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A method is proposed in this paper for estimating the uncertainty of a forecast 
from an econometric model. The method accounts for the four main sources 
of uncertainty: uncertainty due to (1) the error terms, (2) the coefficient estimates, 
(3) the exogenous-variable forecasts, and (4) the possible misspecification of the 
model. It also accounts for the fact that the variances of forecast errors are not 
constant across time. Because the method accounts for all four sources of un- 
certainty, it can be used to make accuracy comparisons across models. 

The method has two advantages over the common procedure of computing 
root mean squared errors (RMSEs) to evaluate the accuracy of econometric 
models. The first is that the RMSE procedure does not account for the fact that 
the variances of the forecast errors vary across time. Although RMSEs are in 
some loose sense estimates of the averages of the variances across time, no rigorous 
statistical interpretation can be placed on them. The second advantage is that 
the RMSE procedure does not take into account the uncertainty from the exoge- 
nous-variable forecasts, and so it is not possible to use RMSEs to compare models 
with different degrees of exogeneity. 

Estimating the uncertainty from the error terms and coefficient estimates is a 
straightforward exercise in stochastic simulation, for which there is now a fairly 
large literature.2 The uncertainty from the exogenous variables can also be 
estimated by means of stochastic simulation, although, as will be discussed, 
before doing this some assumption about the uncertainty of the exogenous vari- 
ables themselves must be made. Estimating the uncertainty from the possible 
misspecification of the model is the most difficult and costly part of the method, 
and it rests on a strong “constancy” assumption. Although, as will be seen, 
this assumption is quite restrictive, some assumption of this kind is needed if 
comparisons across models are to be made. An assumption like this is, for ex- 
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ample, implicit in any comparison of RMSEs across models. 
The method is described in Section 2. and the results of applying the method 

to two models are presented and discussed in Section 3. Section 4 contains a 
brief discussion of the application of the method to subjectively-adjusted models. 
The exact stochastic-simulation procedures that were followed for the results in 
Section 3 are explained in the Appendix. 

With respect to the misspecification part of the method, it should be noted at 
the outset that this paper is not concerned with testing for misspecification. The 
present approach is rather to estimate the effects of misspecification on the 
uncertainty of forecasts. In other words, the basic premise of this paper is that 
n&specification is likely to exist and so must be accounted for in some way. For 
good examples of the hypothesis-testing approach, see Brown, Durbin, and 
Evans [1975] for single equation models, and Muench, Rolnick, Wallace, and 
Weiler 119741 for simultaneous equations models. 

2. TKB METHOD 

2.1. The Notation. The method can be applied to a model that is nonlinear 
in both variables and coefficients. Let G denote the total number of equations 
in the model, A4 the number of stochastic equations, and N the total number of 
predetermined (both erogenous and lagged endogenous) variables. Assume 
(for expositional convenience only) that the model is quarterly, and let the i-th 
equation of the model for quarter r be written: 

(1) a$(%..> Y&L X1(%..> x‘&)* Al = 493 i = l,..., G, 

where the yk~) are the endogenous variables, the xhz) are the predetermined 
variables, Bi is the vector of unknown coefficients in equation i, and cl(r) is the 
error term corresponding to equation i. For identities, @i(z) is zero for all 7. 
Also, let e(r) denote the M-component vector of the error terms of the stochastic 
equations for quarter z. For simplicity it will be assumed that efz)wN(O, s2) 
for all z, although the following discussion can be modified to incorporate different 
assumptions about the distribution of e(t). 

Some of the definitions that are needed in the following discussion are listed 
in Table 1. It will be important to keep track of what the various expected values 
and variances are conditional on, and the notation in Table 1 is designed with 
this in mind. In addition, it should be noted that all expected values and vari- 
ances in this paper are conditional on the actual values of the endogenous and 
predetermined variables up to the beginning of the prediction period. Also, all 
expected values and variances are conditional on the actual values of the exoge- 
nous variables for the prediction period unless otherwise stated.3 

* With respect to the d&&ions in Table 1, it should also be noted that it is implicitly as- 
sumed in this paper that the variances of the forecast errors exist. For some estimation tech- 

(Conrimd on next page) 
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TABLE 1 
DEFlNlTlONS 

,5 = vector of all the unknown ccetiicients. 
6J = covaiance matrix of the structural error terms (Mx M). 
I~ = first quarter of the estimation period. 
te = last quarter of the estimation period. 

&t,, t.) = estimate of 1 from the I, --fl sample period. 
.&t,, tJ = estimate of D from the P, -fS sample period. 
V@,, f*) = c.walian~ matrix of ,&&, t3. 
V(r,, t,) = estimate of V(r,, t3. 

f = any quarter of the prediction period. 
j+(r, k) = expected value of the k-quarter-ahead forecast of variable i for quarter 

f conditional on Q and p. 
of@, k) = variance of the forecast erra for the k-quarter-ahead forecast of 

variable i for quarter t conditional on 12 and 8. 
P&r, k, I,, 13 = expected value of the k-quarter-abead forecast of variable i for quarter 

f conditional on 67, ,&I,, I$), and V(t,, te). 
o:(r, k, f,, tz) = variance of the forecast error for the k-quarter-ahead forecast of 

variable i for quarter f conditional on 0, &I,. (3, and V(t,, 6). 
?+(I, k) = stochastic-simulation estimate of i& k). 
i#, k) = stochastic-simulation estimate of o#t, k). 

F<(r, k, fr, 13 = stochastic-simulation estimate of Pi@, k, f,, 6). 
it(t, k, I,, I*) = stochastic-simulation estimate of o:(t, k, 2,. t,). 

?‘(I, k, II, t., x) = expected value of the kquarter-ahead foxcast of variable i for quarter 
r conditional on Q, ,&I,, IJ, V(t,, t#), and some assumption about the 
uncertainty of the exogenous-variable forecasts 

<;(I, k, 11, f,, x) = variance of the fowast error for the k-quarter-ahead forecast of 
variable i for quarter f conditional on 9, j(t,, f& V(f, fr), and 
some assumption about the uncertainty of the exogenous-variable 
forecasts. 

?&, k, f,, &, x) = stochastic-simulation estimate of P,(t, k, I,, fp, x). 
tif(r, k, z,, I*, x) = stochastic-simulation estimate of ~;(t, k, f,, tn. x). 

Zs(t, k, t,, tar x, d) = estimate of the total variance of the forecast error for the k-quarter- 
ahead forecast of variable. i for quarter 1. 

Although the method relies heavily on the use of stochastic simulation, it can 
be explained without going into the details of the simulation procedures. Because 
of this and because these details are in part model specific, no mention of particular 
simulation procedures is made in this section. As noted in the Introduction, the 
stochastic-simulation procedures that were followed for the results in Section 3 

(Continmd) 
niques this is not ahvayx the case. If in B given application the variances do not exist, then one 
should estimate other measures of dispersion of the distribution, such a.s the interquartile range 
or mean absolute deviation. 
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are explained in the Appendix. 

2.2. Estimating $(t, k). For a one-quarter-ahead forecast (k= 1), oi(r, k) is 
merely the variance of the reduced form error term for variable i and quarter t. 
For a linear model this variance is not a function of t (assuming that Sa is not a 
function oft), and an analytic expression for it can be obtained. For a nonlinear 
model, neither of these is in general true. It is, however, fairly straightforward 
to estimate $(t, k) by means of stochastic simulation. If p and 0 were known, 
one would merely draw for each trial a set of error terms from the N(0, s2) dis- 
tribution and solve the model for this set using the known value of b. In this 
case the stochastic-simulation estimate of v$(f, k) would differ from the true value 
only because of sampling error (i.e., because of a finite number of draws). In 
practice, of course, only estimates of b and Q are available, and these must be 
used for the stochastic simulation. This is another reason the stochastic-simu- 
lation estimate of 02(f, k) will differ from the true value. 

