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1 Introduction 

There is currently little agreement among macroeconomists about the struc- 
ture of the economy. The recent popularity of the assumption of rational 
expectations has, for example, led to the construction of a number of new 
econometric models that differ considerably from previous models. Even 
among models without rational expectations, there are considerable differ- 
ences in the specification of many equations, as any casual glance at them will 
reveal. This lack ofagreement also manifests itself in quite different monetary 
and fiscal policy recommendations that are generally made at any one time by 
different economists. 

At the beginning of large-scale model construction in the early 195Os, one 
might have thought that there would be a gradual and fairly systematic 
improvement in the accuracy of the specification of the equations, so that by 
the early 1980s there would exist a generally agreed upon model. Obviously 
this is not the case, and in fact there has been a movement in the last decade 
among people doing macroeconomic research away from large-scale models 
to much smaller ones. Also, as the large-scale models have become commer- 
cially successful, interest among the model practitioners in what one would 
call scientific research has waned. Estimation and analysis ofthese models are 
computationally expensive, and the commercial payoff from extensive testing 
and analysis of them is not likely to be very large, given that the models are 
subjectively adjusted before being used. 

My research has been concerned with large-scale models and is thus 
contrary to the general trend ofthe last decade. The implicit premise on which 
this work is based is that a few equations are not sufficient to give a good 
approximation of the structure of the economy. Part of this book is a 
summary of this work and an attempt to stimulate more people to move into 
the field. 

I have had three goals in writing this book. The first is to provide a reference 
book for advanced graduate students on the tools needed to construct and 
analyze macro models. Estimation techniques are discussed in Chapter 6. 
The emphasis in this chapter is on nonlinear methods, since most macro- 
econometric models are nonlinear, and on computational problems. 



2 Macroeconometric Models 

Chapters 7 - I 1 are concerned with techniques that are used to analyze models 
once they have been estimated. Chapter 7 discusses deterministic and sto- 
chastic simulation techniques that are used to solve models. The evaluation of 
predictive accuracy is discussed in Chapter 8. and Chapter 9 covers the 
evaluation of static and dynamic properties. Optimal control techniques are 
considered in Chapter 10. Chapter I I discusses the special techniques that are 
needed for the estimation and analysis ofrational expectations models. Tools 
are also considered to some extent in Chapter 2, which is concerned with the 
methodology of macroeconomics. In particular, the transition from theoreti- 
cal to econometric models is discussed in this chapter. In a loose sense this 
transition can be considered to be a “tool” ofthe trade, although it is seldom 
discussed. 

The second goal is to present my current macroeconometric model, both 
the theory behind it and the actual equations. The theoretical basis of the 
model is discussed in Chapter 3, and the econometric model is presented in 
Chapter 4. The data for the model are discussed in Appendixes A and B. The 
model is used in Chapters 6- 11 to illustrate the various techniques. After a 
technique is explained, it is applied to the model. This procedure helps in 
understanding the techniques and provides information on the computa- 
tional costs of each technique. 

The second goal is a complement to the first in that it provides the student 
with an actual example of the specification, estimation, and analysis of a 
model. This may be particularly helpful in understanding topics such as the 
transition from theoretical to econometric models. This knowledge is more 
easily conveyed by means ofexamples than it is by discussion in the abstract. 
It should be stressed, however, that the model presented in this book is not 
meant solely for illustration; it is not a “textbook” model in the sense of being 
deliberately simplified for expository purposes. The model is the actual model 
that I am working on, and it is currently my best attempt at approximating the 
structure of the economy. 

The third goal is to argue, partly by way of example, for a particular 
methodology. This is dangerous business, and I hasten to add that I do not 
mean to be particularly rigid on this matter. The world of scientific discourse 
is at times chaotic, and it is probably not sensible to try to characterize this 
world as one with a single methodology. Nevertheless, it seems to me that 
macroeconomics has suffered in the past from too few attempts to test 
alternative theories, and the methodology that is discussed in this book 
stresses the testing of theories in a particular way. 

Testing alternative theories or models in macroeconomics is difficult. It is 
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relatively easy with aggregate time series data to fit the data well within the 
sample period, and thus a good within-sample fit is no guarantee that the 
particular equation or model is a good representation of the actual process 
generating the data. It is also difficult to make comparisons of predictive 
accuracy across models because of differences in the number and types of 
variables that are taken to be exogenous. The existence of these problems is 
undoubtedly one of the main reasons there has been so little progress in 
narrowing the disagreements within macroeconomics. I have, however, re- 
cently proposed a method for comparing alternative models that does take 
account of these problems. and the methodological approach of this book 
centers around the use of this method. 

The method is discussed in detail in Chapter 8, but it will be useful to give a 
brief outline of it here. The method estimates variances of prediction errors. 
and in doing so it accounts for the four main sources of uncertainty of a 
prediction: uncertainty due to (I) the error terms, (2) the coefficient estimates, 
(3) the exogenous variable predictions, and (4) the possible misspecification of 
the model. Because the method accounts for all four sources, it can be used to 
make comparisons across models. The method, in other words, puts each 
model on an equal footing and thus allows comparisons to be made. Of 
particular importance is the accounting for the possible t&specification of 
the model. By doing this, the method has the potential forweedingout models 
that fit the data well within sample, but are in fact poor approximations ofthe 
structure. 

The major methodological theme of this book is that one should be able in 
the long run to use the method to weed out inferior specifications and to begin 
to narrow the range of disagreements in macroeconomics. By “long run” in 
this case is meant more than, say, the next five or ten years. Much work 
remains to be done on the specification of different theoretically based 
econometric models, and the method itself requires some time to learn to use. 
It is also possible that better methods will be developed in the future for 
making comparisons. At any rate, it seems too early to draw strong conclu- 
sions regarding which model best approximates the structure, and no such 
conclusions have been made in this book. The method has been used in this 
book to compare my US model to four other models: an autoregressive 
model, two vector autoregressive models, and a twelve-equation linear 
model. (These four models are presented in Chapter 5.) Although the results 
of these comparisons, which are discussed in Chapter 8, may be useful 
reference material for others, many more comparisons with other models are 
needed before one can draw any strong conclusions about my model. 
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It will be obvious in what follows that this “wait and see” theme plays an 
important role in this book. Whenever a theory or approach is discussed that 
is different from mine, a statement is made to the effect that the differences 
can be tested in the long run. A computer program is available for carrying 
out the tests (that is, for using the method to compare alternative models), and 
I hope that this book will stimulate work of this kind. 

It is important to note that the method tests econometric models, not 
theoretical models. Another important methodological question, which is 
also considered in this book, is what the results of testing econometric models 
have to say about theoretical models. Given that the transition from theoreti- 
cal to econometric models is usually not very tight in macroeconomics, the 
question remains after, say, a particular econometric model has been chosen 
to be the best approximation of the structure what the results say about the 
theory on which the econometric model is based. Does this mean, for 
example, that the theory is “confirmed?’ This issue is discussed in Section 

There are many computational problems involved in dealing with large- 
scale nonlinear models, and this may be one reason that research on these 
models has declined in recent years. Many of these problems are, however, 
much less serious now than they were a few years ago, and I have tried to 
indicate in the text, primarily by way of example, the computational costs of 
each technique. A computer program has been written that handles all the 
techniques discussed in this book. An outline of the logic of this program is 
presented in Appendix C, and the program is available for distribution. It has 
the advantage that once a model has been set up in the program, all the 
techniques can be applied to it with no further programming. For the more 
advanced techniques, this can represent a considerable saving in research 
time. 

This book is not a survey of the field and is not a textbook in the usual 
meaning of this word. The subject matter spans many areas-methodology, 
macroeconomic theory, specification of econometnic models, estimation 
techniques, other econometric techniques, optimal control issues, rational 
expectations models, computational issues-and it is not my intention to 
provide a textbook treatment of each area. I have instead selected and 
discussed those topics within an area that I think are important for macro- 
econometric work. This approach is by nature idiosyncratic. I make no 
apologies for this, since I do not mean this to be the usual kind of textbook, 
but the reader should be warned what not to expect. 
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1 .l Guide to the Book 

A subset ofthis book is a book on my United States (US) model, and another 
subset is a book on my multicountry (MC) model. They are located in the 
following sections: 

US Model 
Theory: Section 3.1 
Specification and Estimation: Section 4. I 
Further Estimation: Sections 6.5 and 6.6 
Testing and Analysis: Sections 7.5.1, 8.5, 9.4, 10.4, and 11.7 
List of Equations: Sections 4.1.4 through 4.1.9 and Appendix A 

MC Model (other than the US Model) 
Theory: Section 3.2 
Specification and Estimation: Section 4.2 
Testing and Analysis: Sections 7.5.2, 8.6, and 9.5 
List of Equations: Tables 4- 1 through 4- 13 and Appendix B 

Sections 9.4 and 9.5 are of particular importance in understanding the 
properties of the models. 

If one is interested only in the US or the MC model, the rest of the book can 
be omitted. The cost of doing this is that none of the techniques that are 
applied to the models will have been explained. If, on the other hand, the 
reader is interested only in the techniques, the sections listed above can be 
omitted. The cost of doing this is that no applications of the techniques will 
have been discussed. In particular, one loses from this latter approach an 
example ofthe transition from a theoretical to an econometric model, which 
is a tool that is best described by means of examples. 

Chapter 7 on the solution of models is a prerequisite for Chapten 8- 11. 
The discussion ofthe FIML estimation technique in Chapter 6 is required for 
the discussion of the estimation of rational expectations models in Chapter 
1 I. The discussion of the various models in Chapter 5 is required for some of 
the applications. Otherwise the individual chapters are self-contained. 

1.2 Conventions Adopted 

The number of symbols used in Chapters 3 and 4 is fairly large, and for ease of 
reference the symbols have been listed in alphabetical order in tables. The 
symbols for the variables in the theoretical model in Chapter 3 are listed in 
Table 3-1, and the symbols for the variables in the econometric model in 
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Chapter 4 are listed in Table A-4 of Appendix A and in Table B-2 of Appendix 
B. Table A-4 presents the variables for the United States, and Table B-2 
presents the variables for the other countries. The variables used for the 
econometric models in Chapter 5 are also used for the econometric model in 
Chapter 4, and thus Tables A-4 and B-2 are also relevant for Chapter 5. 

I have tried to keep the notation simple. One or two letters usually denote a 
variable, and subscripts have generally been used only when the reference 
would otherwise be ambiguous. For example, there are three housing invest- 
ment variables in the US model in Chapter 4, one each for the household. 
firm, and financial sectors, and therefore subscripts h,f; and b have been used 
for the housing investment variable IIL There is, however, only one housing 
stock variable (denoted KH), and although this variable pertains to the 
household sector, no subscript h has been used for it. A f subscript has been 
used for the variables in Chapter 3 to denote the period in question, but, with 
a few exceptions, this has not been done for the variables in Chapter 4. Some 
confusion might have resulted had the subscript not been used for the 
theoretical model because of the multiperiod nature of the maximization 
problems; no confusion is likely to result from not using the I subscript for the 
econometric model. 

A coefficient estimate will be said to be “significant” if its absolute value is 
greater than or equal to twice the size of its estimated standard error. An 
explanatory variable will be said to be significant if its coefficient estimate is 
significant. Although this convention facilitates the discussion of results. no 
precise statistical statement is implied by its use. Given the searching for 
equations with good statistical properties that is done in macroeconometric 
work, classical statistical tests are not applicable. In practice these tests are 
generally not used in a rigorous way to decide on the tinal specification of a 
model. 

By “t-statistic” in this book is meant the absolute value of a coefficient 
estimate divided by its estimated standard error. In other words, the minus 
sign has been dropped from what is conventionally referred to as the t-statis- 
tic. This should cause no confusion, and it makes the results somewhat easier 
to present. 

Unless otherwise stated in the text, none of the goodness of fit measures 
have been adjusted for degrees of freedom. For example, in computing the 
standard error of an estimated equation, the sum of squared residuals has 
been divided by the number of observations, not the number of observations 
minus the number of coefficients estimated. For the general model considered 
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in this book (nonlinear, simultaneous, dynamic), only asymptotic results are 
available, and so if any adjustments were made. they would have to be based 
on analogies to simpler models. In many cases there are no obvious analogies, 
and it seemed best simply to forgo any adjustments. Fortunately, in most 
cases the number of observations is fairly large relative to numbers that might 
be used in the subtraction, and therefore the results are not likely to be 
sensitive to the present treatment. 

The phrase “rational expectations” is used in this bookin the sense ofMuth 
( I96 I). An expectation of a variable is said to be “rational” if, given a set of 
exogenous variable predictions, it is what the model predicts the variable to 
be. This definition requires that there be a model and a set of exogenous 
variable predictions. In practice an expectation is sometimes said to be 
rational if “all available information” has been used in forming it. The 
problem with this definition is that it is vague concerning what “all available 
information” means, and so I have not used it. In the Moth sense it is clear 
what this means, “all available information” means using the model (includ- 
ing all the nonlinear restrictions involved in going from the structural coefli- 
cients to the reduced form coefficients) to solve for the expectation. 

In discussing the properties of a model, I have used statements to the effect 
that a change in variable .4 “leads to” or “results in” a change in variable B, 

where both variables A and B are endogenous. In a simultaneous equations 
model, which is what most of the models considered in this book are, the use 
of statements like this is not precise, since in general every endogenous 
variable affects every other one. This way of discussing the results is, however, 
helpful in explaining the properties of a model, and as long as one is aware of 
its loose nature, no confusion should result. On a related matter. I have 
referred to the “matching” of variables to equations when discussing the 
solution of a model. This is again only for pedagogical purposes, since in 
general every equation influences the determination of every variable in a 
simultaneous equations model. 

1.3 Computer Work 

This book went through two main drafts. For the first draft nearly all the 
computer work was done on a VAX I I/780 at Boston College. For the second 
draft all the econometric models were updated and the computer work was 
done over on an IBM 4341 at Yale University. Only the updated results are 
presented in this book, but whenever possible, both the VAX times for the old 
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results and the IBM times for the new results are presented. The computer 
times that are presented, especially the IBM times, are fairly rough. Some- 
times more than one set of results was obtained in a single job, and some sets 
of results required parts of many jobs. It was not always easy to keep track of 
exactly how much computer time each task took. This was particularly true 
on the IBM, which did not allow elapsed times to be computed within a single 
job. Also, the basic sample period used for the IBM work was slightly larger 
than that used for the VAX work (115 versus 107 observations), and this adds 
to the imprecision of the comparisons of the estimation jobs. Nevertheless, 
the times reported here are not likely to be offby more than about 25 percent, 
which is adequate for giving a general idea ofthe computational costs ofeach 
technique. Relative to the IBM, the VAX is faster at reading from and writing 
to the disk than it is at numerical computations. The VAX times would thus 
not be a constant proportion of the IBM times even without measurement 
error; the relative speeds vary depending, among other things, on the amount 
of reading and writing that is done. 

To give an indication ofthe likely times on faster computers, the IBM 4341 
is about five times slower than the IBM 3033, which in turn is about four 
times slower than one of the fastest computers currently available, the 
CRAY- 1. The times reported in this book for the IBM 4341 are thus likely to 
be about twenty times less for a CRAY-I. This comparison is, however, very 
rough, and it could be off by a factor of 2 or more. The relative speeds of 
computers vary considerably depending on the type of job. Moreover, the 
time for the same job on the same type of computer can vary across installa- 
tions depending on the other features ofthe installations. To give an example, 
near the end of the computer work for the first draft of this book, Boston 
College installed a second VAX I l/780, which I began using. This VAX 
seemed to be roughly twice as fast as the other one. There are undoubtedly 
subtle reasons for this difference, but the main point here is that any compari- 
son of time between computers is very rough unless one has actually run the 
job on both computers. All the VAX times reported in this book are for the 
first (slower) VAX. Some of the computer work for the results in Chapter 11 
was done on an IBM 360/9 1 at Columbia University. This machine is about 
2.5 times faster than an IBM 434 1. 

It seems clear that time is on o,ur side with respect to computer costs. It is 
likely that in, say, ten years, computer costs for results like those in this book 
will be trivial. At the Same time, many ofthe problems that it was not feasible 
to solve for this book should become soluble. 
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1.4 References 

Although part of this book is a summary of my previous work, the present 
volume is self-contained in that it does not require that any of the earlier 
literature have been read. I have indicated in a note to each chapter (given at 
the end ofthe book) the references to my prior research that the chapter draws 
upon, but otherwise little mention of these references is made. This is not 
true, however, of references to other authors, which are scattered in the usual 
way throughout the chapters. 



2 Macroeconomic Methodology 

2.1 Macro Theoretical Models and the Role of Theory 

2.1.1 Ingredients of Models 

Broadly speaking, an economy consists of people making and carrying out 
decisions and interacting with each other through markets. Theories provide 
explanations of how the decisions are made and how the markets work. The 
ingredients of a theory include the choice of the decision-making units, the 
decision variables and objective function ofeach unit, the constraints facing 
each unit. and the amount of information each unit has at the time the 
decisions are made. Possible constraints include budget constraints, techno- 
logical constraints, direct constraints on decision variables, and institutional 
or legal constraints. If expectations of future values affect current decisions, 
another ingredient of a theory is an explanation of how expectations are 
formed. 

A theory of how markets work should explain who sets prices and how they 
are set. If there is the possibility of disequilibrium in certain markets, the 
theory should explain how quantities are determined each period and why it 
is that prices are not set to clear the markets. Institutional constraints may 
play an important role in some markets. 

In macroeconomics there are also a number of adding-up constraints that 
should be met. In particular, balance-sheet and flow-of-funds constraints 
should be met. An asset of one person is a liability of wmeone else, and 
income of one person in a period is an expenditure of someone else in the 
period. These two constraints are not independent, since any deviation of 
income from expenditure for an individual in a period corresponds to a 
change in at least one of his or her assets or liabilities. 

2.1.2 The Traditional Role of Theory 

An important issue in the construction ofa model is the role that one expects 
theory to play. If the aim is to use the theoretical model to guide the 
specification of an empirical model, the issue is how many restrictions one 
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can expect theory to provide regarding the specification ofthe equations to be 
estimated. In practice, the primary role of theory has been to choose the 
variables that appear with nonzero coefficients in each equation. (Stated 
another way, the primary role of theory has been to provide “exclusionary” 
restrictions on the model, that is, to provide a list ofvariables not to include in 
each equation.) In most cases theory also chooses the signs ofthe coefficients. 
Much less often is theory used to decide things like the functional forms ofthe 
estimated equations and the lengths ofthe lag distributions. (This is not to say 
that theory could not be used for such purposes, only that it generally has not 
been.) This role of theory-the choice of the variables to include in each 
equation-will be called the “traditional” role or approach. 

An interesting question within the traditional approach is whether theory 
singles out one variable per equation as the obvious dependent or “left-hand- 
side” (LHS) variable, where the other variables are then explanatory or 
“right-hand-side” (RHS) variables. In this way of looking at the problem, the 
LHS variable is the decision variable and the RHS variables are the determi- 
nants of the decision variable. If the theoretical problem is to explain the 
decisions of agents, this way seems natural. Each equation is a derived 
decision equation (derived either in a maximization context or in some other 
way) with a natural LHS variable. The alternative way of looking at the 
problem is that theory treats all variables in each equation equally. These two 
interpretations have important implications for estimation. In particular, full 
information maximum likelihood (FIML) treats all variables equally, 
whereas two-stage least squares (2SLS) and three-stage least squares (3SLS) 
require an LHS variable to be chosen for each equation before estimation 
(see, for example, Chow 1964). One might thus be inclined to choose 3SLS 
over FTML under the first interpretation, although there are other issues to 
consider in this choice as well. This issue is discussed in more detail in Section 
6.3.4, where FIML and 3SLS are compared. For the remainder ofthis chapter 
it will be assumed that within the traditional approach the LHS variable is 
also chosen. 

2.1.3 The Hansen-Sargent Approach and Lucas’s Point 

An alternative role for theory is exemplified by the recent work of Hansen and 
Sargent (1980). In this work the aim is to estimate the parameters of the 
objective functions ofthe decision-making units. In the traditional approach 
these parameters are never estimated. The parameters ofthe derived decision 
equations (rules) are estimated instead, where these parameters are functions 
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of the parameters of the objective function and other things. The Hansen- 
Sargent approach imposes many more theoretical restrictions on the data 
than does the traditional approach, especially considering that the traditional 
approach imposes very few restrictions on the functional forms and the lag 
structures of the estimated decision equations. 

The advantage of the Hansen-Sargent approach is that it estimates struc- 
tural parameters rather than combinations of structural parameters and other 
things. The problem with estimating combinations is that if, say, one wants to 
examine the effects of changing an exogenous variable on the decision 
variables, there is always the possibility that this change till change some- 
thing in the combinations. If so, then it is inappropriate to use the estimated 
decision equations, which are based on fixed estimates of the combinations, 
to examine the effects of the change. This is the point emphasized by Lucas 
(1976) in his classic article. (Note that the validity of the point does not 
depend on expectations being rational. Even if expectations are formed in 
rather naive ways, it may still be that the coefficients of the decision equations 
are combinations of things that change when an exogenous variable is 
changed.) 

There are two disadvantages of the Hansen-Sargent approach, one that 
may be temporary and one that may be more serious. The temporary 
disadvantage is that it is extremely difficult to set up the problem in such a way 
that the parameters can be estimated, especially if there is more than one 
decision variable or if the objective function is not quadratic. Very restrictive 
assumptions have so far been needed to make the problem tractable. This 
disadvantage may gradually be lessened as more tools are developed. At the 
present time, however, this approach is a long way from the development of a 
complete model of the economy. 

A potentially more serious disadvantage, at least as applied to macroeco- 
nomic data, is the possibility that the approach imposes restrictions on the 
data that are poor approximations. Macroeconomic data are highly aggre- 
gated, and it is obviously restrictive to assume that one objective function 
pertains to, say, the entire household sectororthe entire firm sector. Although 
both the traditional approach &d the Hansen-Sargent approach are forced to 
make assumptions like this when dealing with macroeconomic data, the 
Hansen-Sargent approach is much more restrictive. Ifbecause ofaggregation 
problems the assumption that a sector behaves by maximizing an objective 
function is not correct, models based on both approaches will be misspecified. 
This misspecification may be more serious for models baaed on the Hansen- 
Sargent approach because it uses the assumption in a much stronger way. To 
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put it another way, by not requiring that a particular objective function be 
specified, the traditional approach may be more robust to errors regarding the 
maximization assumption. 

It is difficult to argue against the Hansen-Sargent approach without sound- 
ing as if one is in favor of the use ofad hoc theory to explain macroeconomic 
data. Arguments against theoretical purity are generally not well received in 
the economics profession. There are, however, as just discussed, different 
degrees to which theory can be used to guide econometric specifications. 
There is a middle ground between a completely ad hoc approach and the 
Hansen-Sargent approach, namely what I have called the traditional ap 
preach. An example of this approach is given in Chapters 3 and 4. 

It should also be noted that the Hansen-Sargent approach can be discussed 
without reference to how expectations are formed. It is typically assumed 
within this approach that expectations are rational, but this is not a necessary 
assumption. It is clearly possible within the context of a maximization 
problem to assume that expectations of the future variable values that are 
needed to solve the problem are formed in simple or naive ways. The possible 
problems with the Hansen-Sargent approach discussed earlier exist indepen- 
dently of the expectational assumptions that are used. The problems are 
perhaps potentially mom serious when the rational expectation assumption is 
used because of the tighter theoretical restrictions that are implied, but this is 
only a matter ofdegree. The treatment ofexpectations is discussed in Section 
2.2.2. 

Whether the Hansen-Sargent approach will lead to better models of the 
economy is currently an open question. As noted in Chapter 1, a major theme 
of this book is that it should be possible in the long run to decide questions like 
this using methods like the one discussed in Chapter 8. The method in 
Chapter 8 allows one to compare different models in regard to how well they 
approximate the true structure. If the Hansen-Sargent approach leads eventu- 
ally to the construction of complete models of the economy, it should be 
possible to compare these models to models based on the traditional ap- 
proach. 

If because of the limitations just discussed the Hansen-Sargent approach 
does not lead to econometric models that are good approximations, this does 
not invalidate Lucas’s point (1976). The point is a logical one. If parameters 
that are taken to be constant change when an exogenous variable is changed, 
the estimated effects of the change are clearly in error. The key question for 
any given experiment with an econometric model is the likely size of this 
error. There are many potential sources of error, and even the best economet- 
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ric model in the future (as judged, say, by the method in Chapter 8) will be 
only an approximation to the structure. It may be that for many experiments 
the error from the Lucas point is quite small. The question is how much the 
parameters of estimated decision equations, such as consumption and labor 
supply equations of the household sector, change when a government policy 
variable changes. For many policy variables and equations these changes may 
not be very great. The errors in the multipliers that result from not accounting 
for the parameter changes may be much smaller than, say, the errors that 
result from aggregation. At any rate, how important the Lucas point is 
quantitatively is currently an open question. 

One encouraging feature regarding the Lucas point is the following. As- 
sume that for an equation or set of equations the parameters change consider- 
ably when a given policy variable changes, Assume also that the policy 
variable changes frequently. In this case the method in Chapter 8 is likely to 
weed out a model that includes this equation or set of equations. The model is 
obviously misspecified, and the method should be able to pick up this 
misspecification if there have been frequent changes in the policy variable. It 
is thus unlikely that a model that suffers from the Lucas criticism will be 
accepted as the best approximation of the structure. 

One may, of course, still be misled regarding the Lucas point if the policy 
variable has changed not at all or very little in the past. In this case the model 
will still be misspecified. but the misspecification has not been given a chance 
to be picked up in the data. The model may thus be accepted when in fact it is 
seriously misspecitied with respect to the effects of the policy variable on the 
endogenous variables. One should thus be wary of drawing conclusions about 
the effects of seldom-changed policy variables unless one has strong reasons 
for believing that the Lucas point is not quantitatively important for the 
particular policy variable in question. 

2.1.4 The Sims Approach 

Another role for theory in the construction of empirical models has been 
stressed recently by Sims (1980). This role is at the opposite end of the 
spectrum from that advocated by Hansen and Sargent-namely, it is very 
limited. Sims does not trust even the exclusionary restrictions imposed by the 
traditional approach; he argues instead for the specification of vector autore- 
gressive equations. where each variable is specified to be a function of its own 
lagged values and the lagged values of other variables. (An important early 
study in this area is that of Phillips 1959.) Although this approach imposes 
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some restrictions on the data-in particular, the number of variables to use, 
the lengths of the lags, and (sometimes) cross-equation restrictions on the 
coefficients-the restrictions are in general less restrictive than the exclusion- 
ary ones used by the traditional approach. 

Although it is again an open question whether Sims’s approach will lead to 
better models, it should be possible to answer this question by comparing 
models based on this approach to models based on other approaches. Some 
results that bear on this question are presented in this book. The method in 
Chapter 8 is used to compare my US model to two vector autoregressive 
models. The vector autoregressive models are presented in Section 5.2, and 
the comparison is discussed in Section 8.5. 

2.1.5 Long-Run Constraints 

In much macroeconomic modeling in which theory is used, various long-run 
constraints are imposed on the model. Consider, for example, the question of 
the long-run trade-off between inflation and unemployment. Economists 
with such diverse views as Tobin and Lucas seem to agree with the Friedman- 
Phelps proposition that there is no long-run trade-off. (See Tobin 1980, p. 39, 
and Lucas 1981, p. 560. For the original discussion of the Friedman-Phelps 
proposition see Friedman 1968 and Phelps 1967.) Accepting this proposition 
clearly colors the way in which one thinks about macroeconomic issues. 
Lucas, for example, points out that much of the recent work in macroeco- 
nomic theory has been concerned with trying to reconcile this long-run 
proposition with the observed short-run fluctuations in the economy (198 1, 
p. 561). The imposition of long-run constraints of this type clearly has 
important effects on the entire modeling exercise, including the modeling of 
the short run. 

Although it is difficult to argue this in the abstract, my feeling is that 
long-run constraints may be playing too much of a role in recent macroeco- 
nomic work. Consider the two possible types of errors associated with a 
particular constraint. The first is that an incorrect constraint is imposed. This 
error will lead to a misspecitied model, and the misspecification may be large 
if the constraint has had important effects on the specification of the model 
and if it is a poor approximation. The second type of error is that a correct 
constraint is not imposed. Depending on the setup, this type oferror may not 
lead to a misspecified model, but only one in which the coefficient estimates 
are inefficient. At any rate, it is my feeling that the first type of error may be 
more serious in practice than the second type, and if this is so, long-run 
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constraints should be imposed with considerable caution. It is not obvious, 
for example, that the assumption of no long-run trade-off between inflation 
and unemployment warrants so much confidence that it should be imposed 
on models, given the severe restrictions that it implies. 

This argument about long-run constraints will be made clearer in Section 
3.1.6 in the discussion of my theoretical model. Again, however, this issue of 
the imposition of long-run constraints can be tested (in the long run) by 
comparing models based on different constraints. 

2.1.6 Theoretical Simulation Models 

With the growth of computer technology there has been an increase in the 
number of theoretical models that are analyzed by simulation techniques. 
The main advantage of using these techniques is that much larger and more 
complicated models can be specified, one need not be restricted by analytic 
tractability in the specification of the model. A disadvantage of using the 
techniques is that the properties of the model may depend on the particular 
set ofparameters and functions chosen for the simulation, and one may get a 
distorted picture of the properties. Although one can guard against this 
situation somewhat by performing many experiments with different sets of 
parameters and functions, simulation results are not a perfect substitute for 
analytic results. 

