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ESTIMATING THE EXPECTED PREDICTIVE ACCURACY
OF ECONOMETRIC MODELS*

By Ray C. Fam!

1. INTRODUCTION

A method is proposed in this paper for estimating the uncertainty of a forecast
from an econometric model. The method accounts for the four main sources
of uncertainty : unceriainty due to {1) the error terms, (2) the coefficient estimates,
(3) the exogenous-variable forecasts, and (4) the possible misspecification of the
model. It also accounts for the fact that the variances of forecast errors are not
constant across fime. Because the method accounts for all four sources of un-
certainty, it can be used to make accuracy comparisons across modeis.

The method has two advantages over the common procedure of computing
root mean squared errors (RMSEs) to evaluate the accuracy of econometric
models. The first is that the RMSE procedure does not account for the fact that
the variances of the forecast errors vary across time.  Although RMSEs are in
some loose sense estimates of the averages of the variances across time, no rigorous
statistical interpretation can be placed on them. The second advantage is that
the RMSE procedure does not take into account the uncertainty from the exoge-
nous-variable forecasts, and so it is not possible to use RMSEs to compare models
with different degrees of exogeneity.

Estimating the uncertainty from the error terms and coefficient estimates is a
straightforward exercise in stochastic simulation, for which there is now a fairly
large literature.”> The unceriainty from the exogenous variables can also be
estimated by means of stochastic simulation, although, as will be discussed,
before doing this some assumption about the uncertainty of the exogenous vari-
ables themselves must be made. Estimating the uncertainty from the possible
misspecification of the model is the most difficult and costly part of the method,
and it rests on a strong ‘‘constancy’’ assumption. Although, as will be seen,
this assumption is quite restrictive, some assumption of this kind is needed if
comparisons across models are to be made, An assumption like this is, for ex-
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ample, implicit in any comparison of RMSEs across models.

The method is described in Section 2, and the results of applying the method
to two models are presented and discussed in Section 3. Section 4 contains a
brief discussion of the application of the method to subjectively-adjusted models.
The exact stochastic-simulation procedures that were followed for the results in
Section 3 are explained in the Appendix.

With respect to the misspecification part of the method, it should be noted at
the outset that this paper is not concerned with testing for misspecification. The
present approach is rather to estimate the effects of misspecification on the
uncertainty of forecasts. In other words, the basic premise of this paper is that
misspecification is likely to exist and so must be accounted for in some way. For
good examples of the hypothesis-testing approach, see Brown, Durbin, and
Evans [1975] for single equation models, and Muench, Rolnick, Wallace, and
Weiler [1974] for simultaneous equations models.

2. THE METHOD

2.1. The Notation. The method can be applied to a model that is nonlinear
in both variables and coefficients. Let G denote the total number of equations
in the model, M the number of stochastic equations, and N the total number of
predetermined (both exogenous and lagged emdogenous) variables. Assume
(for expositional convenience only) that the model is quarterly, and let the i-th
equation of the model for quarter ¢ be written:

(1) SLY1(Dseees Y1) X1(0)e s X5(1), Byl = (), i=1,.,0,

where the y{t) are the endogenous variables, the x(t) are the predetermined
variables, f; is the vector of unknown coefficients in equation I, and efr) is the
error term corresponding to equation i. For identities, e{zr) is zero for all 7.
Also, let e(t) denote the M-component vector of the error terms of the stochastic
equations for quarter 1. For simplicity it will be assumed that e(z)~N(Q, 2}
for all 7, although the following discussion can be modified to incorporate different
assumptions about the distribution of e(z).

Some of the definitions that are needed in the following discussion are listed
in Table {. It will be important to keep track of what the various expected values
and variances are conditional on, and the notation in Table 1 is designed with
this in mind. In addition, it should be noted that all expected values and vari-
ances in this paper are conditional on the actual values of the endogenous and
predetermined variables up to the beginning of the prediction period. Also, all
expected values and variances are conditional on the actual values of the exoge-
nous variables for the prediction period unless otherwise stated.®

3 With respect to the definitions in Table 1, it should also be noted that it is implicitly as-
sumed in this paper that the variances of the forecast errors exist. For some estimation tech-
(Continued on next page)
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TABLE 1
DEFINITIONS

A = vector of all the unknown coefficients.
£} == covariance matrix of the structural error terms (M X M).
t; = first quarter of the estimation period.
ts == last quarter of the estimation period.
E(tl, £;) = estimate of § from the #; —¢, sample period.
Bt 1) = estimate of 2 from the r, —t, sample period.
¥ (¢, ;) = covariance matrix of ﬁ(ri, s}
V{t,, ;) = estimate of ¥(1, ;).
¢ = any quarter of the prediction period.

¥,(2, k) = expected value of the k-quarter-ahead forecast of variable / for quarter
t conditional on 2 and A.

o¥{t, k) = variance of the forecast error for the k-quarter-ahead forecast of
variable { for quarter ¢ conditional on 2 and 3.

Felt, k, 1y, 1) = expected value of the k-quarter-ahead forecast of variable 7 for quarter
f conditional on £, ,5(:1, ts), and ¥ (#,, 1)
o3, k, #1, t;) = variance of the forecast error for the k-quarter-ahead forecast of
variable { for guarter ¢ conditional on £, ﬁ(:l, to), and ¥V, t5).
F.£1, k) = stochastic-simulation estimate of ., k).
&3¢, k) = stochastic-simmulation estimate of oi(7, k).
$.G, k, 11, 1) = stochastic-simulation estimate of 7,(¢, &, #1, 73).
(1, k, 11, 1) = stochastic-simulation estimate of o3z, &, #;, ;).

Filt, K, 1y, 15, x) = expected value of the k-quarter-ahead forecast of variable i for quarter
t conditional on 2, ﬁ(rl, 1), V{1, t3), and some assumption about the
uncertainty of the exogenous-variable forecasts.

a¥{t, k, t, ts, X) = variance of the forecast error for the k-quarter-ahead forecast of

variable [ for quarter r conditional on 2, ﬁ(tl, s}, V(ty, ), and
some assumption about the uncertainty of the exogenous-variable
forecasts.

P02, k, ty, ts, x) = stochastic-simulation estimate of 7.,(¢, &, #;, £z, X).
é3(t, k, 11, 1, x) = stochastic-simulation estimate of o¥(2, k, #y, fs, X).
&34, k, 1, 1y, x, d) = estimate of the total variance of the forecast error for the k-quarter-
ahead forecast of variable 7 for quarter ¢.

Although the method relies heavily on the use of stochastic simulation, it can
* be explained without going into the details of the simulation procedures. Because
of this and because these details are in part model specific, no mention of particular
simulation procedures is made in this section. As noted in the Introduction, the
stochastic-simulation procedures that were followed for the results in Section 3

(Continued)

niques this is not always the case, If in a given application the variances do not exist, then one
should estimate other measures of dispersion of the distribution, such as the interguartile range
or mean absolute deviation.
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are explained in the Appendix.

2.2, Estimating of{(t, k). For a one-quarter-ahead forecast (k=1), o}z, k) is
merely the vartance of the reduced form errer term for variable i and quarter £,
For a linear model this variance is not a function of 7 (assuming that £ is not a
function of 1), and an analytic expression for it can be obtained. For a nonlinear
model, neither of these is in general true. Tt is, however, fairly straightforward
to estimate o3(¢, k} by means of stochastic simulation, If £ and £ were known,
one would merely draw for each trial a set of error terms from the N(0, @) dis-
tribution and solve the model for this set using the known value of . In this
case the stochastic-simulation estimate of o#(¢, k) would differ from the true value
only because of sampling error (i.e., because of a finite number of draws). In
practice, of course, only estimates of £ and Q are available, and these must be
used for the stochastic simulation. This is another reason the stochastic-simu-
lation estimate of ¢z, k) will differ from the true value.