2.3. Estimating a:(& k, f,, Q. For k=l, oi(t, k, t,, tJ is what is usually 
referred to as the variance of the forecast error. This variance can also be esti- 
mated in a straightforward way by stochastic simulation, using &t,, tl). 6?(tl, tl), 
and P(t,, t2). Note in this case that in practice P(t,, t2) is usually only an 
estimate of the asymptotic approximation of V(t,, tz), not an estimate of V(t,, c2) 
directly.4 This is another source of simulation error. Each simulation trial for 
estimating this variance consists of draws of both error terms and coefficients. 

2.4. Estimating uf(t, k, tt, t2, x). Estimating this variance by stochastic 
simulation is less straightforward than estimating the previous two. There is 
no obvious estimate available of the degree of uncertainty of the exogenous- 
variable forecasts themselves, and so some assumption about this must first be 
made. There are two polar assumptions that can be made in this regard. One 
is, of course, that there is no exogenous-variable uncertainty. The other is that 
the exogenous-variable forecasts are in some way as uncertain as the endogenous- 
variable forecasts. With respect to this latter assumption, one could, for example, 
estimate an autoregressive equation for each exogenous variable and then add 
these equations to the model. This expanded model, which would have no 
exogenous variables, could then be used for the stochastic-simulation estimates of 
~$(t, k) and cr:(t, k, f,, tJ. This procedure is likely, however, to exaggerate the 
uncertainty of many exogenous variables. This is particularly true of fiscal-policy 
variables, where government-budget data are usually quite useful for purposes of 
forecasting up to at least about eight quarters ahead. The assumption of no 
uncertainty is also clearly unrealistic, and so the truth seems likely to lie somewhere 
between the two polar assumptions. 

’ Note that the use of estimated asymptotic distributions for the stochastic simulations may 
mask the problem of the possible nonexistence of variances mentioned in footnote 3. The 
variances may exist for the estimated asymptotic distributions but not for the true finite sample 
distributions. 
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The assumption that was made in this study for the results in Section 3 is 
probably closer to the second polar assumption than it is to the first. The pro- 
cedure followed in this case, which is explained in detail in the Appendix, was to 
estimate an eighth-order autoregressive equation for each exogenous variable 
(including a constant and time in the equation) and then to take the estimated 
standard error from this regression as the estimate of the degree of uncertainty 
attached to forecasting the change in this variable for each quarter. This pro- 
cedure ignores the uncertainty of the coefficient estimates in the autoregressive 
equations, which is one reason it is not as extreme as the procedure that would be 
followed under the second polar assumption.5 

Each simulation trial for estimating this variance consists of draws of error 
terms, coefficients, and exogenous-variable errors. 

2.5. Estimating the Uncerfaintyfrom Misspecification - Computing Zi:(t, Ii, 
1,, t,, x, d). As noted in the Introduction, this part of the method is costly and 
rests on a strong assumption. It is based on a comparison of estimated variances 
computed by means of stochastic simulation with estimated variances computed 
from outside-sample forecast errors. For a correctly specified model the expected 
value of the difference between these two estimates for any given variable and 
length of forecast is, ignoring simulation error, zero. Misspecification has two 
effects on this difference. First, if the model is misspecified, the estimated co- 
variance matrices that are used for the stochastic simulation will not in general 
be unbiased estimates of the true covariance matrices. The estimated variances 
computed by means of stochastic simulation will thus in general be biased. Sec- 
ond, the estimated variances computed from the forecast errors will also in general 
be biased estimates of the true variances. Since misspecification affects both 
estimates, the expected value of the difference between these estimates may be 
negative, positive, or even zero for a misspecified model. 

The assumption upon which this part of the method is based is that the model 
is n-&specified in such a way that for each variable and length of forecast, the 
expected value of the difference between the two estimates of the variance is con- 
stant across time. As will be seen, given this assumption, it is possible to estimate 
the total variance of the forecast error for each variable and length of forecast. 
This part of the method effectively accounts for misspecification effects (if any) 
that are not already reflected in the variances that are estimated by means of sto- 
chastic simulation. It requires successive reestimation and stochastic simulation 
of the model. 

s In the stochastic-simulation study of Haitovsky and Wallace [1972], third-order autoregres- 
sive equations were estimated for the exogenous variables, and these equations were then added 
to the model. This procedure is thus consistent with the second polar assumptions above 
excepl that for purposes of the stochastic simulations Haitovsky and Wallace took the variances 
of the error term8 to be one-half of the estimated variances. They defend this procedure (pp. 
267-268) on the grounds that the Uncertainty from the exogenous-variable forecasts is likely to 
be less than is reflected in the autoregressive equations, a view that is consistent with the above 
discussion. 



360 RAY C. FAIR 

It is easiest to describe this part of the method by means of an example. Con- 
sider first the case for k= 1 (a one-quarter-ahead forecast), and assume that data 
are available from quarters 1 through 100. Assume also that the lags in the 
model are such that the estimation period can begin with quarter 11. All 
stochastic simulations described in this subsection are based on actual values of 
the exogenous variables (no exogenous-variable uncertainty). 

Consider now the case in which the model is estimated for the 11-70 period. 
Given this set of estimates (i.e., given &ll, 70), 8(1 I, 70), and P(11, 70)), one can 
estimate by stochastic simulation the variance of the forecast error for each 
variable i for quarter 71 (i.e., one can compute 51(71, 1, 11, 70)). In the process 
of doing this, one also obtains an estimate of the expected value of the forecast 
for each variable i for quarter 71, Ti(71, 1, 11, 70). The difference between this 
value and the actual value, y,(71), is the mean forecast error for quarter 71: 

(2) 8,(71, 1, 11, 70) = y&71) - &(71, 1, 11, 70). 

If it is assumed that the stochastic-simulation estimate of 7,(71, 1, 11, 70) 
exactly equals the true expected value, then 4(71, 1, 1 I, 70) is a sample draw from 
a distribution with a known mean of zero and variance 0$(71, 1, 11, 70). 8:(71, 
1, 11, 70) is thus under this assumption an unbiased estimate of u1:(71, I, 11, 70). 
One thus has two estimates of this variance, one computed from the mean forecast 
error and one computed by stochastic simulation. Let 471, 1, 11, 70) denote 
the difference between these two estimates: 

(3) d&71, 1, 11, 70) = 8:(71, 1, 11, 70) - +:(71, 1, 11, 70). 

If it is further assumed that the stochastic-simulation estimate of af(71, 1, 11, 70) 
exactly equals the true value, then d,i71, 1, 11, 70) is the difference between the 
estimated variance based on the mean forecast error and the true. variance. There- 
fore, under the above two assumptions of no error in the stochastic-simulation 
estimates, the expected value of d,(71, 1, 11, 70) is zero. 

Given that data are available through quarter 100, the above procedure can 
be repeated for quarters 72 through 100. The model can, for example, be re- 
estimated through quarter 71 and the above calculations performed for quarter 
72. This will yield a value of di(72, 1, 11, 71) for each variable i. Similarly, a 
value of di(73, 1, 11, 72) can be computed by reestimating the model through 
quarter 72 and performing the above calculations for quarter 73, and so on through 
quarter 100. This procedure will yield 30 values of ri,(t, 1, 11, t- 1) (t=71, 72,..., 
100) for each variable i, each of the 30 values being based on a different set of 
coefficient estimates of the model and a different stochastic simulation. If the 
above two Assumptions of rio simulation error hold for aI1 f, then the expected 
value of dkt, 1, 11, f - 1) is zero for all t. 

The discussion of this example has so far been based on the assumption that 
the model is correctly specified. As noted at the beginning of this subsection, 
misspecification will in general affect both estimates of the variance, and so the 
sign of the effect of misspecitication on the difference between the two estimates 
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is ambiguous. It is clearly possible for n&specification to affect the two estimates 
in the same way and thus leave the expected value of the difference between them 
equal to zero. In general, however, this does not seem likely.6 In other words, 
one would not generally expect the mean of the distribution of di(t, 1, 11, t- 1) 
to be zero for a r&specified model. There is also no particular reason to expect 
the mean of this distribution to be constant across time, but the method of this 
paper does rest on a constancy assumption of this kind. In particular, the fol- 
lowing assumption is made. For variables that have no trend, it is assumed that 
the mean of di(t, 1, 11, 1-l) is constant ac*o*s time (i.e., is not a function of t). 
For variables that have a trend, it is assumed that the mean of d,(t, 1, 11, r-l)/ 
E(t, 1, 11, t-l) is constant across time, i.e., that the mean of d,(t, 1, 11, t- 1) is 
proportional to the square of the estimated mean of the variable (remember that 

d,(t, 1, 11, r- 1) is in units of the variable squared). 