The relationship between simulation exercises and empirical work is not 
always clearly understood, and it will be useful to consider this issue. If 
simulation techniques are merely looked upon as a substitute for analytic 
techniques when the latter are not feasible to use, then the relationship 
between simulation exercises and empirical work is no different from the 
relationship between analytic exercises and empirical work. The results of 
analyzing theoretical models are used to guide empirical specifications, and it 
does not matter how the theoretical model is analyzed. An example ofthe use 
of simulation techniques in this way is presented in this book. The theoretical 
model discussed in Chapter 3 is analyzed by simulation techniques, and the 
results from this model are used to guide the specification ofthe econometric 
model in Chapter 4. Had it been feasible to analyze the model in Chapter 3 by 
analytic techniques, this would have been done, and provided no new insights 
about the model were gained from this, the econometric specifications in 
Chapter 4 would have been the same. In this way of looking at the issue, the 
difference between simulation and analytic techniques is not important: the 
methodology is really the same in both cases. 
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Note with respect to empirical work that the type oftheoretical simulation 
model just discussed is not an end in itself; it is merely a stepping-stone to the 
specification of the equations to be estimated. The data arc used in the 
estimation and analysis of the derived empirical model (derived in a loose 
sense-see Section 2.2), not in the theoretical model itself. This type of 
theoretical simulation model is quite different from the type that has come to 
be used in the field of applied general equilibrium analysis. A good discussion 
of the methodology of this field is contained in Mansur and Whalley (198 I), 
and it will be useful to review this methodology briefly to make sure there is no 
confusion between it and the methodology generally followed in macroeco- 
nomics. 

There are two main steps in the construction ofan applied general equilib- 
rium model. The first is to construct for a given period (usually a particular 
year) a “benchmark equilibrium data set,” which is a collection of data in 
which equilibrium conditions of an assumed underlying equilibrium model 
are satisfied. Considerable data adjustment is needed in this step because the 
existing data are generally not detailed enough (and sometimes not concep- 
tually right) for a general equilibrium model. The data, for example, may not 
be mutually consistent in the sense that the model equilibrium conditions are 
not satisfied in the data. Most benchmark equilibrium data sets satisfy the 
following four sets of equilibrium conditions: (1) demand equals supplies for 
all commodities, (2) nonpositive profits are made in all industries, (3) all 
domestic agents (including the government) have demands that satisfy their 
budget constraints, and (4) the economy is in zero external balance. Condi- 
tion (3) usually involves treating the residual profit return to equity as a 
contractual cost. 

The second step is to choose the functional forms and parameter values for 
the model. These are chosen in such a way that the model is “calibrated” to 
the benchmark equilibrium data set. The fundamental assumption involved 
in this calibration is that the economy is in equilibrium in the particular year. 
The restriction on the parameter values is that they replicate the “observed 
equilibrium” as an equilibrium solution of the model. The values are deter- 
mined by solving the equations that represent the equilibrium conditions of 
the model, using the data on prices and quantities that characterize the 
benchmark equilibrium. Depending on the functional forms used, the ob- 
served equilibrium may not be sufficient to determine uniquely the parameter 
values. If the values are not uniquely determined, some of them must be 
chosen ahead of time (that is, before the model is solved to get the other 
values). The values chosen ahead of time are generally various elasticities of 
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substitution; they are often chosen by searching the literature for estimated 
values. 

Once the parameters are chosen, the model is ready to be used for policy 
analysis. Various exogenous variables can be changed, and the model can be 
solved for these changes. The differences between the solution values and the 
values in the data set are the estimates of the effects of the policy change. 
These estimates are general equilibrium estimates in the sense that the entire 
general equilibrium model is solved to obtain them. 

The difference between this second type of theoretical simulation model 
and the first type should be clear. The second type is an end in itself with 
respect to empirical work: models of this type are used to make empirical 
statements. The main problem with this methodology, as is well known by 
people in the field, is that there is no obvious way oftesting whether the model 
is a good approximation to the truth. The models are not estimated in the 
usual sense, and there is no way to use a method like the one in Chapter 8 to 
compare alternative models. Each model fits the data set perfectly, usually 
with room to spare in the sense that many parameter values are typically 
chosen ahead of time. This is contrasted with models of the first type, which 
can be indirectly tested by testing the empirical models that are derived from 
them (see the discussion in Section 2.3). 

It is unclear at this stage whether the applied general equilibrium models 
will become more like standard econometric models and thus more capable 
ofbeing tested or whether they will remain in their current “quasi-empirical” 
state. Whatever the case, the main point for this book is that the methodology 
followed here is quite different from the methodology currently followed in 
applied general equilibrium analysis. 

2.2 The Transition from Theoretical to Econometric Models 

The transition from theoretical models to empirical models is probably the 
least satisfying aspect of macroeconomic work. One is usually severely con- 
strained by the quantity and quality of the available data, and many restric- 
tive assumptions are generally needed in the transition from the theory to the 
data. In other words, considerable “theorizing” occurs at this point, and it is 
usually theory that is much less appealing than that of the purely theoretical 
model. Many examples of this will be seen in Chapter 4 in the discussion of 
the transition from the theoretical model in Chapter 3 to the econometric 
model in Chapter 4. This section contains a general discussion of the steps 
that are usually followed in the construction of an econometric model. 
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2.2.1 Step 1: Data Collection and the Choice of Variables and Identities 

The first step is to collect the raw data, create the variables ofinterest from the 
raw data, and separate the variables into exogenous variables, endogenous 
variables explained by identities, and endogenous variables explained by 
stochastic equations. The data should match as closely as possible the vari- 
ables in the theoretical model. In macroeconomic work this match is usually 
not very close because of the highly aggregated nature of the macro data. 
Theoretical models are usually formulated in terms of individual agents 
(households, firms, and the like), whereas the macro data pertain to entire 
sectors (household, firm, and the like). There is little that can be done about 
this problem, and for some it calls into question the usefulness of using 
theoretical models of individual agents to guide the specification of macro- 
econometric models. It may be, in other words, that better macroeconometric 
models can be developed using less micro-based theories. This is an open 
question, and it is another example of an issue that can be tested in the long 
run by comparing different models. 

There are many special features and limitations of almost any data base 
that one should be aware of, and one of the most important aspects of 
macroeconometric work, perhaps the most important, is to know one’s data 
well. Knowledge of how to deal with data comes in part through experience 
and in part from reading about how others have done it; it is difficult to learn 
in the abstract. Appendixes A and B of this book provide an example of the 
collection of the data for my model. 

It is important, ifpossible, to have the data meet the adding-up constraints 
that were mentioned at the beginning of this chapter. In addition to such 
obvious things as having the data satisfy income identities, it is useful to have 
the data satisfy balance-sheet constraints. For the US data, this requires 
linking the data from the Flow of Funds Accounts to those from the National 
Income and Product Accounts. This is discussed in Chapter 4 and in Appen- 
dix A. The linking of these two data bases is a somewhat tedious task and is a 
good example of the time-consuming work that is involved in the collection 
of data. 

The data base may be missing observations on variables that are essential 
for the construction of the model. In such cases, rather than giving up, it may 
be possible to construct estimates ofthe missing data. If, for example, the data 
for a particular variable are annual, whereas quarterly data are needed, it may 
be possible, using related quarterly variables, to create quarterly data from the 
annual data by interpolating. There are also more sophisticated procedures 
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for constructing missing observations (see, for example, Chow and Lin I97 1). 
Appendix B provides a number of examples of the construction of missing 
data for my multicountry model. 

Although it is easiest to think of the division of endogenous variables into 
those determined by stochastic equations and those determined by identities 
as being done in the first step, the choice of identities is not independent ofthe 
choice of explanatory variables in the stochastic equations. If a given explana- 
tory variable is not exogenous and is not determined by a stochastic equation, 
it must be determined by an identity. It is thus not possible to list all the 
identities until the stochastic equations are completely specified. 

2.2.2 Step 2: Treatment of Unobserved Variables 

Most theoretical models contain unobserved variables, and one of the most 
difficult aspects of the transition to econometric specifications is dealing with 
these variables. Much of what is referred to as the “ad hoc” nature of 
macroeconomic modeling occurs at this point. If a theoretical model is 
explicit about the determinants of the unobserved variables and if the deter- 
minants are observed, there is, of course, no real problem. The problem is that 
many models are not explicit about this, and so “extra” modeling or theoriz- 
ing is needed at this point. 

Expctmions 

The most common unobserved variables in macroeconomics are expecta- 
tions. A common practice in empirical work is to assume that expected future 
values of a variable are a function of the current and past values of the 
variable. The current and past values of the variable are then used as 
“proxies” for the expected future values. Given the importance of expecta- 
tions in most models, it will be useful to consider this procedure in some 
detail. 

Consider first the following example: 

(2.1) yt = cu, + w%x,+, + u,> 
where E,_,x,+, is the expected value of x,+i based on information through 
period f - 1. A typical assumption is that E,_,x,+, is a function ofcurrent and 
past values of x 

(2.2) &-ix,+, =a,x,+&x_,+ +i,x,_.+,, 
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where it is assumed that x, is observed at the beginning of period t. Given 
(2.2) two procedures can be followed to obtain an estimatable equation. One 
is to substitute (2.2) into (2. I) and simply regress y, on the current and past 
values ofx. (Other variables can also be used in 2.2 and then substituted into 
2.1. If, say, z, affects E,_,x,+,, then z, would be used as an explanatory 
variable in the ~1~ regression.) A priori restrictions on the Ai coefficients (that is, 
on the shape of the lag distribution) are sometimes imposed before estima- 
tion. Lagged values oftime series variables tend to be highly correlated, and it 
is usually difficult to get estimates of lag distributions that seem sensible 
without imposing some restrictions, If no restrictions are imposed on the & 
coetlicients, a, cannot be identified. 

The other procedure is to assume that the lag distribution is geometrically 
declining, in particular that rli = ,?, i = 1, , m. Given this assumption, 
one can derive the following equation to estimate: 

(2.3) v,=cuo(l-n)+~,x,+i;y,_,+u,--~,_,. 

The coefficient of the lagged dependent variable in this equation, 1, is the 
coefficient of the lag distribution. It appears both as the coefficient of the 
lagged dependent variable and as the coefficient of u,_ I, and although this 
restriction should be taken into account in estimation work, it seldom is. 
Sometimes equations like (2.3) are estimated under the assumption of serial 
correlation of the error term (that is, an assumption like t+ = pv,_, + e,, 
where t+ denotes the error term in 2.3) but this is not the correct way of 
accounting for the J, restriction. 

There is a nonexpectational model that leads to an equation similar to 
(2.3) which is the following simple lagged adjustment model. Let y: be the 
“desired” value of y,, and assume that it is a linear function of x,: 

(2.4) yr = o$ + 0.,x,. 

Assume next that J+ only partially adjusts toy: each period, with adjustment 
coefficient y: 

(2.5) Y,-~~-,=~(~:-~~-l)+ur 

Equations (2.4) and (2.5) can be combined to yield 

(2.6) I; = Plcyo + ~cx,x, + (1 - y).v-, + U‘. 

Equation (2.6) is in the same form as (2.3) except for the restriction on the 
error term in (2.3). As noted earlier, the restriction on the error term in (2.3) is 
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usually ignored, which means that in practice there is little attempt to 
distinguish between the expectations model and the lagged adjustment 
model. It may be for most problems that the data are not capable of 
distinguishing between the two models. The problem of distinguishing be- 
tween the two is particularly difficult if the u, error terms in (2.1) and (2.5) are 
assumed to be serially correlated, because in this case the differences in the 
properties ofthe error terms in the derived equations (2.3) and (2.6) are fairly 
subtle. At any rate, it is usually the case that no attempt is made to distinguish 
between the expectations model and the lagged adjustment model. 

Two other points about (2.3) should be noted. First, if there is another 
variable in the equation, say z,, the implicit assumption that is being made 
when this equation is estimated is that the expectations ofz are formed using 
the same coefficient i. that is used in forming the expectations of x. In other 
words, the shape of the two lag distributions is assumed to be the same. This 
may be, of course, a very restrictive assumption. Second, if there is another 
future expected value ofx in (2. l), say (Y E _ x 2 I I 1+2> and if this expectation is 
generated as 

(2.7) Et-,xc+z =~E,_,x,+,+~*x,+A3x,-, + , 

then (2.3) is unchanged except for a different interpretation ofthe coefficient 
of x,. The coefficient in this case is ?,((a, + 24,) instead of Aa,. The same 
equation would be estimated in this case, although it is not possible to identify 
01, and (Y*. 

It should be clear that this treatment ofexpectations is somewhat unsatisfy- 
ing. Agents may look at more than merely the current and past values of a 
variable in forming an expectation of it, and even if they do not, the shapes of 
the lag distributions may be quite different from the shapes usually imposed 
in econometric work. The treatment of expectations is clearly an important 
area for future work. An alternative treatment to the one just presented is the 
assumption that expectations are rational. This means that agents form 
expectations by first forming expectations of the exogenous variables (in some 
manner that must be specified) and then solving the model using these 
expectations. The predicted values of the endogenous variables from this 
solution are the expected values. The assumption of rational expectations 
posesa numberofdifhcult computational problems when oneisdealing with 
large-scale nonlinear models, but many of these problems are now capable of 
solution. Chapter 11 discusses the solution and estimation of rational expec- 
tations models. 

It is by no means obvious that the assumption that expectations are rational 
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is a good approximation to the way that expectations are actually formed. The 
assumption implies that agents know the model, and this may not be realistic 
for many agents. It would be nice to test assumptions that are in between the 
simple assumption that expectations of a variable are a function of its current 
and past values and the assumption that expectations are rational. One 
possibility is to assume that expectations ofa variable are a function not only 
of its current and past values but also of the current and past values of other 
variables. To implement this, the variable in question could be regressed on a 
set of variables and the predicted values from this regression taken to be the 
expected values. In other words, one could estimate a small model of how 
expectations are formed before estimating the basic model. Expectations are 
not rational in this case because they are not predictions from the basic 
model, but they are based on more information than merely the current and 
past values of one variable. An example of the use of this assumption is 
presented in Section 4.1.3. Although, as will be seen, this application was not 
successful, there is clearly room for more tests of this kind. 

In models in which disequilibrium is a possibility, there is sometimes a 
distinction between “unconstrained” and “constrained” (or “notional” 
and “actual”) decisions. An unconstrained decision is one that an agent 
would make if there were no constraints on its decision variables other than 
the standard budget constraints. A constrained decision is one in which other 
constraints are imposed; it is also the actual decision. In the model in Chapter 
3, for example, which does allow for the possibility of disequilibtium, a 
household may be constrained in how much it can work. A household’s 
unconstrained consumption decision is the amount it would consume if the 
constraint were not binding, and the constrained decision is the amount it 
actually chooses to consume given the constraint. In models of this type the 
unconstrained decisions are observed only ifthe constraints are not binding, 
and so this is another example of the existence of unobserved variables. The 
treatment of these variables is a difficult problem in empirical work, and it is 
also a problem for which no standard procedure exists. The way in which the 
variables are handled in my model is discussed in Section 4.1.3. 

2.2.3 Step 3: Specification of the Stochastic Equations 

The next step is to specify the stochastic equations, that is, to write down the 
equations to be estimated. Since the stochastic equations are the key part of 
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any econometric model, this step is of crucial importance. If theory has not 
indicated the functional forms and lag lengths of the equations, a number of 
versions of each equation may be written down to be tried, the different 
versions corresponding to different functional forms and lag lengths. If the 
theoretical approach is the traditional one, theory has presumably chosen the 
LHS and RHS variables. The specification of the stochastic equations also 
relies on the treatment of the unobserved variables from step 2; the extra 
theorizing in step 2 also guides the choice of the RHS variables. 

Theory generally has little to say about the stochastic features ofthe model, 
that is, about where and how the error terms enter the equations. The most 
common procedure is merely to add an error term to each stochastic equa- 
tion. This is usually done regardless of the functional form of the equation. 
For example, the term + uu would be added to equation i regardless of 
whether the equation were in linear or logarithmic form. If the equation is in 
log form, this treatment implies that the error term affects the level ofthe LHS 
variable multiplicatively. This somewhat cavalier treatment of error terms is 
generally done for convenience; it is another example of an unsatisfying 
aspect of the transition to econometric models, although it is probably not as 
serious as most of the other problems. 

2.2.4 Step 4: Estimation 

Once the equations ofa model have been written down in a form that can be 
estimated, the next step is to estimate them. Much experimentation usually 
takes place at this step. Different functional forms and lag lengths are tried, 
and RHS variables are dropped ifthey have coefficient estimates ofthe wrong 
expected sign. Variables with coefficient estimates of the right sign may also 
be dropped if the estimates have &statistics that are less than about two in 
absolute value, although practice varies on this. 

If at this step things are not working out very well in the sense that very few 
significant coefficient estimates of the correct sign are being obtained, one 
may go back and rethink the theory or the transition from the theory to the 
estimated equations. This process may lead to new equations to try and 
perhaps to better results. This back-and-forth movement between theory and 
results can be an important part of the empirical work. 

The initial estimation technique that is used is usually a limited informa- 
tion technique, such as 2SLS. These techniques have the advantage that one 
can experiment with a particular equation without worrying very much about 
the other equations in the model. Knowledge of the general features of the 
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other equations is used in the choice of the first-stage regressors (FSRs) for the 
2SLS technique, for example, but one does not need to know the exact 
features of each equation when making this choice. If a full information 
technique is used, it is usually used at the end ofthe search process to estimate 
the final version of the model. If the full information estimates are quite 
different from the limited information ones, it may again be necessary to go 
back and rethink the theory and the transition. In particular, this may 
indicate that the version of the model that has been chosen by the limited 
information searching is seriously misspecified. 

Sometimes ordinary least squares (OLS) is used in the searching process 
even though the model is simultaneous. This is a cheap but risky method. 
Because the OLS estimates are inconsistent, one may be led to a version ofthe 
model that is seriously misspecified. This problem presumably will be caught 
when a consistent limited information or full information technique is used, 
at which point one will be forced to go back and search using the consistent 
limited information technique. It seems better merely to begin with the latter 
in the first place and eliminate this potential problem. The extra cost involved 
in using, say, 2SLS over OLS is small. 

2.2.5 Step 5: Testing and Analysis 

The next step after the model has been estimated is to test and analyze it. This 
step, it Seems to me, is the one that has been the most neglected in macroeco- 
nomic research. Procedures for testing and analyzing models are discussed in 
Chapters 7 - 10; they will not be discussed here except to note the two that 
have been most commonly used. First, the principal way that models have 
been tested in the past is by computing predicted values from deterministic 
simulations, where the accuracy of the predictions is usually examined by 
calculating root mean squared errors (Sections 8.2 and 8.3). Second, the main 
way that the properties of models have been examined is by computing 
multipliers from deterministic simulations (Section 9.2). As will be seen, both 
of these procedures, especially the first, are subject to criticism. 

It may also be the case that things are not working out very well at this 
testing and analysis step. Poor fits may be obtained, and multipliers that seem 
(according to one’s a priori views) too large or too small may also be obtained. 
This may also lead one to rethink the theory, the transition, or both, and 
perhaps to try alternative specifications. In other words, the back-and-forth 
movement between theory and results may occur at both the estimation and 
analysis steps. 
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2.2.6 General Remarks 

The back-and-forth movement between theory and results may yield a model 
that fits the data well and seems on other grounds to be quite good, when it is 
in fact a poor approximation to the structure. If one searches hard enough, it 
is usually possible with macro time series data to come up with what seems to 
be a good model. The searching for models in this way is sometimes called 
“data mining” and sometimes “specification searches,” depending on one’s 
mood. A number of examples of this type of searching are presented in 
Chapter 4. Fortunately, there is a way of testing whether one has mined the 
data in an inappropriate way, which is to do outside sample tests. If a model is 
poorly specified, it should not fit well outside ofthe sample period for which it 
was estimated, even though it looks good within sample. It is thus possible to 
test for misspecification by examining outside sample results, and this is what 
the method in Chapter 8 does in testing for misspecification. (There is, 
however, a subtle form of data mining that even the method in Chapter 8 
cannot account for. This is discussed in Section 8.43.) 

Because of the dropping of variables with wrong signs and (possibly) the 
back-and-forth movement from multiplier results to theory, an econometric 
model is likely to have multiplier properties that are similar to what one 
expects from the theory. Therefore, the fact that an econometric model has 
properties that are consistent with the theory is in no way a confirmation of 
the model. Models must be tested using methods like the one in Chapter 8, 
not by examining the “reasonableness” of their multiplier properties. 

It should also be emphasized that in many cases the data may not contain 
enough information to decide a particular issue. If, for example, tax rates have 
not been changed very much over the sample period, it may not be possible 
to discriminate between quite different hypotheses regarding the effects of 
tax rate changes on behavior. It may also be difficult to discriminate be- 
tween different functional forms for an equation, such as linear versus 
logarithmic. In Chapter 4 a number of examples are presented of the inability 
to discriminate between alternative hypotheses. When this happens there is 
little that one can do about it except to wait for more data and be cautious 
about making policy recommendations that are sensitive to the different 
hypotheses. 

2.3 Testing Theoretical Models 

This is a good time to consider the second methodological question men- 
tioned in Chapter I, namely, what do econometric results have to say about 
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the validity of theories? It should be clear by now that transitions from 
theoretical models to econometric models are typically not very tight. It may 
be that more than one theoretical model is consistent with a given economet- 
ric model. If this is so, then finding out that an econometric model is, say, the 
best approximation among all econometric models is not necessarily a 
finding that a particular theory that is consistent with the model is valid. One 
may thus be forced to make weaker conclusions about theoretical models 
than about econometric models. 

If it is possible to test the assumptions ofa theoretical model directly, it may 
not be the case that one is forced to make weaker conclusions about theoreti- 
cal models. The problem in macroeconomics is that very few assumptions 
seem capable of direct tests. Part of the problem is the aggregation; it is not 
really possible to test directly assumptions about, say, the way an entire sector 
chooses its decision variables. A related problem is that many macroeco- 
nomic assumptions pertain to the way in which agents interact with each 
other, and these assumptions are difficult to test in isolation. Assumptions 
about expectations are also difficult or impossible to test directly because 
expectations are generally not observed. Even if expectations were observed, 
however, it would not be possible to test the rational expectations assumption 
directly. In this case one needs a complete model to test the assumption. One 
is thus forced in macroeconomics to rely primarily on testing theories by 
testing econometric models that are derived (however loosely) from them. 
This procedure of testing theories by testing their implications rather than 
their assumptions is Friedman’s view (1953) about the way theories should be 
tested. One does not, however, have to subscribe to Friedman’s view about 
economic testing in general in order to believe that it holds for macroeco- 
nomics. Macroeconomic theories are tested indirectly not always out of 
choice, but out of necessity. 

Given the indirect testing of theories and the sometimes loose transitions 
from theories to empirical specifications, it is not clear that one ought to talk 
in macroeconomics about theories being “true” or “false.” Macroeconomics 
is not like physics, where on average theories are linked more closely to 
empirical tests. 1 have suggested (Fair 1974d) that it may be better in 
macroeconomics to talk about theories being “useful” or “not useful.” A 
theory is useful if it aids in the specification ofempirical relationships that one 
would not already have thought of from a simpler theory and that turn out to 
be good approximations. Otherwise, it is not useful. Although how one wants 
to label theories is a semantic question, the terms “useful” and “not useful” 
do highlight the fact that theories in macroeconomics are not as closely linked 
to empirical tests as arc many theories in physics. 
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2.4 Expected Quality of Macroeconometric Models in the Long Run 

An interesting question is how good one expects macroeconometric models 
to be in the long run, say in twenty orthirty years. It may be that behavior is so 
erratic and things like aggregation problems so severe that no model will be 
very good. This will show up in large estimated variances ofprediction errors 
by the method in Chapter 8 and probably in large estimates of the degree of 
misspecification. Another way of stating this is that the structure of the 
economy may be too unstable or our potential ability to approximate closely 
a stable structure too poor to lead to accurate models. If this is true, models 
will never be of much use for policy purposes. They may be of limited use for 
short-run forecasting, but even here probably only in conjunction with 
subjective adjustments. 

My research is obviously based on the premise that there is enough 
structural stability to warrant further work on trying to approximate the 
structure of the economy well. This is, of course, a premise that can only be 
verified or refuted in the long run, and there is little more that can be said 
about it now. It is interesting to note that the extensive use of subjective 
adjustments by the commercial model builders and their lack of much 
scientific research on the models may indicate lack of confidence in a stable 
structure. 

It is also interesting to note, as mentioned in Chapter 1, that the lack of 
confidence in large-scale models has led to research on much smaller ones. In 
one sense this may be a reasonable reaction, and in another sense not. If the 
lack of confidence is a lack of confidence in a stable structure, the reaction 
does not seem sensible. It seems quite unlikely that the structure would be 
unstable in such a way as to lead small models to approximate it less poorly 
than large models. One should instead just give up the game and do some- 
thing else. If, on the other hand, the lack of confidence in large-scale models is 
a feeling that they have gone in wrong directions, it may be sensible to back up 
for a while. In this case the premise is still that the structure is stable, and the 
issue is merely how best to proceed to try to approximate it well. 

2.5 Nonlinear Optimization Algorithms 

It may seem odd to put a section on nonlinear optimization algorithms in a 
chapter on macroeconomic methodology, but the solution of nonlinear 
optimization problems is an important feature of current macroeconomic 
research. In this book the following problems arise. (1) In the theoretical 
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model in Chapter 3 the decisions of the agents are based on the solutions of 
nonlinear multiperiod maximization problems. (2) The estimation tech- 
niques discussed in Chapter 6 require the solution of nonlinear optimization 
problems. (3) The optimal control problems discussed in Chapter 10 are set 
up as standard nonlinear maximization problems. (4) The estimation of 
rational expectations models discussed in Chapter 1 I requires the solution of 
a nonlinear maximization problem. 

For many nonlinear optimization problems, general-purpose algorithms 
are sufficient. One of the most commonly used is the Davidon-Pletcher- 
Powell (DFP) algorithm, which is discussed later in this section. For a number 
of problems, however, general-purpose algorithms do not work or do not 
work very well, and for these problems special-purpose algorithms must be 
written. As discussed in Section 6.5.2. the DFP algorithm does not seem to 
work for moderate to large PIML and 3SLS estimation problems. These 
problems must instead be solved using an algorithm designed particularly for 
them, the Parke algorithm. The other problems in this book for which 
special-purpose algorithms were written are the least absolute deviations 
(LAD) and two-stage least absolute deviations (2SLAD) estimation problems 
in Section 65.4 and the multiperiod maximization problems in Sections 
3.1.2 and 3. I .3. The DE’ algorithm does not work for the LAD and 2SLAD 
problems, and it was not tried for the multiperiod maximization problems 
because it seemed likely to be too expensive. 

When general-purpose algorithms are used, it is not really necessary to 
know how they find the optimum as long as they do. They can, in other words, 
be treated as black boxes as long as things are going well. If the algorithms are 
not working well, knowledge of what they are trying to do may help either in 
modifying them for the particular problem or in designing new algorithms. In 
the remainder of this section a brief explanation of the DFP algorithm will be 
presented. 

Consider the problem of minimizingf(xi with respect to the elements of 
thenX 1 vectorx=(x,,x 2, ,A-,)! (The problem of maximizingf(xi is 
merely the problem of minimizing -f(x).) The function/is assumed to be 
twice continuously differentiable. Approximating f(-u by a second-order 
Taylor series about some point x0 yields 

(2.8) f(x) -flxO) + g(,+)‘(x - x0) + 3x - xa)‘G(xa)(x- x0), 

where g(x”) is the n X 1 vector of the gradient off(xl evaluated at x0 and 
G(xO) is the n X n matrix of the second derivatives of f(x) evaluated at x? 
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Minimizing the RHS of (2.8) by setting the partial derivatives with respect to 
x equal to zero yields 

(2.9) &CC’) + G(x”)(x - x0) = 0 

or 

(2.10) x=.x0 - [G(xO)]-‘g(x”) 

Equation (2.10) forms the basis for many algorithms. Letting xk denote the 
value of x on the kth iteration, one can iterate using (2.10): 

(2.1 I) 9 = ,xJ-’ - [G(.x-‘)]-I&+‘), 

where someinitial guessis used for.rPIf(2.11) isused exactly, thealgorithm is 
called Newton’s method, or Newton-Raphson’s method. The matrix 
[G(& ‘)I-’ is called the Hessian matrix. 

Newton’s method can be expensive because it requires calculating the 
Hessian matrix at each iteration, and much ofthe recent work in this area has 
been concerned with algorithms that do not require this calculation. The 
general formula for many of these algorithms can be written 

(2.12) x*=$-L - ikx- IE,k-I&$-l), 

where Hh - ’ is an n X n matrix and A” - ’ is a scalar. Algorithms based on 
(2.12) do two things at each iteration: (1) they choose a search direction 
Hk- ‘g(xX- I). and (2) they choose a value for I? 1 by carrying out a line 
search in this direction. (Newton’s method is, of course, one of these algo- 
rithms, where H*-’ = [G(,A?-‘)]-~ and ?,‘;-I = 1.) After the direction is 
chosen, the line search usually consists of fitting a second-degree polynomial 
to three points along the direction and then minimizing the resulting polyno- 
mial. 

The algorithms differ in their choice of search directions. The DFP algo- 
rithm, which is of primary concern here. is a member of a class of methods 
called “matrix-updating” methods. Other names for this class include 
“quasi-Newton” and “variable metric.” These methods never compute the 
Hessian, but instead build up an approximation to it during the iterative 
process by successive additions of low-rank matrices. The updating equation 
for the DFP algorithm is 

(2.13) 9 = I, 

Hk-, = Hx-z + g _ Hk-2Y(Hh-z~Y 
0 y,f{k-2y : k=2>3,. , 
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where 6 = x*-’ - ti-z and y = &x*-l) - &a~-~). There are a number of 
ways to motivate (2.13). but to do so here would take us too far afield; the 
interested reader is referred to Huang (1970) and Dennis and More (1977). 
(The original discussion ofthe DFP algorithm is contained in Davidon 1959 
and Fletcher and Powell 1963.) It can be shown that ifSis quadratic and if 
accurate line search is used,, He = G-l, where n is the dimension of x. Note 
that although algorithms like DFP do not require the computation of second 
derivatives, they do require the computation of first derivatives. 