2.3, Estimating oj(t. k, t,, t;). For k=1, o¥(t, k, t;, t;} is what is usually
referred to as the variance of the forecast error.  This variance can also be esti-
mated in a straightforward way by stochastic simulation, using f(t,, t,), &(¢,, £,),
and P(t;, t;). Note in this case that in practice P(r,, 1,) is usually only an
estimate of the asymptotic approximation of V(¢,, t,), not an estimate of ¥(¢,, t3)
directly.* This is another source of simulation error. Fach simulation trial for
estimating this variance consists of draws of both error terms and coefficients.

2.4. Estimating o¥(1, k, t;, t5, x). Estimating this variance by stochastic
simulation is less straightforward than estimating the previous two. There is
no obvious estimate available of the degree of uncertainty of the exogenous-
variable forecasts themselves, and so some assuraption about this must first be
made. There are two polar assumptions that can be made in this regard. One
is, of course, that there is no exogenous-variable uncertainty. The other is that
the exogenous-variable forecasts are in some way as uncertain as the endogenous-
variable forecasts. With respect to this latter assumption, one could, for example,
estimate an autoregressive equation for each exogenous variable and then add
these equations to the model, This expanded model, which would have no
exogenous variables, could then be used for the stochastic-simulation estimates of
of(t, k) and o¥(1, k, 1), £,). This procedure is likely, however, to exaggerate the
uncertainty of many exogenous variables. This is particularly true of fiscal-policy
variables, where government-budget data are usually quite useful for purposes of
forecasting up to at least about eight quarters ahead. The assumption of no
uncertainty is also clearly unrealistic, and so the truth seems likely to lie somewhere
between the two polar assumptions.

* Note that the use of estimated asymptotic distributions for the stochastic simulations may
mask the problem of the possible nonexistence of variances mentioned in footnote 3. The
variances may exist for the estimated asymptotic distribotions but not for the true finite sample
distributions.
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The assumption that was made in this study for the results in Section 3 is
probably closer to the second polar assumption than it is to the first. The pro-
cedure followed in this case, which is explained in detail in the Appendix, was to
estimate an eighth-order autoregressive equation for each exogenous variable
(including a constant and time in the equation) and then to take the estimated
standard error from this regression as the estimate of the degree of uncertainty
attached to forecasting the change in this variable for each quarter. This pro-
cedure ignores the uncertainty of the coefficient estimates in the autoregressive
equations, which is one reason it is not as extreme as the procedure that would be
followed under the second polar assumption.®

Each simulation trial for estimating this variance consists of draws of error
terms, coefficients, and exogenous-variable errors.

2.5. Estimating the Uncertainty frem Misspecification — Computing 63(t, k,
f1, ts, %, d). As noted in the Introduction, this part of the method is costly and
rests on a strong assumption. It is based on a comparison of estimated variances
computed by means of stochastic simulation with estimated variances computed
from outside-sample forecast errors. For a correctly specified model the expected
value of the difference between these two estimates for any given variable and
fength of forecast is, ignoring simulation error, zero. Misspecification has two
effects on this difference. First, if the model is misspecified, the estimated co-
variance matrices that are used for the stochastic simulation will not in general
be unbiased estimates of the true covariance matrices. The estimated variances
computed by means of stochastic simulation will thus in general be biased. Sec-
ond, the estimated variances computed from the forecast errors will also in general
be biased estimates of the true variances. Since misspecification affects both
estimates, the expected value of the difference between these estimates may be
negative, positive, or even zero for a misspecified model.

The assumption upon which this part of the method is based is that the model
is misspecified in such a way that for each variable and length of forecast, the
expected value of the difference between the two estimates of the variance is con-
stant across time. As will be seen, given this assumption, it is possible to estimate
the total variance of the forecast error for each variable and length of forecast.
This part of the method effectively accounts for misspecification effects (if any)
that are not already reflected in the variances that are estimated by means of sto-
chastic simulation. It requires successive reestimation and stochastic simulation
" of the model.

5 In the stochastic-simulation study of Haitovsky and Wallace [1972], third-order autoregres-
sive equations were estimated for the exogenous variables, and these equations were then added
to the model. This procedure is thus consistent with the second polar assumptions above
except that for purposes of the stochastic simulations Haitovsky and Wallace took the variances
of the error terms to be one-half of the estimated variances. They defend this procedure (pp.
267-268) on the grounds that the yncertainty from the exogenous-variable forecasts is likely to
be less than is reflected in the autoregressive equations, a view that is consistent with the above
discussion.
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It is easiest to describe this part of the method by means of an example. Con-
sider first the case for k=1 (a one-quarter-ahead forecast), and assume that data
are available from quarters 1 through 100. Assume also that the lags in the
model are such that the estimation period can begin with quarter 11. All
stochastic simulations described in this subsection are based on actual values of
the exogenous variables (no exogenous-variable uncertainty).

Consider now the case in which the model is estimated for the 11-70 period.
Given this set of estimates (i.e., given A(11, 70}, &(11, 70), and P(11, 70)), one can
estimate by stochastic simulation the variance of the forecast error for each
variable 7 for quarter 71 (i.e., one can compute 6i(71, 1, 11, 70)). In the process
of doing this, one also obtains an estimate of the expected value of the forecast
for each variable i for quarter 71, ¥(71, 1, 11, 70). The difference between this
value and the actual value, y4{71), is the mean forecast errar for quarter 71:

(2) (71, 1, 11, 70) = p(71) — (71, 1, 11, 70).

If it is assumed that the stochastic-simulation estimate of 7,71, 1, 11, 70)
exactly equals the true expected value, then £(71, 1, 11, 70} is a sample draw from
a distribution with a known mean of zero and variance o(71, 1, 11, 70).  &(71,
1, 11, 70) is thus under this assumption an unbiased estimate of ¢#(71, 1, 11, 70).
One thus has two estimates of this variance, one computed from the mean forecast
error and one computed by stochastic simulation. Let d(71, 1, 11, 70) denote
the difference between these two estimates:

(3). df(71, 1, 11, 70}y = £3(71, 1, 11, 70) — &4(71, 1, 11, 70).

If it is further assumed that the stochastic-simulation estimate of o3(71, 1, 11, 70)
exactly equals the true value, then d(71, 1, 11, 70) is the difference between the
estimated variance based on the mean forecast error and the true variance. There-
fore, under the above two assumptions of no error in the stochastic-simulation
estimates, the expected value of d(71, 1, 11, 70) is zero.

Given that data are available through quarter 100, the above procedure can
be repeated for quarters 72 through 100. The model can, for example, be re-
estimated through quarter 71 and the above calculations performed for quarter
72. This will yield a value of d{72, 1, 11, 71) for each variable i. Similarly, a
value of d(73, 1, 11, 72) can be computed by reestimating the model through
quarter 72 and performing the above caleulations for quarter 73, and so on through
quarter 100. This procedure will yield 30 values of d(1, 1, 11, t—1} (t=T71, 72,...,
100) for each variable i, each of the 30 values being based on a different set of
coeflicient estimates of the model and a different stochastic simulation. If the
above two assumptions of no simulation error hold for gl ¢, then the expected
value of d{t, 1, 11, t—1) is zero for all &.