6 The following example may help in understanding the effect of misspecitication on the 
‘two estimates. Assume that the model is a single equation and that the true equation is y:= 
Bl&f,&&+% where c_; obeys all the assumptions of the classical regression model. As- 
sume also that .xBr is (incorrectly) excluded from the estimated equation, and let 3, be the least 
squaitres estimate of ,B, from the regression of y, on xi, (for say, I-= 1, 2,..., T). i, is a biased 
estimate of &, with bias p/3,, wherep is the cc&icient estimate in the regression of xt, on .Q. 
Consider now the forecast of y,, j,.x,*, where f is, say, T+l. The fomzast error, r^,, is j,x,, 
-(&$ +,Bnxz‘ +e,), and the expected value of i: can be easily seen to be: 

where gp is the variance of e, and X denotes summation from I to T. If ,&=O, then the esti- 
mated equation is not misspecified, and the expected vaiue of if is merely the fint term in (i), 
a well known result. Now, the estimated variance of the regression of y, on xii is the sum of 
squared residuals divided by T-I, and this is the variance of the error term that would be used 
in the stochastic simulation. Its expectation is 

(ii) 

where SSRli is the sum of squared residuals in the regression of xs, on xl,. Ignoring simula- 
tion error, the variance of the forecast error for period f that would be computed from stochastic 
simulation is 

(iii) 

The di%xence between (i) and (iii) is the expected value of the difference between the two 
estimates of the variance: 

Unless fl.=O, this difference is not in general zero, although it can obviously be either positive 
a negative. This enmple thus shows clearly that misrpecification affects both estimates of 
the variance and so has an ambiguous effect on the sign of the difference between the two. This 
example also shows that the assumption that the expected value of the difference is constant 
across time is quite strong and is at best likely to be only a rough approximation to the truth. 
I am indebted to an anooymou?. referee for this example. 
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For variables that have no trend, let J,(l) denote the sample mean of the d& 1, 
11, t- 1) values, and for variables that have a trend, let a,(l) denote the sample 
mean of the di(t, 1, 11, t-l)/%& 1, 11, t-l) values. In the above example, 
&(l) would be based on a sample of size 30. 

It should be stressed that all the stochastic simulations and outside-sample 
forecast errors that are involved in computing a,(l) are based on actual values of 
the exogenous variables. Unless actual exogenous-variable values are used, the 
expected value of d,(...) is not in general zero even under the assumptions of no 
simulation error and correct specification. Once Z,(l) has been obtained, how- 
ever, one can then account for exogenous-variable uncertainty. From Section 2.4 
one has a stochastic-simulation estimate of af(1, 1, t,, f,, x), and given this and 
a,(l), one can compute the total variance of the forecast error. In other words, 
one can compute di(f, I, f,, t2, x, d) in Table 1. For variables that have no 
trend, this is merely: 

(4) 6Kf, 1, t,, t,, x, d) = +(t, 1, t*. tz, x) + J,(l). 

For variables that have a trend, the correct formula is: 

(5) a%& I, f,. t*?, x, d) = Wf, I, t*, 12, x) + &(1).&f, 1, fl, r*, n). 

The generalization of the above procedure to k-quarter-ahead forecasts is 
straightforward. Just substitute k for I in the discussion. Each length of fore- 
cast will have its own a,(k) value, and these values will in general be different for 
different lengths. Also, note that one observation is lost for each one quarter 
increase in the length of the forecast. In the above example, given the beginning 
quarter of 71 and the ending quarter of 100, 29 values for d,(t, 2, 11, t-2) could 
be computed, 28 values of d&r, 3, 11, f-3) could be computed, and so on. 

There are at least two options available in computing a,(k), and these should be. 
mentioned. First, in computing the individual d,(...) values, one can vary the 
beginning quarter of the estimation period (fI). In the above discussion t, was 
always taken to be 11. Second, the distance between the last quarter of the 
estimation period and the first quarter of the prediction period need not be one 
quarter, as assumed above. In fact, as will be discussed, for the results in Section 
3 the distance was taken to be two quarters. The criterion that one should use 
in choosing the first option is to choose the one that teems likely to correspond to 
the constancy assumption about the mean of di(...) being the best approximation. 

The assumption that the mean of d,(...) is constant across time is clearly the 
strongest of the above assumptions, and it is an open question how good an 
approxnnation it is likely to be. The other two assumptions, of no simulation 
error, are not nearly as important, since they are really only needed to prove that 
the expected value of d,(..,) is zero under the null hypothesis of no misspecification. 
Given that some kind of constancy assumption has to be made for comparisons 
across models, the present assumption seems the most obvious one to make, and 
this is the main defense for making it. As noted in the Introduction, an assump- 
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tion of this kind is also implicit in comparisons of RMSEs across models. 
Another constancy assumption that could be made is that the mean of d,(...) 

follows a linear time trend. This trend could be estimated by regressing the 30 
or so values of d,(...) for each variable and length of forecast on a constant and 
time. The above formulas can be easily modified to incorporate this assumption. 
It is also possible, of course, to plot the individual di(..,) values over time and look 
for systematic patterns. This information could then be used to help formulate 
a constancy assumption. In short, while the method proposed in this paper does 
require a constancy assumption, there are a number of choices, and in future work 
it will be of interest to examine the sensitivity of results like those in Section 3 to 
alternative choices. 

Since for a correctly specified model the mean of di(...) is zero, examining the 
individual d,(...) values may also reveal information about the strengths and 
weaknesses of the model that is useful in future work on the model. In other 
words, the individual d,(. . .) values may be of interest in their own right aside from 
their use in comparisons across models. 

One other point about the constancy assumption should be noted, which con- 
cerns the question of data mining. If in the traditional sense one has mined the 
data within some sample period, then one would expect that variances estimated 
from outside-sample forecast errors would on average be larger than variances 
estimated by means of stochastic simulation. Aside from possible reservations 
about the constancy assumption, the present method does penalize a model for 
this kind of data mining. There is, however, a subtler form of data mining that 
the method does not account for. If, say, a model were specified in quarter 100, 
estimated through quarter 90, and tested with respect to its outside-sample fore- 
casting accuracy for the period 91-100, then it is clear that this is not a strict 
outside-sample test. Information on what happened between quarters 91 and 
100 may have been used in the specification of the model, and so one cannot be 
sure that the model’s “outside-sample” accuracy estimated for quarters 91-100 
will hold for, say, quarters 101-110. In the present context this means that the 
expected value of the difference between the two estimates of the variance may be 
larger for the period 101-110 than it is for the period 91-100, which, of course, 
violates the constancy assumption. The present method thus does not take into 
account this subtler form of data mining. 

