say. a tax rate variable such as d, as a control variable would have little effect
on decreasing the loss from the minimum loss that can be achieved by using
XG alone. The fiscal policy variables are collinear in this sense.

As mentioned above, only deterministic control problems have
been solved here. A standard procedure in solving deterministic control
problems with a stochastic model is to set all the error terms in the model
equal to their expected values, usually zero. An alternative procedure. how-
ever, is to set the error terms equal to their historic values, i.c., to their esti-
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mated values in the sample period, and this is the procedure followed here.
Setting the error terms equal to their historic values means that when the
model is solved using the actual values of the exogenous variables, the solu-
tion values of the endogenous variables are just the actual values.

In order to justify the procedure of setting the error terms equal to
their historic values, consider how an administration would behave in practice
if it could only solve deterministic control problems. Since an administration
has plenty of time each quarter to reoptimize, it could solve a series of control
problems, one each quarter, where each problem would be based on setting
the future error terms equal to zero. The solution of each problem would result
‘in optimal paths of the control variables, but only the values of the control
variables for the first quarter for each problem would actually be carried out.
As the administration reoptimized each quarter, it would adjust to the errors
of the previous quarter by using in its solution the actual values of the endo-
genous variables of the previous quarter. _

If more computer time had been available for this project, a series
of control problems could have been solved for each of the three periods
considered. All the problems would have been based on setting the future
error terms equal to zero. The first problem would start in the first quarter
and would take as given all the values of the endogenous variables up to, but
not including, the first quarter. The optimal values of the endogenous and
control variables for the first quarter that result from solving this problem
would be recorded.

The second problem would start in the second quarter, would use
as the first quarter value of each control variable the optimal value just
recorded, and would use as the first quarter value of each endogencus variable
the optimal value just recorded plus the historic value of the error term that
pertained to the particular variable in question. The optimal values of the
endogenous and control variables for the second quarter that result from
solving the second problem would be recorded. This procedure would be
repeated for the remaining problems. The recorded series of each control
variable would then be taken to be the optimal series. These are series that
an administration could have computed had it had the present model at its
disposal and had it known all of the values of the noncontrolled exogenous
variables.

Since it was not feasible to solve a series of problems for each of
the three periods considered, some approximation to the set of solutions that
would result from such an exercise had to be made. The procedure of setting
the error terms equal to their historic values before solving assumes that
an administration has more knowledge than it actually has. An administration
clearly does not know all future values of the error terms. The procedure
of setting the error terms equal to their expected values before solving {and
solving only once), on the other hand, assumes that an administration has less
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knowledge than it actually has because it can continually adjust to past error
terms by reoptimizing each quarter. The procedure of setting the error terms
‘equal to their historic values was chosen on the grounds that it seemed likely
to lead to a set of optimal values that more closely approximates the preferred
set. -

The control problems were solved using the gradient algorithm
mentioned in section 3.4. The gradient algorithm turned out to be cheaper
to use and more adept at decreasing the value of the loss function than was
Powell's no-derivative algorithm. This is in contrast to the case for the FIML
problem, where Powell’s no-derivative algorithm worked better. All deriva-
tives for the gradient algorithm were obtained numerically. For the first period
of 30 quarters, there are 60 values to determine altogether, 30 for XG and 30
for VBG. The values for ¥BG are, however, quite easy to compute, since they
are merely the ones necessary, given the values for XG, to have the bill rate
be equal to its target value each quarter. For purposes of solving the control
problems, VBG is effectively an endogenous variable and the bill rate is an
exogenous variable. This means that there are really only the 30 values of
XG that the algorithm has to determine for the first period. For the second
period there are 32 values of XG to determine, and for the third period there
are 25 values to determine.