The discussion of this example has so far been based on ithe assumption that
the model is correctly specified. As noted at the beginning of this subsection,
misspecification will in general affect both estimates of the variance, and so the
sign of the effect of misspecification on the difference between the two estimates
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is ambigupus, Tt is clearly possible for misspecification to affect the two estimates
in the same way and thus leave the expected value of the difference between them
equal to zero. In general, however, this does not seem likely.® 1In other words,
one would not generally expect the mean of the distribution of d(t, 1, 11, t—1)
to be zero for a misspecified model. - There is also no particular reason to expect
the mean of this distribution to be constant across time, but the method of this
paper does rest on a constancy assumption of this kind. In particular, the fol-
lowing assumption is made. For variables that have no trend, it is assumed that
the mean of d(t, 1, L1, t—1) is constant across time (i.e., is not a function of ).
For variables that have a trend, it is assumed that the mean of dfz, 1, 11, t—1)/
V2(t, 1, 11, t—1) is constant across time, i.e., that the mean of d(t, 1, 11, t—1) is
proportional to the square of the estimated mean of the variable (remember that
dft, 1, 11, t—1) is in units of the variable squared).

¢ The following example may help in understanding the effect of misspecification on the
-two estimates. Assume that the model is a single equation and that the true equation is y,==
Bixy. -+ Paxg,+e,, where e.; obeys all the assumptions of the classical regression model.  As-
sume also that x;. is (incorrectly) excluded from the estimated equation, and let §1 be the least
sauares estimate of B, from the regression of y, on x;, {for say, =1, 2,.., T} ,?';L is a biased
estimate of @, with bias p3,, where p is the coefficient estimate in the regression of x4, on x..
Consider now the forecast of y,, ﬁ;xl,, where ¢ i3, say, T-+1. The forecast error, &, is 1§zx“
—{B1%1; -+ BaXs, -+ey), and the expected value of €7 can be easily seen to be:

) {1+ Fhe ) + Bt — prt®,

where o2 is the variance of e, and 3, denotes summation from 1 to 7. If §,=0, then the esti-
mated equation is not misspecified, and the expected valuc of &% is merely the first term in (i),
a well known result. Now, the estimated variance of the regression of ¥, on x4, is the sum of
squared residuals divided by T'—1, and this is the variance of the error term that would be used
in the stochastic simulation. Its expectation is

SSR,,
1 A
where SSR;: 18 the sum of squared residuals in the regression of x:, on xy,. Ignoring simula-

tion error, the variance of the forecast error for period ¢ that would be computed from stochastic
simulation is

(ii) (G + A8 SWS;{{&)(l + Ex;ca )
The difference between (i} and (iii) is the expected value of the difference between the two
estimates of the variance:

(iv) A3 o —pmt — PR (14 Gl .

Unless 3;=0, this difference is not in general zero, although it can obviously be either positive
or negative. This example thus shows clearly that misspecification affects both estimates of
the variance and so has an ambiguous effect on the sign of the difference between the two. This
example also shows that the assumption that the expected value of the difference is constant
across time is quite strong and is at best likely to be only a rough approximation to the truth,
I any indebted to an anonymous referee for this example.

{i) o' + B
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For variables that have no trend, let d(1) denote the sample mean of the d(¢, 1,
11, t—1} values, and for variables that have a trend, let d,(1) denote the sample
mean of the dfz, 1, 11, t—1)/¥2(¢, 1, 11, t—1) values. In the above example,
d (1) would be based on a sample of size 30.

It should be stressed that all the stochastic simulations and outside-sample
forecast errors that are involved in computing 4,(1) are based on actual values of
the exogenous variables. Unless actual exogenous-variable values are used, the
expected value of d(--+) is not in general zero even under the assumptions of no
simulation error and correct specification. Once d(1) has been obtained, how-
ever, one can then aceount for exogenous-variable uncertainty. From Section 2.4
one has a stochastic-simulation estimate of ¢#(t, 1, ¢, ¢,, x), and given this and
d(1), one can compute the total variance of the forecast error. In other words,
one can compute F#{t, 1,1, f;, x, d) in Table 1. For variables that have no
trend, this is merely:

4 31, 1, 1y, by, x, &) = G301, 1, 1y, £y, x) 4+ dY(1).
For variables that have a trend, the correct formula is:
(5 G, 1, ty, by, X, d) = 631, 1, 1y, 1y, X) + (D -FH1, 1, 1y, ta, X).

The generalization of the above procedure to k-quarter-ahead forecasts is
straightforward. Just substitute k for 1 in the discussion. FEach length of fore-
cast will have its own d,(k) value, and these values will in general be different for
different lengths. Also, note that one observation is Jost for each one quarter
increase in the length of the forecast. In the above example, given the beginning
guarter of 71 and the ending quarter of 100, 29 values for d/(t, 2, 11, 1 —2) could
be computed, 28 values of di(t, 3, 11, #—3) could be computed, and so on.

There are at least two options available in computing d,(k), and these should be
mentioned. First, in computing the individual d,(---) values, one can vary the
beginning quarter of the estimation period (¢,). In the above discussion , was
always taken to be 11. Second, the distance between the last quarter of the
estimation period and the first quarter of the prediction period need not be one
quarter, as assumed above. In fact, as will be discussed, for the results in Section
3 the distance was taken to be two quarters. The criterion that one should use
in choosing the first option is to choose the one that seems likely to correspond to
the constancy assumption about the mean of d(---) being the best approximation.

The assumption that the mean of d4---) is constant across time is clearly the
strongest of the above assumptions, and it is an open question how good an
approximation it is likely to be. The other two assumptions, of no simulation
error, are not nearly as important, since they are really only needed to prove that
the expected value of d{---) is zero under the null hypothesis of no misspecification.
Given that some kind of constancy assumption has to be made for comparisons
across models, the present assumption seems the most obvious one to make, and
this is the main defense for making it. As noted in the Introduction, an assump-
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tion of this kind is also implicit in comparisons of RMSEs across models.

Another constancy assumption that could be made is that the mean of d(.--)
follows a linear time trend. This trend could be estimated by regressing the 30
or so values of d{---) for each variable and length of forecast on a constant and
time. The above formulas can be easily modified to incorporate this assumption.
It is also possible, of course, to plot the individual di(---) values over time and look
for systematic patterns. This information could then be used to help formulate
a constancy assumption. In short, while the method proposed in this paper does
require a constancy assumption, there are a number of choices, and in future work
it will be of interest to examine the sensitivity of results like those in Section 3 to
alternative choices.

Since for a correctly specified model the mean of d,(---) is zero, examining the
individual d,(---) values may also reveal information about the strengths and
weaknesses of the model that is useful in future work on the model. In other
words, the individual d{---) values may be of interest in their own right aside from
their use in comparisons across models,

One other point about the constancy assumption should be noted, which con-
cerns the question of data mining. If in the traditional sense one has mined the
data within some sample period, then one would expect that variances estimated
from outside-sample forecast errors would on average be larger than variances
estimated by means of stochastic simulation. Aside from possible reservations
about the constancy assumption, the present method does penalize a model for
this kind of data mining. There is, however, a subtler form of data mining that
the method does not account for. If, say, a model were specified in quarter 100,
estimated through quarter 90, and tested with respect to its outside-sample fore-
casting accuracy for the period 91-100, then it is clear that this is not a strict
outside-sample test. Information on what happened between quarters 91 and
100 may have been used in the specification of the model, and so one cannot be
sure that the model’s “‘outside-sample™ accuracy estimated for quarters 21-100
will hold for, say, quarters 101-110. In the present context this means that the
expected value of the difference between the two estimates of the variance may be
larger for the period 101-110 than it is for the period 91100, which, of course,
viclates the constancy assumption. The present method thus does not take into
account this subtler form of data mining.