3. THE ‘WPLICATIoN OP THE METHOD TO TWO MODELS 

For purposes of this study the method was applied to the model in Fair [1976, 
1978a], which will be called Model I, and to a “naive” model, which will be called 
Model II. Model I consists of 97 equations, 29 of which are stochastic, and has 
183 unknown coefficients to estimate (including 13 serial correlation coefficients). 
There are 60 exogenous variables (not counting the constant, time, and various 
dummy variables). The model is nonlinear in variables and coefficients, the latter 
because of the serial correlation coefficients, which are treated for present purposes 
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1978 1979 1980 1981 

I: -11 III IV 1 II III IV I 11 III I” I II II1 IV 
k: I 2 3 4 5 6 7 8 9 10 11 I2 13 14 15 

Model I. Red GNP 
a 0.65 0.88 1.03 1.15 1.25 1.30 I.35 1.34 1.36 1.40 1.43 
b 0.67 0.95 1.19 1.38 1.49 1.59 1.66 1.69 1.77 1.81 1.82 
c 0.74 1.09 1.37 1.63 1.76 1.94 2.04 2.08 2.15 2.18 2.22 
d 0.80 1.23 1.54 1.96 2.27 2.51 2.48 2.27 

A4odei II. Renl GNP 
a 0.61 1.02 1.34 1.64 1.84 1.94 2.01 2.03 2.04 2.03 2.04 

b,e 0.67 1.13 1.53 1.90 2.20 2.38 2.50 2.59 2.64 2.68 2.73 
d 1.09 1.93 2.72 3.45 4.01 4.32 4.58 4.74 

Model I. GNP D&for 
a 0.28 0.35 0.42 0.47 0.51 0.55 0.59 0.61 0.64 0.65 0.65 
b 0.31 0.47 0.58 0.71 0.83 0.93 1.02 1.10 1.19 1.28 1.37 
c 0.44 0.67 0.84 1.04 1.21 1.36 1.49 1.62 1.75 1.88 1.98 
d 0.53 0.93 1.37 1.87 2.33 2.74 3.15 3.48 

Model II. GNP Defitor 
a 0.20 0.36 0.53 0.71 0.90 1.08 1.24 1.37 1.49 1.58 1.65 

b,c 0.24 0.45 0.70 1.00 1.36 1.73 2.10 2.48 2.84 3.18 3.52 
d 0.45 0.94 1.53 2.25 3.12 4.05 5.10 6.20 

Model 1. Unemgloyment Raze (units of perccnrage poinfs) 
n 0.27 0.45 0.57 0.64 0.71 0.77 0.80 0.82 0.82 0.85 0.90 
b 0.36 0.58 0.76 0.92 1.03 1.12 1.16 1.23 1.28 1.34 1.38 
e 0.36 0.60 O.SO 0.95 1.08 1.17 1.24 1.31 1.35 1.41 1.47 
d 0.35 0.60 0.77 0.82 0.85 0.83 0.77 0.71 

Model II. Unemployment Rate (unirs of percentage points) 

a 0.28 0.55 0.77 0.94 1.02 1.08 1.12 1.14 1.15 1.16 1.16 
b,c 0.29 0.58 0.84 1.04 1.17 1.27 1.34 1.40 1.44 1.48 1.52 

d 0.36 0.74 1.12 1.48 1.73 1.91 2.07 2.19 

Model I. Wage Rate 

a 0.60 0.77 0.88 0.89 0.96 1.01 1.03 1.05 1.07 1.10 1.08 
b 0.70 0.93 1.12 1.34 1.52 1.65 1.76 1.82 1.94 2.04 2.15 
c 0.67 0.95 1.16 1.35 1.53 1.66 1.80 1.94 2.08 2.20 2.32 
d 0.65 1.06 1.45 2.01 2.53 3.07 3.59 4.16 

Model Il. Wage Rate 

(I 0.30 0.40 0.48 0.53 0.59 0.61 0.67 0.72 0.76 0.81 0.85 
b,c 0.36 0.48 0.59 0.75 0.86 0.97 1.15 1.29 1.46 1.64 1.81 

d 0.63 0.84 1.04 1.26 1.41 1.56 1.81 2.04 

1.44 1.47 1.46 1.43 
1.84 1.88 1.88 1.94 
2.30 2.34 2.36 2.43 

2.04 2.03 2.03 2.03 
2.77 2.81 2.84 2.87 

0.65 0.66 0.67 0.68 
1.44 1.50 1.57 1.63 
2.W 2.23 2.35 2.43 

1.71 1.76 1.80 1.83 
3.85 4.17 4.48 4.80 

0.92 0.93 0.96 0.97 
1.42 1.50 1.56 1.62 
1.50 1.55 1.59 1.64 

1.16 1.15 1.15 1.16 
1.55 1.59 1.63 1.66 

1.07 1.08 1.04 1.05 
2.27 2.35 2.45 2.51 
2.40 2.52 2.61 2.69 

0.88 0.91 0.95 0.98 
1.99 2.19 2.39 2.59 
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TABLE 2 (CONTINUE) 

1978 1979 ,980 1981 

,: II III IV I 11 111 I” 1 II III IV I II III IV 
k: 1 2 3 4 5 6 7 8 9 10 II 12 13 14 15 

Model I. &I/ Rafe (u&s of percentage points) 

a 0.45 0.67 0.78 0.84 0.91 0.93 0.97 0.98 0.97 0.98 0.98 0.97 0.97 1.01 1.03 

b 0.48 0.71 0.86 1.01 1.08 1.14 1.21 1.25 1.28 1.32 1.32 1.35 1.37 1.37 1.42 

c 0.49 0.72 0.92 1.06 1.16 1.25 1.31 1.37 1.44 1.51 1.53 1.54 1.56 1.58 1.61 

d 0.61 0.96 1.08 1.17 1.31 1.47 1.56 1.72 

Model IL ISiN Rate (u&s of percentage points) 

n 0.46 0.72 0.80 0.85 0.90 0.93 0.94 0.94 0.94 0.94 0.96 0.99 1.02 1.03 1.04 

b,c 0.47 0.77 0.93 1.05 1.14 1.20 1.22 1.19 1.16 1.14 1.11 1.14 1.15 1.16 1.18 

d 0.69 1.12 1.33 1.51 1.63 1.71 1.77 1.83 

Model I. Money Supply 
n 0.83 1.09 1.29 1.47 1.62 1.76 1.84 1.92 1.98 2.03 2.11 2.13 2.17 2.19 2.23 

b 0.91 1.31 1.63 1.87 2.13 2.36 2.56 2.79 2.96 3.16 3.35 3.55 3.72 3.94 4.15 

c 0.91 1.33 1.69 1.98 2.34 2.68 3.06 3.45 3.79 4.14 4.51 4.88 5.28 5.63 5.97 

d 1.39 2.16 2.95 3.75 4.62 5.50 6.49 7.50 

Model II. Money Supply 

a 0.54 0.67 0.81 0.88 0.97 1.02 1.10 1.15 1.22 1.28 1.33 1.40 1.45 1.49 1.51 

b,e 0.62 0.81 1.03 1.21 1.36 1.53 1.72 1.93 2.12 2.34 2.51 2.73 2.96 3.19 3.42 

d 1.38 1.64 1.95 2.32 2.62 2.91 3.30 3.70 

a = uncertainty due to erxx terms - ;,(r, k). 
b = uncertainty due to error terms and coefficient estimates - i& k, t,, I~). 
c = uncertainty due to error terms, coetlicient estimates, and exogenous-variable 

forecasts - :,(t, k, ft, f$, x). 

d = uncertainty due to error terms, coefficient estimates, exogenous-variable forecasts, 
and possible misspecification of the model - ;,(t, k, tl, r., x, d). 

Basic Estimation Period: r,=19541, ta=19771V. 
Forecast Period: r=1978II,..., 19811” 
Modol I = model in Fair [1978al. 
Model II = naive model. For Model II there are no e~opmm variables, so c=b for 

this model. 
For the unemployment rate and the hill rate, the errors are in the natural tits of the 
variables. For the other variables, the arms are expressed as percentages of the forecast 
means (in percentage points). 

as structural coefficients. Model II is a system of completely separate equations. 
Each variable in the model is simply regressed on a constant, time, and its first 
eight lagged values. 