Another update that is sometimes used is 

(2.14) Ho = I, 

where 6 and y are as above. This algorithm is called the Broyden-Fletcher- 
Goldfarh-Shanno (BFGS) algorithm. (See Dennis and More 1977 for refer- 
ences.) Once a program for the DFP algorithm has been written, the extra 
coding for the BFGS algorithm is small. and therefore many nonlinear 
optimization packages offer a choice of both the DFP and BFGS updating 
equations. My experience is that it generally does not make much difference 
which of the two updating equations is used. An example of the use of the two 
algorithms is reported in Section 10.4. 

Another option that is sometimes available in nonlinear optimization 
packages is the method ofsteewst descent. This method simply uses H*-l = I 
for all k. It has very slow convergence properties, and it is not in general 
recommended. 

The DFP algorithm has turned out to work well for many problems, and it 
is widely used. It does not, however, by any means dominate all other 
algorithms for all problems. There are also many problems for which it does 
not work in the sense that it does not find the optimum. My experience with 
the DFP algorithm is mixed but on the whole is fairly good. It has worked 
extremely well for the solution of optimal control problems. where in one case 
it was used to solve a problem of 239 unknowns (that is. n = 239). These 
results are reported in an earlier paper (Fair 1974a), where it can be seen that 
DFP easily dominated two other algorithms, one that required no derivatives 
(Powell’s no-derivative algorithm: Powell 1964) and one that required both 
first and second derivatives (the quadratic hill-climbing algorithm of Gold- 
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feld, Quandt, and Trotter 1966). The solution ofoptimal control problems in 
this way is discussed in Section 10.2. 

As noted earlier, DFP does not work for moderate to large FIML and 3SLS 
estimation problems, which seem to require special-purpose algorithms like 
the Parke algorithm. It also does not work for the minimization problem 
associated with the LAD and 2SLAD estimators. I have found it to work fairly 
well for the OLS or 2SLS estimation of a single equation that is nonlinear in 
coefficients. 

My general strategy for dealing with nonlinear optimization problems is 
the following. If I choose to obtain and code analytic first derivatives, which is 
usually not the case, I merely solve the first-order conditions using the 
Gauss-Seidel technique (discussed in Section 7.2). In other words, I solve the 
equation system 

(2.15) g(x) = 0 

using Gauss-Seidel. I have had very good success with the Gauss-Seidel 
technique (with damping sometimes required), and the procedure of solving 
(2.15) avoids having to use any optimization algorithm. If first derivatives are 
instead computed numerically, then I usually begin with the DF’P algorithm 
and only try other procedures if this does not work. 

When first derivatives are computed numerically, they can be either “one- 
sided” or “two-sided.” Consider the derivative off with respect to x,. 
One-sided derivatives are computed as [f(x, + c, x,, , x,) -f(q) 

x2, , x,,)]/c, where E is a small number. Two-sided derivatives are 
computed as [f(xl + E, x,, , x,) -f(.q - E, x2, , x.)]/~E. Since 

fl x,, x,, , x,) is available at the time the derivatives are computed, 
one-sided derivatives require only one function evaluation per unknown, 
whereas two-sided derivatives require two. Both one-sided and two-sided 
derivatives were used for the results of solving the optimal control problems 
in Fair (1974a), and these results indicate that two-sided derivatives are not 
worth the extra cost. Little or no change in the number of iterations needed 
for convergence was obtained by the use of the two-sided derivatives. For the 
optimal control results in Chapter 10, on the other hand, slightly more 
accurate answers were obtained using two-sided derivatives, because the 
stopping criterion that was used for the Gauss-Seidel technique in solving the 
model was not small enough to allow highly accurate one-sided derivatives to 
be computed. This example is discussed in Section 10.4. 

Note that the use of the DFP algorithm in conjunction with numerical 
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derivatives requires very little work to set up the problem. One merely needs 
to write a program (a subroutine when using FORTRAN) to computeffor a 
given value of x. Once this is done, the DF’P algorithm merely calls this 
program many times in the iterative process. Each iteration requires n calls 
for the derivatives plus a few more for the line search. The calculations for 
each iteration other than the calculations involved in computing the function 
are generally very minor, so most ofthe computer time is taken in computing 
the function values. The estimates in Fair (1974a) for the one-sided derivative 
results show that this time is between 78 and 97 percent ofthe total time. For 
two-sided derivatives the percentages are even higher. It is thus important to 
code the function program efficiently. If numerical derivatives are used, it is 
easy to see why methods that require the calculation of second derivatives are 
likely to be expensive: (n2 + n)/2 evaluations of the function are needed to 
calculate the second-derivative matrix, and for large n this is obviously 
expensive. 

For purposes of the Fair-Parke program, I have coded the DFP and BFGS 
algorithms from scratch. The coding is straightforward except for the line 
search, which was coded as follows. (1) i. = I is tried. If this results in an 
improvement (a lower value of_f(xJ than that of the previous iteration), 
J, = I .25 is tried. Ifthis results in an improvement, J. = ( 1.25)2 is tried, and so 
on through J, = (1 .25)9. At the point of no improvement or at j, = (1 .25)9, a 
quadratic is fit to the three points .S&, ,Xx, and 1.2&, where 2x is either the last 
value of 1 that resulted in an improvement or (I&. The quadratic is 
minimized. The function is then evaluated for L = A*, where A* is the 
minimizing value. A second quadratic is then fit to the three points .95&, E,,, 
and 1.05&, where&is either .S&, &, 1.2,X‘,, or i;*, depending on which one 
has yielded the smallest value of the function. This quadratic is minimized, 
and the function is evaluated for i = A**, where A** is the minimizing value. 
The final value ofi, is then taken to be .95&, A,, 1 .OS& or i;**, depending on 
which one yielded the smallest value of the function. (2) If J, = 1 does not 
result in an improvement, 2 = .5 is tried. If this does not result in an 
improvement, i, = (.5)2 is tried, and so on through L = (.S)9. At the point of 
improvement or at i, = (.5)9, the quadratic fitting discussed in (1) is done. 

The algorithm is stopped for one of five reasons: ( 1) no improvement is 
found for any value of 1, tried at the current iteration; (2) the prescribed 
maximum number of iterations is reached, (3) the successive estimates of x 
are within some prescribed tolerance level; (4) at the current iteration the 
gradient values as a percentage of the respective x values are less than some 
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prescribed tolerance level in absolute value; or (5) the improvement in the 
function from one iteration to the next is within some prescribed tolerance 
level. 

There is nothing subtle or sophisticated about this code, but it seems to 
work quite well for the types of problems I have dealt with. It may be that one 
could get by with fewer function evaluations for the line search (there is now a 
maximum of sixteen per iteration). but for problems with a large number of 
unknowns, these function evaluations are a small percentage ofthe function 
evaluations required to get the derivatives. With respect to the derivatives, the 
user has the option of deciding whether to use one-sided or two-sided 
derivatives and what step size to use. 



3 A Theoretical Model 

3.1 The Single-Country Model 

The purpose of this chapter is to discuss the theoretical model that has guided 
my empirical work. The single-country model is discussed in this section, and 
then the model is expanded to two countries in Section 3.2. As noted in 
Section 2.1.6, the model is a simulation model in the sense that its properties 
are analyzed using simulation techniques. It should be repeated, however, 
that the model is not a simulation model of the kind that is used in applied 
general equilibrium analysis. The simulation results are only meant to be 
used to learn about the qualitative properties of the model; no significance is 
attached to the size of any of the effects. Knowledge of the qualitative 
properties of the model is used to guide the econometric specifications in 
Chapter 4. For ease ofreference, the symbols for the variables in the model are 
listed in alphabetical order in Table 3-l. 

3.1 .l. Introduction 

The model is an attempt to integrate three main ideas. The first is that 
macroeconomics should be based on better microeconomic foundations. In 
particular, macroeconomics should be consistent with the view that decisions 
are made by maximizing objective functions. The second idea is that macro- 
economic theory should allow for the possibility of disequilibrium in some 
markets. The third, and perhaps somewhat less important, idea is that a 
model should account explicitly for balance-sheet and flow-of-funds con- 
straints. 

Relation to Previous Work 

The implications of the first two ideas have generally been worked on 
together, beginning with the work of Patinkin ( 1956, chap. 13) and Glower 
(1965). Studies that have followed these two include Leijonhufvud (1968, 
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1973), Tucker(1968, 1971a, 1971b), Barr0 andGrossman (1971, 1976).and 
Grossman (197 1, 1972a, 1972b). (Two related studies arc Solow and Stiglitz 
1968 and Korliras 1972, although the models developed in these papers are 
not constructed on a choice-theoretic basis and so are not concerned with the 
first idea.) This work has provided a more solid theoretical basis for the 
existence of the Keynesian consumption function and for the existence of 
unemployment; it has thus made the standard, textbook Keynesian theory 
somewhat less ad hoc. The existence of excess supply in the labor market is a 
justification for including income as an explanatory variable in the consump- 
tion function, and the existence ofexcess supply in the commodity market is a 
justification for the existence of unemployment. 

The main problem with these disequilibrium studies is that they have not 
provided an explanation of why it is that prices and wages may not always 
clear markets. Prices and wages are either taken to be exogenous or are 
determined in an ad hoc manner. This is particularly restrictive in a disequi- 
librium context, since one of the key questions in this area is why there are 
market failures. Barre and Grossman are quite explicit in their book about 
this problem: “We provide no choice-theoretic analysis of the market-clear- 
ing process itself. In other words, we do not analyze the adjustment of wages 
and prices as part of the maximizing behavior of firms and households. 
Consequently, we do not really explain the failure of markets to clear, and our 
analyses of wage and price dynamics are based oq ad hoc adjustment equa- 
tions” (1976. p. 6). 

This problem has persisted in the related work on fixed price equilibria (see 
Grandmont 1977 for a survey of this work). In a discussion of some of this 
work, for example, Malinvaud states: “A dynamic theory that would COT- 
rectly describe the successive adjustments [ofprices and wages] occurring in 
the real world is still more difficult to build than a long-run equilibrium 
theory under short-run rationing. At the present stage in the development of 
economic theory, one cannot expect to do more than provide a model of the 
first few steps of the dynamic adjustments initiated by demand pressures in 
the markets for goods and labour and by unwanted inventories, excess 
capacities or unemployment” (1977, pp. lOl- 102). 

My model does provide a choice-theoretic explanation of market failures. 
The explanation is based on two postulates, both ofwhich draw heavily on the 
studies in Phelps et al. (1970) and related work, which in turn have been 
influenced by Stigler’s classic article (196 1) on imperfect information and 
search. The first postulate is that firms have a certain amount of monopoly 
power in the short run in the sense that raising their prices above prices 
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charged by other firms does not result in an immediate loss of all their 
customers, and lowering their prices below prices charged by other firms does 
not result in an immediate gain of everyone else’s customers. There is. 
however, a tendency for high-price firms to lose customers over time and for 
low-price firms to gain customers. A similar statement holds for wages. This 
postulate can be justified on the basis of imperfect information about prices 
and wages on the part of customers and workers. The second postulate is that 
prices and wages are decision variables of firms, and firms choose these 
variables (along with others) in a profit-maximizing context. 

Ifa firm’s market share is a function of its price relative to the prices of other 
firms, then a firm’s optimal price strategy is a function of this relationship. 
Models of this type have been developed by Phelps and Winter (1970) and 
Maccini (1972) for prices and by Phelps ( 1970) and Mortensen ( 1970) for 
wages. My model expands on this work by considering the price and wage 
decisions together (along with other decisions) and by assuming that firms 
expect that the future prices and wages of other firms are in part a function of 
their own past prices and wages. 

It should be clear that disequilibrium can occur in models of this type. In 
the Phelps and Winter model, for example, disequilibrium occurs if the 
average price set by firms differs from the expected average price (1970, 
p. 335). In my model, as will be seen, disequilibrium also occurs because of 
expectation errors. The difference is that expectation errors in my model have 
much wider effects. In the Phelps and Winter model there is a straightforward 
way in which the system returns to equilibrium, whereas this is not true in my 
case. This is, I believe, an important difference between models of the Phelps 
and Winter type and more general models, something that will be stressed 
later. If the effects of expectation errors spill over into other markets, the 
effects of shocks and errors may be much more serious (larger and longer) 
than would seem to be implied by models of the Phelps and Winter type. 

With respect to the previous literature, it is surprising that the studies in 
Phelps et al. ( 1970) and related work have had no impact on the work on fixed 
price equilibria, given the admittedly restrictive assumption of fixed prices or 
ad hoc price determination in the latter. In a 1980 study Malinvaud argues 
against the view that “price and wage changes are decided by firms as a 
rational reaction to the situation confronting them” (1980, p. 52). He argues 
that by following this approach “we may be fairly certain that we shall end up 
with a very partial representation of the real worl& the representation will be 
so partial that the adequacy ofthe derived dynamic specification will be quite 
doubtful” (p. 53). This view seems so far to have prevailed in the fixed price 
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equilibria literature. My view is obviously contrary to this: the linking of the 
Phelps et al. work to the disequilibrium models does seem to me to be an 
appealing way to close the disequilibrium models. At any rate, one should be 
able to test this in the long run by comparing models based on this idea with 
other models. 

With regard to the third idea (the accounting for balance-sheet and flow-of- 
funds constraints), one of the main advantages of doing this is that it means 
that the government budget constraint is automatically accounted for. Christ 
(1968), among others, has emphasized this constraint. Accounting explicitly 
for balance-sheet constraints also means that it is easier to keep track of 
wealth effects. 

I was also concerned with making the model general enough to include the 
main variables of interest in a macroeconomic context. The endogenous 
variables include sales, production, employment, investment, prices, wages. 
interest rates, and financial assets and liabilities. Previous disequilibrium 
models have not been this general. 

A weakness of the model is that search has not been treated as a decision 
variable of any agent. As noted earlier, the existence of imperfect information 
and search can be used to justify the short-run monopoly power offirms with 
respect to prices and wages. It is thus a weakness of the model not to explain 
search and thus derive the degree of monopoly power of the firms. A much 
more complicated model would be needed to treat search as endogenous, and 
this has not been attempted. 

Treatment qf Expectations 

Since the treatment of expectations is critical in any macro model, it will be 
useful to explain at the beginning how expectations have been handled. 
Individual agents in the model are assumed to form their expectations on the 
basis of a limited set ofinformation. Agents do not know the complete model, 
and their expectations are in general different from the model’s predictions. 
Expectations, in other words, are not rational. (The simulation model is 
deterministic, so “rational expectations” in this case means perfect foresight,) 
The nonrationality ofexpectations leads to expectation errors. which in turn 
lead to the system being in disequilibrium. 

Another feature regarding expectations should be noted: expectations are 
assumed to be treated with certainty by the individual agents. In other words, 
agents ignore the fact that their expectations are uncertain when solving their 
optimization problems. The variables that are stochastic from the point of 
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view of the individual agent are replaced with their expected values before the 
optimization problem is solved. Although this “certainty equivalent” treat- 
ment is only correct for linear models, it has been used here even though the 
models facing the individual agents are nonlinear. This is a common proce- 
dure in the optimal control literature (see, for example, Athans 1972), and it 
may provide a reasonable approximation in many cases. It does, however, 
rule out potentially important effects of uncertainty on decisions. 

Treatment of D@erent Kinds of Financial Securities 

The model treats different kinds of financial securities in a fairly simple way. 
The financial asets of households include demand deposits in banks, which 
will be called “money”; corporate stocks: and an all-other category, which 
will be called “bonds.” The bonds are one-period securities. The expected 
one-period rate of return on bonds and stocks is assumed to be the same, and 
thus households are indifferent as to whether they hold bonds or stocks. 
Households have no financial liabilities. Firms have financial assets in the 
form of demand deposits and financial liabilities in the form of bonds. The 
government has financial assets in the form of bank borrowing; its liabilities 
consist of bonds and bank reserves. The liabilities of banks are demand 
deposits and borrowing from the government; their assets are bonds and bank 
reserves. 

Comparison m the “‘Pitfalls” Approach of Brainard and Tobin 

Because of the assumption that the expected one-period rate of return on 
bonds and stocks is the same, there are really only two securities in the model 
with respect to the maximization problem of households: bonds-stocks and 
money. This treatment ignores the main thrust of the “pitfalls” approach of 
Brainard and Tobin (1968). (Tobin’s 1982 Nobel lecture provides a good 
review of this approach.) Brainard and Tobin stress the lack of perfect 
substitutability of different securities and develop a model for explaining the 
different rates of return on different securities. 

There is little doubt that there is lack of perfect substitutability among 
many securities in the real world, and thus the pitfalls approach has consider- 
able appeal. There are at present, however, some costs to adopting the 
approach, and it is an open question whether the potential gains are greater 
than these costs. The general strategy of the pitfalls approach has been to 
regard income account variables as exogenous for balance sheet behavior, and 
although this assumption can be relaxed, it is not trivial to do so given the 
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basic strategy. It is also not easy within the approach to account for the effects 
of expected future short-term rates on current long-term rates and for the 
effects of expected future dividends on current stock prices. There is also a 
practical difficulty in trying to estimate pitfalls models. Different interest rates 
are highly collinear (because there is considerable substitutability among 
different securities, even though possibly not perfect substitutability), and it is 
difficult to get precise estimates of the effects of interest rate differences on 
security holdings. (See, for example, Smith and Bminard 1976, who attempt 
to get around this problem by the use ofa Bayesian procedure.) It may be that 
the degree to which different securities are not perfect substitutes is too small 
to be capable of being picked up with the use of macro time series data. 

It will be useful in understanding my model to consider another important 
difference between my approach and the pitfalls approach. This can best be 
explained by seeing how consumption is determined in the two approaches. 
As just mentioned, income account variables are generally taken to be 
exogenous by the pitfalls approach, but Tobin’s 1982 Nobel lecture provides 
an example ofthe endogenous treatment ofthese variables within the context 
of the pitfalls approach. 

Consider the following two specifications. The first is 

(3.1) C=f(Y,R,A_,, .)+E, [consumption] 

(3.2) Y= W.L+R.A_,, [income] 

(3.3) s= Y-C, WinsSl 

(3.4) A=A_,+S, [end-of-period assets] 

where Cis consumption, Yis income, S is savings, A is end-of-period assets, R 
is the interest rate, Wis the wage rate, L is the number of hours worked, A_, is 
beginning-of-period assets, and E is an error term. The price level is assumed 
to be fixed and equal to 1. W, L, and R are taken to be exogenous. The second 
specification is 

(3.5) A=g(Y,R, .)+fl, [end of period assets] 

(3.6) Y= W.L+R.A_,, [income] 

(3.7) S=A-A-,, [savings] 

(3.8) c= Y-S, [consumption] 

where the variables are as before and p is an error term. 
The first set of equations is consistent with my treatment. Consumption is 
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determined by an estimated equation, (3.1). Income. savings, and end-of- 
period assets are determined by identities. In particular, end-of-period assets 
are “residually” determined by (3.4), given the consumption decision and Y. 
(III practice, as will be seen in Section 3.1.2, both consumption and labor 
supply are determined jointly in my model of household,behavior. which 
means that income is not exogenous and does not belong on the RHS of 3. I, 
For the sake ofthe present argument, however, nothing is lost by taking labor 
supply to be exogenous. Also, the income definition in my model uses R . A 
instead of R . A-, for the interest revenue term, but this difference is of no 
consequence for the present argument. If R A were used in 3.2, then A 
would be determined, given C, by the solution of 3.2,3.3, and 3.4 rather than 
by 3.4 alone.) The variables on the RHS of (3. I) are the exogenous variables 
(that is, exogenous to the household) that affect the consumption decision. In 
my model consumption decisions are derived from multiperiod utility maxi- 
mization, and so the RHS variables are variables that affect the solution ofthe 
maximization problem, including expectations of future variables. 

The second set of equations is consistent with Tobin’s treatment. End-of- 
period assets are determined by an estimated equation, (3.5). Income, sav- 
ings, and consumption are determined by identities. In particular, consump- 
tion is “residually” determined by (3.8), given the asset decision and Y. The 
variables on the RHS of (3.5) are variables that affect the asset decision. 

From the point of view ofa utility-maximizing model, Tobin’s treatment is 
awkward. In the simple model with labor supply exogenous, one maximizes 
utility with respect to consumption. The natural decision variable to consider 
is consumption, not assets. Given that C = Y-A + A_, , one can, of course, 
replace C with this expression in the utility function and maximize with 
respect to A (remember that Y is exogenous), but this is not the natural thing 
to do. 

Ifthe only problem with the Tobin approach were a certain awkwardness of 
interpretation, there would be no real issue involved in choosing between the 
above two specifications. In practice, however, quite different models are 
likely to result from the two approaches. In the first approach much time is 
spent searching for the estimated equation that best explains C, whereas in 
Tobin’s approach the time is spent searching for the estimated equation that 
best explains A. For example, C_, is a natural variable to use in the consump 
tion equation to try to capture expectational and lagged adjustment effects, 
whereas A_, is the natural variable to use in the asset equation. If different 
RHS variables are chosen for the two equations, it is likely that the behavior of 
consumption implied by Tobin’s approach will be considerably different 
from the behavior implied by the first approach. If this is true, the awkward- 
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ness of Tobin’s approach becomes a real issue, and it may argue against its 
use. (Note that ifthe same set of RHS variables is used for both equations, if 
this set includes Y and A_, , and if the equations are linear, then the same 
equation is being estimated by both approaches. The argument here is that 
this is unlikely to be the case in practice.) 

The main thrust ofthe pitfalls approach is, ofcourse, to disaggregate,4 into 
many different kinds of securities, which means estimating an equation like 
(3.5) for many different securities. It is straightfonvard to disaggregate A 
following this approach, whereas it is not straightforward to do so following 
the first approach. On the other hand, it is straightforward to disaggregate 
consumption into different categories following the first approach, whereas it 
is not following the pitfalls approach. There is again likely to be a real issue 
here regarding which is the better approach in practice. 

Although the example just given is for household behavior, similar consid- 
erations apply to models of firm behavior. From the point of view of a 
profit-maximization model, the pitfalls approach is awkward. In my protit- 
maximization model, for example, which is discussed in Section 3.1.3. it 
would be awkward to treat end-of-period assets (or liabilities) as a direct 
decision variable and thus in the empirical work to estimate an equation with 
this variable on the LHS. If this were done, it is likely that the estimated model 
of firm behavior would be quite different from the one that is in fact 
estimated. 

These difficulties with the pitfalls approach may be overcome in future 
work and, in the spirit ofthe methodology ofthis book, it should be possible 
in the long run to compare pitfalls and non-pitfalls models. The foregoing 
discussion indicates that the two types of models are likely to have important 
quantitative differences, which should increase the chances of choosing 
between them. 

It should finally be noted that an approach that is in between the two just 
discussed would specify that both the consumption and asset equations have 
errors. where the covariance matrix ofthe errors would be singular because of 
the adding up constraints. I do not find this approach particularly appealing, 
since the theoretical arguments against it are the same as those against the 
Tobin approach, but it is a possible area for future research. 

3.1.2 Household Behavior 

There are four types of agents in the model: households (h). firms (f), banks 
(/I). and the government (&. The behavior of each type of agent will be 
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discussed in turn, beginning with households in this section. The complete 
model is discussed in Section 3.1.5. 

In order to simplify the notation, no special symbols have been used to 
denote expectations. This is unlikely to cause any confusion, since it will be 
made clear in the discussion which variables are expectation variables and 
which are decision variables. Note also that the use of the certainty equivalent 
assumption discussed earlier means that the household decision problem can 
be analyzed as a deterministic problem. 

The Decision Problem 

The model of household behavior is fairly straightforward. The utility of 
household h in period t is a function of consumption and leisure: 

(3.9) 6, =/&C,,, TH - L,, - N,u)> [utility function] 

where C,, is consumption, Lh, is the amount of labor supplied, N,, is the 
amount of time spent taking care of money holdings, and TH is the total 
number of hours in the period. The objective of the household is to maximize 

(3.10) OBJ, = sd&,, 2 u,, 3 uFl.hA [objective function] 

where period 1 is the current period and Nis the remaining length oflife ofthe 
household. 

Since the expected one-period rate of return on bonds and stocks is the 
same, one can deal with only one security when analyzing the decision 
problem of a household. Let A, denote the security holdings of the house- 
hold. Before-tax income (Y,,) is 

(3.1 I) Y/z, = ~‘,A,, f &AM> [before-tax income] 

where W,, is the wage rate and R, is the one-period interest rate. This equation 
merely states that before-tax income is equal to wage plus nonwage income. 
The tax-transfer schedule is 

(3.12) T,,r = &Y,,, - TR,, [net taxes] 

where d,, is the (proportional) income tax rate, TR, is the level of transfer 
payments to the household (TR, can be interpreted as a minimum guaranteed 
level of income), and Thl is the amount of net taxes paid. The level of savings 
(S,,,) is equal to income minus taxes minus consumption expenditures: 

(3.13) S,, = Y,, - T,u - P&hi> [savings] 
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where Ph, is the price of goods. The household budget constraint is 

(3.14) 0 = S,, - AAhr - AM,,,, [budget constraint] 

where IV,,, is the level of money holdings. The budget constraint states that 
any nonzero level of savings must result in a change in holdings of securities 
or money. 

The relationship between the level of money holdings and the amount of 
time spent taking care of these holdings is depicted in Figure 3-l. For large 
values ofM,, , IVY, is small (few trips to the bank needed), whereas for values of 
Mhl that are small in the sense of being close to some proportion of expendi- 
tures, ylPh,Ch,, Nhi is large. This specification captures the idea that work is 
involved in keeping money balances small. The functional form that was used 
for the relationship in Figure 3-l is 
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(3.15) IvAt = Y2 
Mhr - Y,PK,~ 

[time spent taking care of money holdings] 

Equations(3.9)-(3.15) hold for each period(t = I, ~ Iv). Thedecision 
variables are C,,, L,,,, and Nh, (t = 1, , A’). The exogenous variables to 
the problem are IV,,,, P,,, R,, d,,, and TR, (t = 1, , N). If future values of 
the exogenous variables are not known, expectations of these values must be 
made before the optimization problem is solved. In the solution of the 
complete model in Section 3.1.5 it is assumed that the household knows the 
values of the exogenous variables for period t, but not for periods t + 1 and 
beyond. There are two initial conditions: the initial stocks of securities and 
money, A,, and Al,,,. There is also assumed to be an exogenous terminal 
condition: 

- 
(3.16) AhN + Mh,v = AM, [terminal condition] 

where .4A4 IS exogenous. This means that bequests are exogenous. 
There is a possible “disequilibrium” constraint on the household. which is 

that it may not be able to work as many hours as it would like: 

(3.17) Ltu 5 G > [labor constraint] 

where L$ is the maximum amount that the household can work in period 1. 
The decision problem of the household is to choose the paths of the 

decision variables to maximize (3. lo), given the actual and expected values of 
the exogenous variables. the initial conditions, the terminal condition, and 
the possible labor constraint. 

The following values and functional forms were used for the simulation 
results. The functional form of the utility function was taken to be the 
constant elasticity of substitution (CES) form: 

(3.9)’ rY*< = [ol&;lp + (1 - o(,)(TH - L,, - Nhi)*~]-““~, 

wherea, = .5 anda =-.5. The elasticityofsubstitution is I/( 1 +luz), which 
in the present case is 2.0. The length of the decision period. IV, was taken to be 
3, and the objective function was taken to be 

(3.10)’ OBJ, = U lJ> L”” hl hZ hl, 

where 2 is the discount rate, 
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The exogenous variable values for period 1 were taken to be: Wh,,, = 1.0, 
Ph, = 1 .O, R, = .07, d,, = .2, and TR, = 0. The household was assumed to 
know these values at the beginning ofthe period and to expect them to remain 
unchanged in periods 2 and 3. In other words, expectations were assumed to 
be static. 

The values of the initial conditions were as follows:A,, = 1000.0 and 
Mh,, = 100.0. The value of the terminal condition was AM= 1100.0. The 
remaining parameter values were chosen so as to lead to a flat optimal path of 
each decision variable; these were I= ,944, TH = 1004.72366, yI = .255905, 
and yz = I .O. The value of ,I is one minus the after-tax interest rate, where the 
after-tax interest rate is .07 X .8. 

The maximization problem of the household is to choose the three values 
of each ofthe decision variables, L,, C',,, IV,,, (t = 1,2, 3), so as to maximize 
(3. IO)‘, subject to the terminal condition (3.16). This problem was solved by 
calculating the first-order equations analytically and then solving these equa- 
tions using the Gauss-Seidel technique. The first-order equations were ob- 
tained as follows. The terminal condition allows one to write one of the nine 
decision variables as a function of the others, and this was done for C,, This 
expression was then substituted for C,,, in the objective function, leaving eight 
variables to be determined. The derivatives of the objective function with 
respect to the eight variables were taken. and the resulting eight first-order 
equations were used to solve for the eight unknowns. Some damping of the 
Gauss-Seidel technique was needed to solve the equations, but the time taken 
to solve them was trivial. A damping factor of. 1 was generally used (although 
larger values also worked), and the time taken to solve a typical problem was 
about .75 seconds on the IBM 434 1 at Yale. This procedure was chosen over 
the use of the DFP algorithm because it was undoubtedly much cheaper in 
terms of computer time and because the analytic work involved in obtaining 
the first-order equations was not very large. 

The solution values are presented in the first column ofTable 3-2. As noted 
in the table, the values are the same in each ofthe three periods. The choice of 
,I as one minus the after-tax interest rate means that the household has no 
incentive to save or dissave in any period, and thus the optimal value of 
savings each period is zero. Note that the variables just discussed, other than 
L,,, C,,, and K,,,, are “indirect” decision variables in the sense that they are 
residually determined given (I) the first three decision variable values, (2) the 
exogenous variable values. and (3) the parameter values. 