3. THE APPLICATION OF THE METHOD TO TWO MODELS

For purposes of this study the method was applied to the model in Fair [1976,
1978a], which will be called Model 1, and to a “‘naive” model, which wiil be called
Model II. Model I consists of 97 equations, 29 of which are stochastic, and has
183 unknown coefficients to estimate (including 13 serial correlation coefficients).
There are 60 exogenous variables (not counting the constant, time, and various
dummy variables).  The model is nonlinear in variables and coefficients, the latter
because of the serial correlation coefficients, which are treated for present purposes
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TABLE 2
ESTIMATED STANDARD ERRORS OF FORECASTS

1978 1979 1980 1981

SERN | S 1 A I o nr I I T TH IV I I m 1
ko1 2 3 4 5 6 7 8 8 1w 1n 1213 14 15

Model 1.  Real GNP

0.65 0.88 1.03 1.15 1.25 1.30 1.35 134 1.36 140 143 144 1.47 146 1.43
0.67 095 1,19 138 149 1.59% 166 1.69 1.77 1.8l 182 184 1.8%8 188 194
074 1.0¢ 137 1.63 1.76 1,94 204 208 2.15 248 222 230 234 236 2.43
0.80 1.23 154 196 2.27 2.51 248 227

Model II. Real GNP

a 061 1.02 1.34 164 1.84 1.94 201 2.03 204 2.03 204 2.04 203 203 2.03
bye 0.67 1.13 153 190 220 238 250 2.59 264 268 273 277 281 284 287
d 109 193 272 345 4.01 432 458 474

Model I. GNP Deflator

0.28 035 042 047 0.51 055 0.59 061 0.64 065 0.65 0.65 0.66 0.67 0.68
0.31 047 0,58 071 0.83 093 1.02 1,10 1.19 1,28 1.37 1.44 1.50 1.57 1.63
0.44 0.67 0.84 104 1.21 136 1.49 1.62 1.75 1.88 1.98 209 223 235 243
d 053 093 137 1,87 233 274 315 348

Model 1. GNP Deflaror

e 020 036 033 071 050 1.08 1.24 137 149 158 1.65 1.71 1.76 1.8¢ 1.83
bye 0.24 045 070 100 1.36 173 210 248 284 318 132 385 4.17 448 480
d 045 094 1.53 225 3.12 405 510 620

N TR

o o R

Model I.  Unemplovment Rate (units of percentage points}
a 027 045 057 064 071 097 080 0.82 0.82 085 050 092 0.93 095 097
b 036 058 076 092 1.03 112 116 1.23 1.28 1.34 138 1.42 1.50 1.56 1.62
¢ 36 0.60 080 095 1.08 1.17 124 131 1.35 141 147 150 1.55 1.59 1.64
4 035 060 0.77 0382 0.85 083 0.77 0.71

Model II.  Unemployment Rate (urits of percentage poinis)

a 028 055 077 094 1.02 108 1,12 1.14 135 1.16 116 1.16 1.15 1.15 1.16
b,c 029 058 084 104 1.17 127 1.34 140 144 148 1.52 1.55 1,59 1.63 1.66
4 036 074 1.12 1.48 173 1.91 2.07 219

Model I. Wage Rate

‘a 0.60 0.77 0.88 0.8% 0.96 1.01 1.03 1.05 1.07 1.10 1.08 1.07 1.08 1.04 1.05
B 070 093 1,12 1.34 1.52 1.65 1.76 1.82 1.94 2.04 215 227 235 2.45 2.51
¢ 067 095 116 1.35 153 1.66 1.80 1.94 2.08 220 232 240 2.52 261 2.69
d 0.65 1.06 1.45 201 2.53 3.07 359 416

Model I, Wage Rate

a 30 040 048 053 059 0.6! 057 072 0.76 0.81 0.85 0.8% 091 095 098
b,yc 036 048 059 075 .86 0.97 1.15 129 146 1.64 1.81 1.99 2,19 2,39 2.59
d 063 084 1.04 126 141 1.56 181 2.04
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TABLE 2 (CONTINUED)

1978 1979 1980 1981

oo Hr Iy I I HI IV i JURN 1) O A 4 1 I o 1
ki 1 2 3 4 5 6 7 8 g 10 11 12 13 14 15

Model I.  Bill Rate (units of percentage points)

a 045 067 078 0.84 091 093 097 098 097 0.98 098 097 0.97 101 1.03
h 048 0.71 086 1.0f 1.08 1.14 1.21 1.25 128 1.32 1.32 1.35 1.37 1.37 142
c 049 072 092 106 1,16 1,25 1.31 1.37 1.44 1.51 153 1.54 1.56 1.58 1.6}
d 6l 096 108 1.17 .31 147 1.56 1.72

Model IT.  Bill Rate (units of percentage points)

a 0.46 0.72 0.80 0.85 0.50 0.93 0.94 094 099 094 096 099 1.02 1.03 1.04
b,e 047 077 093 105 1.14 L20 122 1.19 116 1.14 1.11 1.14 1.15 116 1.18
4 0.69 1.12 133 1.51 163 E71 177 1.83

Model 1. Money Supply

a 083 1.09 1.29 147 162 1,76 1.84 1,92 198 203 2,11 213 2.17 2.19 2.23
A 091 131 1.63 187 213 236 256 279 296 3.16 3.35 3,55 3.72 3.94 4.15
e 091 133 1.69 198 234 268 3.06 345 379 414 451 488 528 563 5.97
4 139 216 295 3.75 462 550 649 7.50

Model If.  Money Supply

a 054 067 081 088 097 1.02 1.10 1,15 1.22 128 1.33 1.40 145 149 1,51
bye 0.62 081 103 1.21 1.36 1.53 172 193 242 234 251 273 296 3.19 3.42
4 138 164 195 232 262 291 330 170

a = uncertainty due to error terms - 7 {#, k).

b = uncertainty due to error terms and coefficient estimates — 6,(t, &, #5, £3).

¢ = uncertainty due to error terms, coefficient estimates, and exogenous-variable
forecasts — d {2, k, 1y, t3, x).

d == uncertainty due to error terms, coefficient estimates, exogenous-variable forecasts,
and possible misspecification of the model — d.(¢, &, 14, 15, X, d).

Basic Estimation Period; t; ==1954], f,=:1977IV.

Forecast Period: #=1978I1,..., 19811V

Model I = model in Fair [1978a].

Model II = naive model. For Model II there are no exogenous variables, so ¢=b for
this model.