In order to apply the method one must first choose 8 forecast period. For 
present purposes this was taken to be 1978IL19811V (15 quarters). Model I was 
estimated for the 19541-19771V period (96 observations) and then used to forecast 



,978 1979 1980 1981 

t: II III IV I II III I” I 11 111 iv I II III I” 
k: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Model I. Reed GNP (biNions of 1972 dollars) 
0 1374.8 1390.5 1404.8 1419.2 1432.2 1445.1 1458.9 1472.4 1485.4 1498.5 1511.7 1524.7 1537.4 1549.9 1562.8 
a 1374.5 1390.1 1403.9 1418.4 1431.1 1444.2 1458.0 1472.1 1485.2 1497.4 1510.2 1523.4 1535.8 1548.0 1560.9 

b 1375.1 1390.3 1404.1 1418.2 1430.8 1443.2 1457.5 1471.2 1483.6 1496.6 1510.0 1522.9 1535.6 1548.1 1561.3 
c 1374.3 1389.4 1402.6 1416.4 1428.8 1441.1 1454.9 1468.6 1481.8 1495.8 1508.8 1521.2 1534.2 1546.6 1559.3 

P 

Model II. Real GNP (billions of 1972 dollars) 
* 

0 1356.7 1358.6 1362.1 1368.0 1378.9 1389.9 1399.2 1408.6 1417.5 1425.0 1432.5 1440.8 1449.2 1457.5 1466.3 
0 

(1 1356.7 1358.3 1361.7 1367.7 1378.8 1390.0 1399.5 1409.1 1418.0 1425.5 1432.8 1440.8 1449.1 1457.4 1466.4 T 

b 1356.6 1357.9 1361.3 1367.3 1378.3 1389.7 1399.7 1409.5 1418.7 1426.4 1434.2 1442.5 1451.1 1459.1 1468.5 B 

Mod& I. GNP Deflator (1972=1.0) 
0 1.4859 1.5044 1.5259 1.5452 1.5649 1.5848 1.6077 1.6284 1.6494 1.6708 1.6951 1.7172 1.7397 1.7625 1.7884 
(I 1.4858 1.5043 1.5261 1.5454 1.5650 I.5848 l.M)78 1.6286 1.6495 1.6713 1.6958 1.7183 1.7412 1.7639 1.7903 

b I.4859 I.5045 1.5262 1.5456 1.5653 1.5853 1.6085 I.6293 I.6504 1.6719 1.6967 1.7190 1.7424 1.7657 1.7922 
c 1.4861 1.505, 1.5268 1.5465 1.5661 1.5856 1.6088 1.6297 1.6507 1.6723 1.6972 1.7195 1.7423 1.7655 1.7919 

Mod& II. GNP DejWor (1972~ 1.0) 
0 1.4922 1.X83 1.5466 1.5759 I.6060 1.6369 1.6683 1.7001 1.7323 1.7647 1.7976 1.8309 1.8648 1.8993 1.9345 

,I 1.4922 1.5182 1.5465 1.5755 1.6056 1.6364 1.6677 1.6995 1.7318 1.7644 1.7974 1.8310 1.8650 1.8998 1.9353 
b I.4922 1.5185 1.5469 1.5762 1.6065 1.6376 1.6693 1.7014 1.7337 I.7663 1.7993 1.8326 1.8663 1.9+W3 1.9360 



Model I. Unmtployrnenr R&2 (percenfoge points) 

0 6.38 6.41 6.43 6.46 6.48 6.51 6.51 
(1 6.40 6.43 6.46 6.48 6.50 6.51 6.50 
b 6.39 6.42 6.45 6.49 6.49 6.51 6.51 
c 6.41 6.45 6.48 6.53 6.54 6.55 6.56 

Modelll. Unemployment Rafe (percentwe mints) 
0 5.98 5.90 5.98 6.18 6.35 
LI 5.96 5.87 5.95 6.15 6.32 
6 5.98 5.91 6.W 6.19 6.35 

Model I. Wage Rate (current do&m per hour) 
0 6.41 6.59 6.71 6.83 6.95 
LI 6.47 6.59 6.70 6.83 6.95 
b 6.47 6.59 6.71 6.83 6.95 
c 6.47 6.59 6.71 6.83 6.96 

Model II. Wage R&e (wrent dollars per how) 
0 6.49 6.64 6.76 6.90 7.05 
(I 6.49 6.64 6.77 6.90 7.05 
b 6.49 6.64 6.77 6.90 7.05 

Model I. Bill Rare (pcrcenrene points) 
0 6.68 6.85 6.95 7.04 7.10 
D 6.68 6.85 6.91 7.05 7.09 
b 6.69 6.85 6.93 7.02 7.08 
e 6.67 6.83 6.93 7.01 7.10 

Model II. Bill Rare (percenhlge pints) 
0 6.87 7.43 7.81 7.95 a.00 
a 6.87 1.42 7.82 7.96 8.01 
b 6.88 7.43 7.79 7.92 7.98 

6.45 6.53 
6.42 6.50 
6.45 6.53 

7.08 7.21 
7.08 7.21 
7.M) 7.21 
7.09 7.22 

7.20 1.35 
7.20 7.35 
7.19 7.35 

7.15 7.21 
7.16 7.21 
7.14 7.24 
7.16 7.22 

8.02 7.92 
8.05 7.95 
7.99 7.88 

6.50 
6.48 
6.50 
6.54 

6.59 
6.55 
6.96 

7.34 
7.34 
7.35 
7.36 

7.51 
7.51 
7.51 

7.28 
7.28 
7.32 
7.28 

7.72 
7.74 
7.68 

6.48 6.46 6.43 6.39 
6.44 6.40 6.38 6.34 
6.49 6.46 6.44 6.43 
6.53 6.48 6.44 6.41 

6.64 6.69 6.73 6.74 
6.60 6.66 6.70 6.73 
6.66 6.71 6.75 6.77 

7.48 7.62 7.76 7.90 
7.48 7.62 7.76 7.91 
7.49 7.63 7.77 7.91 
7.49 7.64 7.78 7.93 

7.67 7.83 8.00 a.17 
7.67 7.83 a.00 8.17 
7.67 7.83 8.00 8.17 

7.35 7.41 7.48 7.55 
7.35 7.41 7.47 7.55 
7.35 7.40 7.49 7.59 
7.33 7.39 7.47 7.56 

7.51 7.34 7.20 7.09 
7.54 7.36 7.21 7.11 
7.48 7.29 7.14 7.02 

6.36 
6.31 
6.41 
6.38 

6.76 
6.76 
6.80 

8.05 
8.06 
8.06 
8.08 

8.35 
a.35 
8.35 

7.62 
7.62 
7.67 
7.63 

7.06 
7.06 
6.98 

6.33 6.30 
6.29 6.27 
6.39 6.36 
6.34 6.32 

6.78 6.80 
6.79 6.82 
6.82 6.84 

8.20 8.35 
8.21 8.36 
8.22 8.37 
8.23 8.38 

8.53 a.72 
8.53 a.72 
a.53 8.72 

7.68 7.74 
7.67 7.71 
7.73 7.81 
7.72 7.78 

7.10 7.19 
7.10 7.20 
7.02 7.12 



TABLE 3 (CONTINUED) 

1978 1979 198cl 1981 

n III IV I II III IV I II III I” I II III Iv 
k: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Model I. Money Supply (billinns of eurrenf dollars) 
0 373.1 380.8 388.6 396.4 401.3 412.3 420.5 428.8 437.1 445.6 454.2 463.0 471.9 480.8 490.0 
a 373.2 380.9 388.7 396.5 404.5 412.4 420.6 429.0 437.5 446.0 454.6 463.4 472.2 481.8 490.4 
b 373.2 381.0 388.8 396.9 404.9 413.0 421.2 429.5 437.9 446.7 455.6 464.3 473.3 482.2 491.5 
c 373.1 380.9 388.9 396.9 4cH.8 412.9 421 .O 429.4 437.8 446.5 455.3 464.1 473.2 482.2 491.7 

0 
a 

b 

371.6 377.2.. 383.0 388.5 394.7 401.2 407.3 413.6 420.0 426.4 432.9 439.6 446.3 453.2 460.1 
371.6 377.1 383.1 388.5 394.7 401.1 407.2 413.5 419.9 426.3 432.7 439.5 446.2 453.0 459.9 

371.7 377.3 383.3 388.7 395.0 401.5 4137.8 414.2 420.9 427.3 434.2 440.9 448.0 454.8 462.0 n -__- 
0 = error terms .3et equal to zero (no stochastic simulation). 2 
(I _ stochastic simulation with respect to error terms only -_k(t, k). 5; 
b ;~ stochastic simulation with respect lo error terns and coefficient estimates -h(t, k, h, tJ. 
c _ stochastic simulation with resepct to error terms, ccefkient estimates, and exogenous variables - $&, k, f,, fzr x). 
See notes to Table 2. 
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197X11-19811V; and Model II was estimated for the 1954IL19771V period (95 
observations) and then used to forecast 197811-19811V.7 These were actual en 
ante forecasts, and so guessed values of the exogenous variables were used for 
Model I. (Model II has no non-trivial exogenous variables.) Data for 19781 
were used as initial conditions for the forecast, but because they were only pre- 
liminary at the time (April 1978), they were not used for the estimation. 