For the algorithm the starting values of X were not taken to be
the historic values, as is commonly done. Instead, the values of XG that led

-to the output target’s being met exactly were used as starting values. These
‘values were obtained by treating ¥ as an exogenous variable (the values of
this variable being equal to the target values) and XG as an endogenous
variable and solving the model. For all three periods, the values of XG that
led to the output target’s being met exactly resulted in a smaller value of loss
than did the historic values of XG and so were better starting points,

It was mentioned in section 3.5 that the time needed to solve the
model once for an 82-quarter period is about ten seconds. This is for the
version of the model in which the bill rate is taken to be endogenous. When
the bill rate is taken to be exogenous, as for the work in this chapter, the
model is somewhat easier t¢ solve, The time needed to solve the model once
for the 30-quarter period considered in this chapter, for example, is about
two seconds. rather than about four seconds for the endogenous bill rate
case.

The gradient algorithm converged in about five iterations for each
problem. Each iteration corresponded to about 50 function evaluations—i.e.,
50 solutions of the model for the 30-, 32-, or 25-quarter period. The gradient
algorithm thus required about 250 function evaluations to converge, which
at roughly two seconds per function evaluation is about eight minutes of
computer timie on the IBM 370-158 at Yale. It should be stressed that there
is no guarantee that the algorithm actually found the true optimum in each
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case. Cost considerations prevented very much experimentation to see if the
true optima had been found.

10.3 THE RESULTS

The results of solving the six control problems are presented in Tables 101,
10-2, and 10-3. For the first problem for each period a value of y in (10.3)
of 1.0 was used, and for the second problem for each period a value of y of
0.1 was used. y is the weight attached to the output target in the loss function.
The weight attached to the output target is thus ten times greater for the
first problem than for the second.

The following is a brief summary of the results in the three tables:

Table 10-1 (Sum of Y* over all 30 quarters = 3076.0)
Optimal for Optimal for

Actual p =1 y=0.1
1. Sum of Y over all 30 quarters 2995.6 3071.3 3028.0
2. Average rate of inflation over the
30 quarters (annual rate) 1.929% 2.03% 1.92%
3. Average unemployment rate over
the 30 quarters 5.07 4.68 5.01

Table 10-2 (Sum of Y* over all 32 quarters = 4443.9)

1. Sum of ¥ over all 32 quarters 4328.2 4438.1 4379.4
2. Average rate of inflation aver the

32 quarters {(annual rate) 1.949% 2.13% 2.04%
3. Average unemployment rate over

the 32 quarters 4.86 4.87 5.16

Table 10-3 (Sum of Y* over all 25 quarters = 4507.7)

1. Sum of ¥ over all 25 quarters 4363.5 4482.8 4365.1
2. Average rate of inflation over the

25 quarters (annual rate) 5.97% 6.22% 6.04 %,
3. Average unemployment rate over

the 25 quarters 522 4.70 5.35

The summary results for Table 10-1 show that for y = 0.1 the
optimal average rate of inflation over the 30 quarters is the same as the actual
rate. The optimal amount of output for the 30 quarters is, however, larger
than the actual amount, and the optimal average unemployment rate is lower



Table 10-1. Control Results for the Eisenhower Administrations
Actual Values Optimal Values for y = 1.0 Optimal Values for y = 0.1

100 100 Target 100 100 100 100

Quarter ¥ %UAPF UR RBILL RBILL Y* AXG AVBG ¥ YMAPF UR AXG AVBG ¥ APF UR
195310 91.4 14 28 20 16 §9.2 —-16 —0.7 89.9 0.2 31 —1.8 —08 89.7 01 31
v 90.0 ol 37 15 16 90.0 04 03 90.1 05 440 —-04 06 £9.3 04 4.2
19541 89.0 48 53 11 1.7 90.9 1.6 0.7 90.6 59 31 0.7 0.1 89.3 58 54
11 38.9 03 58 08 17 %1.7 23 1.7 9i.6 i3 51 1.4 10 %00 1.7 %46

111 90.1 14 60 09 17 92.5 1.8 2.4 924 23 53 0.9 1.6 20.6 22 58

13% 92.3 20 54 19 1.8 934 1.0 27 934 30 51 0.2 1.9 91.5 2.8 56
19351 95.5 06 47 1.3 1.8 94.2 —0.3 2.8 94.4 1.1 51 1.0 1.9 a2.5 1.0 56
1 97.3 —00 44 16 18 951 0.3 31 952 00 53 —10 2.3 933 —00 58