For the unemployment rate and the bill rate, the errors are in the natural units of the

variables. For the other variables, the errors are expressed as percentages of the forecast

means (in percentage points).

as structural coefficients. Model II is a system of completely separate equations.
Fach variable in the model is simply regressed on a constant, time, and its first
eight lagged values. _

In order to apply the method one must first choose a forecast period. For
present purposes this was taken to be 197811-19811V (15 quarters). Model I was
estimated for the 19541-19771V period (96 observations) and then used to forecast



TABLE 3
ESTIMATED FORECAST MEANS

1978

1979

1980

1981

i Ir Ui v I 11
k: 1 2 3 4 5

m
6

v

1

i1
10

v
11

I
12

I
13

I
14

v
15

Model I.  Real GNP (billions of 1972 dollars)
0 13748 13905 1404.8 14192 14322
a 13745 1390.1 14039 14184 1431.1
b 13751 13903 1404.1 1418.2 14308
¢ 13743 13804 14026 14164 14288

Model II.  Real GNP (billions of 1972 dollars)
0 13567 13586 13621 1368.0 13789
a 13567 13583 1361.7 1367.7 1378.8
b 13566 13579 1361.3 13673 13783

Model I. GNP Deflator (1972=1.0)
0 1.4859 1.5044 15259 1.5452 1.5649
a 14858 1.5043 1.5261 1.5454 1.5650
b 14859 1.5045 1.5262 1.5456 1.5653
¢ 14861 1.5051 15268 1.5465 1.5661

Model II. GNP Deflator (1972-1.0)
0 1.4922 1.51B3 1.5466 1.5759 1.6060
a 14922 1.5182 1.5465 1.5755 1.6036
b 14922 1.518% 15469 1.5762 1.6065

14451
1444.2
1443.2
1441.1

1389.9
1390.0
1389.7

1.5848
1.5848
1.5853
1.5856

1.6369
1.6364
1.6376

1458.9
1438.0
1457.5
1454.9

1399.2
1399.5
1399.7

1.6077
1.6078
1.6085
1.6088

1.6683
1.6677
1.6693

14724
14721
1471.2
1468.6

1408.6
1405.1
1409.5

1.6284
1.6286

1.6293

1,6297

1.70601
1.6995
1.7014

1485.4
1485.2
1483.6
1481.8

1417.5
1418.0
1418.7

1.6454
1.6495
1.6504
1.6507

1.7323
1.7318
1.7337

1498.5
1497.4
1496.6
-1495.8

1425.0
14255
14264

1.6708
1.6713
1.67192
1.6723

17647
1.7644
1.7663

1511.7
1510.2
15100
1508.8

1432.5
1432.8
1434.2

1.6951
1.6958
1.6967
1.6972

17976
1.7974
17993

1524.7

1523.4°

15229

i521.2.

1440.8
1440.8
1442.5

L7172
L7183
17190
L7195

1.8309
L8310
1.8326

1537.4
1535.8
15356
15342

1449.2
1449.1
14511

1.7397
1.7412
17424
1.7423

1.8648
1.8650
1.8663

1549.9
1548.0
1548.1
1546.6

1457.%
1457.4
1459.4

1.7625
1.7639
1.7657
1.7655

18993
1.8998
1.9008

1562.8
1560.9
1561.3

1559.3

1466.3
1466.4
1468.5

1.7884
1.7903
17922
1.7919

1.9345
1.9353
1.8360

99¢
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Model I.  Unemplovinent Rate (pereentage points)

0 638 6.41 0.43 6.46
a 640 6.43 646 6.48
b 639 6.42 6.45 6.49
¢ 641 6.45 6.48 6.53

Model H.  Unemployment Rate {perceniage poinis)

0 598 5.90 5.98 6.18
a 596 5.87 595 6.15
b 598 591 6,00 6.19

6.48
6.50
6.49
6.54

6.35
6.32
6.35

Model I, Wage Rate (current dollars per hour)

Q0 647 6.59 6.71 6.83
a 647 6.59 6.70 6.83
b 647 6,59 6,71 683
¢ 647 6,59 6.71 6.83

6.95
695
6.95
6.96

Model II. Wage Rate (current doliars per hour)

0 649 6.64 6.76 6.90
a 649 6.64 6.77 6.90
b 649 6.64 6.77 6.50

Model I, Bill Rate (percentage points)
.0 6.68 6.85 6,95 7.04
a 668 6.85 697 7.05
b 649 6,85 6.93 7402
c 6.67 6.83 £.93 7.01

Model I, Bill Rate { percentage points)
0 687 7.43 7.81 7.95
a 6387 142 1.82 7.96
b 6.88 7.43 7.79 7.952

7.05
7.05
7.05

.10
7.09
7.08
7.10

§.00
8.0t
7.98

6.51
6.51
6.51
6.55

6.45
6.42
6.45

7.08
7.08
7.08
7.09

1.20
7.20
7.19

7.15
1.16
7.14
7.16

B.02
8.05

199

6.51
6.50
6.51
6.56

6.53
6.50
6,33

T.21
1.21

- 121

7.22

7.33
7.35
7.33

7.21

7.2

7.24
7.22

7.92
7.95

7.88

6.50
6.48
6,50
6.54

6.59
6.55
6.96

734
7.34

7.35
1.36

1.51
7.51
151

7.28
7.28
132
7.28

172
7.74

768

6.48
6.44
6,49
6.53

6.64
6.60
6.66

7.48

7.48
7.49
7.49

7.67
7.67
7.67

7.35
7.35
7.35
7.33

7.51
7.34
748

6.46
6.40
6.46
6.48

6.69
6.66
6.71

7.62
7.62
7.63
7.64

7.83
7.83
7.83

7.4t
7.41
7.40
7.39

7.34
7.36
7.29

6.43
6.38
6.44
6.44

6.73
6.70
6.75

1.76
1.76
7.77
7.7%

8.00
8.00
8.00

7.48
7.47
7.49
7.47

7.20
1.21
7.14

6.39
6,34
6.43
6.41

6.74
6,73
6.77

7.90
7.91
7.91
7.93

817
8.17
817

7.55
1.55
7.59
7.56

7.09
7.11
7.02

6.36
6.31
6.41
6.38

6.76
6.76
6.80

8.05
8.06
8.06
8.08

8.35
8.35
8.35

7.62
7.62
7.61
7.63

7.06
7.06
6.98

6.33
6.29
6.39
6,34

6.78
6.75
6.82

8.20
8.2t
8.22
8.23

8.53
8.53
8.53

7.68
7.67
1.73
7.72

7.10

110

7.02

6.30
6.27
6.36
6.32

6.80
6.82
6.84

8.35
8.36
8.37
8.38

872
872
872

774
171
7.81
7.78

7.19
7.20
712
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TABLE 3 {(CONTRNUED)

1978 1979 . 1980 1981
11 I v I H1 11 v 1 I 1 v H B 11 v

k: i 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Model . Money Supply {(billions of current dollars)

0 3731 3808 3836 3964 4043 4123 4205 4288 4371 4456 4542 4630 4719 4808 4900

a 3732 380.9 388.7 396.5 404.5 4124 4206 4290 4375 4460 4546 4634 472.2 4818 4904

b 3732 3810 3888 3069 4049 4130 4212 4295 4379 4467 4556 4643 4733 4822 4915

¢ 3731 3809 3839 3969 4048 4129 4210 4294 4378 4465 4553 4641 4732 4822 4917
Moedel IT.  Money Supply (billions of current dollars) .

0 3716 377.2 383.0 388.5 3947 401.2 4073 413.6 4200 4264 4329 4396 4463 4532 46041

@ 371.6 3771 3831 3885 3947 4011 4072 4135 4199 4263 4327 4395 4462 4530 4599

b 3717 377.3 383.3 3887 3950 4015 407.8 414.2 4209 4273 4342 4409 4480 4548 462.0

0 = crror terms sct equal to zero {no stochastic simmutation).

a — stochastic simulation with respect to errar terms only — 5,04, k).

b = stochastic simulation with respect to error terms and coefficient estimates — J,(¢, &, £1, fy).

¢ == stochastic simulation with resepct to error terms, coefficient estimates, and exogenous variables — 3 (t, k, 1, fa, X).
See notes to Table 2.

80¢
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197811-19811V; and Model I1 was estimated for the 195411-19771V period (95
observations) and then used to forecast 197811-19811V.7 These were actual ex
ante forecasts, and so guessed values of the exogenous variables were used for
Model I. (Model I1 has no non-trivial exogenous variables.) Data for 19781
were used as Initial conditions for the forecast, but because they were only pre-
liminary at the time (April 1978}, they were not used for the estimation.