Given the coefficient estimates and forecast period, one can compute by 
stochastic simulation Cf(t, k), C$(r, k, f,, tz), and $(t, k, t,, t,, x). If one is 
interested only in the estimates of total uncertainty, then the first two of these 
need not be computed. For present purposes, however, all three were computed, 
which means that three 15-quarter stochastic simulations were performed per 
model. For each simulation 1000 trials were made for Model I and 2000 trials 
were made for Model II. The results of these computations for six variables 
and the 15 quarters are presented in Tables 2 and 3. The square roots of the 
estimated variances are presented in Table 2, and the estimated forecast means 
are presented in Table 3. 

The misspecitication part of the method requires successive reestimation and 
stochastic simulation. For Model I the first estimation period was taken to be 
19541-1968IV, the second to be 19541-19691, and so on through the last, 19541- 
197711. These same periods were used for Model II except that the beginning 
quarter was always 195411 rather than 19541. This is a total of 35 sets of esti- 
mates, and for each set an &quarter stochastic simulation (of 100 trials for Model 
I and 500 trials for Model II) was performed per modeLa This allowed 35 values 
of di(.,.) to be computed for each variable for the one-quarter-ahead forecast, 34 
values for the two-quarter-ahead forecast, and so on. This then allowed the 
means a&), k=l,..., 8, to be computed. Given a:(t, k, t,, t,, x) from the 
simulation for the basic forecast period, this in turn allowed ~?;(t, k, tl, f,, x, d) 
to be computed (see equations (4) and (5)). The square roots of these latter esti- 
mates are presented in the d rows in Table 2. These are the estimates of the total 
uncertainty of the forecast. For these results the formula for variables with a 
trend (equation (5)) was used for real GNP, the GNP deflator, the wage rate, and 
the money supply; and the formula for variables without a trend (equation (4)) 
was used for the unemployment rate and the bill rate. 

The following is a discussion of the results in Tables 2 and 3. The results for 
Model I will be discussed first, and then they will be compared to the results for 
Model II. 

7 Because of data requirements due to lags, the beginning quarter for Model II had to be one 
quarter later than the beginning quarter for Model I. 

* Since the data ended in 1977IV, the simulations for the last 7 sets were shorter than 8 
quarters. The first quarter of each simulation period was taken to be the second quarter after 
the end of the estimation period. This was done to be consistent with the procedure followed 
for the basic forecast period. Partly because of cost considerations and partly because of a 
relative small number of outside-sample observations, the length of the simulation periods for 
this part of the method was taken to be 8 rather than 15 wxters. 
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The results in Table 3 should provide some encouragement to model builders. 
They show that the forecast values computed by setting the error terms equal to 
zero and solving once are quite close to the forecast values computed by means of 
stochastic simulation. Although it is well known (see, for example, Howrey and 
Kelejian [1971]) that the common practice of setting the error terms to zero and 
solving once produces biased estimates of the true means of the endogenous 
variables for nonlinear models, this bias does not appear to be very large, at least 
for Model 1.9 

Consider now Table 2. The results in the a, b, and crows are self explanatory. 
As might be expected, the sensitivity of the standard errors of the forecasts to 
exogenous-variable uncertainty (rows c versus b) is greater for some variables 
than for others. This sensitivity is small for the unemployment rate, the wage 
rate, and the bill rate and fairly large for the money supply. Although in most 
cases these sensitivity differences can be explained, given a knowledge of the 
structure of the model, these explanations are unnecessary for purposes of this 
paper. 

The numbers in the d rows are the estimates of the total uncertainty of the 
forecasts. A brief summary of them is as follows. For the four-quarter-ahead 
forecasts, the estimated standard errors are 1.96 percent (27.8 billion dollars)*0 
for real GNP, 1.87 percent for the GNP deflator, 0.82 percentage points for the 
unemployment rate, 2.01 percent for the wage rate, 1.17 percentage points for the 
bill rate, and 3.75 percent (14.9 billion dollars) for the money supply. For the 
eight-quarter-ahead forecasts, the estimated standard errors are 2.27 percent 
(33.3 billion dollars) for real GNP, 3.48 percent for the GNP deflator, 0.71 per- 
centage points for the unemployment rate, 4.16 percent for the wage rate, 1.72 
percentage points for the bill rate, and 7.50 percent (32.2 billion dollars) for the 
money supply. 

Consider now Model I versus Model II. With respect to the estimates of the 
total uncertainty of the forecasts in the d rows, Model II is less accurate than 
Model I for real GNP, the GNP deflator, the unemployment rate, and the bill 
rate, and it is more accurate for the wage rate and the money supply. For the 
eightquarter-ahead forecasts, the differences in the estimated standard errors are 
2.47 percent for real GNP, 2.78 percent for the GNP deflator, 1.48 percentage 
points for the unemployment rate, -2.12 percent for the wage rate, 0.11 per- 
centage points for the bill rate, and - 3.80 percent for the money supply. 

o Remember, however, that the stOchBstic-simulation estimates themselves are not quite 
right in that they are based on a limited number of trials and on only estimated coefficients 
and wvariance matrices. Also, it is not even the case that the true expected values, F<(t, k), 
4‘&, k, f,, tJ and J&, k, r,, t,, 4, are necessarily the same. The results in Table 3 thus do 
not provide a completely accurate estimate of the bi& that results from setting the error terms 
equal to zero. The conclusion reached here that the bias is small has also been reached by 
Nagar 119691, Sowey [19731, Cooper 119741, Bianchi, Calzolari and Coni 119761, and Calrolari 
and Corsi 119771 for their stochastic simulations with respect to the error terms only. 

In Any dollar figure used in this section has been obtained by multiplying the particular 
parcent ligws in Table 2 by the relevant number in the c rows in Table 3. 
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Given my wage rate, I would conclude from the results in Table 2 that Model I 
is enough of an improvement over Model II to justify the time that I have so 
far spent developing and working on it. The differences in the standard errors 
for real GNP, the GNP deflator, and the unemployment rate are substantial. It 
is, of course, somewhat embarrassing that Model I is less accurate with respect 
to the forecasts of the wage rate and the money supply than Model II. There 
is not too much that can be said about this except that I was aware before, and 
even nwe so now, that the wage-rate equation and one of the demand-for-money 
equations are two of the weakest equations in Model I, weakest in the sense that 
the coefficient estimates of these two equations tend to change more as the model 
is reestimated on the basis of new data than do the coefficient estimates of most 
of the other equations. There are clearly grounds for further work on these 
two equations. 

One further point about the negative results for the money supply for Model I 
should be noted. There is some evidence that indicates that the demand-for- 
money equations in Model I are more accurate than other demand-for-money 

Variable 

Number of Quarters Ahead 

Model I 2 3 4 5 6 7 8 

Real GNP 
brcent) 

GNP Deflator 
(percent) 

Unemployment Rate 
(pxcentage points) 

Wage Rate 
(Rercent) 
Bill Rate 
(percentage points) 

Money Supply 
(percent) 

I 0.79 1.26 1.63 2.12 2.59 2.97 3.24 3.52 
II 1.11 1.96 2.76 3.51 4.09 4.42 4.70 4.91 

I 0.50 0.93 1.43 I.97 2.49 2.95 3.43 3.83 
II 0.47 0.98 1.59 2.36 3.26 4.23 5.35 6.52 

1 0.36 0.60 0.75 0.80 0.79 0.79 0.77 0.77 
II 0.36 0.75 1.13 1.49 1.73 1.89 2.03 2.14 

I 0.78 1.25 1.71 2.31 2.89 3.49 4.06 4.65 
II 0.67 0.94 1.21 1.47 1.71 2.01 2.40 2.83 

I 0.61 1.01 1.16 1.31 1.50 1.70 1.86 2.06 
II 0.70 1.15 1.37 1.52 1.64 1.71 1.76 1.84 

I 1.34 2.12 2.93 3.81 4.74 5.72 6.82 7.97 
II I.41 1.71 2.10 2.52 2.89 3.23 3.64 4.09 

Notes: i) These results are based on 35 sets of estimates of each model. 
ii) Each eight-quarter outside-sample forecast began two quarters after the 

end of the estimation period. The zirst estimation period ended in 19681V, 
and the last (the thirty-fifth) ended in 1977II. Data through 1977IV were 
used, which allowed 35 one-quarter-ahead ezron to be computed for each 
variable, 34 two-quarter-ahead errors, and so on. The actual values of 
the exogenous variables were. used for these calculations. 

iii) The predicted values used were the mean vahw from the 35 stochastic 
simulations that were performed for the d-row results in Table 2. 
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equations. As discussed in Fair [1978b, fn. 6, p. 11691, the demand-for-money 
equation in Model I appear to be considerably more accurate for the 19731-19761 
period than the demand-for-money equation in the MI’S model. The problems 
noted here regarding the demand-for-money equation in Model 1 are thus probably 
not unique to Model I. 