The simulation experiments consisted of changing a particular variable 
from the value used for the base run, solving the household maximization 
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problem using the new value, and observing the resulting changes in the 
optimal values. Seven experiments were performed: each of the five exoge- 
nous variables was changed, the initial condition A,, was changed, and the 
labor constraint was made binding. The results are presented in Table 3-2. 
For the last experiment the labor constraint was binding, but for the others it 
was not. The five exogenous variables were changed for all three periods, 
which means that the household expected the changes to be permanent. In the 
last experiment the labor constraint was only made binding for the first 
period; the household was unconstrained in periods 2 and 3. The following 
paragraphs give a brief discussion of the results. Since only qualitative 
properties ofthe model are important, only pluses and minuses are presented 
in Table 3-2. This makes the results somewhat easier to discuss. When a 
quantitative result is needed in order to understand a property ofthe model, it 
is mentioned in the text. All the pluses and minuses are changes from the base 
run values, not changes from period to period. 

Experiment 1: W,,, (+). The increase in the wage rate led the household to 
work and consume more. This is, ofcourse, not an unambiguous result since 
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there are both income and substitution effects operating. Given the particular 
parameter values chosen. the substitution effect dominates. The increase in 
the wage rate also led the household to spend less time taking care of money 
holdings. This is because an increase in the wage rate increases the opportu- 
nity cost of time spent both in leisure and in taking care of money holdings. 
Money holdings increased both because N,,, decreased and because consump 
tion increased. Savings remained unchanged at zero each period. A, fell by 
the same amount that Mh, rose. 

Experiment 2: Ph, I-). The signs ofthe results for the decrease in the price 
level are the same as those for the increase in the wage rate, with the exception 
ofthose for N*,. Although Nhr did not change for this experiment, it fell for the 
wage rate increase. The change in price does not affect the opportunity cost of 
spending time taking care of money holdings, and so Nh, is not affected. 
Money holdings increased because consumption increased by a larger per- 
centage than the price level decreased. 

Experiment 3: AhO (+). The increase in the initial value of assets led the 
household to work less and consume more. The terminal condition was not 
changed for this experiment, and so the household dissaved each period by 
enough to have the value of assets fall to the terminal condition value. The 
value ofA, was lower in period 3 by the amount that M,, was higher; M,,, was 
higher because consumption was higher. 

Expwimen~ 4: R, (+). This experiment requires a little more explanation. 
Since part ofthe household’s wealth is in the form ofstocks, an increase in the 
interest rate implies a capital loss on stocks and thus a fall in wealth. In the 
base run for the complete model in Section 3.1.5, the value of stocks is equal 
to 48.2/R,, where 48.2 is the expected stream of after-tax cash flow. The 
interest rate for the present experiment was increased from .07 to .08, which 
implies a capital loss on stocks of 86.07. A,, was thus lowered by this amount 
before the maximization problem was solved. The terminal value of wealth, 
AA4, was also lowered by this amount. Had the terminal value remained 
unchanged, the household would have had to save 86.07 over the three 
periods to make up for the loss. Instead, the household was merely assumed to 
lower its bequests by the amount of the loss. 

The increase in the interest rate led the household to save in periods 1 and 2 
and dissave in period 3. Work effort was higher in period 1 and lower in 
periods 2 and 3, consumption was lower in period 1 and higher in periods 2 
and 3, and time spent taking care of money holdings was higher in all three 
periods. This last variable was higher because an increase in the interest rate 
increases the opportunity cost of holding money and thus increases the 
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reward from keeping money holdings low. Mh, was lower in periods I and 2 
and higher in period 3. It was higher in period 3 even though A’,, was higher 
because the positive effect from the increase in consumption dominated the 
negative effect from the increase in N*,. 

Experimenf 5: d,, (+). The increase in the tax rate led the household to work 
less and consume less. It worked less because the after-tax return to work was 
lower. II dissaved in periods I and 2 and saved in period 3. It dissaved in the 
first two periods because the after-tax interest rate was lower. The increase in 
the tax rate had no effect on Nhr. Although an increase in the tax rate lowers 
the after-tax return to work, which increases N,,, , it also lowers the after-tax 
interest rate, which decreases N,,. These two effects exactly cancel each other 
out, and so a change in the tax rate has no effect on Nhr Money holdings 
decreased for this experiment because consumption decreased. 

Experiment 6: TR, f-j. The decrease in transfer payments led the house- 
hold to work more and consume less. Nhi was not affected. Money holdings 
decreased because consumption decreased. Since a decrease in transfer pay- 
ments is an increase in net taxes, experiments 5 and 6 show an important 
difference between raising net taxes by increasing the tax rate and raising net 
taxes by decreasing transfer payments. In both cases consumption is lower, 
but in the first case work effort is less, whereas in the second case work effort is 
greater. 

E.rperiment 7: Lh: (-). Making the labor constraint binding forced the 
household to work less in period 1. It consumed less and d&saved in period 1. 
It also spent more time taking care of money holdings. It then worked more in 
periods 2 and 3 to make up in part for the forced cutback in period I. It saved 
in periods 2 and 3 to make up for the d&wing in period I. Consumption was 
less in all three periods. 

Other Experiments. Experiments 1-6 were also performed with the signs 
of the changes reversed. The signs of the changes in the optimal values were 
opposite to those given above. The quantitative results were almost, but not 
quite, symmetric. For example, L,, responded slightly more to a wage rate 
decrease than to a wage rate increase. Also, LA, responded more to a change in 
the wage rate than to a change in the price level. 

Summary of Household Behavior 

The maximization problem of the household is fairly standard, and so its 
optimal behavior is not surprising. When the wage rate increases or the price 
level decreases, the household works more and consumes more. When the 
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initial value ofwealth increases, it works less and consumes more. When the 
interest rate increases, it saves at the beginning and dissaves at the end. It 
responds to an increase in the tax rate by working less and consuming less. 
and it responds to a decrease in transfer payments by working more and 
consuming less. A binding labor constraint forces the household to work less 
and leads it to consume less. 

The only unusual feature about the maximization problem is the addition 
of N,,,, time spent taking care of money holdings, to the utility function. Nhr 
responds negatively to the wage rate and positively to the interest rate. In 
other words, the household spends more time keeping money balances low 
when the wage rate is low or the interest rate is high. The model thus provides 
an explanation of the interest sensitivity of the demand for money. 

3.1.3 Firm Behavior 

There are a number of features of the following model of firm behavior that 
distinguish it from others. One is the treatment of prices and wages. As 
discussed in Section 3.1.1, firms are assumed to have some monopoly power 
in the short run in their price and wage setting behavior, and they are assumed 
to set prices and wages in a profit-maximizing context. The number of 
decision variables of the firm is also larger than usual. In addition to prices 
and wages, the variables include production, investment, and employment. 

The assumptions about technology and costs are also somewhat different. 
The underlying technology of a firm is assumed to be of a “putty-clay” type, 
where at any one time there are a number of different types of machines that 
can be purchased. The machines differ in price, in the number of workers that 
must be used with each machine per unit oftime, and in the amount ofoutput 
that can be produced per machine per unit oftime. The worker-machine ratio 
is assumed to be fixed for each type of machine. With respect to costs, there 
are assumed to be costs involved in changing the size ofthe work force and the 
size ofthe capital stock. Because ofthese costs, it may be optimal for a firm to 
operate some of the time below capacity and “06” its production function. 
This means that some of the time the number ofworker hours paid for may be 
greater than the number of hours that the workers are effectively working. 
Similarly, some of the time the number of machine hours available for use 
may be greater than the number of machine hours actually used. The 
difference between hours paid for by a firm and hours worked will be called 
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“excess labor,” and the difference between the number of machines on hand 
and the number of machines required to produce the output will be called 
“excess capital.” 

The model of firm behavior is somewhat tedious to present, since the 
optimization problem is complicated. In the following discussion, subscriptS 
refers to firm jand subscript i refers to a machine of type i. The number of 
different types of machines is M, and i always runs from 1 through M. All 
coefficients are positive unless indicated othenvise. 

As was the case for the model of household behavior, no special symbols 
have been used to denote expectations. It should be clear in the discussion 
which variables are decision variables and which are expectation variables. 
Again note that because of the certainty equivalence assumption, the maxi- 
mization problem can be analyzed as a deterministic one. 

The Technology 

It will be useful to present the equations representing the technology first. The 
following two equations reflect the putty-clay nature of the technology: 

(3.18) u$=+ [labor reqmred to produce YY/,,] 

(3.19) KHfi,=S. 
PLi 

[machine hours required to produce YYfii] 

YY,, is the amount of output produced on machines of type i in period f. 
Remember that i always runs from I through M There is assumed to be no 
technical progress, so that J., and hi are not functions of time. The machines 
are assumed to wear out completely after m periods, but they are assumed not 
to be subject to physical depreciation before that time. Ai and ,ui are thus not 
functions of the age of the machines. 

The next equation defines the minimum number of machines of type i 
required to produce YYfil: 

(3.20) KMIN =s /II H 
[minimum number of machines required to produce YY,,] 

It is assumed that p, the maximum number of hours that each machine can 
be used each period, is constant across time. The actual number of machines 
of each type on hand in period I is 
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(3.21) Kfi, = KA,_ I + IMj, - IM>,-,,, 
(actual number of machines of type i on hand] 

Machines purchased in a period are assumed to be able to be used in the 
production process in that period. IMP, is the number of machines of type i 
purchased in period t, and IM,+, is the number that wear out at the end of 
period t - I and thus cannot be used in the production process in period t. 
The firm is subject to the restriction 

(3.22) Kfiz 2 KMIN,, , [number of machines of type i on hand must 
be greater than or equal to the minimum number required] 

which says that the actual number of machines of type i on hand must be 
greater than or equal to the minimum number required. 

There is one good in the model, which can be used for either consumption 
or investment. In the following equation the number of machines purchased 
in period t is translated into the equivalent number of goods purchased: 

(3.23) IJ, = $$IM*,. [number of goods purchased for investment] 
i-1 

0, is the number of goods it takes to create one machine of type i. 
The total amount of output is 

(3.24) Y,= gYYfit> 
i-1 

and the stock of inventories is 

[total amount of output] 

(3.25) v,= v,_, + Y,-A?,. [stock of inventories] 

&u&ion (3.25) merely states that the stock of inventories is equal to last 
period’s stock plus production minus sales. X, is the level of sales ofthe firm. 

The next three equations define various adjustment costs facing the firm, 
with the costs taking the form of increased labor requirements: 

(3.26) &;M+,, = Al v/I - P,X,l, [labor required to maintain devia- 
tions of inventories from pi times sales] 

(3.27) L&r+,* = A(%),2 
[labor required to handle fluctuations in sales] 

(3.28) LLJLf3Z 

[labor required ;o handle fluctuations in the capital stock] 
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Equation (3.26) reflects :he assumption that there are costs in having invento- 
ries that are either greater than or less than a certain proportion of sales. 
Equations (3.27) and (3.28) reflect the assumptions that there are costs in 
having sales and the capital stock fluctuate. The minimum amount of labor 
required is 

.W+3 
(3.29) LMl,\> = c, LL& [minimum amount of labor required] 

i-1 

The firm is subject to the restriction that labor paid for must be greater than or 
equal to labor requirements: 

(3.30) L/, 2 LMIi$ [labor paid for must be greater than 
or equal to the minimum required] 

It is also assumed that there are adjustment costs in having the work force 
fluctuate. These costs take the form of increased taxes: 

(3.31) T/; = P&i - &I, 
[taxes due to fluctuations in the work force] 

where Tj is the amount of taxes paid as a result of fluctuations in the work 
force. 

The Financial Variables and Objective Function 

The next set of equations pertains to the financial variables of the firm and to 
the firm’s budget constraint. Depreciation is assumed to be straight line: 

(3.32) DE& = C 1 /ml: Pi-j+ {I/e-j+ ( [depreciation] 
j-1 

The price of investment goods in (3.32) is denoted P’ rather than P. The 
variable P is the price that the firm sets, and the firm is assumed not to buy its 
own goods for investment purposes. The variable P’ is the price that it pays 
for these goods from other firms. 

The value of before-tax profits on an accounting basis is 

(3.33) n~=p,r,- ~~~~-DEP~+R,A,+(P,-PP,-,)V,-,. 
[before-tax profits] 

Ifthe firm is a debtor, the term R,A/ is negative; it represents the interest costs 
of the firm. Negative values of A are liabilities, and so -Ax is the amount of 
borrowing of the firm. The last term in (3.33) is the gain or loss on the stock of 
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inventories due to a price change. The level of taxes paid is 

(3.34) T;,=d,nfi+TT,:, [taxes paid] 

where 4, is the profit tax rate and r,: is the amount of taxes paid because of 
fluctuations in the work force. r,: is determined by (3.31). 

The firm is assumed not to retain any earnings, and thus the level of 
dividends is merely the difference between before-tax profits and taxes: 

(3.35) n/=x3- Tii. [dividends paid] 

The value of cash flow before taxes and dividends is 

(3.36) CF, = PJ~, - Q& - Pis,, + R& 
[cash flow before taxes and dividends] 

and the value of cash flow after taxes and dividends is 

(3.37) S, = CF, - Tj - Dl, 
= CF, - zfl 
= P,&XJ - Y,) - P,:I, + DEPfl - (P> - I’_,)b>_, 
= -PilV’ f P/l_,V,_, - P,;i, f DEPII. 

[savings: cash flow after taxes and dividends] 

Cash flow after taxes and dividends is the savings of the firm. Since all 
after-tax profits are paid out in dividends, cash flow after taxes and dividends 
is merely cash flow minus profits, which is depreciation minus investment 
minus the change in the value of inventories. The budget constraint is 

(3.38) O=S,-AAl--_I+$ [budget constraint] 

MJ is the level of money holdings of the firm. The budget constraint says that 
any nonzero value of savings must result in a change in Alor M, The demand 
for money by the firm is simply assumed to be proportional to the value of 
sales: 

(3.39) .% = YQrx,,’ 

Equations (3.18)-(3.39) hold for each period ofthe horizon (1= 1, , 
T). The objective of the firm is to maximize the present discounted value of 
after-tax cash flow, where the discount rates are the after-tax interest rates: 

T 

(3.40) 
CF, - qi 

“““‘=,z [I +R,(l -C&J” 
[objective function] 
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R,( I - &) is the after-tax interest rate for period t. The firm is assumed to be 
subject to the following two terminal conditions: 

(3.41) +=v, [terminal condition for the stock of inventories] 

M 
(3.42) x K&z E. [terminal condition for the capital stock] 

i--l 

The first condition states that the stock of inventories at the end of the 
decision horizon is equal to a given number 7, and the second condition 
states that the number of machines held at the end of the horizon is greater 
than or equal to a given number K. These conditions were imposed to avoid 
quirks that would otherwise occur in the optimal paths near the end of the 
horizon. 

The decision problem ofthe firm is to choose paths ofthe decision variables 
to maximize (3.40), subject to the two terminal conditions and a number of 
initial conditions. The main decision variables are the firm’s price, Pfi, its 
wage rate. W,, the number ofeach type of machine to buy, IMJ,, production, 
YJ, and the amount of labor to employ, L, (t = 1, 2, , T). The main 
exogenous variables are the interest rate, R,, the tax rate, d,,, and the price of 
investment goods, P/: (t = I, 2, , T). The decision problem also requires 
that a number of expectations be formed, and these will now be discussed. 

Determination ofExpectations 

The main expectations of a firm are those regarding other firms’ prices and 
wages. For simplicity it will be assumed that there are just two firms, firm/ 
and firm k. All expectations are firmfs. All values for the period prior to the 
first period of the decision horizon are known. Values for all other periods are 
either decision values or expectations. 

The first equation pertains to firmf’s expectation of firm k’s price-setting 
behavior: 

(3.43) +&=(+J@+),, /%<O. 

[expected price of firm k] 

The first term in parentheses on the RHS of this equation reflects the 
assumption that firm fexpects its price-setting behavior in period t - 1 to 
have an effect on firm k’s price-setting behavior in period t. The second term 
represents the effect of market conditions on firmf’s expectation of firm k’s 
price. lffirm !&stock ofinventoriesat theendofperiod t - I, Vk,-, , isgreater 
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than a certain proportion of sales, ,(I,&_, , firmSis assumed to expect that 
firm k will respond to this by lowering its price in period I in an effort to 
increase sales and draw down inventories. 

The second term in (3.43) is assumed to pertain only to the first period of 
the horizon: (3.43) for periods t + I and beyond includes just the first term: 

86 
(3.43)’ *= ~ ) 

( > pk+j-l 
j=l , ) T. 

!u+, I 
[expected price of firm k for period 1 +J] 

Equation (3.43)’ means that firmSexpects that firm k is always adjusting its 
price toward fum/‘s price. If firmf’s price is constant over time, then firmf 
expects that firm k’s price will gradually approach this value. Firm f’s 
expectation of the average price level is assumed to be the geometric average 
of its price and its expectation of firm k’s price: 

(3.44) P, = ( P#P!2. [expected average price] 

The next equation determines firmf’s expectation ofthe aggregate demand 
for goods, X4,. This expectation is a function of the expected average price 
level: 

Pa co. 

[expected aggregate demand for goods] 

Firmf’s expectation of its market share of goods is 

(3.46) 89 < 0. 

[expected market share of goods] 

This equation reflects the assumption that a firm expects that its market share 
is a function of its price relative to the prices of other firms. The equation 
states that tirmf’s expected market share is equal to last periods share times a 
function of the ratio of its price to firm k’s price. 

This completes the equations regarding prices and demand. The next live 
equations pertain to wages and labor supply. The first determines firm /‘s 
expectation of firm k’s wage rate: 

(3.47) e= 2 B’a. 
( > 

[expected wage rate of firm k] 

This equation is similar to (3.43) for prices, but without the second term in 
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(3.43). Firmfs expectation of the average wage rate is 

(3.48) wz = ( I+$ W& [expected average wage rate] 

This equation is similar to (3.44) for prices. 
Firmf’s expectation of the aggregate unconstrained supply of labor is 

(3.49) 

L4UN, is the amount of labor that firmfexpects will be supplied to the firm 
sector if the labor constraint is not binding on households. Equation (3.49) 
states that firmSexpects that this amount is a positive function ofthe average 
wage rate and a negative function ofthe average price level. The next equation 
reflects the assumption that firmfexpects households to be unconstrained in 
their labor supply decisions: 

(3.50) LA, = LA L’h: , [expected aggregate constrained supply of labor] 

where LA, denotes the actual amount of labor that firm fexpects will be 
supplied. This assumption is discussed below. The final equation regarding 
wages and labor supply determines firmf’s expectation of its market share of 
labor: 

[expected market share of labor] 

This equation is similar to (3.46) for goods. Finnfexpects that its share is a 
function of its wage rate relative to firm k’s wage rate. 

This completes the expectational equations regarding prices, wages, de- 
mand, and labor supply. One last point in this regard concerns the firm’s 
response to the possibility that it underestimates the supply of labor available 
to it at the wage rate that it sets. A firm is assumed to prepare for this 
possibility by announcing to households not only the wage rate that it will 
pay, but also the maximum amount of labor that it will employ, denoted 
LMAX’. This maximum is assumed to be set equal to the amount of labor 
that the firm expects to pay for, Lj: 

(3.52) LMAX’ = LJ. [maximum amount of labor to employ] 

.L,i is determined by (3.5 1). By setting LMAX, equal to &, the firm is assured 
that it will never have to hire more labor than it expects to hire. This 
treatment is one exception to the general practice discussed in Section 3.1. I of 
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ignoring the effects of uncertainty on decisions. Note the similarity between 
(3.52) and (3.50). According to (3.52) the firm does not expect to turn any 
workers away, and according to (3.50) it does not expect any workers to be 
turned away in the aggregate. 

Note that (3.49) implicitly assumes that firmfobserves the lagged aggregate 
unconstrained supply of labor. If the labor constraint is binding on house- 
holds, firms will be turning away workers, which should give tirms some idea 
of the unconstrained supply. Firms are not, however, assumed to observe the 
lagged aggregate unconstrained demand for goods. If the labor constraint is 
binding on households, they will demand fewer goods than otherwise, and so 
the aggregate unconstrained demand for goods will be greater than the 
aggregate constrained demand. In this case there is no mechanism compara- 
ble to turning workers away for firms to observe the unconstrained demand, 
and thus it has been assumed that they do not observe it. In other words, firms 
have no way of knowing, say, how much (if any) of a drop in demand occurs 
because households are constrained in their labor supply. This assumption 
means that (3.45) is in terms of the actual (perhaps constrained) aggregate 
demand, not the unconstrained aggregate demand. 

Characteristics of lhe Maximization Problem 

The maximization problem of the firm is fairly complicated, and it may help 
to outline its main features. A key decision variable is the firm’s price. The 
firm expects that it will gain customers by lowering its price relative to the 
expected prices of other firms. The main expected costs from doing this, in 
addition to the lower price it is charging per good, are the adjustment costs 
(3.26), (3.27). (X28), and (3.31) involved in increasing sales, investment, and 
employment. The firm also expects that other firms will follow it if it lowers its 
price, so it does not expect to be able to capture an ever-increasing share ofthe 
market without further and further price reductions. 

The firm expects that it will lose customers by raising its price relative to the 
expected prices of other firms. The main costs from doing this, aside from the 
lost customers, are the adjustment costs. On the plus side, the firm expects 
that other firms will follow it ifit raises its price, so it does not expect to lose an 
ever-increasing share of the market without further and further price in- 
creases. 

The firm expects that it will gain workers if it raises its wage rate relative to 
the expected wage rates ofother firms and lose workers ifit lowers its wage rate 
relative to the expected wage rates of other firms. The firm also expects that 
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other firms will follow it if it raises (lowers) its wage rate, so it does not expect 
to capture (lose) an ever-increasing share of the market without further and 
further wage rate increases (decreases). 

Because of the various adjustment costs, the firm, if it chooses to lower 
production, may choose in the current period not to lower its employment 
and capital stock to the minimum levels required. In other words, it may be 
optimal for the firm to hold either excess labor or excess capital or both during 
certain periods. 

It may help in understanding the maximization problem to consider the 
algorithm that was used to solve it. The algorithm first searched over different 
price paths. For a given price path, the expected sales path can be computed 
using (3.43), (3.44), (3.45) and (3.46). For a given expected sales path, 
different output paths were tried. Two extreme output paths were tried: one in 
which the level of output remains as close as possible to the level of sales each 
period, and one in which the level ofoutput remains as close as possible to the 
level ofthe previous period. In other words, for the first path output Iluctuates 
roughly as sales do, and for the second path output fluctuates very little. The 
paths must satisfy the terminal condition (3.4 1) for inventories, and for each 
path production was adjusted to have this condition met. There is also a 
constraint that the stock of inventories cannot be negative in any period, and 
production was also adjusted if necessary to have this constraint met. The 
other output paths that were tried were weighted averages ofthe two extreme 
paths. 

At the beginning of the first period there are a certain number of machines 
of each type on hand. If it is assumed, say, that only machines of type 1 are 
purchased, it is possible to compute for a given output path the number of 
machines that must be purchased to produce the output each period. This is 
done by first calculating the amount of output that can be produced with the 
current number of machines of all types on hand and then calculating the 
number of machines of type 1 required to produce the remaining output. 
These calculations are done using (3.19), (3.20), and (3.21). For a given 
output path, each of the M types of machines was tried, which means that it 
was tirst assumed that only type 1 machines are purchased, then only type 2 
machines, and so on through type M machines. 

For a given output path and a given type of machine, different investment 
paths were tried. Again, two extreme paths were tried: one in which the 
number of machines purchased equals the number required to produce the 
output and meet the terminal condition (3.42), and one in which the number 
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of machines purchased remains as close as possible to the amount required to 
keep the number of machines unchanged from the previous period. The first 
path is one in which the capital stock fluctuates as much as the amount 
required, and the second path is one in which the capital stock fluctuates very 
little. The second path is subject to the constraint (3.22) that the number of 
machines must be sufficient to produce the output each period and to the 
terminal condition (3.42), and investment was adjusted if necessary to meet 
these conditions. Other paths were tried as weighted averages of the two 
extreme paths. 

For each investment path different employment paths were tried. Given all 
the paths just mentioned, including the paths of the amount of output 
produced on each type of machine, it is possible to compute the amount of 
labor required to produce the total output. This is done using (3.18) and 
(3.26)-(3.29). Two extreme employment paths were tried: one in which the 
amount oflabor equals the amount required, and one in which the amount of 
labor remains as close as possible to the amount of the previous period. The 
first path is one in which the amount of labor fluctuates as much as the 
amount required to produce the output, and the second path is one in which 
the amount of labor fluctuates very little. The second path is subject to the 
constraint (3.30) that the amount of labor must be sufficient to produce the 
output, and the amount of labor was adjusted if necessary to meet this. Other 
paths were tried as weighted averages of the two extreme paths. 

Given the price path and the employment path, it is possible from (3.43)- 
(3.44) and (3.47)-(3.5 1) to compute the wage path that is necessary to have 
the employment path met. In other words, it is possible to compute the wage 
path that the firm expects is necessary to attract the amount of labor that it 
wants. 

Given all these paths, it is possible to compute the objective function ofthe 
firm. This is done using (3.31)-(3.40). Since the algorithm consists of many 
layers of searching, the objective function is computed many times in the 
process of searching for the optimum. If, say, 5 output paths are tried for each 
sales path, if there are 3 types of machines, if 5 investment paths are tried for 
each output path and type of machine, and if 5 employment paths are tried 
for each investment path, then 375 objective function values (5 X 3 X 5 X 5) 
are computed in the process of tinding the optimum for the given sates path. 
If, say, 25 price paths (and thus 25 sales paths) are tried, the total number of 
objective function evaluations is 9,375 (25 X 375). Searching for the opti- 
mum price path was done by changing a price for a given period or a set of 
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prices for a number of periods until the objective function stopped increasing 
and then trying another price or set of prices. The base price path that was 
used was the one in which the firm expects its market share of goods to remain 
unchanged. In other words, the base price path is one in which the firm is not 
trying to increase or decrease its market share. 

Simulation Results 

The length of the decision horizon, r, was taken to be 3 for the simulation 
results. The number of different types of machines. A4, was taken to be 3, and 
the length of life of a machine, m, was taken to be 2. 

The following values of the initial conditions were used. 

Initial Conditions 
(t= 1) 

.4J_, = - 100.0 I+, = 25.0 
IJ-1= 27.0 P,l_I = 1.0 

I,w+I = 0.0 Pi-, = 1.0 
IM/,,-z = 0.0 P$,-, = 1.0 
IM/z--I = 27.0 P,_] = 1.0 
11w~,-2 = 21.0 VP-, = 50.0 
lM,,,_ , = 0.0 If,_, = 50.0 
z?v&2 = 0.0 w,_,= 1.0 

&l-l = 0.0 w,_, = 1.0 
&r--r = 54.0 w- = 1.0 I I 
&3,-, = 0.0 X,_, = 263.0 

L/-I = 185.0 X,_, = 263.0 
LA,_, = 370.0 XA,_ , = 526.0 

LAux,_, = 370.0 

Note that all machines on hand were assumed to be type 2 machines. 
With respect to the exogenous variables, the interest rate for period I 1 R, , 

was taken to be .07, and the tax rate for period I, 4, , was taken to be S. The 
firm was assumed to know these values at the beginning of period 1 and to 
expect them to remain unchanged for periods 2 and 3. The firm was assumed 
to expect the price ofinvestment goods for periods 1,2, and 3 to be unchanged 
from its initial value given above of I .O (that is, P/; = I .O, t = 1, 2, 3). 

The two terminal-condition values were taken to be x= 54.0 and 
v= 50.0. The following parameter values were used. 



A Theoretical Model 63 

Parameter Values 

Ir= 1.0 yz = 25.0/263.0 = .095057 
p, = 50.0/263.0 = .190114 &=263.0/185.0=1.421622 
pz= .08 A, = 1.006& = 1.422475 
p,= .08 As = A.Jl.006 =1.413143 
p4 = .04 ,uz = 263.0/54.0 = 4.870370 
/Is = .04 PI =p2 
PC= .5 .& = &2 
a= -.03 0, =1.0315 
fl* = - 1 .o 0, =l.O 
,l$ = -5.0 e, = .97 

810 = .5 
pi1 = 1.0 
/& = - 1.0 
&,= 5.0 

Note that all three types ofmachines have the same~ivalue. Type 1 machines 
are the most efficient with respect to labor requirements (that is, A, is the 
largest) and cost the most (that is, 0, is the largest). Type 3 machines are the 
least efficient with respect to labor requirements and cost the least. 

The algorithm discussed in the previous section was used to solve the 
maximization problem. In the search for the optimal price path, the smallest 
change in a price that was allowed was ,001. For each price path, five output 
paths were tried (the two extreme paths and three weighted averages). For 
each output path and each type of machine, five investment paths were tried 
(the two extreme paths and three weighted averages). For each investment 
path, five employment paths were tried (the two extreme paths and three 
weighted averages). The weights were .5, .5; .I ~ .9; and .9, .l. It is clear that it 
would be necessary to try more paths in order to obtain the exact optimum, 
but for present purposes it is unlikely to matter that the exact optimum was 
not reached. Enough searching was done to make it likely that the computed 
optimum is close to the exact optimum, and for qualitative purposes this 
should be sufficient. 

Each solution of the maximization problem took about 38 seconds on the 
IBM 4341 at Yale. Neither the DFPalgorithm northe procedure ofobtaining 
first-order conditions analytically and solving them using Gauss-Seidel was 
tried, since the problem is really too complex for these methods. The problem 
has an inequality constraint, (3.42), which the methods cannot handle di- 
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rectly, but even if adjustments could be made for this, the problem is still too 
involved. It is not obvious that the DFP algorithm could have found the 
optimum given that it takes no advantage ofthe structure ofthe problem, and 
it seemed too risky to try. With respect to the other method, considerable 
work would have been required to obtain the first-order conditions, and this 
did not seem worth the effort. 

The solution using the initial conditions and parameters just given was one 
in which the value of each decision variable was the same in all three periods. 
The values for selected variables are presented in the first column of Table 
3-3. The ratio L,JLMIN$ in row 20 is a measure of the amount of excess labor 
held, where a value of 1 .O means no excess labor held. Likewise, the ratios 
K,~JKM&,, i = 1,2,3, in rows 21-23 are measures of the amount ofexcess 
capital held. 