Given the coefficient estimates and forecast period, one can compute by
stochastic simulation &3(t, k), 63(t, k, t,, t;), and &3¥(4, k, t, £, x). If one is
interested only in the estimates of total uncertainty, then the first two of these
need not be computed. For present purposes, however, all three were computed,
which means that three 15-quarter stochastic simulations were performed per
model. For each simulation 1000 trials were made for Model T and 2000 trials
were made for Model II. The results of these computations for six variables
and the 15 quarters are presented in Tables 2 and 3. The square roots of the
estimated variances are presented in Table 2, and the estimated forecast means
are presented in Table 3.

The misspecification part of the method requires successive reestimation and
stochastic simulation. For Model I the first estimation period was taken to be
19541--19681V, the second to be 13541-19691, and so on through the last, 19541
197711. These same periods were used for Model 11 except that the beginning
quarter was always 195411 rather than 19541, This is a total of 35 sets of esti-
mates, and for each set an 8-quarter stochastic simulation {of 100 trials for Model
I and 500 trials for Model 11) was performed per model.?2  This allowed 35 values
of di(--+) to be computed for each variable for the one-quarter-ahead forecast, 34
values for the two-quarter-ahead forecast, and so on. This then allowed the
means dyk), k=1,...,8, to be computed. Given &¥¢, k, t,, t,, x) from the
simulation for the basic forecast period, this in turn allowed &3(t, k, t,, 5, x, d)
to be computed (see equations (4) and (5)). The square roots of these latter esti-
mates are presented in the d rows in Table 2. These are the estimates of the total
uncertainty of the forecast. For these results the formula for variables with a
trend (equation (5)) was used for real GNP, the GNP deflator, the wage rate, and
the money supply; and the formula for variables without a trend (equation {4))
was used for the unemployment rate and the bill rate,

The following is a discussion of the results in Tables 2 and 3. The results for
Model I will be discussed first, and then they will be compared to the results for
“Model 11

" Because of data requirements due to lags, the beginning guarter for Model TI had to be one
quarter later than the beginning quarter for Model .

¢ Since the data ended in 19771V, the simulations for the last 7 sets were shorter than 8
quarters. The first quarter of each simulation pericd was taken to be the second quarter after
the end of the estimation period. This was done to be consistent with the procedure followed
for the basic forecast period. Partly because of cost considerations and partly because of a
relative small number of ouiside-sample observations, the length of the simulation periods for
this part of the method was taken to be 8 rather than 15 quarters.
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The resunlts in Table 3 should provide some encouragement to model builders.
They show that the forecast values computed by setting the error terms equal to
zero and solving once are quite close to the forecast values computed by means of
stochastic simulation. Although it is well known (see, for example, Howrey and
Kelejian [1971]) that the common practice of setting the error terms to zero and
solving once produces biased estimates of the true means of the endogenous
variables for nonlinear models, this bias does not appear to be very large, at least
for Model 1.2

Consider now Table 2. The results in the a, b, and ¢ rows are self explanatory.

As might be expected, the sensitivity of the standard errors of the forecasts to
exogenous-variable uncertainty (rows ¢ versus b) is greater for some variables
than for others, This sensitivity is small for the unemployment rate, the wage
rate, and the bill rate and fairly large for the money supply. Although in most
cases these sensifivity differences can be explained, given a knowledge of the
structure of the model, these explanations are vnnecessary for purposes of this
paper.
- The numbers in the d rows are the estimates of the total uncertainty of the
forecasts. A brief summary of them is as follows. For the four-quarter-ahead
forecasts, the estimated standard errors are 1.96 percent (27.8 billion dollars)'?
for real GNP, 1.87 percent for the GNP deflator, 0.82 percentage points for the
unemployment rate, 2.01 percent for the wage rate, 1.17 percentage points for the
bill rate, and 3.75 percent (14.9 billion dollars) for the money supply. For the
cight-quarter-ahead forecasts, the estimated standard errors are 2.27 percent
(33.3 billion dollars) for real GNP, 3.48 percent for the GNP deflator, (.71 per-
centage points for the unemployment rate, 4.16 percent for the wage rate, 1.72
percentage points for the bill rate, and 7.50 percent (32.2 billion dollars) for the
money supply.

Consider now Model I versus Model II.  With respect to the estimates of the
total uncertainty of the forecasts in the d rows, Model II is less accurate than
Model I for real GNP, the GNP deflator, the unemployment rate, and the bill
rate, and it is more accurate for the wage rate and the money supply. For the
eight-quarter-ahead forecasts, the differences in the estimated standard errors are
2.47 percent for real GNP, 2.78 percent for the GNP deflator, 1.48 percentage
points for the unemployment rate, —2.12 percent for the wage rate, 0.11 per-
centage points for the bill rate, and — 3.80 percent for the money supply.

¢ Remember, however, that the stochastic-simulation estimates themselves are not quite
right in that they are based on a limited number of trials and on only estimated coefficients
and covariance matrices. Also, it is not even the case that the true expected values, 3¢, k),
Pilt, B, 1y, 29} and B0, K, 1y, £, %), are necessarily the same. - The results in Table 3 thus do
not prcwide a completely accurate estimate of the bias that results from setting the error terms
equal to zero. The conclusion reached here that the bias is small has also been reached by
Magar {1969), Sowey {1973}, Cooper {1974], Bianchi, Calzolari and Corsi [197¢}, and Calzolari
and Corst [1977] for their stochastic simulations with respect to the error terms only.

1 Any dollar figure used in this section has been obtained by multiplying the particular
percent figure in Table 2 by the relevant number in the ¢ rows in Table 3.
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Given my wage rate, I would conclude from the results in Table 2 that Model I
is enough of an improvement over Model I to justify the time that I have so
far spent developing and working on #t. The differences in the standard errors
for real GNP, the GNP deflator, and the unemployment rate are substantial. It
is, of course, somewhat embarrassing that Model I is less accurate with respect
to the forecasts of the wage rate and the money supply than Model II.  There
is not too much that can be said about this except that I was aware before, and
even more so now, that the wage-rate equation and one of the demand-for-money
equations are two of the weakest equations in Model 1, weakest in the sense that
the coefficient estimates of these two equations tend to change more as the model
is reestimated on the basis of new data than do the coefficient estimates of most
of the other equations. There are clearly grounds for further work on these
two equations.

One further point about the negative results for the money supply for Model I
should be noted. There is some evidence that indicates that the demand-for-
money equations in Model I are more accurate than other demand-for-money

TABLE 4
ROOT MEAN SQUARED ERRORS OF QUTSIDE-SAMPLE FORECASTS

Number of Quarters Ahead

Yariabie Model 1 2 3 4 5 6 7 8
Real GNP |1 079 126 1.63 212 259 297 324 352
{percent) I 111 196 276 351 409 442 470 491
GNP Deflator 1 050 093 143 197 249 295 343 3183
(percent) 1 047 058 1.59 236 326 423 535 6.5
Unemployment Rate 1 036 060 Q75 080 079 79 077 0.77
(percentage points) 1¥ 036 0735 113 149 173 1.8 203 214
Wage Rate 1 078 125 E71 231 289 349 406 465
(percent) i 067 094 121 147 171 201 240 233
Bill Rate ' 1 061 101 116 1.3t 1350 170 186 206
(percentage points) | 1 070 115 137 152 164 171 1,76 1.84
Money Supply I 1.3 212 293 381 474 572 682 797
{percent) 1I 141 171 210 252 289 323 364 409

Notes: 1) These results are based on 35 sets of estimates of each model.

ii) Each eight-quarter outside-sample forecast began two quarters after the
end of the estimation period. The first estimation period ended in 19681V,
and the last (the thirty-fifth) ended in 197711, Data through 19771V were
used, which allowed 35 one-quarter-ahead ertors to be computed for each
variable, 34 two-quarter-ahead errors, and so on, The actual values of
the exogenous variables were used for these calculations.

iify The predicted values used were the mean values from the 35 stochastic
simulations that were performed for the d-row results in Table 2.
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equations. As discussed in Fair [1978b, fn. 6, p. 1169], the demand-for-money
equation in Model I appear to be considerably more accurate for the 1973119761
period than the demand-for-money equation in the MPS model. The problems
noted here regarding the demand-for-money equation in Model T are thus probably
not unique to Model 1.