This completes the discussion of the results in Table 2. For comparison with 
these results, root mean squared errors of the outside-sample forecasts have also 
been computed, and these errors are presented in Table 4. These RMSEs are 
based on the predicted values from the same 35 stochastic simulations that were 
used for the d-row results in Table 2. Comparing the numbers in the d rows in 
Table 2 to the respective numbers in Table 4, it can be seen that there are some 
sizeable differences. This is, of course, as expected, since the RMSE procedure 
ignores exogenous-variable uncertainty and the fact that forecast-error variances 
vary across time. It is true, however, that the overall ranking of the accuracy 
of the two models by variable is the same in the two tables. 

4. WTlMATlNG THB KCURACY OF SUBJBCTIYE~~-ADJUSTED MCJDBLS 

Although the method described above is not relevant for models that are sub- 
jectively adjusted, it can be modified for such models. In particular, the following 
procedure could be followed for subjectively-adjusted models. (1) Treat the 
model mechanically and perform the calculations necessary for resuIts like those 
in Table 2. (2) Over a period of a few years compile an ex ante forecasting 
record for both the model used mechanically and the model used subjectively. 
Let q(t, k) denote the error of the k-quarter-ahead forecast of variable i for 
quarter t from the model used mechanically (the forecast starting at the beginning 
of quarter t-k) and let ef(t, k) denote the similar error for the model used subjec- 
tively. Let 8,(t, k) be the difference in the errors squared: &(t, k)=(e(t, /c))~- 
(&t, k))“. After, say, 12 values of J,(t, k) have been compiled, take the average 
of these values. Denote this average as 8,(k). 8dk) will be positive if subjec- 
tively adjusting the model has on average improved its forecasting accuracy. (3) 
If it is assumed that the degree to which subjectively adjusting a model improves 
its forecasting accuracy with respect to a given variable and length of forecast is 
constant across time, then the B&k) values can be subtracted in the appropriate 
way from the numbers in the d rows in Table 2 to get a final estimate of the 
uncertainty of the forecasts from the subjectively-adjusted model.” 

The constancy assumption in (3) is, of course, much stronger than the con- 
stancy assumption needed for the results in Table 2, but the 6,(k) values would 
be at least rough approximations of the degree to which subjectively adjusting 
a model improves its forecasting accuracy. Of more scientific interest, of course, 

I’ The appropriate way would be to subtract b(k) from the square of the respective number 
in row d of Table 2 and then to take the square mot of this difference. This number would then 
be the fmal estimate of the standard error of the forecast from the subjectively-adjusted model. 
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would be the mechanical results themselves, for only by observing results like 
those in Table 2 for models used mechanically can one hope to learn about the 
models in ways that are useful for further scientific research. 

Cowles Foundation, Yale Uniuersit~, U.S.A. 

The exact procedures that were followed for the stochastic simulations are 
discussed in this Appendix. There are a number of ways in which stochastic 
simulation can be carried out, and it is important to note that the method in 
Section 2 does not require any one particular way. In fact, as will be discussed, 
some of the following assumptions are restrictive, and in future work it will be of 
interest to try to relax them. The simulations for Model I will be discussed 
first. 

1. Estimating a:(t, k). For the estimation period of 96 observations (19541- 
1977IV), consistent estimates of the 29 error terms are available (from consistent 
two-stage least squares (TSLS) coefficient estimates). The covariance matrix 
of the 29 error terms (a) was estimated as (1/96)EE’, where E is the 29 x 96 matrix 
of values of the estimated error terms. In conformity with the notation in 
Table 1, this estimate of fi will be denoted ri(9, 104), where 9 is quarter 19541 
and 104 is quarter 19771V. 

Let e(t) denote the 29 x 1 vector of values of the error terms for quarter t: e(t) 
=(el(t),..., e&t))‘. Values of e(t) were drawn from a multivariate normal 
distribution with mean zero and covariance matrix ri(9, 104) for the stochastic 
simulation. Since the prediction period is I5 quarters, each “trial” corresponds 
to drawing 15 values of e(t) (29x 15 numbers in all) and computing the forecast 
using these values.’ In this first case, where only the uncertainty from the error 
terms is being estimated, the coefficient estimates and exogenous-variable values 
are kept the same for all the trials. 

For each trial, one obtains a forecast of each endogenous variable for each 
quarter. Let j{(t, k) denote the value of the k-quarter-ahead forecast of variable 
i for quarter t on the j-th trial. For J trials, the estimate of the expected value of 
the forecast, Ti(t, /c), is (l/J) z&, J$(t, k), and the estimate of the variance of 
the forecast error, Zt(t, k), is (l/J) x$, [j$(t, k) -yi(t, k)12. The number of 

1 The draws were performed as follows. First, a matrix P was computed such that PP’ 
=8(9,104). This was done using the LUDECP subroutine in the IMSL library. Then for 
each of the 15 quarter;, 29 values of a standard normal random variable with mean 0 and vaTi- 
ante 1 were drawn. This was done using the function RNGR, which is part of the SUPER 
DUPER random number generator package at Yale. Let u(f) denote the 29x 1 vector of these 
draws for qwrter 1. ‘I%en e(r) was computed as PL@). Since Eu(f)u’(r)=I, then Ee(f)e’(l) 
=EPu(t)u’(r)P’=8(9,104), which is as desired for the distribution of e(l). 
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trials used for these estimates was ~CKJO.~ 

2. Estimating uf(t, k, t,, tz). For each of the 29 stochastic equations an 
estimate of the covariance matrix of the coefficient estimates is available. Let 
&(9, 104) denote the vector of TSLS coeficient estimates for equation i, let 
pi(9, 104) denote the estimated covariance matrix of these estimates, and let 0: 
denote the vector of coefficient values for equation i actually used in a given 
trial. Values of fir were drawn from a multivariate normal distribution with 
mean &9, 104) and covariance matrix pt(9, 104) for the stochastic simulation. 
In this case, where the uncertainty from the error terms and coefficient estimates 
is being estimated, each trial corresponds to drawing 15 values of e(t) (29 x 15 
numbers) and a value of fl: for each of the 29 equations (183 numbers).3 Aside 
from drawing 183 extra numbers for each trial, this case is the same as the first 
case. The number of trials used in this case was also 1000. 

3. Estimatiny o:(t, k, t,, t2, x). Not counting variables like the constant, 
time, and various dummy variables, there are 60 exogenous variables in Model I. 
Each of these variables was regressed on a constant, time, and its first eight lagged 
values for the 195411-1977IV sample period, and for each equation the variance 
of the error term was estimated as the sum of squared residuals divided by the 
number of observations. Let this estimated variance for variable i be denoted 
sf. Also, let u,(t) be a normally distributed random variable with mean zero and 
variance s: : 

0) t+(t) - NCO, sfb all t. 