1 98.9 30 42 19 19 96.0 —0.8 35 95.8 27 54 — 1.4 2.6 94.1 26 58

v 999 41 42 23 19 969 —0.8 3.7 96.7 34 57 —1.3 2.8 95,1 3.3 6.0
19561 99.3 31 41 24 20 97.7 0.5 4.7 97.5 25 52 —0.0 3.7 96.1 24 56
1n 99.5 26 42 26 20 98.6 0.2 5.1 98.3 20 5.0 —0.2 40 969 1.8 53

11 99,3 39 42 26 20 99.6 0.6 57 98.9 34 46 0.1 4.4 977 3.2 49

v 100.8 3% 41 31 21 1005 —0.6 5.2 968 30 45 —1.1 39 98.5 29 48
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Notes: AXG == difference between the optimal and actual values of XG.
AVBG = difference between the optimal and actual values of VBG.
For both problems the optimal bill rate series is the target RBILL series.
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Table 10-2. Control Results for the Kennedy-Johnson Administrations

Actual Values Optimal Values for y = 1.0 Qptimal Values for v = 0.1

160 100 Target 100 100 - 100 100

Quarter ¥ YAPF UR RBILL RRILL Y* AXG AVBG Y APF UR AXG AVBG ¥ %“APF UR
19611 107.3 07 68 24 29 1189 10.3 52 1188 1.5 53 99 50 1184 15 54
1T 109.9 07 70 23 30 1201 38 43 1199 1.7 46 3.0 3.8 1189 16 48
1 1120 —0.5 68 23 30 1213 3.5 39 121t Q4 4.8 2.6 34 H97? 63 51
v 114.3 20 62 25 31 122.5 2.8 3.5 1222 27 50 1.8 24 1206 26 54
19621 1161 85 56 27 31 1237 3.3 40 1235 11 47 2.5 28 1212 1.0 52
1L 118.0 1.3 55 27 32 1249 3.2 47 1247 20 47 24 34 1234 19 5.1
Hi1 119.2 02 56 29 33 1262 33 5.7 1260 09 48 a7 42 1247 08 51
v 1206 1.1 55 28 33 1275 2.8 61 1272 18 48 2.0 44 1257 1.7 5.1
19631 121.3 09 58 29 34 1287 34 7.0 1285 15 52 2.7 52 1269 14 355
i 1224 280 57 29 35 1300 34 7.9 1288 27 50 2.7 59 1282 26 53
111 1245 0.4 55 33 35 1313 2.4 8.1 131,11 08 49 1.8 68 1295 07 52
v 126.3 1.7 - 56 15 36 1326 2.1 82 1324 20 351 13 60 1307 19 54
19641 128.4 14 55 35 37 13440 1.1 7.8 1337 1.7 0.4 55 1318 16 36
11 130.2 14 33 35 38 1353 1.2 8.0 1350 1.7 51 0.5 56 1331 1.6 535
HI 131.8 1.9 50 35 38 1366 1.0 3.1 1364 20 5.1 0.5 58 1345 19 54
v 132.5 1.3 50 37 39 1380 1.9 89 1378 1.8 30 1.4 6.6 1361 1.5 52
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148.9
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—4.0
3.6
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140.6
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143.4

144.7
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147.3
148.6
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Motes: See notes to Table 10-1.
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Table 10-3. Contrei Results for the Nixon-Ford Admihistrations

Actual Values Optimal Values for y == 1.0 Optimal Values for y == 0.1

100 100 Target 100 100 100 100

Quarter Y Y APF URRBILLRBILL Y* AXG AVBG Y YUAPF UR AXG AVRG ¥ YUAPF UR
19691 162.5 41 34 61 55 161.5 -2 - 1.0 1615 3.8 35 ~1.0 —-09 1616 18 33
1f 163.2 44 35 62 56 1629 -04 12 1628 42 36 1.2 —17 {620 4.1 37

T 163.8 47 36 10 57 1644 —0.0 1.6 1642 43 3.7 —1.1 =27 1629 4.1 39

v 162.9 44 36 73 58 1659 1.9 —09 1655 44 33 0.8 —246 163.8 4.1 3.6
19701 161.9 45 42 13 39 1674 33 0.3 162.0 49 33 1.8 2.1 165.0 45 38
I i61.9 45 48 a8 60 (689 148 11 1685 30 34 18 20 661 4.7 39