The simulation experiments consisted of changing initial conditions or 
exogenous variable values or parameter values, solving the maximization 
problem again, and observing the changes in the solution values from those 
for the base run. Results for nine experiments are presented in Table 3-3. The 
following paragraphs provide a discussion of these results. 

Experiment I: Increase in Pko, the initial value ofjim k’s price. From 
(3.43), Pko has a positive effect on firm j’s expectation of firm k’s price for 
period 1 and beyond (row 2). Firmfresponded to the increase in Pko by raising 
its own price (row 1). Had it raised its price by the same amount that it 
expected firm k’s price to be raised, its expected market share would have 
remained constant (Eq. 3.46). In fact, its expected market share increased in 
all three periods (row 4). Although this is not shown in the table, firmfraised 
its price less in period 1 and slightly more in periods 2 and 3, the net result 
being an increase in market share for all three periods. 

The expected aggregate demand for goods decreased because of the in- 
crease in prices (row 3; Eq. 3.45). Since Iirmfs expected market share rose 
and the expected aggregate demand for goods fell, fnm fs expected sales 
could go either way. In fact, expected sales rose in period 1 and fell in periods 2 
and 3 (row 5). Although this is not shown in the table, the sum ofsales over the 
three periods rose. Production was smoothed relative to sales and was higher 
in all three periods (row 6). The stock of inventories was lower in periods I 
and 2 and equal to the terminal condition of 50.0 in period 3 (row 7). 

The lirm retained its investment in type 2 machines (rows 8- 13). Invest- 
ment was higher in periods 1 and 3 to meet the increased production (rows 12 
and 14). Employment was also higher (row 15). Firmfs wage was higher to 
attract the extra employment (row 16). This in turn led IirmJto expect that 
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firm k’s wage would be higher in periods 2 and 3 (row 17; Eq. 3.47). The 
expected aggregate supply of labor was lower because (although not shown) 
prices rose more than wages (row 18; Eqs. 3.49 and 3.50). Firmf’s expected 
market share of labor rose because it had to attract the extra employment 
(row 19). 

The firm planned to hold no excess labor or excess capital (rows 20-23). 
Profits and cash flow were higher because of the expansion and the higher 
prices relative to wages (rows 25 and 28). The level of savings was lower (row 
30), primarily due to the fact that the increase in prices led to an increase in 
the value of inventories, which increases profits but not cash flow (Eqs. 3.33 
and 3.36). Since the level of savings equals cash flow minus profits, it falls, 
other things being equal, when prices rise (Eq. 3.37). Money holdings rose 
because prices and~sales rose (row 32; Eq. 3.39). The level ofborrowing, which 
is -&, rose because savings fell and money holdings rose (row 3 1; Eq. 3.38). 

Although this is not shown in Table 3-3, roughly the opposite happened 
when PxO was decreased rather than increased. Firmfdid not lower its price as 
much as it expected firm k to do, and therefore it lost some market share. Its 
level of sales was lower in all three periods, as was its production. Investment 
and employment were lower; the wage rate was lower; profits and cash flow 
fell. The results were not exactly opposite in sign because the level of sales of 
hrmfwas lower in all three periods, whereas in Table 3-3 it is higher only in 
period 1. Moreover, the level of inventories, which is lower in periods 1 and 2 
in Table 3-3, was also lower when Pm was decreased. In both experiments firm 
fchose to produce less than it sold in period 1. 

Experiment 2: Increase in W,,, the initial value offirm k’s wage. From 
(3.47), W,, has a positive effect on firmfs expectation of firm k’s wage in 
period 1 and beyond. The increase in W,, thus led fumfto expect firm k’s 
wage to be higher (row 17). Firmfresponded to this by raising its wage (row 
16). Although this is not shown in the table, firmfraised its wage less than it 
expected firm k to do. Its expected market share thus fell (row 19; Eq. 3.51). 
The expected aggregate supply was higher because of the higher wage rates 
(row 18; Eqs. 3.49 and 3.50). Profits and cash flow were lower because of the 
higher labor costs. The increase in W,, had no effect on firmfs price, output, 
and investment decisions. 

Although this is not shown in Table 3-3, the opposite signs were obtained 
when W,, was decreased rather than increased. 

Experiment 3: Increase in the &is: the labor efficiency parameters. An 
increase in the &‘s means that labor is now more efficient. With no other 
changes, this means that the firm is now holding excess labor. It responded to 
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this by lowering employment (row 15); its wage rate was lower because it 
needed to attract less labor (row 16). The firm chose to hold no excess labor 
(row ZO), which means that all excess labor was eliminated in period 1. Profits 
and cash flow were higher because of the lower labor costs. 

Experiment 4: Increase in the pi’s, the capital eficiency parameters. An 
increase in the fits means that the machines are now more efficient, which 
with no other changes means that the firm is holding excess capital. It 
responded to this by lowering investment enough in period 1 to eliminate all 
excess capital (rows 14 and 2 1). Although excess capital was not held in period 
I, it was held in period 3 (row 21). The amount ofcapital held in period 3 was 
the amount required by the terminal condition (3.42), which was more than 
the amount required to produce the output. (The terminal condition was not 
changed for this experiment.) 

Experiment 5: Interest rate increase to 20. In this case the firm switched to 
the cheaper, more labor-intensive type 3 machines (rows 8 - 13). It also raised 
its price in periods 2 and 3 and contracted. Investment was lower in all three 
periods (row 14). Employment was lower in period 1, but it was higher in 
periods 2 and 3 because of the increased labor requirements on the type 3 
machines. The increase in the interest rate thus led to higher prices and lower 
investment and output. 

Experiment 6: Interest rate increase to .15. In this case the interest rate 
increase was not large enough to lead the firm to switch to the type 3 
machines. It was still optimal, however, for the firm to raise its prices in 
periods 2 and 3 and contract. Note that sales are unchanged in period 1, but 
that production is lower (rows 5 and 6), which means that the stock of 
inventories is lower (row 7). Since the interest rate contributes to the opportu- 
nity cost of holding inventories, an increase in the interest rate may lead the 
firm to hold fewer inventories, which is what happened here. The stock of 
inventories was unchanged in period 3 because of the terminal condition. 
Since the initial stock of inventories and the terminal condition are the same, 
any optimal plan ofthe firm must have thesum ofproduction across the three 
periods equal the sum of sales. The way in which the firm can bring this about 
and still have the stock ofinventories be less in periods 1 and 2 is to sell more 
in period 1 than in periods 2 and 3 and yet produce the same amount in all 
three periods. This is what the firm did in this experiment. 

Although this is not shown in Table 3-3, the firm responded to an interest 
rate decrease (to .04) by switching to the type 1 machines and increasing 
investment. It did not, however, change its price and production plans, so 
there was no planned change in inventories. Employment was lower even 
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though production was unchanged because of the use of the less labor-inten- 
sive machines. 

Experiment 7: Tax rate increase. The increase in the profit tax rate led the 
firm to switch to the cheaper type 3 machines. Investment was lower because 
of this. Prices and production were unchanged. The main reason for the 
switch to the cheaper type 3 machines is the following. The objective of the 
firm is to maximize the present discounted value of after-tax cash flow. Two 
of the terms in the expression for after-tax cash flow are -YJIJ + d,,DEP,i, 
which means that investment lowers after-tax cash flow but depreciation 
raises it. The higher the tax rate d,, , the more advantageous it is for the firm to 
have investment be low relative to depreciation. One way in which this can be 
done is to switch to the cheaper type 3 machines. This change lowers 
investment but does not require a lowering of production as long as more 
labor is hired. Depreciation does not fall as much as investment because it is a 
function ofinvestment lagged one period as well as of current investment (Eq. 
3.32). Although depreciation is lower in Table 3-3 (row 24), it is not as low as 
investment in period 1. (Note that from row 15 employment is higher, and 
that from row 16 the wage is higher, in order to attract the extra labor.) This 
negative effect of the tax rate on investment would, of course, not exist if 
investment expenditures could be written off completely in the current 
period. The effect is simply due to the firm’s taking advantage of the effect of 
past investment expenditures on current depreciation. 

Although this is not shown in Table 3-3, a decrease in the tax rate led the 
firm to switch to the type 1 machines, raise investment, and lower employ- 
ment. The results were exactly opposite in sign to those for the increase in the 
tax rate, 

Experiment 8: Unexpected decrease in sales. This experiment requires 
somewhat more explanation than the others. As will be discussed in Section 
3. IS, a firm solves its maximization problem at the beginning of the period 
before any transactions have taken place. Once transactions have taken place, 
many of the variables will be different from what the firm expected them to 
be. For experiment 8 the firm was first assumed to solve its maximization 
problem with no changes in any variables, so the decision values were those 
for the base run. The level of sales was then decreased. The effects of this 
change on the variables for the current period are presented in column 0 in 
Table 3-3 under experiment 8. The sales decrease took the form ofa drop in 
aggregate demand (XA,j, and thus there is a negative sign in row 3. The firm’s 
market share was assumed to remain unchanged, so its sales dropped (row 5). 
Because a change in sales increases labor requirements (Eq. 3.27) and because 
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the firm was not planning to hold any excess labor, production had to be cut 
slightly from its planned level in order to meet the employment constraint 
(3.30). This is the reason for the minus sign in row 6. Production was cut less 
than sales fell, and therefore inventories rose (row 7). Because of the lower 
level of production, the firm ended up with slightly more capital than it 
needed to produce the output (row 22). In other words, meeting the labor 
constraint resulted in some excess capital being held. Profits and cash flow 
were lower because ofthe drop in production and sales. The drop in aggregate 
demand was also assumed to affect firm k, the other firm in the model. Firm k 
is assumed to be identical to firm5 and so the results are the same for firm k. 

Any variable in column 0 that is not changed is a decision variable or an 
expectation variable that is not affected by the transactions ofthe period. The 
important decision variables for which this is true are the firm’s price, 
investment, employment, and wage rate. Given the new set of initial condi- 
tions, the firm’s maximization problem was solved again, where the horizon 
was still assumed to be three periods. The results are in columns 1,2, and 3 in 
the table under experiment 8. 

The firm responded to the sales decrease by lowering its price, production. 
investment, employment, and wage rate. Firmfexpected firm k to lower its 
price because it knew that firm k’s stock of inventories exceeded/$X,, Firmf 
lowered its price by the same amount that it expected firm k to, thus leaving its 
market share unchanged (row 4). The lower prices have a positive effect on 
expected aggregate demand, but the lower initial level of aggregate demand 
has a negative effect (Eq. 3.45). The net effect was negative (row 3). Given the 
unchanged market share, the level of sales of firm f was lower (row 5). This 
then led to lower production, investment, employment, and the like. 

Cash flow after taxes was larger for two of the three periods (row 29), and 
the objective function was larger (row 33). This is, however, somewhat 
misleading in that the firm is not better off because of the sales decrease. The 
firm suffered a loss of cash flow after taxes in period 0, and the objective 
function sign in row 33 pertains only to periods 1,2, and 3. The firm started 
off at the beginning of period 1 with a higher level of inventories than was the 
case for the base run, and it gained cash flow by selling these off over the 
periods to reach the terminal condition of 50.0. 

Experimenr 9: Unexpected increaw in s&s. For this experiment sales were 
increased rather than decreased. The results are roughly the opposite to those 
for the sales decrease, but there is one important exception: production in 
period 0 was lower in both cases. This occurred because of the increased labor 
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requirements due to the change in sales, which in both cases required cutting 
production in period 0. 

Summary of Firm Behavior 

The results ofthese experiments give a fairly good idea ofthe properties ofthe 
model of firm behavior. Some of the main effects are the following. 

1. A change in the expected price (wage) of firm k leads firm fto change its 
own price (wage) in the same direction. 

2. Excess labor on hand leads to a fall in employment, and excess capital on 
hand leads to a faI1 in investment. 

3. An increase (decrease) in the interest rate leads to a substitution away from 
(toward) less labor-intensive machines and a decrease (increase) in invest- 
ment expenditures. Changes in the interest rate also affect the opportunity 
cost of holding inventories, and thus the interest rate may affect the price 
and production decisions through this channel. 

4. The firm responds to a decrease in aggregate demand by lowering its price 
and contracting. It responds to an increase in aggregate demand by raising 
its price and expanding. 

It should be stressed that the results in Table 3-3 are for a particular set of 
parameter values. At least slightly different qualitative results are likely to be 
obtained for different sets. It seems unlikely, however, that the general 
properties ofthe model would be much affected by changes in the parameters. 
For the purpose ofusing the model to guide the specification ofthe economet- 
ric model, the results seem sufficient. 

One point to note about the results is that for none of the experiments did 
the firm plan to hold excess labor. Similarly, the firm never planned to hold 
excess capital except in the last period. There are at least two reasons for this. 
One is that the cost-of-adjustment parameters regarding labor and capital. ps 
and &, are fairly small; the second is that it is relatively easy for the firm to 
smooth production, and with a smooth production path the employment and 
investment paths can be fairly smooth without deviating from the required 
amounts. Production can be smoothed not merely by using inventories as a 
buffer, but also by smoothing the expected sales path through changes in 
prices. In order for the results to show excess labor and excess capital being 
routinely held, the costs ofsmoothing production would have to rise relative 
to the costs of adjusting labor and capital. Again, however, for present 
purposes the results given above seem adequate. 
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3.1.4 Bank and Government Behavior 

Bank Equations 

Banks play a passive role in the model in the sense that no maximization 
problem is specified for them. Each bank, say bank 6, receives money from 
households and firms in the form of demand deposits. Let -Mb, denote the 
amount of demand deposits held in bank b, where M,,, is negative because 
demand deposits are a liability of a bank. Banks must hold a proportion g,, of 
their demand deposits in the form of bank reserves: 

(3.53) BR,, = -w%,r [bank reserves] 

where BR,, is the level of bank reserves and g,, is the reserve requirement rate. 
Bank borrowing from the monetary authority, BO, , is assumed to be a 

function of the difference between the discount rate, RD,, and the interest 
rate, R,: 

(3.54) 2 = y.,(RQ - R,), Y4 < 0. [bank borrowing] 

No interest is assumed to be paid on demand deposits, and thus the level of 
before-tax profits ofa bank is the difference between the interest revenue from 
its loans and the interest costs of its borrowing from the monetary authority: 

(3.55) xbr = R,A,, - RD,BO,, [before-tax profits] 

where A, is the amount of loans of the bank. The amount of taxes is 

(3.56) Tbi = dzn, > [taxes paid] 

where Tb, is the amount of taxes and 4, is the profit tax rate. A bank is 
assumed to pay all of its after-tax profits in dividends: 

(3.57) D, = nb, - T,,i > [dividends paid] 

where Db, is the amount of dividends paid. 
A bank’s after-tax cash flow is merely its after-tax profits. Because it pays all 

of its after-tax profits in dividends, its level of savings is always zero, which 
means that a savings variable for a bank does not have to be specified. The 
bank’s budget constraint is 

(3.58) 0 = AA,, + Ah& + ABR, - ABO,, 

or 

(3.58)’ 0 = A,, + Mbi + BR,, - BO, [budget constraint] 
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Government Equations 

The government is defined here to be both the fiscal authority and the 
monetary authority. It collects taxes from households, firms, and banks, and 
it earns interest revenue on its loans to banks. If the government is a net 
debtor, which is assumed here, it pays interest on its borrowings. The other 
costs are wage costs and costs of goods purchased. The level of savings of the 
government, S,, is 

(3.59) S, = &Tht + IZfTfi f XbTbl f RD,&BO,, + R,A,, 
- W& - P&, [savings] 

The respective summations are over all the households, all the firms, and all 
the banks. A, is the value of net assets of the government (not counting 
Eb BO,), and it is negative if the government is a net debtor. The term R,A, is 
thus negative. LRI is the amount of labor employed by the government, and 
W, is the wage rate paid by the government. C, is the amount of goods 
purchased, and Ps is the price paid per good. 

The budget constraint of the government is 

(3.60) 0 = S, + E,, ABR, - & ABO,, - AA,. [budget constraint] 

This equation states that any nonzero level of savings of the government must 
result in a change in nonborrowed reserves (that is, high-powered money) or 
government borrowing, -A,. For convenience, -A, will be referred to as 
“the amount of government securities outstanding,” even though there is no 
distinction in the model between government securities and any other type of 
securities. 

Government behavior with respect to the tax-rate and expenditure vari- 
ables is taken to be exogenous. In other words, fiscal policy is exogenous. The 
exogenous fiscal policy variables are d,,, d,,, TR,, Lg,, and C,. 

The three monetary policy variables are g,,, RD,, and A,. If all three of 
these variables are taken to be exogenous, the interest rate is implicitly 
determined in the model. Its value must be such as to have (3.60) satisfied, 
and in this loose sense it can be matched to (3.60). An alternative treatment is 
to assume that the government follows some reaction function with respect to 
its monetary policy. The reaction function that was assumed here is an 
interest rate reaction function: 

(3.61) &=I( ), [interest rate reaction function] 

where the arguments of the function are variables that affect the interest rate 
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decision. Another possible reaction function is one in which the money 
supply, Mbz, is on the LHS. and another is one in which the variable 
nonborrowed reserves, C,BR, - S,BObt, is on the LHS. If a reaction func- 
tion is postulated, one of the three monetary policy variables must be taken to 
be endogenous, where the most likely candidate is A,. If A, is taken to be 
endogenous, this means that open-market operations are used to meet the 
target LHS variable each period. 

3.1.5 The Complete Model 

There are two main questions to consider when putting together a model like 
the present one. One is how the agents are to be aggregated, and the other is 
the order in which the transactions take place. Aggregation will be discussed 
first. 

One way in which the model could be put together would be to specify a 
number of different households, firms, and banks; have each one make its 
decisions; and then have them trade with each other. In order to do this one 
would have to specify mechanisms for deciding who trades with whom, and 
one would have to keep track of each individual trade. Questions of search 
behavior invariably arise in this context, as do distributional questions. 

The other way is to ignore search and distributional issues. Even here, 
however, there are at least two ways in which these issues can be ignored: one 
is to postulate only one firm and treat it as a monopolist; the other is to 
postulate more than one firm but treat all firms as identical. This latter 
approach is the one that was taken. The advantage of postulating more than 
one firm is that models can be specified in which the behavior ofan individual 
firm is influenced by its expectations of the behavior of other firms. Models 
like this, in which market share considerations can play a role, seem more 
reasonable in macroeconomics than do models of pure monopoly behavior. 

An apparent disadvantage of postulating more than one firm and yet 
treating all firms as identical is that whenever a firm expects other firms to 
behave differently from the way it plans to behave, the firm is always wrong. 
Although firms always behave in the same way, they almost always expect 
that they will not. Firms never learn, in other words, that they are identical. 
Fortunately, this disadvantage is more apparent than real. If one is ignoring 
search and distributional questions anyway, there is no real difference (as far 
as ignoring the questions is concerned) whether one postulates one firm or 
many identical firms. Both postulates are of the same order ofapproximation, 
namely the complete ignoring of search and distributional questions, and if 



A Theoretical Model 75 

one feels that a richer model can be specified by postulating more than one 
firm, one might as well do so. The added richness will be gained without losing 
any more regarding search and distributional issues than is already lost in the 
monopoly model. 

The aggregation that was used here consists of one household, two identical 
firms, and one bank. The household will be denoted h, the firmsfand k, and 
the bank b. With respect to the order oftransactions, information flows in one 
direction in the model: from the government, to the firms, to the household. 
Decisions are made at the beginning of the period before any transactions 
take place, and transactions occur throughout the rest of the period. A brief 
outline of the information flows will be given. and then the complete model 
will be set up. Note that the order of transactions is important in a model like 
the present one in which there can he disequilibrium. If transactions take 
place at nonmarket clearing prices, it is necessary to postulate who goes 
unsatisfied. In an equilibrium model in which no transactions take place until 
the market clearing prices are determined, the order of transactions does not 
matter. 

A Brief Outline 

Let I be the period under consideration. Before transactions take place, the 
following events occur. (1) The government determines the fiscal and mone- 
tary policy variables for period t. This includes the determination of the 
interest rate, which means that whatever variables are in the interest rate 
reaction function (3.61) are assumed to be known by the government at the 
beginning ofperiod t. (2) Each firm receives information on the profit tax rate 
and the interest rate for period I from the government, forms expectations of 
these two variables for all relevant future periods, andsolves its maximization 
problem. Determined by this solution are, among otherthings, its price, wage 
rate, and the maximum amount of labor to employ. (3) The household 
receives information for period t on the tax rate, the level of transfer pay- 
ments, the interest rate, the wage rate, the price ofgoods, and the maximum 
amount that it will be able to work. It forms expectations ofthese variables for 
all relevant future periods and then solves its maximization problem. Deter- 
mined by this solution are, among other things, its labor supply and con- 
sumption. (4) After the household makes its decision, transactions take place. 

Note that the model is recursive in the sense that information flows in only 
one direction. The firms are not given an opportunity to change their 
decisions for the current period after the household has made its decisions; the 
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iirms only find out the decisions of the household after transactions have 
taken place. Note also that because the household makes its decisions after 
receiving information on the labor constraint, the system is guaranteed that 
the amount of labor supplied will not exceed the maximum allowed. 

If the model is to be solved for more than one period, the whole procedure is 
repeated for period 1 + I after the transactions have taken place for period t. 
The decisions for period t + 1 are based on knowledge ofthe transactions for 
period I. Although values of the decision variables are computed for all 
periods of the horizon each time a maximization problem is solved, it is 
important to keep in mind that only the values for the current period are used 
in computing the transactions that take place. In each period new time paths 
are computed, based on the transactions that have taken place in the previous 
period, and thus the optimal values of the decision variables for periods other 
than the current period are of importance only insofar as they affect the 
optimal values for the current period. 

When the complete model is put together a distinction must he made between 
the stock holdings and the bond holdings of the household. This distinction 
was unnecessary in the discussion of the household maximization problem 
because the expected rates of return on stocks and bonds are the same. The 
actual rates ofretum are not in general the same, and so this must be modeled. 

The household owns all the stock in the model. Let PS,_, denote the value 
of this stock at the end of period I - 1 or the beginning of period 1. PS,_, is 
assumed to be equal to the present discounted value of expected future 
after-tax cash flow of the firms and the bank, where the discount rates are the 
expected future one-period interest rates. Let ,_,E,_, denote the expected 
value of after-tax cash flow for period t - 1 that was made at the beginning of 
period f - I, and let J, denote the expected value of after-tax cash flow for 
period t that is made at the beginning of period 1. The variable ,E, is assumed 
to be a weighted average of,_,&_, and the actual value ofafter-tax cash flow 
inperiodt- 1: 

(3.62) &=&,E,_,)+(l -A)(CFA+ - T$_, + C&,_, - T’,-, 

+ -%,-I), o<a< I 

[expected value of after-tax cash flow for period f] 

The expected values of after-tax cash flow for periods f + 1 and beyond are all 
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assumed to be equal to ,L?*. Similarly, the expected values of the interest rate 
for periods I + 1 and beyond are all assumed to be equal to the rate for period 
t, R,. R, is known at the beginning of period t. These expectational assump- 
tions imply that 

(3.63) PS,_, = g. [value of stocks at the beginning of period t] 
, 

Let AA,_, denote the bond holdings of the household at the beginning of 
period 1. Then the total value of stock and bond holdings at the beginning of 
period t, which was denoted Ah,-, in the discussion ofthe household maximi- 
zation problem in Section 3.1.2, is AL,_, + PS,_, These variables will be 
used in the equations that follow. 

There is a potential constraint on the output of the firms, which was briefly 
discussed in Section 3.1.3. Although the firms expect that they will be able to 
produce the amount of output that is computed from the maximization 
problem, this may not be the case. If the level of sales and the stock of 
inventories turn out to be different from what they were expected to be, labor 
requirements in (3.26) and (3.27) will be different from what they were 
expected to be. If the requirements are higher and iftbe firm was not planning 
to hold any excess labor, output will have to be cut from its planned value. 
Also, the firm may not get as much labor as it expected, and this will force it to 
cut output unless there is excess labor on hand to make up the difference. 
These adjustments are included in the model below. 

The complete description of the model is as follows. The government 
determines 

WI) 4, dzn TL Lgt, C,,> R,, PZI,> RQ 

These decisions are exogenous except for the decision regarding R,. R, is 
determined by the reaction function (3.61). The value of stocks for the 
beginning of period t is determined by (3.63): 

@42) PS,_, 

The value of the stock and bond holdings of the household at the end ofperiod 
t - I or the beginning of period t is 

W3) A,-, =A+,+PS,-I, 

where AA,_, is determined in period t - 1. 
Given C& and R,, firmsfand k solve their maximization problems. Since 

the firms are identical. only the values for firm fneed to be noted. The 
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following variables, among others, are determined from this solution: 

(M4) PJ > fMt,, , Kj, , Ij, Ld2-IA.‘+ 3 WJ. 

All the different prices in the model are assumed to be equal to Pn, and all the 
different wage rates are assumed to be equal to W,: 

(MS) Phi==P,=P;=Pj, 

OW w*,= I+(#,,= wfl. 

The maximum amount that the household can work? Lz,, is 

(M7) L& = LMRY,, + LMAX,, + L, 

Given d,,, TR,, R,, Ah,-,, Phr, W,,, and L$, the household solves its 
maximization problem. Determined from this are 

(M8) Gl‘ > G, > Nhi > wlv 

The household can also be thought of as solving its maximization problem 
under the assumption of no labor constraint. Let L L7Nh, denote the amount of 
labor that would be supplied if the constraint were not binding. Firms are 
assumed to observe this value after transactions have taken place, and 
therefore it is a variable of the model: 

(M9) L UN,,, 

After the household makes its decisions, transactions take place. The rest of 
the model describes these transactions. The level of total sales is 

(MI@ XA,=C,+II,+I,+C,. 

Each firm receives half the sales: 

(Mll) X,=X,=.ZfA,. 

The total amount of labor supplied to the firms is 

(M12) LA,=L,-L,,. 

This assumes that the government gets its labor first: what is left over goes to 
the firms. Each firm gets half the labor: 

(M 13) Lj = L*, = .5LA,. 

If the household were unconstrained, the amount of labor that would be 
supplied to the foms would be 

(M14) L4 UN, = L L’N,,, - Lo, 
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Given X,( and L#, it can now be seen whether firm/can produce the 
amount of output that it expected when it solved its maximization problem. If 
it cannot, output is cut back by the necessary amount. This is done in the 
most efficient way possible, which is by using the most labor-efficient ma- 
chines first, the next most labor-efficient machines second, and so on. Y,, will 
be used to denote the actual amount of output produced: 

(M15) r, 

Given &,, R,, Pi, Ij, LJ, X,, Y,, and the various lagged values, the 
following variables are determined by (3.25) and (3.31)-(3.39): 

(M16) ' v,, T,,,DEp,, ?/i> TJ> D,i> CF,,S,,A,,M,. 

Because A,; appears in (3.36) as well as in the budget constraint (3.38), the 
solution for some of these variables requires solving a small linear model. 

The bank variables are determined next. The following equation deter- 
mmes Mb; 

(M17) A& = -MA, - Mjl - A&, , 

where the RHS variables are determined above. This equation merely states 
that the demand deposits of the household and firms are held in the bank. 
Given d2,, g,, , R,, RD,, M,, , and various lagged values, the following variables 
are determined by (3.53)-(3.58): 

In order to complete the variables for the household, the value of stocks at 
theendofperiodtmustbeknown. ThiscanbedoneifR,,, isknown,andsoit 
is assumed that the government sets this rate at the end ofperiod t but before 
the remaining variables for the household are determined: 

(M19) R,,, 

Given that C$, T,i, CF, , T,, , and D,, have already been determined, ,+ ,I?,+ I 
can be computed from (3.62) with the time subscript moved ahead one 
period. ,+A+, is the expected value of after-tax cash flow for period f + 1 
made at the beginning ofperiod t + 1 (or the end ofperiod t). Given R,+I and 
,+,E,+, , PS, can be computed from (3.63) with the time subscript moved 
ahead one period: 

(M20) PS, 

The value of capital gains on stocks for period t, denoted CG,, is 

W21) CC, = PS, - PS,_ , 
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Capital gains are assumed to be taxed like regular income. Given d,, , TR,, R,, 
Wh,, P,,,, Djj, Dkt, D,,, Mh,, CC,, A4,,_, , and A;,_, , the following four 
equations are used to solve for the four LHS variables: 

(M22) YA, = KJ,, + &A A, + Dfl + & + &, > 

(~23) T,,, = &( Y,,, + CC,) - TR, , 

(~24) &, = ytu - TN - P&x, 

(M25) A;, = AL,_, + S,,, - AM,,,. 

Equation (M22) is like (3.1 I), where nonwage income is now disaggregated 
into interest and dividend income. Equation (M23) is like (3.12), where 
capital gains are now included in the taxable income base. Equation (M24) is 
the same as (3.13). The budget constraint (M25) is like (3.14) except for the 
replacement ofA’ for A. Because A;, appears in both (M22) and (M25), the 
solution for the four LHS variables requires solving a linear model. 

The last two variables to be determined are the government variables .S, 
and A,. These are determined by (3.59) and (3.60): 

(M26) s, > A, 

There is one important redundant equation in the model, which states that 
the sum of bond holdings across all agents is zero: 

(M27) O=A;,+A,+AA,,+A,+A,. 

This equation is redundant because the sum of savings across all agents is 
zero, and each agent’s budget constraint has been used to solve for its bond 
holdings. 

This completes the solution for period f. Given the solution values for this 
period, the model can be solved for period t + 1. The initial conditions for 
period t + 1 are the solution values for period t. 

Simulation Results 

Before the model is solved, the interest rate reaction function (3.61) must be 
specified. It is taken to be 

(3.61)’ R,=R,_,-.IUR,+‘~pn_qn-‘, 

where UR, is the unemployment rate. The unemployment rate is defined to 
be one minus the ratio of the constrained to the unconstrained supply of 
labor: 
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(3.64) U&=,-L&- 
LUN*, 

[unemployment rate] 

Equation (3.61)’ is a “leaning against the wind” equation. The government 
raises the interest rate when unemployment falls and inflation rises, and it 
lowers the rate when unemployment rises and inflation falls. Given that the 
reaction function is used, A,, it taken to be endogenous. The other two 
monetary policy variables, RD, and g,,, are exogenous. 