This completes the discussion of the results in Table 2. For comparison with
these results, root mean squared errors of the outside-sample forecasts have also
been computed, and these errors are presented in Table 4. These RMSEs are
based on the predicted values from the same 335 stochastic simulations that were
used for the d-row results in Table 2, Comparing the numbers in the d rows in
Table 2 to the respective numbers in Table 4, it can be seen that there are some
sizeable differences. This is, of course, as expected, since the RMSE procedure
ignores exogenous-variable uncertainty and the fact that forecast-error variances
vary across time. It is true, however, that the overall ranking of the accuracy
of the two models by variable is the same in the two tables.

4. ESTIMATING THE ACCURACY OF SUBJECTIVELY-ADIUSTED MODELS

Although the method described above is not relevant for models that are sub-
jectively adjusted, it can be modified for such models. In particular, the following
procedure could be followed for subjectively-adjusted models. (1) Treat the
model mechanically and perform the calculations necessary for results like those
in Table 2. (2) Over a period of a few years compile an ex ante forecasting
record for both the model used mechanically and the model used subjectively.
Let &7(t, k) denote the error of the k-quarter-ahead forecast of variable i for
quarter ¢ from the model used mechanically {the forecast starting at the beginning
of quarter 1 — k) and let ¢z, k) denote the similar error for the model used subjec-
tively. Let (¢, k) be the difference in the errors squared: d,(¢, k)= (er(t, k)Y —
(e5(t, k)2 After, say, 12 values of §,(t, k) have been compiled, take the average
of these values. Denote this average as 8, k). J(k) will be positive if subjec-
tively adjusting the model has on average improved its forecasting accuracy. (3)
If it is assumed that the degree to which subjectively adjusting a model improves
its forecasting accuracy with respect to a given variable and length of forecast is
constant across time, then the d,(k) values can be subtracted in the appropriate
way from the numbers in the d rows in Table 2 to get a final estimate of the
uncertainty of the forecasts from the subjectively-adjusted model.*!

The constancy assumption in (3} is, of course, much stronger than the con-
stancy assumpiion needed for the results in Table 2, but the (k) values would
be at least rough approximations of the degree to which subjectively adjusting
a model improves its forecasting accuracy. Of more scientific interest, of course,

Y The appropriate way would be fo subtract §,(4) from the square of the respective nunmber
in row & of Table 2 and then to take the square root of this difference.  This pumber would then
be the final estimate of the standard error of the forecast from the subjectivelv-adjusted model.
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would be the mechanical results themselves, for only by observing results like
those in Table 2 for models used mechanically can one hope to learn about the
models in ways that are useful for further scientific research.

Cowles Foundation, Yale University, U.S5.A.

APPENDIX

THE STOCHASTIC-SIMULATION FROCEDURES FOR MODELS I AND 11

The exact procedures that were followed for the stochastic simulations are
discussed in this Appendix. There are a number of ways in which stochastic
simulation can be carried out, and it is important to note that the method in
Section 2 does not require any one particular way. In fact, as will be discussed,
some of the following assumptions are restrictive, and in future work it will be of
interest to try to relax them. The simulations for Model T will be discussed
first.

1. Estimating o%(t, k). For the estimation period of 96 observations (19541
1977IV), consistent estimates of the 29 error terms are available (from consistent
two-stage least squares (TSLS) coefficient estimates). The covariance matrix
of the 29 error terms {Q) was estimated as (1/96)EE’, where E is the 29 x 96 matrix
of values of the estimated error terms. In conformity with the notation in
Table 1, this estimate of {3 will be denoted €X9, 104), where 9 is quarter 19541
and 104 is quarter 19771V,

Let e(t) denote the 29 x 1 vector of values of the error terms for quarter t: (1)
=(es(f),..., e25()). Values of e(t) were drawn from a multivariate normal
distribution with mean zero and covariance matrix (9, 104) for the stochastic
simulation. Since the prediction period is 15 quarters, each ““trial” corresponds
to drawing 15 values of e(f) (29 x 15 numbers in all} and computing the forecast
using these values.! In this first case, where only the uncertainty from the error
terms is being estimated, the coefficient estimates and exogenous-variable values
are kept the same for all the trials.

For each trial, one obtains a forecast of each endogenous variable for each
quarter. Let 7(t, k) denote the value of the k-quarier-ahead forecast of variable
i for quarter ¢ on the j-th trial. TFor J trials, the estimate of the expecied value of
. the forecast, §(1. k), is (1/Jy X I, §i(t, k), and the estimate of the variance of
the forecast error, &2(1, k), is (1JJ) Tdo; [F{(t, k) — {1, K)]2.  The number of

! The draws were performed as follows. First, a matrix P was computed such that PP’
=(9,104). This was done using the LUDECP subroutine in the IMSL library. Then for
each of the 15 guarters, 29 values of a standard normal random variable with mean 0 and vari-
ance 1 were drawn. This was done using the function RNOR, which is part of the SUPER
DUPER random number generator package at Yale. Let u(z) denote the 29 1 vector of these
draws for quarter £. Then e(¢) was computed as Piu(t). Since Eu(t)a’(t)=I, then Ee{t)e'(t)
= EPu(t u'(t)P’ = $(9,104), which is as desired for the distribution of e(r).
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trials used for these estimates was 1000.2

2. Estimating o¥(t, k, t,, 1,). For each of the 29 stochastic equations an
estimate of the covariance matrix of the coefficient estimates is available. Let
B,-(9, 104) denote the vector of TSLS coefficient estimates for equation i, let
V{9, 104) denote the estimated covariance matrix of these estimates, and let ¥
denote the vector of coefficient values for equation i actually used in a given
trial.  Values of f¥ were drawn from a multivariate normal distribution with
mean f,(9, 104) and covariance matrix P(9, 104) for the stochastic simulation.
In this case, where the uncertainty from the error terms and coefficient estimates
is being estimated, each trial corresponds to drawing 15 values of (1) (29 x 15
numbers) and a value of §¥ for each of the 29 equations (183 numbers).® Aside
from drawing 183 extra numbers for each trial, this case is the same as the first
case. The number of trials used in this case was also 1000.

3. Estimating o¥(t, k, t;, 15, x). Not counting variables like the constant,
time, and various dummy variables, there are 60 exogenous variables in Model L
Each of these variables was regressed on a constant, time, and its first eight lagged
values for the 195411-19771V sample period, and for each equation the variance
of the error term was estimated as the sum of squared residuals divided by the
number of observations. Let this estimated variance for variable i be denoted
st.  Also, let u, (1) be a normally distributed random variable with mean zero and
variance s7:

(1) u7) ~ N(O, s?), ' all 1.