Let a,(t) be the value of exogenous variable i for quarter f that was used for the 
actual forecast, and let x:(f) be the value used in a given trial. Also, let r denote 
the first quarter of the prediction period (197811). For the stochastic simulation, 
60x 15 values of u(t) were drawn (i=l,..., 60; f=r, r+l,..., r+14), and these 
values were taken to be the errors in forecasting the changes in the exogenous 
variables. In particular, the values of x:(t) are: 

(2) xf(r) = a,(r) + U;(P) 

* I could see no obvious way to use any of the tricks in, for example, Hammersley and 
Handscomb [I9741 to increase the efficiency of the stochastic simulation, and so each trial was 
merely an independent random draw. Each trial, which consists of solving the model once for 
IS qwfers, takes about 2.0 seconds on the IBM 37&l% at Yale, so the total time for loo0 
trials is about 33.3 minutes. 

* The draws for the J~I vectors were performed as follows. First, for each ?8(9,1@4), a 
matrix PI was computed such that P,P;= ~<(9,104). The,, for each i, n, values of a standard 
normal random variable with mean 0 and variance 1 were drawn, where n, ‘is the number of 
coeSi&nta in equation i. Let P‘ denote the n, x 1 vector of these draws. Then Bt was com- 
puted as ,&(9,1041Plrr,. Since Eu,u;=I, then E(B:-~d9,104))(ji:-_,(9,104))‘=EP,u,u;PI 
= p6(9,104), which is as desired for the distribution of p:. Subroutine LUDECP and function 
RNOR were also used for these calculations. 



ESTIMATING PREDICTIVE ACCURACY 315 

xf(r 7 1) = a@ + 1) + u&r) + u;(r + 1) 

xf(r i 14) = air + 14) + ui(q + ukr + 1 j + + ui(r + 14). 

Because of tbe assumption that the errors pertain to the changes in the exogenous 
variables, the error term u,(r) is carried along from quarter P on. Similarly, 
u,(r+ 1) is carried along from quarter r+ 1 on, and so on. 

In this case each trial corresponds to drawing 29 x 15 numbers for the error 
terms, 183 numbers for the coefficient estimates, and 60x 1.5 values of ui(r) for 
the exogenous variables4 Aside from drawing 60 x 15 extra numbers, this case 
is the same as the previous case. The number of trials used in this case was also 
1ooO. 

The assumption that the t+(t) errors pertain to forecasting the change in the 
exogenous variables perhaps requires some discussion. Given the way that 
many exogenous variables are forecast, by extrapolating past trends or taking 
variables to be unchanged from their last observed values, it seems likely that 
any error made in forecasting the level of a variable in, say, the first quarter will 
persist through the forecast p&d. If this is true, then the present assumption 
seems better than the assumption that the ui(f) errors pertain to forecasting the 
level of the exogenous variables. 

4. Computing a,(k). 35 sets of estimates of the model were obtained. For 
all sets the first quarter of the sample period was 19541 (t, =9). The last quarter 
of the sample period was 1968IV (t* = 68) for the first set, 1969I($ = 69) for the 
second set, and so on through 197711 (tl = 102) for the 35-th set. 

For each set of estimates the model was stochastically simulated for 8 quarters 
beginning with the second quarter after the end of the estimation period. The 
35 stochastic simulations were performed in the same way as described above 
for the stochastic simulation with respect to the error terms and coefficient esti- 
mates. The first simulation used /3,(9, 68), (d,(9, 68). and oi(9, 68); the second 
simulation used 8,(9,69), &(9, 69), and pd9, 69); and so on. Values of ?,(69 + k, 
k, 9, 68) and @(69+k, k, 9, 68) for k=l,..., 8 were obtained from tbe first 
simulation; values of y”i70+ k, k, 9, 69) and Zf(70+ k, k, 9, 69) for k= l,.. ., 8 
were obtained from the second simulation; and so on. The only difference 
between these 35 simulations and the simulation described above is that each of 
the 35 simulations was for 8 quarters rather than 15 and the number of trials was 
100 rather than 1oO0.5 

Data through 19771V (t= 104) were used for this work (the preliminary data 
for 19781 were not used), which meant that 35 values of di(t, 1, 9, t-2) could be 
computed (t=70,..., 104); 34 values of d,(t, 2, 9, f-3) could be computed (t= 

’ Drawing the 60x 15 value8 of us(r) is strai&tfarward. For each i, 15 values of a standard 
normal random variable with mean 0 and variance I are drawn, and then each of these values 
is m,ulfiplied by s‘. 

6 For the eight-quarter simulations each trial takes about 1.1 seconds of computer time, M 
the total time for the 35M) trials was about 65 minutes. 
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71,..., 104); and so on. The estimates a,(l) were thus based on 35 observations; 
the estimates &(2) on 34 observations; and so on. 

5. Model II. The procedure followed for Model TI is quite similar to the 
procedure followed for Model 1, and so the discussion here can be brief. Each 
of the six equations of Model II (corresponding to the six variables in Table 2) 
was treated individually: no attempt was made to estimate and account for the 
possible correlation of the error terms across equations. The variance of the 
error term in each equation was estimated as the sum of squared residuals divided 
by the number of observations. The error turn in each equation was then as- 
sumed to be normally distributed with mean zero and variance as estimated for 
purposes of the stochastic simulations. The coefficient estimates were treated 
in the same way as they were for Model I. The number of trials for both the 
simulation with respect to the Errol terms and the simulation with respect to the 
error terms and coefficient estimates was 2ooO. There are no non-trivial exogenous 
variables in Model II, and so no stochastic simulation regarding the exogenous 
variables was needed. For the calculations of a,(k), Model II was also estimated 
35 times, and the same periods were used here as were used for Model I except 
that the beginning quarter was 195411 rather than 19541. The number of trials 
for each of the 35 stochastic simulations was 500. 

6. General Remarks. A few more points about the procedures in this Ap- 
pendix should be mentioned. Note first that the normality assumption has been 
used for all the simulations. Although this is the most convenient assumption 
to make and can be justilied by an appeal to large sample properties, in some cases 
it may not be very realistic. It may be of interest in future work to examine the 
sensitivity of results like those in Section 3 to departures from normality. Note 
also that the estimated covariance matrix of the TSLS coefficient estimates was 
taken to be block diagonal. This matrix, which is 183 x 183, is in fact not block 
diagonal, and so an additional source of simulation error has been introduced by 
the present treatment. It is somewhat more expensive to deal with the full co- 
variance matrix, but in future work it may be possible to do this. It should finally 
be noted in this regard that the correlation between the estimate of the serial 
correlation coefficient in an equation and the other coefficient estimates in the 
equation has been taken into account in computing the covariance matricxx6 

No degrees-of-freedom corrections were made in this study. For Model II, 
which was estimated by ordinary least squares, there are well defined degrees-of- 
freedom corrections that could have been made, but this is not the case for Model 

e The technique that was used to estimate Mad.3 I is described in Fair [19701. It was sag- 
gested in this paper @. 514) that the covariarcs matrix of the co&k&t estimates inclusive of 
the estimate of the serial con&&n coefficient be estimated by ignoring the correlation between 
the latter estimate and the other coefficient estimates. Fisher, Cootner and Baily U97.2, fn. 6, 
p. 5751, however, have pointed out that one need not ignore this correlation. In computing the 
estimates of the wvariance matrices for use in this study, I have followed the Fisher, Cootner 
and Baily advice. 
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I. It thus seemed best to put both models on a comparable basis by not adjusting 
for degrees of freedom in either model. With at most 13 estimated coefficients 
per equation, the results in Section 3 would not have been much different had 
some adjustment for degrees of freedoin been made. This is, of course, not owes- 
sarily true for models with many coefficients per equation, and for models of this 
type one may want to adjust for degrees of freedom. 

It should finally be stressed that the particular treatment of exogenous variable 
uncertainty in this Appendix is only one of many that might be tried. In par- 
ticular, it may be of interest in future work to experiment with the polar assump- 
tion that the exogenous-variable forecasts are as uncertain as the endogenous- 
variable forecasts (as reflected in, say, a set of autoregressive equations). Another 
possibility would be to make this assumption for all but exogenous fiscal-policy 
variables. 
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