The initial conditions and parameter values that were presented earlier for 
the household and fitms were used for the results for the complete model. The 
other initial conditions and parameter values that are needed are the follow- 
ing. 

(1= 1) 
A,,_, = 311~.42857 
D,,-, = 4.2 

BR,,.. , = 30.0 
BO,_ , = 0.0 

A,-, = -231.42857 
t-&--l = 48.2 
CF,_, = 44.0 
CF,_ , = 44.0 

Tfl-I = 22.0 
Tki--l= 22.0 
R,_, = .07 

UR,_, = 0.0 
Y4 = -1.0 
,I= .9 

The reason for the choice ofthe above value for A;,_ I is the following. From 
(M3) the value of wealth of the household at the beginning of period t, A,,_, , 
isequal toAL,_, + PS,_, , where from (3.63) PS,_, = ,E,/R,. Given the above 
initial conditions, ,E, equals 48.2 and R, equals .07, which implies a value of 
PS,_, of 688.57143. This value plus the above value of 311.42857 forA&, 
equals 1,000, which is the value of A,,-, used in Section 3.1.2 for the 
simulation results for the household. 

With respect to the terminal value ofwealth ofthe household, zin (3.16), 
it was take” to be 311.42857 + PS,_, for all of the experiments with the 
complete model, where PS,_, is the value of stocks at the end of the previous 
period. If the model has bee” solved for at least one period, then the value of 
PS,_, will in general differ from 48.2/.07, since in general both J?, and R, will 
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be different. The terminal value of wealth thus differs from period to period 
depending on the value of stocks. 

The government values that were used for the base run are as follows. 

(t= 1) 

d,, = .2 
d2, = .5 

TR, = 0.0 
Lx, = 30.0 
C, = 96.0 
g1, = .2 

RD,= .07 

The results of solving the model for the above values are presented in the 
first column of Table 3-4. A solution of the model for, say, period I requires 
running through steps (Ml)-(M26). This entails the household and firms 
solving their maximization problems for periods l-3, although only the 
decision values for period I ever get used. Once the model is solved for period 
1, it can be solved for period 2. As the model is solved forward, it is assumed 
that the length of the decision horizon for the household and firms always 
remains at 3. 

The cost of solving the complete model for one period is dominated by the 
cost of solving the maximization problem ofthe firm, since the other calcula- 
tions are more or less trivial. The time taken on the IBM 434 1 at Yale for the 
solution ofthe model for one period was about 39 seconds, ofwhich about 38 
seconds was used for the firm’s maximization problem. 

When the household solves its problem in, say, period 1, it must form 
expectations of IV,,, Ph,, R,, d,,, and TR, for periods 2 and 3. In the analysis of 
household behavior in Section 3.1.2 it was assumed that the household 
expects these variables to remain unchanged in periods 2 and 3 from the 
observed period I values, and this assumption has been retained for the 
solution of the complete model. Regarding the labor constraint, it was 
assumed for experiment 7 in Table 3-2 that the household expected the 
constraint to be binding only for period 1, and this assumption has also been 
retained for the solution of the complete model. The labor constraint is thus 
binding on the household for at most the first period. In the analysis of firm 
behavior in Section 3.1.3 it was assumed that the firm expects the interest rate 
(R,j and the tax rate (d2,) to remain unchanged from the observed period 1 
values, and the price of investment goods (P;,) to remain unchanged from the 
observed period 0 value. This assumption has been retained here. 

When the model is solved period after period using the above initial 
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conditions and parameter values and the above set of government values, the 
same solution value is obtained for each variable for each period. In other 
words, a “self-repeating” run is obtained. The values for selected variables 
from this run are presented in Table 3-4 in the column headed “Base run 
values.” The self-repeating run is an equilibrium run in the sense that all the 
expectations are equal to the actual values. No errors are made anywhere in 
the model. 

The experiments consisted of changing one of the government values and 
solving the model again. The value was changed for the current and all future 
periods. Most of the important properties of the model can be discovered by 
analyzing just two experiments: an increase in the interest rate and a 
decrease in government purchases ofgoods. For the interest rate experiment, 
the interest rate reaction function was dropped from the model and the 
interest rate was taken to be exogenous. This allows the interest rate to be 
taken to be a policy variable and changed exogenously. The results ofthe two 
experiments are presented in Table 3-4. Both the pluses and minuses and the 
actual numbers are presented for each experiment. Although the numbers 
have no empirical content, knowledge of them sometimes helps in under- 
standing the results. The following paragraphs present a discussion of the 
I%SUltS. 

Expwimmt 1: An increase in the interest rate. The reader should remember 
that for this experiment there is no interest rate reaction function. The 
interest rate is exogenous, and the experiment consists ofincreasing it to .07 1 
from its base period value of ,070. Call the first period of the experiment 
period I. The increase in the interest rate in period 1 causes the household to 
suffer a capital loss on its stocks at the beginning of the period (Eq. 3.63). 
Although this is not shown in the table, the value of stocks is 
48.2/.071 = 678.87, which compares to the base run value of 
48.2/.07 = 688.57. 

The increase in the interest rate was not large enough to affect the firms’ 
decisions for period 1 (rows I, 6_ 8 - 12). The household wanted to work more 
(row 19), but it was constrained from doing so because the firms did not want 
to hire any more labor. The household thus worked the same amount (row 
13). It consumed less, spent more time taking care of money holdings, and 
planned to save more (rows 14, 15, 17). When transactions took place, sales 
were less (row 2) because of the drop in demand from the household. 
Production was slightly less (row 3) because the firms were forced to cut 
production from the planned values due to the increased labor requirements 
resulting from the change in sales. This cut was small, and sales dropped more 
than production. The level of inventories thus rose (row 4). The firms’ profits 
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and cash flow were down because of the decrease in production and sales 
(rows 2 1.23). The level of profits ofthe bank was higher because of the higher 
interest rate (row 30). The sum of after-tax cash flow of the firms and after-tax 
profits ofthe bank was lower, and this caused a fall in the value ofstocks at the 
end of period I (rows 32 and 33). This capital loss, contrary to the capital loss 
at the beginning ofthe period, was caused by a fall in cash flow rather than a 
rise in the interest rate. The government ran a deficit in period 1 (row 37). 
There are a number of reasons for this. Firms’ taxes were lower because of the 
fall in profits, and the household’s taxes were lower because of the capital loss; 
the government’s interest payments were higher because ofthe higher interest 
rate. The increase in the bank’s taxes works the other way, but this increase 
was quite small, and thus the net effect on the government’s budget was 
negative. 

The response of a firm to a decrease in sales has been discussed in Section 
3. I .3. Thedecrease in sales in period 1 Jed the firms in period 2 tolowerprices, 
expected sales, planned production, investment, employment, and wage rates 
(rows 1, 6, S- 12). The household was again constrained in its labor supply, 
but this time because of the decrease in labor demand by the firms. (Uncon- 
strained, the household wanted to work essentially the same amount as the 
base run value; see row 19.) The unemployment rate was higher in period 2 
than in period 1 (row 5) because of the more severe labor constraint on the 
household. Sales were again lower in period 2 because of the lower consump- 
tion of the household. 

The system continued at a lower level of sales and production throughout 
the five periods presented in the table. The main reason for this is the lower 
level of consumption of the household resulting from the higher interest rate. 
By period 5 the firms had reduced their inventories to essentially the base run 
value (row 4). The unemployment rate was back to zero by period 5. Given 
the particular parameter values used, the wage rate falls more than the price 
level each period (rows 1 and 6). This fall in the real wage leads the household 
to want to work less, and by period 5 its unconstrained supply of labor (row 
19) while lower than the base run value, is no longer greater than the 
maximum amount allowed. The drop in the real wage is also the main reason 
that after-tax cash flow is higher than the base run value in period 5 (row 23) 
even though sales are lower. The government budget is in deficit throughout 
the period. 

Expwimnr 2: A decmw in gowrnment purchases cfgoods. Part of this 
experiment has been discussed in Section 3.1.3 in the analysis of firm 
behavior. The decrease in goods purchases has no effect on anyone’s decisions 
in period I, but it does lead to lower sales, slightly lower production, and a 
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higher level of inventories. The lower production is again due to the increased 
labor requirements resulting from the change in sales. Profits are lower, which 
causes a capital loss on stocks. Dividends are also lower. The reaction 
function does not change the interest rate at the end of period 1 (row 7) 
because the unemployment rate is zero and prices are unchanged. 

In period 2 the firms responded to the sales decrease in the same manner as 
discussed in Section 3.1.3, namely by contracting. Although the price level 
and wage rate are the same to four digits in Table 3-4, the wage rate dropped 
slightly more. This led the household to lower very slightly its unconstrained 
supply of labor (row l9), but it was forced to supply even less because of the 
drop in the demand for labor from the firms (row 13). This is the main reason 
for the decrease in consumption in period 2. Sales were thus even lower in 
period 2 than they were in period 1 because of the consumption decrease. At 
the end of period 2 the reaction function lowered the interest rate (row 7) 
because of the positive level of unemployment and the fall in prices. This 
resulted in a capital gain at the end of period 2 (rows 32-33). 

The system continued at the lower level of sales and production throughout 
the five periods in the table. The main factor that prevents the system from 
falling more than it does and that will eventually lead it to stop failing is the 
interest rate. As the unemployment rate rises and prices fall, the interest rate 
falls. A falling interest rate leads the household to consume more, both 
because of the fall in the interest rate itself (the intertemporal substitution 
effect) and the rise in wealth due to the capital gains on stocks. A fall in the 
interest rate may also lead the firms to switch to more expensive, less 
labor-intensive machines, which increases investment. Although this hap- 
pened in the analysis of firm behavior in Table 3-3, the interest rate decreases 
were not large enough in Table 3-4 for this to take place in the current 
experiment. Although this is not presented in Table 3-4, the firms did switch 
to the more expensive machines in period 6 and thus increased their invest- 
ment expenditures. It should be noted that one consequence that this switch 
has is to lower the demand for employment, which further constrains the 
household and leads it to lower consumption further. The substitution of 
more expensive machines is thus not in itselfenough to stop the system from 
falling. 

Other Contractionary Experimmls 

Given an understanding of the two experiments in Table 3-4, other contrac- 
rionary experiments are easy to follow. If for any reason demand is lowered 
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-either government demand, firm demand, or household demand-a 
contractionary situation is likely to develop in which firms lower employ. 
ment, the household lowers consumption because ofthe labor constraint, the 
firms lower employment more because ofthe further fall in sales, and so on. 

Two of the experiments that were run involved an increase in the personal 
income tax rate, d,,, and a decrease in the level of transfer payments, TR,. 
Both led to decreased consumption by the household. The main difference 
between the two experiments is that the increase in d,, leads, other things 
being equal, to a decrease in the unconstrained supply of labor, whereas the 
decrease in TR, leads to an increase in the supply. The unemployment rate, 
which is a positive function of the unconstrained supply of labor, is thus 
higher in the transfer payment experiment than it is in the other. 

An increase in the profit tax rate, d2,, led to a fall in after-tax cash flow, 
dividends, and the price of stocks. The lower dividends and wealth of the 
household led it to consume less, which then started a contraction. This is the 
main channel through which an increase in the profit tax rate affects the 
economy, namely by first affecting the income and wealth of the household. 
As discussed in Section 3.1.3, an increase in 4, may also lead the firm to 
switch to the less expensive machines, which lowers investment, but this is of 
rather minor importance. 

An increase in the discount rate, RD,, lowered the profits and dividends of 
the bank and thus the price of stocks. The lower dividends and wealth ofthe 
household led it to consume less. To the extent that bank profits are a small 
fraction of total profits in the economy, this effect on households is not likely 
to be a very large one in practice. A change in RD, has no direct effect on the 
interest rate since it does not appear in the interest rate reaction function. An 
increase in RD, does lead to a decrease in bank borrowing from the govern- 
ment, BO,, which from (3.60) means that there are fewer government securi- 
ties outstanding than otherwise (that is, -A, is smaller). Remember thatri, is 
the instrument by which the government achieves the target interest rate each 
period as dictated by the interest rate reaction function. Because of the 
interest rate reaction function, RD, has little effect on R,. The government 
merely offsets any changes in bank borrowing that result from changes in RD, 
by changes in A,. 

An increase in the reserve requirement rate, g,,, also lowered bank profits 
and dividends, which then affected the household. Again, this effect is likely to 
be small in practice if bank proms are a small fraction of total profits. Bank 
reserves were higher because of the higher requirement rate, which from 
(3.60) means that there were fewer government securities outstanding than 
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otherwise g,,, like RD,, has little effect on R, because the government merely 
offsets any changes in bank reserves that result from changes in g,, by changes 
in A,. 

Expansionary Experiments 

Two “expansionary” experiments that were run involved a decrease in the 
interest rate and an increase in government purchases ofgoods. Expansionary 
experiments from a position ofequilibrium are ofsomewhat lessinterest than 
contractionmy ones in terms of learning about the properties of the model. 
When the system is in equilibrium, as it is in the base run, there are only two 
ways in which more output can be produced: one is for the household to work 
more, and the other is for the firms to switch to less labor-intensive machines. 
The household’s work effort is a positive function of the real wage and the 
interest rate; it is a negative function ofthe initial value ofwealth, the tax rate, 
and the level oftransfer payments. The firms’ switching to less labor-intensive 
machines is a positive function of the real wage and a negative function of the 
interest rate. The disequilibrium features ofthe model are thus not likely to be 
apparent for expansionary experiments, and the effects on output hinge on 
the labor supply response of the household and the investment response of the 
firms. The following is a brief discussion of the expansionary experiments. 

When the interest rate was decreased, the household worked less in period 
1. The real wage was unchanged because the interest rate decrease was not 
large enough to affect the firms’ decisions in period 1. Given this and given the 
lower interest rate and the higher initial value ofwealth from the interest rate 
decrease, the effect on household work effort was negative. Household con- 
sumption was higher in period 1, and thus sates were higher. Production was 
lower because of the increased labor requirements due to the change in sales 
and because of the decrease in labor supply. The stock of inventories was thus 
lower at the end of period 1. The lower work effort and higher consumption 
meant that the household dissaved in period 1. 

The firms responded in period 2 to the higher sales, lower inventories, and 
lower labor supply by raising prices and wages. The price level was raised less 
than the wage rate, and this increase in the real wage led the household to 
increase its work effort in period 2 compared to the base run value. It 
continued to dissave in period 2. The real wage began to fall in period 3, but 
labor supply remained higher than its base run value. The main reason for this 
has to do with the saving behavior of the household. As noted, the lower 
interest rate led the household to dissave; this decreases wealth, which has a 
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positive effect on labor supply in the next period. By period 3 the positive 
effect from the lower wealth outweighed the negative effects from the lower 
interest rate and the lower real wage. 

The unemployment rate was zero for the first four periods, but in period 5 it 
was positive. Although labor supply and production were higher than they 
were in the base run, the household wanted to work slightly more than the 
labor constraint allowed, and so the unemployment rate was positive. 

For the experiment in which government purchases of goods were in- 
creased, labor supply was the same in period 1, higher in period 2, and lower 
in periods 3 and beyond. It was unchanged in period 1 because the increase in 
goods purchases has no effect on the decisions in period 1. It was higher in 
period 2 primarily because the real wage was higher, and it was lower in 
periods 3 and beyond primarily because the real wage was lower. 

The unemployment rate was zero throughout the five periods of the 
experiment; production was lower because of the lower labor supply; and 
prices and wages were higher because of the increase in sales and decrease in 
inventories. The interest rate was higher beginning in period 3 because of the 
increase in prices. Capital losses on stocks began occurring at the end of 
period 2 because of the higher interest rate. 

3.1.6 Summary and Further Discussion 

I, One of the main properties of the model is that disequilibrium can occur 
because of expectation errors. Once the system is in disequilibrium in the 
sense that expected values differ from actual values, it will remain so. In 
particular, a multiplier reaction can take place in which the firms constrain 
the household in its labor supply; the household responds by lowering 
consumption and thus sales of the firms; the firms respond by lowering 
production and their demand for labor, which further constrains the house- 
hold: the household responds by lowering consumption even more; and so 
OIL 

2. Contrary to a model like the one of Phelps and Winter that was discussed 
in Section 3.1.1, the present model does not return to equilibrium in a 
straightforward way once it is shocked. In fact, the model never returns to 
equilibrium. No agent knows or ever learns the complete model, and thus 
decisions are always being made on the basis of expectations that turn out not 
to be correct. There is no convergence of expectations to the true values. This 
feature of the model does not depend on the expectations being formed in 
simple ways; it would be true even if agents formed their expectations on the 
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basis ofpredictions from sophisticated models as long as the models were not 
the true model and did not converge to the true model. 

This feature of less than perfect expectations seems sensible in the present 
context. In order for agents to form correct expectations, they would have to 
know the maximization problems ofall other agents. They also would have to 
know the exact way that transactions take place once the decisions have been 
solved for. In a model like the present one it seems unreasonable to assume 
that agents have this much information. (This is contrary to simple models of 
the Phelps and Winter type, where the assumption does not necessarily seem 
implausible.) It also seems unreasonable to assume that agents all learn the 
correct model over time. At the least, ifthey did finally learn it, the length of 
time needed to do so seems so long as to be for all practical purposes infinity. 

The imposition oflong-run constraints on models was discussed in Section 
2.1 S, where it was noted that these constraints can play a critical role in the 
development of a model. It can now be seen why I believe that long-run 
constraints may be playing too much of a role in recent work. In order for a 
model like the present one to return to equilibrium once it is shocked, one has 
to make what seem to be unreasonable assumptions about the ability of 
agents to learn the complete model. Unless these assumptions are made, no 
long-run equilibrium constraints can be imposed on the model. 

3. No price and wage rigidities have been postulated in the model. If this 
were done, it would provide another explanation of the existence of disequi- 
librium aside from expectations errors. One reason this was not done is to 
show that disequilibrium phenomena can easily arise without such rigidities. 

4. The interest rate is the key variable that prevents the system from 
contracting indefinitely. As unemployment increases or prices fall, the inter- 
est rate is lowered by the interest rate reaction function. A fall in the interest 
rate results in a capital gain on stocks. Both the lower interest rate and the 
higher wealth have a positive effect on the consumption ofthe household. The 
lower interest rate may also lead the firms to switch to more expensive, less 
labor-intensive machines, which increases investment expenditures. 

5. The fact that the interest rate has such important effects in the model 
means that monetary policy is quite important. With the interest rate reaction 
function included in the model, monetary policy is endogenous, and there- 
fore monetam policy experiments cannot be run. One can, however, drop the 
reaction function and take the interest rate as exogenous. Monetary policy 
experiments can then be run by changing the interest rate, and, as just noted, 
this will have important effects on the system. 

With the reaction function dropped, it is possible to take all three monetary 



92 Macroeconometric Models 

instruments-the amount of government securities outstanding (-A,], the 
reserve requirement rate (g,,), and the discount rate (RD,) - as exogenous. In 
this case R, is endogenous and is implicitly determined. Monetary policy 
experiments can then be run by changing one or more of these variables. The 
primary way that these changes would affect the system is through their effect 
on the interest rate. 

6. The unemployment rate is a positive function of the supply of labor, 
which in turn is a function of variables such as the real wage, the interest rate, 
the income tax rate, and the level of transfer payments. The effects of a policy 
change on the unemployment rate thus depend in part on the labor supply 
response to the policy change. For example, increasing the income tax rate 
lowers labor supply, whereas decreasing the level of transfer payments raises 
it. Given the many factors that affect labor supply, there is clearly no stable 
relationship in the model between the unemployment rate and real output 
and between the unemployment rate and the rate of inflation. There is_ in 
other words, no stable Okun’s law and no stable Phillips curve in the model. 

7. An interesting question about the long-run properties of the model is 
whether it is possible to concoct a self-repeating run in which there exists 
unemployment. It can be seen from (3.50) that this is not possible. The firm 
expects the unconstrained and constrained aggregate supplies of labor to be 
the same. If this is not true for, say, period t, which the firm knows at the 
beginning of period t + 1. the firm will not make the same decisions in period 
f + 1 as it did in period t. 

The key assumption that allows there to be no self-repeating run with 
unemployment is that the firms observe the unconstrained as well as the 
constrained aggregate supplies of labor. Assume instead that the firms do not 
observe the unconstrained supply, and consider a self-repeating run with no 
unemployment. Now change the utility function of the household in such a 
way that it desires to work more and consume more, but keep the same levels 
of money holdings and wealth. Assume also that when constrained by the old 
self-repeating value of labor supply, the household chooses the same labor 
supply, consumption, and money holdings as it did before (and thus the same 
value of wealth as before). Ifthe firms do not know the unconstrained supply 
of labor, there is no way for the information on the change in the utility 
function to be communicated to them. They only observe the actual demand 
for goods and supply of labor, which are the same as before. The firms thus 
make the same decisions as before, the household is subject to the same labor 
constraint as before (and so makes the same decisions as before), and so on. A 
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self-repeating run will thus exist, but now in a situation where there is 
unemployment. Although this result is artificial, it does help to illustrate a 
feature of the model regarding information flows. 

3.1.7 Comparison of the Model to the IS-LM Model and to a Class of 
Rational Expectations Models 

The IS-LA4 Model 

It may help in understanding the present model to compare it to two 
well-known models. The first is the IS-LM model, which has undoubtedly 
been the most popular model of the last three decades. A standard version of 
the ELM model consists of the following ten equations: (I) a consumption 
function in income and assets (the level of assets is exogenous), (2) an 
investment function in the rate of interest and income, (3) an income 
identity, where income is consumption plus investment plus government 
spending (4) a real money demand function in the rate of interest and 
income, (5) a money supply function in the rate of interest (or the money 
supply taken to be exogenous), (6) an equilibrium condition equating money 
supply to money demand, (7) a production function in labor and the capital 
stock (the capital stock is exogenous), (8) a demand for labor equation 
equating the marginal product oflabor to the real wage rate, (9) a labor supply 
function in either the money wage (the “Keynesian” version) or the real wage 
(the “classical” version), ( 10) an equilibrium condition equating the supply of 
labor to the demand for labor. These ten equations determine the following 
ten unknowns: consumption, investment, income, demand for money, sup- 
ply of money, demand for labor, supply of labor, the price level, the wage rate, 
and the interest rate. 

One of the main differences between my model and the IS-LM model is the 
treatment of consumption and labor supply. In my model the consumption 
and labor supply decisions are jointly determined. Both are a function of the 
same variables: the wage rate, the price level, the interest rate. the tax rate, the 
level of transfer payments, and wealth. In the IS-LM model, on the other 
hand, the decisions are not integrated. Labor supply is a function of the 
money wage or the real wage, and consumption is a function ofincome and 
assets. From a microeconomic point of view these decisions are not consist- 
ent. The only justification for using income as an explanatory variable in the 
consumption function is if the households are always constrained in their 
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labor supply decisions. This is, however, inconsistent with the labor supply 
equation. where it is implicitly assumed that The households are not con- 
strained. 

Another important difference is the treatment of investment and employ- 
ment. In my model the investment and employment decisions are jointly 
determined. Both decisions are a function ofthe various factors that affect the 
solutions of the firms’ maximization problems. These decisions are not 
integrated in the IS-LM model. Investment is a function of the interest rate 
and income, and the demand for employment is a function of the real wage 
rate and the shape of the production function. 

A third difference is that the IS-LM model is a static equilibrium one, 
whereas my model is dynamicand allows for the possibilityofdisequilibrium. 
Because of its static nature, there are no wealth, inventory, or capital-stock 
effects in the IS-LM model. These effects play an important role in my model. 
Wealth effects are easy to handle in the model because of the accounting for 
the flow-of-funds and balance-sheet constraints. This also means that there is 
no confusion regarding the government budget constraint: the constraint is 
automatically accounted for, so that any savings or dissavings of the govern- 
ment must result in a change in at least one of its assets or liabilities. This 
constraint is not part of the IS-LM model, and it has caused considerable 
discussion (see, for example. Christ 1968). 

The equilibrium nature of the IS-LM model means that there is no 
unemployment. In the Keynesian version of the model it is possible to 
increase output by increasing government spending, but this comes about not 
by lessening some disequilibrium constraint but by inducing the households 
to work more by increasing the money wage. As discussed in the previous 
sections, disequilibrium effects can be quite important in my model. Unem- 
ployment can exist, and multiplier reactions can take place over time. 

One ofthe key variables that affect consumption in my model is the interest 
rate. This comes about because of the multiperiod nature of the utility 
maximization problem, where intertemporal substitution effects are allowed. 
There are no such effects in the IS-LM model because it is static, and thus the 
interest rate does not affect consumption. 

A Class cf Rational E.qmtatiuns Models 

A class of rational expectations (RE) models has recently been developed that 
has become quite popular. This class includes the models in Lucas (1973), 
Sargent (1973, 1976), Sargent and Wallace (1976), and Barre (1976). Al- 
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though the models in these live studies are not identical, they are similar 
enough to be able to be grouped together for purposes of the present compari- 
son. 

Three characteristics of the RE models are (I) the assumption that expecta- 
tions arc rational, (2) the assumption that information is imperfect regarding 
the current state of the economy. and (3) the postulation of an aggregate 
supply equation in which aggregate supply is a function of exogenous terms 
plus the difference between the actual and the expected price level. The 
models have the important property that government actions affect real 
output only if they are unanticipated. Because information is imperfect, 
unanticipated government actions can affect the difference between the 
actual and the expected price level, and so they can affect. for at least one 
period, aggregate supply. Anticipated government actions, on the other hand, 
do not affect this difference (because, since expectations are rational, all the 
information regarding anticipated government actions has already been 
incorporated into the actual and expected price levels), and so they cannot 
affect aggregate supply. 

A key difference between the RE models and my model is that expectations 
arc not rational in my model. The implications of the nonrationality of 
expectations have already been discussed and will not be repeated here. There 
is, however, another important difference between the models, which is that 
the RE models are not choice-theoretic. While agents are assumed to be 
rational in the sense that they know the model and use all the available 
information in the system in forming their expectations. they are at the same 
time irrational in the sense that their decisions are not derived from the 
assumption of maximizing behavior. 

To the extent that the aggregate supply equation in the RE models has any 
microeconomic justification, it is based on the Lucas and Rapping (LR) 
model (1969). In this model a household is assumed to maximize a two-pe- 
riod utility function in consumption and leisure subject to a two-period 
budget constraint. Current labor supply is a function of the current wage rate 
and price level, the discounted future wage rate and price level, and the initial 
value ofassets. The discount rate is the nominal interest rate. The signs ofthe 
derivatives of this function are ambiguous for the usual reasons. If it is 
assumed, as Lucas and Rapping do, that current and future consumption and 
future leisure are substitutes for current leisure and that income and asset 
effects are small, then current labor supply is a positive function of the current 
wage rate and a negative function of the current and future price level and the 
future wage rate. This model is used to justify, in at least a loose sense, the 
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assumption in the RE models that the difference between the actual and the 
expected price level has a positive effect on aggregate supply. An actual price 
level higher than expected is analogous to an increase in the current wage rate 
relative to the current and future price level and the future wage rate. 

Although the LR model is used in part as a justification for the aggregate 
supply equation in the RE models, there are some important features of the 
LR model that are not incorporated into the supply equation. One variable 
that is omitted is the interest rate. As just discussed, the interest rate has an 
effect on the current supply of labor in the LR model, and thus it should be 
included in the supply equation in the RE models. The interest rate clearly 
belongs in an equation whose justification is based in part on an appeal to 
intertemporal substitution effects. The RE models, with the exception of 
Barr03 ( 197~3, also exclude from the supply equation any asset variables, 
even though the initial value of assets has an effect on the current supply of 
labor in the LR model. Another omission of both the LR and RE models is 
the exclusion of personal tax rates from the analysis. It is well known that 
personal tax rates have an effect on the labor supply of a utility-maximizing 
household. 

It is also true that many of the other equations of the RE models are not 
based on the assumption of maximizing behavior. Sargent and Wallace, for 
example, note that their model is ad hoc, where “by ad hoc we mean that the 
model is not derived from a consistent set of assumptions about individuals’ 
and firms’ objective functions and the information available to them” (1976, 
p. 24 I). 

The RE models can thus be criticized on theoretical grounds in that it 
Seems odd to postulate rationality with respect to the formation of expecta- 
tions (in particular that agents are sophisticated enough to know the complete 
model) but not with respect to overall behavior. 

Regarding policy effects, it seems likely that in models in which there are 
both rational expectations and maximizing agents, anticipated government 
actions will affect the economy. To the extent that the government affects, 
directly or indirectly, variables that influence the solutions of the households’ 
utility maximization problems, real output will be affected. It would be an 
unusual model that insulated the households’ decision problems from every- 
thing that the government affects. The policy property of the RE models that 
anticipated government actions do not affect real output is thus not likely to 
be true in a model in which there are rational expectations and maximizing 
agents. 
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3.2 The Two-Country Model 

3.2.1 Introduction 

The way in which I approached the construction ofa two-country model was 
to consider how one would link my single-country model to another model 
exactly like it. Because the flow-of-funds and balance-sheet constraints are 
met in the single-country model, they are also met in the two-country model, 
which distinguishes it in an important way from previous models. Stock and 
flow effects are completely integrated in the model. There is, for example, no 
natural distinction between stock-market and flow-market determination of 
the exchange rate, a distinction that has played an important role in the 
literature on the monetary approach to the balance of payments. (See, for 
example, Frenkel and Rodriguez 1975; Frenkel and Johnson 1976; Dom- 
busch 1976; Kouri 1976; and the survey by Myhrman 1976.) The exchange 
rate is merely one endogenous variable out of many, and in no rigorous sense 
can it be said to be the variable that clears a particular market. In other words, 
there is no need for a stock-flow distinction in the model. (Other studies in 
which the stock-flow distinction is important include Allen 1973; Black 1973; 
BmnSOn 1974; and Girton and Henderson 1976.) 