I 163.2 3.2 52 64 62 1705 2.6 0.6 1698 36 37 03 35 1666 34 44

v 161.2 7.2 58 54 63 1720 56 26 170 79 42 32 25 1674 7.7 4%
19711 t6s5.6 36 60 39 63 1736 2.1 17 1730 48 4.5 02 37 1694 47 52
1T 166.8 44 359 42 63 1751 4.3 29 1748 4.8 48 27 =29 17la 47 54

Hi 167.8 26 60 51 63 1767 4.5 37 1764 30 49 22 17134 30 54

v 170.6 04 60 42 63 783 3.4 4.6 1719 4 5.1 19 —16 1749 {4 55
19721 173.6 53 38 34 63. 1799 3.3 6.5 1794 6.7 53 2.1 —0.f 1766 0.6 57
1f 177.5 B7 57 37 63 1816 2.7 8.1 . 181.2 26 5.5 1.7 1.4 1787 25 58

HI 180.2 22 56 42 63 {81z 3.0 107 1829 29 356 1.9 3.8 1803 19 59

1v 184.0 30 53 49 63 1849 1.7 12.6 1843 34 56 0.4 53 1817 34 6.0
19731 188.7 33 350 56 63 1B6S —0.4 132 1852 35 57 —2.1 54 1826 14 6.1
1 189.6 57 49 66 63 1882 1.3 159 1878 55 57 -0.8 7.4 1834 54 6.2

i 190.5 54 48 84 63 [899 0.9 17,1 189.0 47 5.5 —2.3 7.4 1830 45 6.1

v 1917 @5 47 75 63 1917 —0.3 18.1 1894 43 33 -54 60 1807 9.0 64
19741 1878 145 51 16 63 1934 18 227 1902 141 54 2.6 78 1784 138 6.8
11 1869 155 51 831 63 1951 16 252 I19E3 150 4.8 —3.1 84 1777 145 6.5

il 1859 130 55 831 63 199 5.1 285 1932 127 4.4 - 0.6 113 1799 121 64

1% 1810 133 6.6 7.3 63 1987 10.6 W6 1959 134 49 6.8 212 1853 130 63

19751 1747 1O 83 59 63 2005 15.1 479 1991 16 55 13.8 M7 1921 113 64
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than the actual average rate. The optimal output series is smoother than the
actual output series, which, because of the nonlinearities in the model, allows
more output to be produced on average with the same average rate of inflation.

For y = 1.0 in Table 10-1, the optimum corresponds to more out-
put, but also to a higher average rate of inflation. Comparing the two sets of
optimal results in Table 10-1, it can be seen that the optimum for y = 1.0
corresponds to 43.3 hillion dollars more in cutput being produced over the
30 quarters and to a higher average rate of inflation of 0.11 percent per year.
The difference between the optimal average unemployment rates over the 30
quarters is 0.33 percentage points.

The summary results for Table 10-2 show that both optima corres-
pond to more output and more inflation than actoally existed. Comparing the
two sets of optimal results, it can be seen that the optimum for y = [.Q corres-
ponds to 58.7 billion dollars more in output over the 32 quarters, to a higher
average rate of inflation of 0.09 percent per year. and to a lower average un-
employment rate of 0.29 percentage points. It is interesting to note that the
average unemployment rate for both optima are higher than the actual rate,
even though both optima correspond. to more output being produced. There
are two main reasons for this. The first is that the bill rates that were targeted
for the two runs are generally larger than the actual bill rates. Interest rates
have a positive effect on the work effort of the household sector; in particular
the mortgage rate has a positive effect on the labor force participation of all
persons 16 and over except men 25-54. The higher interest rates for the op-
timal runs thus cause the labor force to be larger than otherwise, which in
turn causes the unemployment rate to be larger than otherwise.