Let %4t) be the value of exogenous variable i for quarter ¢ that was used for the
actual forecast, and let x¥(¢) be the value used in a given trial,  Also, let r denote
the first quarter of the prediction period (19781I). For the stochastic simulation,
60 x 15 values of u (¥) were drawn (i=1,...,60; t=r, r+1,..., r+14), and these
values were taken to be the errors in forecasting the changes in the exogenous
variables. In particular, the values of x¥(t) are:

(2) xF(r) = 2r) + ufr)

! I conld see no obvious way to use any of the tricks in, for example, Hammersley and
Handscomb [1974] to increase the efficiency of the stochastic simulation, and so each trial was
merely an independent random draw. FEach trial, which consists of solving the model once for
15 guarters, takes about 2.0 seconds on the IBM 370-158 at Yale, so the total time for 1000
trials is about 33,3 minutes.

¥ The draws for the g% vectors were performed as follows. First, for each I:\’f_(9,104), a
matrix P, was computed such that P, P[=- ﬁ(9,104). Then for each ¥, n; values of a standard
normal random variable with mean 0 and variance T were drawn, where #, 'is the number of
coefficients in equation £. Let &; denote the », x 1 vector of these draws. Then ¥ was com-
puted as B{9,104)+ P, Since Euu|~1I, then E{FF— £(9,100))(8% — §.(9,104))" = EPuu} P}
sz 259,104), which is as desired for the distribution of #¥. Subroutine LUDECP and function
RNOR were also used for these calculations.
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Fr+D=%r+D+ui+ulr+1

XKr + 14) = £4r + 14) + u(r) + ufr + 1) + -+ ur + 14).

Because of the assumption that the errors pertain to the changes in the exogenous
variables, the error term u(r) is carried along from gquarter r on. Similarly,
ufr+ 1} is carried along from quarter r+ 1 on, and so on.

In this case cach trial corresponds to drawing 29 x 15 numbers for the error
terms, 183 numbers for the coefficient estimates, and 60 x 15 values of ur) for
the exogenous variables.* Aside from drawing 60 x 15 extra numbers, this case
is the same as the previous case. The number of trials used in this case was also
1060,

The assumption that the u{#) errors pertain to forecasting the change in the
exogenous variables perhaps requires some discussion. Given the way that
many exogenous variables are forecast, by extrapolating past trends or taking
variables to be unchanged from their last observed values, it seems likely that
any error made in forecasting the level of a variable in, say, the first quarter will
persist through the forecast period. If this is true, then the present assumption
seems better than the assumption that the w,(f) errors pertain to forecasting the
level of the exogenous variables.

4. Computing dfk). 35 sets of estimates of the model were obtained. For
all sets the first quarter of the sample period was 19541 (1, =9). The last quarter
of the sample period was 19681V (r,=68) for the first set, 19691 (1,=69) for the
second set, and so on through 197711 (£, == 102) for the 35<h set.

For each set of estimates the model was stochastically simulated for 8 quarters
beginning with the second quarter after the end of the estimation period. The
35 stochastic simulations were performed in the same way as described above
for the stochastic simulation with respect to the error terms and coefficient esti-
mates. The first simulation used B9, 68), €9, 68), and P{9, 68); the second
simulation used £ 49, 69), €49, 69), and P(9, 69); and so on. Values of ¥,(69+k,
k,9,68) and 6HE9+k, &, 9, 68) for k=1,...,8 were obtained from the first
simulation; values of F{70+k, k, 9, 69) and 6470+ k, k, 9, 69) for k=1,..., 8
were obtained from the second simulation; and so on. The only difference
between these 35 simulations and the simulation described above is that each of
the 35 simulations was for 8 quarters rather than 15 and the number of trials was
100 rather than 1000.°

Data through 19771V (t==104) were used for this work (the preliminary data
for 19781 were not used), which meant that 35 values of dft, 1. 9, t—2) could be
computed (1=70,..., 104); 34 values of dft, 2, 9, t—3) could be computed (¢=

¢ Drawing the 60 x 15 values of w,(¢) is straightforward. For each i, 15 values of a standard
normal random variable with mean 0 and variance | are drawn, and then each of these values
is multiplied by s,. ' '

® For the cight-quarter simulations each trial takes about 1.1 seconds of computer time, so
the total time For the 3500 trials was about 65 minutes.



376 RAY C. FAIR

71,..., 104); and so on. The estimates 35(1) were thus based on 35 observations;
the estimates d,(2} on 34 observations; and so on.

5. Model 11, The procedure followed for Model I is quite similar to the
procedure followed for Model I, and so the discussion here can be brief. Each
of the six equations of Model II (corresponding to the six variables in Table 2)
was treated individually: no attempt was made to estimate and account for the
possible correlation of the error terms across equations. The variance of the
error term in each equation was estimated as the sum of squared residuals divided
by the number of observations. The error term in each eguation was then as-
sumed to be normally distributed with mean zero and variance as estimated for
purposes of the stochastic simulations. The coefficient estimates were treated
in the same way as they were for Model 1.  The number of trials for both the
simulation with respect to the error terms and the simulation with respect to the
error terms and coefficient estimates was 2000, There are no non-trivial exogenous
variables in Model 11, and so no stochastic simulation regarding the exogenous
variables was needed. For the calculations of d{k), Model IT was also estimated
35 times, and the same periods were used here as were used for Model I except
that the beginning quarter was 195411 rather than 19541. The number of trials
for each of the 35 stochastic simulations was 500,

6. General Remarks. A few more points about the procedures in this Ap-
pendix should be mentioned. Note first that the normality assumption has been
used for all the simulations. Although this is the most convenient assumption
to make and can be justified by an appeal to large sample properties, in some cases
it may not be very realistic. It may be of interest in future work to examine the
sensitivity of results like those in Section 3 to departures from normality. Note
also that the estimated covariance matrix of the TSLS coefficient estimates was
taken to be block diagonal. This matrix, which is 183 x 183, is in fact not block
diagonal, and so an additional source of simulation error has been introduced by
the present treatment. It is somewhat more expensive to deal with the full co-
variance matrix, but in future work it may be possible to do this. It should finally
be noted in this regard that the correlation between the estimate of the serial
correlation coefficient in an equation and the other coefficient estimates in the
equation has been taken into account in computing the covariance matrices.?

No degrees-of-freedom corrections were made in this study. For Model I,
which was estimated by ordinary least squares, there are well defined degrees-of-
freedom corrections that could have been made, but this is not the case for Model

& The technique that was used to estimate Model I is described in Fair [1970]. 1t was sug-
gested in this paper (p. 514) that the covariance matrix of the coefficient estimates inclusive of
the estimate of the serial correlation coefficient be estimated by ignoring the correlation between
the latter estimate and the other coefficient estimates, Fisher, Cootner and Baily {1972, fn. 6,
p. 575], however, have pointed out that one need not ignore this correlation. In computing the
estimates of the covariance matrices for use in this study, I have followed the Fisher, Cootner
and Baily advice.



ESTIMATING PREDICTIVE ACCURACY 377

1. It thus seemed best to put both models on a comparable basis by not adjusting
for degrees of freedom in either model. With at most 13 estimated coefficients
per equation, the results in Section 3 would not have been much different had
some adjustment for degrees of freedom been made. This is, of course, not neces-
sarily true for models with many coefficients per equation, and for models of this
type one may want to adjust for degrees of freedom.

It should finally be stressed that the particular treatment of exogenous variable
uncertainty in this Appendix is only one of many that might be tried. In par-
ticular, it may be of interest in future work to experiment with the polar assump-
tion that the exogenous-variable forecasts are as uncertain as the endogenous-
variable forecasts (as reflected in, say, a set of autoregressive equations). Another
possibility would be to make this assumption for all but exogenous fiscal-policy
variables.
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