In the following sections capital letters denote variables for country 1, 
lowercase letters denote variables for country 2, and an asterisk (*) on a 
variable denotes the other country’s purchase or holding ofthe variable. The 
exchange rate, denoted e,, is the price of country 2’s currency in terms of 
country l’s currency. There is assumed to be an international reserve, de- 
noted Q, for country l’s holdings and qz for country 2’s holdings, which is 
denominated in the currency of country 1. The total amount of this reserve is 
assumed to be constant across time. There is assumed to be one good per 
country. 

3.2.2 Trade Linkages 

A way of introducing trade in the model is to add G< to the utility function 
(3.9) of the household: 

(3.9)” u,,, =&(C,,, TH - L,, - N,,, 4, 

where 8, is household h’s consumption of the foreign good. The term 
- e&Cn: is then added to the savings equation, (3.13): 

(3.13)” & = Y/u - Thr - P&h, - w,/% > 
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where pnt is the price of the foreign good. This adds one decision variable. c$, , 
and two exogenous variables. e, and P,,,, to the maximization problem of the 
household. The demand for the home good will be, among other things, a 
function ofthe two prices and the exchange rate, and similarly for the demand 
for the foreign good. 

3.2.3 Price Linkages 

In addition to the obvious trade linkages between countries, there may be 
price linkages. In particular, prices of domestic goods may be influenced by 
the prices of foreign goods. One way of introducing this into the model is to 
modify the equation determining firm .f’s expected aggregate demand for 
(domestic) goods, (3.45). Since a household’s demand for domestic goods is a 
function of the price of domestic goods and the price of foreign goods, it is 
reasonable to assume that a firm expects that the aggregate demand for 
domestic goods is a function of the average price of domestic goods and the 
average price of foreign goods: 

where 3, is the average price of foreign goods. 
Replacing (3.45) with (3.45)“adds two exogenous variables to the maximi- 

zation problem ofthe firm: the exchange rate and the average price of foreign 
goods. If the product of these two, which is the average price of foreign goods 
in domestic currency, increases, the firm expects, other things being equal, 
that the demand for domestic goods will increase. An increase in the domestic 
currency price of foreign goods is thus like a demand increase, and the firm 
responds to a demand increase by raising its price. Higher import prices thus 
lead to higher domestic prices through this channel. 

32.4 Introduction of a Foreign Security 

Although it is easy to introduce a foreign good into the model. it is not as easy 
to introduce a foreign security; the model is not set up to handle different 
securities in a convenient way. One way of introducing a foreign security is 
the following. Assume that only banks hold foreign securities, and let &. 
denote the amount of the security held by bank b. Foreign securities, like 
domestic securities, are assumed to be one-period bonds. Bank b’s demand 
for foreign securities is assumed to be a function, among other things, ofeach 
country’s interest rate: 
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(3.65) Gl ‘j&R,, r,, ), 

where r, is country 2’s interest rate. This assumption is ad hoc in that the 
equation is not derived from the solution ofa maximization problem for bank 
h, but for present purposes it is sufficient for illustrating the main features of 
the model. In the empirical work this assumption is not used because perfect 
substitutability between foreign and domestic securities is assumed. 

The introduction ofat, to the model requires that (3.55) determining bank 
profits be modified: 

(3.55)” rthr = R,A, - RD,BO, + r,e&, 

where the last term is the interest revenue in domestic currency on the foreign 
security holdings. The bank’s budget constraint (3.58) is also modified: 

(3.58)” 0 = A,+, + A&, + ABR, - ABO,,, + e,Aa& 

Finally. (M27) is modified to reflect foreign holdings of domestic securities: 

(M27)” O=A;,+Afr+Ak.+A,,+Ap,+A$r. 

3.2.5 Determination of the Exchange Rate 

The basic feature of the two-country model with respect to the determination 
of the exchange rate can be most easily seen by aggregating the household, 
firms* and bank into one sector, called the “private sector.“’ Let S, denote the 
level of savings of the private sector, which is the sum of the savings of the 
household and firms. (As discussed in Section 3.1.4, the savings ofthe bank is 
always zero.) Let A,, denote the sum ofAir, A#, A,, and A,. Also, change the 
b subscript on BR,,, BO,, and a:, top to keep the notation consistent. The 
same aggregation hold for country 2, with capital and lowercase letters 
reversed. 

Although the level of savings of an agent is determined by a definition in the 
model, it will be convenient to represent the determination of savings in the 
following way: 

(Tl) s, =.&,(. .), 

C-W q, =/& .h 

(T3) $2 =fr3(. .h 

(T4) jwr =“&a(. .). 
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Equation (TI) represents the determination of the savings of the private 
sector of country 1. Almost every variable in the model, including the 
variables that pertain to country 2, has at least an indirect effect on savings. 
and thus the argument list of the function in (7 1) is long. This is also true of 
(T2), which represents the determination of the savings ofthe government of 
country 1. Equations (T3) and (74) are similar equations for country 2. 

The next thing to be done is to aggregate the budget constraints of the 
individual agents into a budget constraint of the private sector. This cancels 
out the securities that are only held within the private sector, which in the 
present case are money holdings. Adding the budget constraints (3.14) for the 
household, (3.38) for each firm, and (3.58)” for the bank yields: 

(T5) 0 = S,, - ABR,, + ABO,, - AA,, - c?~AR;~ 

The government budget constraint (3.60) in the present notation is 

(T6) 0 = S, + ABRp, - ABO,, - AAA, - AQ, , 

where the term AQ,, which is the change in holdings of the international 
reserve of the government, is added to the equation. Similar equations hold 
for country 2: 

(T7) 0 = sn, - Abr,, f Abe,, - Aa,, - $A$ > 

U-8) 0 = s*, + Abr,, - Abe,, - Au,, - -$q,. 

The level of bank reserves, BR,,, is determined by (3.53). It is equal to 
-glJ4,,,, where g,, is the reserve requirement rate and -Mb, is the level of 
demand deposits. Mbi drops out of the model in the aggregation to the private 
sector, and so an equation like (3.53) cannot be written down for BR,,,. ER,, 
is, of course, still determined in the model, and for the purpose of the 
equations here its determination can be represented in the same manner as in 
(Tl)-(T4) for the savings variables: 

(T9) BR,,, =&(. .I. 

This equation stands for the determination of BR,,,, where nearly every 
variable in the model is in the argument list. Bank borrowing from the 
monetary authority is determined by (3.54), which in the present notation is 
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(TlO) 2 = y,(RD, - R,), Y,<O. 
nr 

Similar equations hold for country 2: 

(Tll) br, =.M. .b 

Equation (3.65), the equation determining the domestic demand for the 
foreign security, in the present notation is 

(T13) 0; =fXL r,, 1. 

A similar equation holds for country 2’s demand for country l’s security: 

(T14) ‘4; =fn&L r,, ). 

The following three definitions close the model: 

(Tl5) O=A,+A,+A;,, 

VI@ o=a,,+a,+a;,, 

U17) O=AQ,+Aq,. 

Equation (T15) states that the sum ofthe holdings of country l’s bond across 
holders is zero. (Remember that liabilities are negative values.) Equation 
(T 16) is the similar equation for country 2. Equation (T 17) states that there is 
no change in total world reserves. 

The savings variables satisfy the property that S,,, + S,, + e,s,, + e&, = 0, 
and therefore oneoftheequations(Tl)-(TS)and(T15)-(T17)isredundant. 
It will be useful to drop (T 17); this leaves 16 independent equations. There are 
19 variables in the model: S,, S,, sP, ssr, An, a& ant, A;, BR,, br,, BO,, 
bo,, Q,, qt, e,, R,, r,, A,, and a$. In the case of fixed exchange rates e, is 
exogenous and Q1 is endogenous, and in the case of flexible exchange rates e, is 
endogenous and Q, is exogenous. Given that one of these two variables is 
taken to be exogenous, the model can be closed by taking A, and a, to be the 
exogenous monetary policy variables. 

It should be clear from this representation that e, is not determined solely in 
stock markets or in flow markets; it is simultaneously determined along with 
the other endogenous variables. This, as discussed earlier, is an important 
difference between this model and previous models. 
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3.2.6 Properties of the Model 

I have not obtained any simulation results for the two-country model. Given 
the results for the single-country model and given (as will be seen in Section 
4.2.2) the special case of the two-country model that had to be used to guide 
the econometric specifications, simulation results for the two-country model 
seemed unnecessary. The main features to be remembered about the model 
are the following. 

1. Adding a foreign good to the utility function ofthe household means that 
the demand for the foreign good will be a function of the same variables that 
affect the household’s consumption decision in the single-country model plus 
two new variables: the price of the foreign good and the exchange rate. 

2. Adding the price of the foreign good to the equation determining the 
firm’s expected aggregate demand for the domestic good means that the price 
of the foreign good and the exchange rate will affect the domestic price level. 

3. Any model ofexchange rate determination that is used for the empirical 
work should be consistent with (Tl)-(Tl7). In particular, no distinction 
should be necessary between stock-market and flow-market determination of 
the exchange rate. 



4 An Econometric Model 

4.1 The United States (US) Model 

4.1 .l Introduction 

The construction of an econometric model is described in this chapter. This 
model is based on the theoretical model in Chapter 3. and thus the discussion 
in this chapter provides an example ofthe transition from a theoretical model 
to an econometric model. It will be clear, as stressed in Chapter 2, that this 
transition is not always very tight, and I will try to indicate where I think it is 
particularly weak in the present case. I have tried to maintain the three main 
features of the theoretical model in the econometric specifications, namely, 
the assumption of maximizing behavior, the explicit treatment of disequi- 
librium effects, and the accounting for balance-sheet constraints. The United 
States (US) model is discussed in this section, and the multicountry (MC) 
model is discussed in the next section. The presentation ofthe models in this 
chapter relies fairly heavily on the use of tables, especially the tables in 
Appendixes A and B. Not everything in the tables is discussed in the text, so 
for a complete understanding ofthe models the tables must be read along with 
the text. 

4.1.2 Data Collection and the Choice of Variables and Identities 

The Dais and Variables 

As discussed in Section 2.2.1, the first step in the construction ofan empirical 
model is to collect the raw data, create the variables of interest from the raw 
data, and separate the variables into exogenous variables, endogenous vari- 
ables explained by identities, and endogenous variables explained by esti- 
mated equations. I find it easiest to present this type ofwork in tables, which 
in the present case are located in Appendix A at the back of the book. 

Table A-l lists the six Sectors of the model and some frequently used 
notation. The sectors are household (h), firm (f), financial (h), foreign (r), 
federal government (fij, and state and local government (s). The household 
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sector is the sum of three sectors in the Flow of Funds Accounts: (1) 
households, personal trusts, and nonprofit organizations; (2) farms, corporate 
and noncorporate; and (3) nonfarm noncorporate business. The firm sector 
comprises nonfinancial corporate business, excluding farms. The financial 
sector is the sum of commercial banking and private nonbank financial 
institutions. The federal government sector is the sum of U.S. government, 
federally sponsored credit agencies and mortgage pools, and monetary au- 
thority. 

If the balance-sheet constraints are to be met, the data from the National 
Income and Product Accounts (NIA), which are flow data, must be consistent 
with the asset and liability data from the Flow of Funds Accounts (FFA). 
Fortunately, the FFA data are constructed to be consistent with the NIA data, 
so the main task in the collection of the data is merely to ensure that the data 
have been collected from the two sources in the appropriate way to satisfy the 
constraints. To review what these constraints are like, consider (3.13) and 
(3.14) of the theoretical model, which are repeated here: 

(3.13) .%, = Yh, - T,, - P&x 

(3.14) 0 = S,, - AAhi - AM,,, , 

where S denotes savings, Y denotes income, T denotes taxes, P denotes the 
price level, C denotes consumption, A denotes net assets other than money, 
and A4 denotes money. The data on S, Y, T, P, and Care NIA data, and the 
data on A and M are FFA data. The data must be consistent in the sense that 
both (3.13) and (3.14) must hold: the S,, that satisfies (3.13) must be the same 
as the S,, that satisfies (3.14). An additional restriction on the FFA data is that 
the sum of the/l’s across all sectors must be zero, since an asset of one sector is 
a liability of some other sector. Likewise, the sum of the M’s across all sectors 
must be zero. 

Table A-2 presents all the raw-data variables. The variables from the NIA 
are presented first in the table, in the order in which they appear in the Survey! 
of Current Business. The variables from the FFA are presented next, ordered 
by the code numbers on the Flow of Funds tape. Some of these variables are 
NIA variables that are not published in the Surve.v but that are needed to link 
the two accounts. Interest rate variables are presented next, followed by 
employment and population variables. All the raw-data variables are listed in 
alphabetical order at the end of Table A-2 for ease of reference. 

Given Table A-2 and the discussion of it in Appendix A, it should be 
possible to duplicate the collection of the data with no help from me. 
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Although one would seldom want to do this, since a tape of the data set can be 
easily supplied, this kind of detail should be presented if at all feasible; it has 
the obvious scientific merit of allowing for the reproducibility of the results. 
and in general it helps to lessen the “black box” nature of the discussion of 
many econometric models, especially large models. 

Table A-3 presents the balance-sheet constraints that the data satisfy. This 
table provides the main checks on the collection of the data. If any of the 
checks are not met, one or more errors have been made in the collection 
process. Although the checks in Table A-3 may look easy, considerable work 
is involved in having them met: all the receipts from sector I to sector Jmust 
be determined for all I and J(I andJin the present case run from 1 to 6). Once 
the checks have been met, however, one can have considerable confidence 
that this part of the data base is correct. 

Table A-4, the key reference table for the variables in the model, lists all the 
variables in alphabetical order. These are not in general the raw-data vari- 
ables, but variables that have been constructed from a number of the raw-data 
variables. With a few exceptions, which are noted in the table, the variables 
that are not defined by identities are defined solely in terms of the raw-data 
variables. I have found that coding the variables in this way lessens the 
chances of error, since the order in which the variables are constructed does 
not matter. The present procedure also has the advantage of providing a clear 
indication of the links from the raw data to the variables in the model. Order 
does in general matter, of course, for the variables in the table that are defined 
in terms of the identities, so one must be careful with respect to these. 

The Identities 

Table A-5 lists all the equations of the model. There are 128 equations; the 
first 30 axe stochastic and the remaining 98 are identities. One of the equa- 
tions is redundant, and it is easiest to take Eq. 80 to be the redundant one. The 
30 stochastic equations are discussed in Sections 4.1.4-4.1.9. 

The identities in the table are of two types. One type simply defines one 
variable in terms of others. The identities of this type are Eqs. 3 1,33,34,43, 
and 58- 128. The other type defines one variable as a rate or ratio times 
another variable or set of variables, where the rate or ratio has been con- 
structed to have the identity hold. The identities of this type are Eqs. 32, 
35-42, and 44-57. Consider, for example, Eq. 49: 
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where r,s is the amount of corporate profit taxes paid byfto g, rr,is the level of 
corporate profits ofA and d,, is a “tax rate.” Data exist for T/and ‘T/ and dz, 
was constructed as r&/z,. The variable d2, is then interpreted as a tax rate and 
is taken to be exogenous. This rate, of course, varies over time as tax laws and 
other things that affect the relationship between T, and n,change, but no 
attempt is made in the model to explain these changes. This general proce- 
dure was followed for the other identities involving tax rates. 

A similar procedure was followed to handle relative price changes. Con- 
sider Eq. 38: 

38. PIH = w5PD, 

where PIH is the price deflator for housing investment, PD is the price 
deflator for total domestic sales, and vz is a ratio. Data exist for PZEI and PD, 
and ys was constructed as PIH/PD. v5, which varies over time as the 
relationship between PIH and PD changes, is taken to be exogenous. This 
procedure was followed for the other identities involving prices and wages. 
This treatment means that relative prices and relative wages are exogenous in 
the model. (Prices relative to wages are not, however. exogenous.) It is beyond 
the scope of an aggregated model like the present one to explain relative prices 
and wages, and the foregoing treatment is a simple way of handling these 
changes. Note, ofcourse, that in actual forecasts with the model, assumptions 
have to be made about the future values of the ratios. 

The last identity of the second type is Eq. 57: 

57. BR =--g&f,, 

where BR is the level ofbank reserves, Mh is the net value ofdemand deposits 
and currency of the financial sector, and g, is a “reserve requirement ratio.” 
Data on BR and M6 exist, and y, was constructed as - BR/M,. (Mb is 
negative, since the financial sector is a net debtor with respect to demand 
deposits and currency, and so the minus sign makes g, positive.) ~~ is taken to 
be exogenous. It varies over time as actual reserve requirements and other 
features that affect the relationship between BR and Mb change. 

4.1.3 Treatment of Unobserved Variables 

&wctations 

For the most part 1 have followed the traditional approach in trying to 
account for expectational effects, namely by the use of lagged dependent 
variables (see the discussion in Section 2.2.2). A different approach was 
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followed. however, in trying to estimate real interest rates for use as explana- 
tory variables in a number of the stochastic equations. In order to estimate a 
real interest rate one needs an estimate of the expected rate of inflation over 
the particular period of the interest rate (for example, five years for a five-year 
rate). In the present case four different estimates of the expected rate of 
inflation were tried. Each estimate was taken to be the predicted values from a 
particular regression. For the first regression the actual rate of price inflation 
(Pi) was regressed on its first eight lagged values and a constant. For the 
second regression Pk was regressed on the first four lagged values of four 
variables, a constant, and time. The four variables were Pkitself, the rate of 
wage inflation (ti;j, the rate of change of import prices (PiMj, and a demand 
pressure variable (ZZ). For the third regression the actual rate of wage 
inflation (l$ was regressed on its first eight lagged values and a constant. For 
the fourth regression $was regressed on the same set of variables used for the 
second regression. The four equations are as follows (t-statistics are in paren- 
theses). 

(4.1) Pji= ,458 + ,526 Pi-,+ ,245 Pk->f ,083 Pk_, 
(1.57) (5.47) (2.30) (0.76) 
+ .I78 Pi- ,120 Pk- ,036 Pi,- ,018 Pk, 

(1.65) (1.08) (0.33) (0.17) 
+ ,039 Pk, 

(0.41) 

SE = 1.75. R2= .731. DW = 1.92, 1954II- 1982111 

(4.2) P;Y=-,548 + .0151 tf ,172 Pi-,+ ,187 Pk2 
(1.03) (1.80) (1.86) (1.98) 
- ,004 Pi,+ .lOO Pi'_,+ ,102 I+& + ,127 ti& 

(0.05) (1.14) (1.73) (2.12) 
+ ,062 I& + ,021 ci& + ,016 PIM-, 

(1.07) (0.36) (0.87) 
+ .050 piM_,+ ,045 Pk- ,030 Pi,w-4 

(2.11) (1.81) (1.41) 
- 41.6 ZZ_, + 23.1 ZZ-,- 1.7 ZZ-, 

(2.61) (0.96) (0.07) 
+ 6.3 ZZ-, 

(0.40) 

SE = 1.39, R2 = ,816, DW = 1.85, 19541- 1982111 
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(4.3) tiJ= 1.78 + ,130 I&-,+ ,150 ti;-,+ .149 I& 
(2.43) (1.40) (1.60) (1.60) 
+ ,084 I&+ ,130 I+&+ .I96 I+&+ ,092 V$-, 

(0.91) ( 1.40) (2.12) (0.99) 
- .206 w,-, 

(2.23) 

SE = 2.49, Rz = ,332, DW = 2.05, 1954II- 1982111 

(4.4) P,=-5.10+ ,011s t+ ,505 Pk-,- ,208 Pk, 
(5.27) (0.65) (1.09) (0.47) 
+ ,544 Pi, - .007 Pk, - ,080 ti’-l - ,131 cc;_, 

(1.54) (0.03) (0.84) (1.24) 
- .062 ti&- ,124 I+$,- ,041 PIK, 

(0.53) (1.15) (1.43) 
+ ,060 ph_,- ,030 hf._, + .020 Ph-, 

( 1.64) (0.72) (0.49) 
- 26.1 ZZ-, + .7 ZZ..- 1.0 ZZ_, 

( 1 .OO) (0.02) (0.02) 
- 6.5 ZZ-, 

(0.22) 

SE = 2.18, R2 = ,472, DW = 1.96, 19541- 1982111 

Let Pk denote the predicted value from either the first or second equation, 
and let @denote the predicted value from either the third or fourth equation. 
Ifthese predicted values are taken to be expected values, then an estimate of a 
real interest rate is the nominal rate minus the particular predicted value. For 
example, RSA - PX” or RSA - k? is an estimate of the real after-tax short- 
term interest rate, where RSA is the nominal after-tax short-term interest rate. 
Similarly, RMA - Pk or R.WA - L@ is an estimate of the real after-tax 
mortgage rate, where MA is the nominal after-tax mortgage rate. 

This treatment of expectations is somewhere in between the simple use of 
lagged dependent variables of the traditional approach and the assumption 
that expectations are rational. The expectations are not rational because 
(4. I)-(4.4) are not the equations that the model uses to explain actual wages 
and prices. The equations are, however (especially Eqs. 4.2 and 4.4), more 
sophisticated than the simple geometrically declining lag implicit in the 
traditional approach. and thus the expectations are based on somewhat more 
information. 
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The real interest rate was always entered linearly as an explanatory variable 
in the estimated equations, and therefore any error made in estimating the 
level of the expected inflation rate that is constant across time is merely 
absorbed in the estimate of the constant term. This approach does, however, 
have the problem of not distinguishing between short-term and long-term 
expected rates of inflation. The same expected inflation variable is subtracted 
from both the short-term rate and the long-term rates. This is a good example 
of a situation in which less structure is imposed on the expected rates than 
would be imposed by the assumption of rational expectations, where the 
expected inflation rates would in general differ by length of period (since the 
model would in general predict this). 

The attempt to find real interest rate effects in the empirical work is 
consistent with the theoretical model. Although no mention was made of real 
interest rates in Chapter 3, their effects are in the model. Consider, for 
example, the household’s maximization problem. The household’s response 
to an interest rate change will be different if, say, the price level in periods 2 
and 3 is expected to change than if it is not. Likewise, a firm’s response to an 
interest rate change is a function of what it expects future prices to be. 

Labor Constraint Variable,for the Household Sector 

An important feature of the theoretical model is the possibility that house- 
holds may at times be constrained in how much they can work. This possible 
constraint poses a difficult problem for empirical work because the con- 
straints are not directly observed. The approach that I have used is the 
following. 

Let CWN denote the expenditures on services that the household sector 
would make if it were not constrained in its labor supply, and let CS denote 
the actual expenditures made, where CS is observed. Assume that one has 
specified an equation explaining CSC’N, that is, an equation explaining the 
unconstrained decision: 

(4.5) CSON =fl. .). 

Assume that all the variables on the RHS of this equation are observed. If the 
household sector is not constrained, then CS equals CWN, and there is no 
problem. Ifthe household sector is constrained, then CSis less than CWNif, 
as in the theoretical model, binding labor constraints cause the household 
sector to consume less than it would have consumed unconstrained. If one 
can find a variable, say Z, such that 
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F;g:igurc 4-I Desired shape of the labor constraint variable (Zj as a function of the 
measure of labor market tightness (LMT) 

(4.6) cs = CXN + yz, Y > 0, 

then one has immediately from (4.5) and (4.6) an equation in observed 
variables. The problem of accounting for the constraint is thus reduced to a 
problem of finding a variable Z for which the specification in (4.6) seems 
reasonable. 

The variable Z should take on a value of zero when labor markets are tight 
and households are not constrained and a value less than zero otherwise. 
When the variable is less than zero. it should be a linear function of the 
difference between the constrained and unconstrained decision values ofthe 
household sector. Let LMTdenote some measure of labor market tightness. 
The desired shape of Z as a function of LMTis presented in Figure 4- I. Point 
A is some value that is larger than the largest value of LMTthat is ever likely 
to be observed, and point B is the value of LMT above which it seems 
reasonable to assume that the household sector is not constrained. An 
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approximation to the curve in Figure 4-1 that was used in the empirical work 
is the following: 

(4.7) 
A Z=,-_ 

LMT 

Z is zero when LMTequalsA, and it is minus infinity when LMTequals zero. 
There are a number of measures of labor market tightness that one might 

consider in the construction of Z. One obvious possibility is I - UR, where 
C’R is the unemployment rate. In the present case, however, a different 
measure was used, which is a detrended ratio of total hours paid for in the 
economy to the total population age 16 and over. This measure is defined by 
Eqs. 95 and 96 in Table A-5. Equation 95 determines the actual ratio (JJ), and 
Eq. 96 determines the detrended ratio (JJ*). (The coefficient-.00083312 in 
Eq. 96 is the estimate of the coefficient oft in the regression of log JJ on a 
constant and I for the 1952I- 1982111 period.) Which measure oflabor market 
tightness to use is largely an empirical question; I have found that JJ* gives 
slightly better results than does I - UR. The results are not, however, very 
different, and an example of the use of 1 - UR instead of JJ* for the 
household sector is presented near the end ofthis section. The value of.4 that 
was used for JJ* in (4.7) is 337.0, which is slightly larger than the largest value 
of JJ* observed in the sample period. Equation (4.7) with this value of A is 
Ea. 97 in the model. 

Demand Pressure Variables 

In the theoretical model a firm’s price and wage decisions are a function. 
among other things. of its expectations of the current and future demand 
curves for its goods and of the current and future supply curves of labor that it 
faces. These expectations are in turn a function, among other things, of lagged 
values of the demand for the firm’s goods at the prices that it set and of the 
supply of labor that it received at the wage rates that it set. For the empirical 
work one needs some way of accounting for these demand and supply effects 
on prices and wages. A number of “demand pressure” variables were tried in 
the estimation ofthe price and wage equations. One might expect there to be a 
nonlinear relationship between demand and prices in the sense that as 
demand pressure rises, prices rise at an ever-increasing rate, and therefore a 
number of nonlinear specifications were tried. However, the data do not 
appear to be capable of distinguishing among different functional forms and 
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demand pressure variables, and in the end two very simple variables were 
used, one in the price equation and one in the wage equation. 

The demand pressure variable for the price equation, denoted ZZ, was 
taken to be 

(4.8) 
zz = GNPR * - GNPR 

GNPR* ’ 

where GNPR* is an estimate of a high activity level of GNPR. (GNPR is real 
GNP.) GNPR* was constructed from peak-to-peak interpolations of GNPR. 
The peak quarters are presented in Table A-4. ZZ is simply the percentage 
difference between the high activity level of Gh’PR and the actual level. 
Equation (4.8) is Eq. 98 in Table A-5. The demand pressure variable for the 
wage equation was taken to be the civilian unemployment rate (UR): 

(4.9) 
u 

“= L1 +L2+L3-J,,’ 

Equation (4.9) is Eq. 87 in Table A-5. 

Measuremenf ~f’E.xcess Labor and Excess Capital 

In the theoretical model the amounts of excess labor and excess capital on 
hand have an effect on the decisions of the firm, particularly the investment 
and employment decisions. In order to test for this in the empirical work, one 
needs some way of estimating the amount of excess labor and excess capital 
on hand in each period. This in turn requires some way of estimating the 
technology of the firm sector. 

Consider first the estimation of the capital stock and the postulation of a 
production function. The capital stock was constructed to satisfy the follow- 
ing equation: 

(4.10) KK = (1 - &)KK_, + IK/, 

where KK is the capital stock of the firm sector and K, is gross investment. 
The measurement of& is discussed in Appendix A. The production function 
is postulated to be one of fixed proportions: 

(4.11) Y = min[,I( J/H?‘), ,u(KK HfK)], 

where Y is production, J, is the number of workers employed, Hj is the 
number of hours worked per worker, KK is the capital stock given above, HfK 
is the number of hours each unit of KKis utilized, and a and@ are coefficients 
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that may change over time due to technical progress. The variables Y, Jib, and 
KKare observed; the others are not. 

Equations (4.10) and (4.11) are not consistent with the putty-clay technol- 
ogy ofthe theoretical model; they are at best only good approximations. Each 
machine in the theoretical model wears out after m periods, but its productiv- 
ity does not lessen as it gets older. Consequently, even if there were only one 
type of machine ever in existence, (4.10) would not be true. Rather, 
KK - KK, would equal IK,- IK,-,. where 1K,-, is the number of ma- 
chines that wear out at the beginning of the period. It is also the case that no 
technical change was postulated in the theoretical model, but even ifit were, it 
would not enter in the way specified in (4.11); it would take the form of 
machines having different i, and p coefficients according to when they were 
purchased. One could not write down an equation like (4. II) but instead 
would have to keep track ofwhen each machine was purchased and what the 
coefficients were for that machine. This kind of detail is clearly not possible 
with aggregate data, and therefore one must resort to simpler specifications. 

Given the above production function, excess labor was measured as fol- 
lows. Output per paid-for worker hour, Y/(J,H,), was first plotted for the 
1952I- 1982111 period. (Data on hours paid for, H,, exist, whereas data on 
hours worked, Hj, do not.) The peaks of this series were assumed to corre- 
spond to cases in which the number of hours worked equals the number of 
hours paid for, which implies that values of 1 in (4.1 I) are observed at the 
peaks. The values ofJ, other than those at the peaks were then assumed to lie 
on straight lines between the peaks. Given an estimate of ?, for a particular 
period and given the production function (4.1 I), the estimate of the number 
of worker hours required to produce the output of the period (denoted 
JHMN) is simply Y/L (This is Eq. 94 in Table A-5.) The actual number of 
worker hours paid for can then be compared to JHMN to measure the 
amount of excess labor on hand. The exact form that this comparison takes in 
the model is discussed in Section 4.1.5. The peaks that were used for the 
interpolations are listed in Table A-4 under the description of 1. 