The other main reason for the higher unemployment rates for the
optimal runs is that the optima correspond to higher real wages. When the
economy expands in the model, the money wage rate, WF, rises faster initially
than does the price level. The real wage thus increases initially, which has a
positive effect on the labor force and thus on the unemployment rate. It was
mentioned in section 1.1 and in Chapter Nine that there are many factors that
have an effect on the unemployment rate, and the resuits in Table 10-2 pro-
vide a good example of how the unemployment rate can be higher in one run
than in another even though real output is also higher.

The summary results for Table 10-3 show that the optimal values
for y = 0.1 are close to the actual values. The optimal value of output over
the 25 quarters is only 1.6 billion dollars higher than the actual value. 1t is
again the case that the optimal average unemployment rate is larger than the
actual rate even though the optimal value of output is greater than the actual
value. Comparing the two sets of optimal results, the optimum for v = 1.0
corresponds to 117.7 billion deliars more in output over the 25 quarters, to
a higher average rate of inflation of 0.18 percent per year, and to a lower
average unemployment rate of 0.65 percentage points.
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An important feature of the results in the three tables is that for
y = 1.0 the optimal output series correspond closely to the target series. In
Table 101, for example, the difference between the sum of Y* and the sum
of the optimal output values over the 30 quarters is only 4.7 billion dollars,
In Tables [0-2 and 16-3 the respective differences are 7.8 and 24.9 billion
dollars. Since the starting values used for XG corresponded to the output
targets being achieved exactly, this closeness may be due merely to a failure
on the part of the algorithm to find the true optima. This, however, did not
appear to be the case from some experimentation that was carried out to see
if the true optima had been attained.

What these and other results show is that the model has the
property that output can be increased to some reasonable target value (from
a lower value) without having too sertous an affect on the rate of inflation. It
15 not, however, generally possible to decrease the rate of inflation to, say,
zero percent (from a higher rate) without having serious effects on the level of
output. Consequently, when a loss function like (10.3) is minimized, with equal
weights attached to the output and inflation targets, the optimum tends to
. correspond more closely to the output target being achieved than it does to
the inflation target being achieved. Even when the weight on the output target
is only one-tenth of the weight on the inflation target, it is still the case that
the inflation target of zero percent is not close to being achieved.

It is possible to use the results in Tables 10-1, 10-2, and 10-3 to
examine the question of the “trade-off”” between, say. the rate of inflation and
the level of output. One must be very careful in doing this, however, because
of the many diverse factors that affect both variables. It was argued in section
9.4 that there is no reason to expect there 1o be a stable relationship between
the rate of inflation and the level of ocutput, and this holds true whether the
values of the policy variables are historic or optimal values. The trade-off
that one observes in tables like 10-1, 10-2, and 10-3 for one control period
and ong set of problems may not hold true for other control periods and other
sets of problems.

Comparing the two sets of optimal results in Table 10-1 shows
thata yearly gain of output of 5.8 billion dollars (43.3 + 7.5 years) is achieved
at a cost of an extra 0.11 percent inflation per year. In Table 10-2 the yearly
gain is 7.3 billion dollars (38.7 + § years) at a cost of 0.09 percent inflation
per year, and in Table [0.3 the yearly gain is 18.8 billion dollars (117.7 + 6.25
years) at a cost of 0.18 percent inflation per year. These figures show, as already
mentioned, that the trade-off in the three tables is such that it is costly in
terms of lost output to lower the rate of inflation, or, the other way around,
that it is not costly in terms of extra inflation to increase the level of output.

1t should be stressed again, however, that these figures should not
necessarily be extrapolated to other periods. Because of the nonlinearities in
the maodel, the figures in particular should not be extrapolated to situations in
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which the two sets of optimal results that are compared correspond to much
larger differences in the state of the economy than the differences in the
current three tables.

It is ﬁnaily of interest to note that the optimal values for v = 0.1
in the three tables correspond more closely to the actual values than do the
aptimal values for y = 1.0. One possible conclusion from this fact is that the
people who were responsible for controlling the economy weighted inflation
more heavily than output in their loss functions. This would be true, however,
only if the people believed that the trade-offs between inflation and output
were similar to those in the present model and they had targets for inflation
and output that were similar to the targets in the loss function (10.3).