With respect to the measurement of excess capital, there are no data on 
houn paid for or worked per unit of KK, and thus one must be content with 
plotting Y/KK. This is, from the production function (4.1 I), a plot offlH$? 
where HfKis the average number of hours that each machine is utilized. If it is 
assumed that at each peak ofthis series HFK is equal to the same constant, say 
@, then one observes at the peaksfl??. Interpolation between peaks can then 
produce a complete series on$?. If, finally, His assumed to be the maximum 
number of hours per period that each unit of KKcan be utilized, then Y/@) 
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is the minimum amount ofcapital required to produce Y (denoted K‘XIN). 
(This is Eq. 93 in Table A-5.) The peaks that were used for the interpolations 
are listed in Table A-4 under the description ofn??. 

4.1.4 Stochastic Equations for the Household Sector 

The two main decision variables of a household in the theoretical model are 
consumption and labor supply. The determinants of these variables include 
the initial value of wealth and the current and expected future values of the 
wage rate, the price level, the interest rate, the tax rate, and the level oftransfer 
payments. The labor constraint also affects the decisions if it is binding. The 
aim of the econometric work is to match the decision variables and the 
determinants of the variables to observed aggregate variables and then to 
estimate equations explaining the aggregate variables. 

Expenditures of the household sector have been d&aggregated into four 
types: consumption of services (CS), consumption of nondurable goods 
(CN), consumption of durable goods (CD), and investment in housing (IHhj. 
Four labor supply variables have been used: labor force of prime-age males 
(Ll), labor force of prime-age females (L2), labor force ofall others (L3), and 
the number of people holding more than one job, called “moonlighters” 
(L&f). These eight variables are determined by eight estimated equations. 

The explanatory variables that were tried for each equation are the follow- 
ing: (I) the initial value ofwealth (AA_,); (2) the after-tax wage rate (fK4); (3) 
the price of the particular good in the case of the expenditure equations and a 
price index of all the goods in the case of the labor supply equations (PCS, 
PCN, PCD, PIH, or PA); (4) the after-tax short-term and long-term interest 
rates, either nominal (RSA, MA) or real (RSA or RMA minus an estimate of 
the expected rate of inflation, where the latter uses the predicted values Pk 
from Eq. 4.1 or 4.2 or the predicted values f@ from Eq. 4.3 or 4.4); (5) 
nonlabor income (YN or YTR); (6) the labor constraint variable (Z); and (7) 
the lagged dependent variable. 

The Searching Procedure 

Much searching was done in arriving at the final estimated equations for the 
household sector. With respect to functional forms, both the linear and 
logarithmic forms of the equations were tried, and the decision was made 
fairly early in the process to use the linear form. In general the log form led to 
fewer significant coefficient estimates than did the linear form, and this was 
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the main reason for dropping it. The results were, however, quite similar 
using both forms, and the main conclusions regarding the household sector 
would not be changed if the log form were used. All the equations were 
estimated in per-capita terms for both forms. 

A basic set of explanatory variables was first tried for each equation. A 
numberofchanges from this set were then made to see ifimprovementscould 
be found. The changes consisted of (1) trying each explanatory variable lagged 
one quarter rather than unlagged, (2) replacing YN, which was in the basic set, 
with YTR to see which nonlabor income variable worked better, (3) con- 
straining the wage and price variables to enter the equation as the ratio of the 
wage rate to the price level rather than separately, (4) trying both the 
short-term and long-term interest rates together as well as separately. (5) 
trying both the nominal interest rates and the real interest rates (separately), 
and (6) estimating the equation under the assumption of first-order serial 
correlation of the error term. All this searching was done using the 2SLS 
technique. If in the process a particular variable in an equation continually 
had the wrong sign, it was finally dropped from the specification. With a few 
exceptions, the same was also true for variables that were of the right sign but 
had r-statistics less than one in absolute value. 

This searching did not result in very many examples in which a variable was 
significant but of the wrong sign. Had this been true, I would probably not 
have stopped when I did but instead would have examined the theory and the 
data further. In order to give the reader a feeling for the kinds ofequations that 
were rejected, some examples will be given later after the basic equations have 
been presented. 

Special Treatment of Housing Investment 

Before the estimated equations are presented, the special treatment of hous- 
ing investment must be noted. Housing investment poses a problem with 
respect to the links from the theoretical model to the econometric specifica- 
tions because the theoretical model is not set up to handle investment goods 
for a household. If consumption of housing services is proportional to the 
stock of housing, the variables from the theoretical model that affect con- 
sumption can be taken to affect the housing stock. If, however, the actual 
housing stock only adjusts slowly to some desired stock, this use of the 
theoretical model is incomplete; one needs in addition to specify the lagged 
adjustments. The following specification, which seems to give reasonable 
results_ was used for this purpose. 



116 Macroeconometric Models 

Let KH** denote the “desired” stock of housing. Ifhousing consumption is 
proportional to the housing stock, then the determinants of consumption can 
be assumed to be the determinants of KY**: 

(4.12) KH** =f(. .), 

where the arguments offare the determinants of consumption from the 
theoretical model. Two types of lagged adjustment were postulated. The first 
is an adjustment of the housing stock to its desired value: 

(4.13) KH* - KH_, = A(KH** - KH-J. 

Given (4.13), “desired” gross investment is 

(4.14) iH,* = KH* - (I - S,,)KH- , , 

where S,, is the depreciation rate. By definition ZH, = KH - ( 1 - J,,)KH_ , , 
and (4.14) is merely the same equation for the desired values. The second type 
of adjustment is an adjustment of gross investment to its desired value: 

(4.15) lH,-IH,~,=rfIHn*-IH~_,) 

Combining (4.12)-(4.15) yields: 

(4.16) IHh = (I - Y)IH+~ + y(&, - A)KH_, + yAf(?f(. .). 

This treatment thus adds to the housing investment equation both the lagged 
dependent variable and the lagged stock of housing. Otherwise, the explana- 
tory variables are the same as they are in the other expenditure equations. 

This treatment is an example of the ad hoc nature oftheory with respect to 
lagged adjustments. “Extra” theorizing is involved in the specification ofthe 
housing investment equation, and the specification is not derived from the 
assumption of maximizing behavior. 

In the empirical work, (4.16) was estimated in per-capita terms. In particu- 
lar. IH, was divided by POP, and IHA_ I and KH- I were divided by POP-, , 
where POP is population. If (4.12)-(4.15) are defined in per-capita terms. 
where current values are divided by POP and lagged values are divided by 
POP_, , then the present per-capita treatment of (4.16) follows. The only 
problem with this is that the definition that was used to justify (4.14) does not 
hold if the lagged housing stock is divided by POP-, All variables must be 
divided by the same population variable in order for the definition to hold. 
This is, however, a minor problem. and it has been ignored. The alternative 
treatment is to divide all variables in (4.16) by the same population variable, 
say POP, but this is inconvenient to work with. 
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The Final Eight Consumption and Labor Supply Equations 

All estimates presented in this chapter are two-stage least squares (2SLS) 
estimates if the equation contains RHS endogenous variables and ordinary 
least squares (OLS) estimates if it does not. Chapter 6 contains a discussion of 
all the estimates that have been obtained for the model; it also contains (in 
Table 6- 1) a list of the first-stage regressors that were used for each equation 
for the 2SLS technique. The estimation period was 19541- 1982111 (I 15 
observations) for all equations except Eq. 15, where the period was 19561- 
1982111(107 observations). 

The final consumption and labor supply equations that were chosen are as 
follows: 

CS 
1. -= .000188 + .986 = 

‘*’ (0.06) ( ) (61.48) ‘*’ -I 

+ .0198 Ff’A + .00714 
YN 

POP. Pn 
- .00126 RS.4 

(2.07) (0.36) (5.87) 
+ .0231 Z 

(1.92) 

SE = .00190, R2 = .999, DW = 2.45 

2. 

+ ,185 WA - .0469 PCN+ .0637 
YN 

(2.48) (2.16) (2.14) 
POP. Ph 

- .000610 RSA + .0829 Z 
(1.05) (3.54) 

SE = .00315, R2 = ,994, DW = 1.58 

3. 
CD 

-= .073.5 + .458 
pop (3.57) (5.95) 

+ ,405 WA - .104 PCD+ ,066s 
YTR 

(4.08) (3.12) (1.19) 
POP P,, 

-.00617RMA+ ,123 Z 
(7.96) (3.38) 

SE = .00445, R2 = ,989, DW = 1.77 
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4. s= .0650 + ,738 (s)_, -;;f5; (E)_, 
‘*’ (3.89) (9.86) 

+ .I59 WA_, - .0178 PIH_, 
(2.61) (1.88) 

SE = .00243, R’= .958, DW = 2.09,; = Xl 
(4.65) 

5. 
L1 

-= .230 + .769 (&)_, - ;;J;; (p;p,)_, 
“” (3.67) (12.20) 

6. 

SE = .00200, RZ = ,972, DW = 2.25 

L2 
-= 
‘Op2 

.0605 + ,832 + ,160 WA - .0200 P,, 
(3.75) (17.98) (3.77) (2.95) 

+ .0364Z 
(2.86) 

SE = .00294, R? = ,999, DW = 2.14 

7. 

8. 

L3 
-= ,133 + ,782 
‘Op3 (5.02) (17.53) 

+ .0930 bYA - .0318 Ph + .0738 2 
(4.14) (4.25) (4.81) 

SE = .00258, R2 = ,907, DW = 1.96 

LM _= .0150 + ,634 
‘Op (7.17) (11.96) 

+ .00676 WA_, 
(0.90) 

- 00374 Ph_, + .0580 z 
(1.48) (6.40) 

SE= .00149, R2 = ,865, DW = 1.95 

It will be useful in discussing these results to consider the effects of each 
explanatory variable across the eight equations. (1) The results for the asset 
variable (AA/POPj_, aregood in the sense that this variable is significant in all 
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four of the expenditure equations. It is significant (and of the expected 
negative sign) in one of the four labor supply equations. (2) The wage rate and 
price variables are significant in all four expenditure equations with the 
exceptions of the housing investment equation, where the t-statistic for the 
price variable is 1.88, and the consumption of services equation, where the 
price variable was dropped because of the wrong sign. The wage and price 
variables appear in three ofthe four labor supply equations and are significant 
in two of these three. (3) With respect to the interest rate variables, the 
short-term rate is in the first two equations and the long-term rate is in the 
third and fourth equations. The coefficient estimates are significant except for 
the estimate in Eq. 2, where the t-statistic is 1.05. (4) The results for the 
nonlabor income variables are not very strong. The YN variable (total 
nonlabor income) appears in the expenditure equations 1,2, and 4, but with 
t-statistics of only 0.36, 2.14, and 0.99. It also appears in one labor supply 
equation (Eq. 5), with the expected negative sign and with a t-statistic of 3.56. 
The YTR variable (transfer payments) appears in expenditure equation 3, 
with a t-statistic of 1.19. (5) The labor constraint variable (Z] appears in three 
expenditure equations and three labor supply equations. It is significant in all 
but equation 1, where the t-statistic is I .92. 

With respect to the housing investment equation, the implied value of y in 
(4.15) is I - ,738 = .262, which says that the adjustment ofgrossinvestment 
to desired gross investment is 26.2 percent per quarter. Given this estimate 
and given the value of S,, of .00655, which was used to construct KH and 
which is the value used in the model, the implied value of ,l in (4.13) is .066. 
This says that the adjustment of the housing stock to its desired value is 6.6 
percent per quarter. 

In general, these results seem fairly supportive of the theory. With the 
exception of the nonlabor income variables, the variables that one would 
expect from the theory to influence household expenditures and labor supply 
are significant in most of the equations. With respect to the equations 
themselves, the weakest results are for Eq. 5, which explains the labor force 
participation of prime-age males. Most prime-age males work, and their 
participation does not seem to be much affected by economic variables, with 
the possible exception of nonlabor income. 

0th~ Rtwl~sfrom the Searching Procedure 

In the process of searching for the final equations to be used in the model, one 
gets a feeling for what the data do and do not support. This information is not 
always conveyed to the reader by merely presenting the final set of equations; 
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it is sometimes helpful to present a few of the intermediate results. This will 
now be done regarding the results for the household sector. 

1. The results are not sensitive to the use of JJ* as the measure of labor 
market tightness in the construction of the labor constraint variable 2. Very 
similar results were obtained using 1 - UR as the measure of labor market 
tightness and defining Z to be 1 - .975/( 1 - UR), where ,975 is slightly larger 
than the largest value of 1 - LJR in the sample period. Consider, for example, 
the first three equations. The t-statistics for 2 defined the new way were I .91, 
3.40, and 3.29, which compare to 1.92, 3.54, and 3.38 above. The SEs were 
.00189, .00318, and .00435, which compare to .00190, .00315, and .00445 
above. It is clear that there is little to choose between the two measures, or to 
put it another way, the data cannot be used to decide between the two. 

2. The data do not support the use of real interest rates in the expenditure 
equations. One way to test for the effects of real interest rates is to include the 
nominal interest rate and the expected rate of inflation as separate explana- 
tory variables. If the real interest rate is the correct variable to use, the 
coefficient estimate of the expected rate of inflation variable should be of 
opposite sign and equal in absolute value to the coefficient estimate of the 
nominal interest rate variable. To test for this, the four estimates of the 
expected rate of innation that were discussed in Section 4. I .3 were added (one 
at a time) to the four expenditure equations. For 10 of the 16 cases the 
coefficient estimate of the expected rate of inflation was of the wrong (nega- 
tive) sign, and for the 6 cases in which it was of the tight sign the largest 
(-statistic was only 0.52. In the 6 cases in which the signs were right, the sizes of 
the estimates were much smaller in absolute value than the sizes of the 
estimates of the coefficient of the nominal interest rate, and the other coeffi- 
cient estimates in the equations changed very little. Two of the 12 negative 
estimates were significant, with t-statistics of 2.09 and 2.16. Use ofthe actual 
rates of inflation in place of the expected rates led to similar poor results. 

It is clear that these results do not support the use of real interest rates in the 
expenditure equations. These negative results may be due, ofcourse, to poor 
estimates of the expected rate of inflation. It may be, for example, that better 
estimates would be obtained under the assumption that expectations are 
rational, and until further work is done, these negative results are very 
tentative. 

3. The data do not support the treatment ofconsumerdurable expenditures 
as investment expenditures. When KD_,/PUP_, was added to Eq. 3, its 
coefficient estimate was unreasonably small (-.00968 with a t-statistic of 
2.23). Under the assumption that the treatment of housing investment 
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discussed earlier also pertains to consumer durable expenditures, the implied 
value of I in (4.13) from this regression is ,072. (The coefficient estimate of 
CD-,/POP-, was ,525, and the value of the depreciation rate, Jo, is .05 15.) 
This says that the adjustment of the stock of durable goods to its desired value 
is 7.2 percent per quarter, which is only slightly larger than the 6.6 percent 
figure obtained for the housing stock. Given what seemed to be an unreason- 
ably low value of I., the decision was made to treat consumer durable 
expenditures like expenditures on services and nondurables. 

4. The data provide mild support for the use ofthe after-tax wage rate rather 
than the before-tax wage rate in the equations. The wage rate variable that is 
used, WA, is equal to w,Q, where Q = (1 - dg - d% - d4, - d4,). (This is 
Eq. 126 in Table A-5.) W, is the before-tax wage rate. d$ and &are marginal 
personal income tax rates, and d4, and d,, are employee social security tax 
rates. To test that the appropriate wage rate variable is W,Q rather than 
merely W,, the wage rate variable can be included in the form czI+‘,,@, where 
i, is a coefficient to be estimated along with the regular coefficient (Y. If the 
after-tax wage rate is the correct variable to use, the estimate of i should be 
close to I, and if the before-tax wage rate is correct, the estimate of J, should be 
close to 0. 

When ,I is estimated, the equation is nonlinear in coefficients. The estima- 
tion of such equations is discussed in Chapter 6. For the present results the 
2SLS technique was used. The estimates of A for the four expenditure 
equations were 2.8, 2.6, 0.3, and 0.7, with standard errors of the respective 
coefficient estimates of 2.12,0.86,0.58, and 1.00. (There is some collinearity 
between the estimates of 01 and 2. The f-statistics for the estimates of LY 
changed from 2.07, 2.48, 4.08, and 2.61 to 0.91, 3.48, 2.78, and 2.09 
respectively when A was estimated rather than constrained to be 1. Except for 
the second equation, the t-statistics are lower in the unconstrained case.) One 
estimate of J. is significantly different from 0, and none are significantly 
different from 1. Although the estimates are obviously not precise, three ofthe 
four estimates are closer to I than to 0, and thus the results provide at least 
some support to the use of the after-tax wage rate. 

5. The data again provide mild support for the use ofthe after-tax interest 
rates rather than the before-tax rates. The interest rate variable that is used in 
Eqs. 1 and 2, RSA, is equal to RS . Q, where Q = (1 - &g - &). (This is Eq. 
127 in Table A-5.) RSis the before-tax short-term rate. When the interest rate 
variable was included in these two equations as c&S @, the estimates of J. 
were -2.6 and 2.5, with standard errors of the coefficient estimates of 4.35 
and 11.72. The interest rate variable that is used in Eqs. 3 and 4, RMA. is 
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equal to RM. Q. (This is Eq. 128 in Table A-5.) RM is the before-tax 
mortgage rate. When the interest rate variable was included in the two 
equations as c&M . @, the estimates of i were 3.0 and 4.6, with standard 
errors of the coefficient estimates of 1.75 and 1.90. There is again some 
collinearity between the estimates of (Y and A, and the estimates of J, are not 
precise. One of the four is significantly different from 0, and none are 
significantly different from 1. Given that three ofthe estimates are closer to 1 
than to 0, there is some support for the use ofthe after-tax interest rates. The 
support here is weaker than it was in the wage rate case because the estimated 
standard errors of 2 are larger. 

6. It should also be noted with respect to the treatment of taxes that the 
nonlabor income variable, Y! is after-tax nonlabor income (Eq. 88). This 
treatment is again in keeping with the theoretical model. Given that the 
results using YN were not very good, no tests of this variable versus a 
before-tax version were made. It seemed quite unlikely that the data would be 
able to discriminate between the two. 

The Demand-for-Money Equation 

The final estimated equation for the household sector is a demand-for-money 
equation: 

9. Mh 
log POP Ph 

=.o*97-.~~~~t+(;~~~~)*oB(~~l’h)-’ 
(3.63) 

SE = .0140. R2 = .970, DW = 2.07 

This is a standard demand-for-money equation in which the per-capita 
demand for real money balances of the household sector, A4,/(POP PJ, is a 
function of per-capita real income, YT/(POP . P,J, and the after-tax short- 
term interest rate, RSA. A time trend has been added to the equation to 
account for possible trend changes in the relationship. This equation is 
consistent with the theoretical model, where the optimal level of money 
holdings of the household is a negative function of the interest rate. 

Summar~~ and Further Discussion 

The following paragraphs provide a summary of the general features of the 
empirical model of household behavior. Not surprisingly, these features are 



An Econometric Model 123 

similar to the general features ofthe theoretical model in Section 3.1.2, since 
the empirical model was constructed with this similarity in mind. The reader 
should keep in mind in the following discussion that the smaller the labor 
constraint, the larger is the labor constraint variable. 

1. Household expenditures respond to the following variables: the after-tax 
wage rate (+), the price level (-), the after-tax short-term or long-term interest 
rate (-), after-tax nonlabor income (+). the initial value of wealth (+), and the 
labor constraint variable (+). 

2. Labor supply responds to the following variables: the after-tax wage rate 
(+). the price level (--), after-tax nonlabor income (-), the initial value of 
wealth (-). and the labor constraint variable (+). 

3. A decrease in tax rates (the marginal personal income tax rate and the 
employee social security tax rate) increases expenditures through the wage 
rate and nonlabor income variables. A decrease in tax rates also decreases 
expenditures through the interest rate variables. (A decrease in tax rates, other 
things being equal, raises the after-tax interest rate, which has a negative effect 
on expenditures.) The net effect of a decrease in tax rates is thus ambiguous, 
although it will be seen when the quantitative properties of the model are 
examined in Section 9.4 that the net effect is positive. Labor supply responds 
to a decrease in tax rates positively through the wage rate variable and 
negatively through the nonlabor income variable. It will be seen that the 
positive effect dominates in the model. 

4. Transfer payments are part of nonlabor income, and thus an increase in 
transfer payments has a negative effect on labor supply. Therefore, a decrease 
in net taxes through an increase in transfer payments has a negative effect on 
labor supply, whereas a decrease in net taxes through a decrease in tax rates 
has a positive effect. 

5. An increase in interest rates has a negative effect on expenditures, which, 
other things being equal, has a positive effect on the household savings rate 
(SR). The savings rate is thus indirectly a positive function of interest rates. 

6. An increase in the savings rate increases wealth (AAj, which in turn 
increases expenditures (with a lag of one quarter). The increase in expendi- 
tures in turn decreases the savings rate. There is thus a tendency for a change 
in the savings rate to reverse itself over time because of the effects ofthe wealth 
variable on expenditures. 

7. The labor constraint variable is a nonlinear function of hours paid for. 
When labor markets are tight, this variable has very little effect on expendi- 
tures (since its value is close to zero). This is the unconstrained case in which 
consumption and labor supply decisions are simply a function of wage rates, 
prices, interest rates, nonlabor income, and wealth. When labor markets are 
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loose and households are constrained in their labor supply decisions, the labor 
constraint variable has an effect on expenditures. Because it is a function of 
hours paid for, its inclusion in the equations means that income is on the RHS 
of the equations in the form of separate wage-rate and hours-paid-for vari- 
ables when the constraint is binding. In the constrained case the expenditure 
equations are thus closer than otherwise to typical consumption equations in 
which income is an explanatory variable. 

8. The labor constraint variable also enters the labor supply equations. 
Three ofthe labor supply variables are labor force participation variables, and 
therefore the inclusion of the labor constraint variable in these equations 
means that labor force participation is predicted to be less in loose labor 
markets than in tight labor markets. This effect is sometimes called the 
“discouraged worker” effect. Given the functional form of the labor con- 
straint variable, this effect is close to zero when labor markets are tight. 

4.1.5 Stochastic Equations for the Firm Sector 

Sequential Appmximation to the Joint Decisions 

The maximization problem of a firm in the theoretical model is fairly 
complicated, which is partly a result ofthe large number ofdecision variables. 
The five main variables are the firm’s price, production, investment, demand 
for employment, and wage rate. In the theoretical model these five decisions 
are jointly determined, that is, they are the result of solving one maximization 
problem. The variables that affect this solution include(I) the initial stocks of 
excess capital, excess labor, and inventories, (2) the current and expected 
future values of the interest rate, (3) the current and expected future demand 
schedules for the firm’s output, (4) the current and expected future supply 
schedules of labor facing the firm, and (5) expectations of other firms’ future 
price and wage decisions. 

The theoretical model of firm behavior is more difficult to handle empiri- 
cally than is the theoretical model of household behavior, and, as will be seen, 
the links from the theory to the econometric specifications are weaker for 
firms. One of the key approximations that was made was to assume that the 
five decisions of a firm are made sequentially rather than jointly. The 
sequence starts from the price decision and then goes to the production 
decision, to the investment and employment decisions, and finally to the 
wage rate decision. In this way of looking at the problem. the firm first chooses 
its optimal price path. This path then implies a certain expected sales path, 
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from which the optimal production path is chosen. Given the optimal 
production path, the optimal paths of investment and employment are 
chosen. Finally, given the optimal employment path, the optimal wage path is 
chosen, which is the path that the firm expects is necessary to attract the 
amount of labor implied by its optimal employment path. 

Seven observed variables were chosen to represent the five decisions: ( 1) the 
price level of the firm sector (P,), (2) production (Y), (3) investment in 
nonresidential plant and equipment (ZK,), (4) the number ofjobs in the firm 
sector (J/I, (5) the average number ofhours paid perjob (HJ, (6) the average 
number of overtime hours paid per job (HO), and (7) the wage rate ofthe firm 
sector (I+,). 

A Constraint on the Behavior of the Real Wage 

Before the estimated equations are discussed, a constraint that was imposed 
on the relationship between the nominal wage rate (W,J and the price level 
(P,) needs to be explained. It does not seem sensible for the real wage rate 
(W//PI) to be a function of either W/or P’separately, and in order to ensure 
that this not be true, a constraint on the coefficients of the price and wage 
equations must be imposed. The relevant parts of the two equations are 

(4.17) logP,=/3,logPf-, +/&log W/f . , 

(4.18) logW,=‘i,logw~_,+y,logP,+y,logP,-,+. 

From these two equations, the reduced form equation for the real wage 
(ignoring the other endogenous variables in the two equations) is 

(4.19) log w,- log P,= ’ 
1 - 82)12 

Y,( 1 - P&g w, ! 

_ * _>*&[PIU - YJ - Ydl --/$.)I 1% q-1 

+ 
In order for the real wage not to be a function ofthe wage and price levels, the 
coefficient of log I+, in (4.19) must equal the negative of the coefficient of 
log P,_, This requires that 

(4.20) O=(r1 +Y,)(l -P2)-P,(i -Y2). 

This restriction was imposed in the estimation of the model. (The imposition 
of coefficient restrictions within the context of the various estimation tech- 
niques is discussed in Chapter 6.) 
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The Price and Wage Equations 

The main variables that affect the solution of a firm’s maximization problem 
in the theoretical model were mentioned at the beginning of this section. The 
empirical work for the price and wage equations consisted of trying these 
variables, directly or indirectly, as explanatory variables. Observed variables 
were used directly, and unobserved variables were used indirectly by trying 
observed variables that seemed likely to affect the unobserved variables. 

As noted in Section 4.1.3: a number of demand pressure variables were 
tried in the price and wage equations. In the end the decision was made simply 
to use ZZ in the price equation and UR in the wage equation. The results of 
trying other variables are discussed later in this section. 

It was argued in Section 3.2.3 that import prices are likely to affect domestic 
prices, and therefore the import price index (PIM) was tried in the price 
equation. With respect to accounting for the effects of expectations of other 
firms’ price decisions on actual price decisions, the main variable that was 
tried was simply the lagged price level. It is difficult to think of variables that 
may help capture the effects of expectations of future price decisions on 
current decisions. The lagged price level is obviously one possibility; another 
is the wage rate. If wages are high, this may lead firms to expect prices to be 
high in the future, which may then affect their current price decisions. It is 
somewhat unclear whether one should use the current wage rate or the lagged 
wage rate in the price equation. Given that the data in the model are 
quarterly, some of the data on wages within the quarter may be used by firms 
in setting prices within the quarter. In the empirical work both the current 
wage rate and the wage rate lagged one quarter were tried; the current wage 
rate gave slightly better results. 

The final equation that was chosen is the following: 

10. log P,= ,187 + ,922 log P,-, + .0339 log Wi(l + d,, + ds,) 
(7.32) (82.62) (6.95) 
+ .0339 IogPIM- .0810 zz_,, 

(8.56) (4.22) 

SE = .00406: R* = ,999, DW = I .46 

where P,is the price level set by the firm sector, IV,is the wage rate, d,, and d5, 
are employer social security tax rates, PIA4 is the import price deflator. and 
ZZ is the demand pressure variable. The price level is a function ofthe lagged 
price level, the wage rate inclusive of employer social security costs. the 
import price deflator. and the demand pressure variable, ZZ. 
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In the empirical work for the wage equation, the lagged wage rate and the 
current and lagged price level were used as proxies for the expectations of 
future wages of other firms. The unemployment rate, UR, was used as a proxy 
for expectations about the labor supply curve. In addition, a time trend was 
added to the equation to account for trend changes in the wage rate relative to 
the price level. The inclusion of the time trend is important, since the time 
trend is essentially the variable that identifies the price equation. Given that 
the demand pressure variable ZZ and the unemployment rate are highly 
correlated, the only variable not included in the price equation that is 
included in the wage equation is essentially the time trend. Another way of 

looking at the wage equation, especially given the restriction (4.20) that is 
imposed on the coefficients ofthe price and wage equations, is that it is a real 
wage equation. 

The estimated wage equation is 

16. log W, = -.423 + ,929 log W,, + ,427 log PA’ 
(3.52) (45.75) 
- ,382 log PX-, + .00067 1 f - .0760 UR. 

(3.50) (4.31) (1.53) 

SE = .00546, R2 = ,999, DW = 2.00 

The wage rate is a function of the lagged wage rate. the current and lagged 
values of the price level, the time trend, and the unemployment rate. The 
price variable that is used in the wage equation is PX rather than P,. PXis the 
price deflator for sales of the firm sector, and P&s the price deflator for sales of 
the firm sector minus farm output. The two deflators are very similar, and for 
purposes of imposing the real wage constraint discussed above, the two were 
taken to be the same. Equation 16 was estimated under the coefficient 
restriction (4.20), where the values used for,& and& are the values estimated 
in Eq. 10. (See Section 6.3.2 for further discussion of this.) The wage equation 
is numbered 16 rather than 11 to emphasize that in the sequential approxi- 
mation to the joint decisions, the wage decision is considered to come last. 

It is possible from the coefficients of Eqs. 10 and 16 to calculate the 
coefficients of the real wage equation (4.19). The lagged dependent variable 
coefficient (that is, the coefficient of log I+>-, - log Pf_I in Eq. 4.19), for 
example, is ,911. When Eq. 16 was estimated without the restriction (4.20) 
impwxl, the lit was essentially unchanged and the coefficient estimates 
changed very little. The unrestricted estimates of the coefficients of log PX 
and log PX- , were .46 1 and - .4 1 I 1 which compare to the restricted estimates 



128 Macroeconometric Models 

of ,427 and -.382. An F test accepted the hypothesis at the 95-percent 
confidence level that the restriction is valid. The F value was 0.12, which 
compares to the critical value of 3.93 (with 1,109 degrees of freedom). 

Movements of the real wage in the model affect the division of income 
between profits and wages. (The level of profits of the firm sector is deter- 
mined by a definition, Eq. 67 in Table A-5. where it is a positive function of 
prices and a negative function of the wage rate.) The coefficient of the current 
price variable in the wage equation is less than one, and thus when. say, the 
price level rises by 1 percent in the quarter, the wage rate rises by less than 1 
percent, other things being equal. A shock to the price level thus means an 
initial fall in the real wage. If, for example, the price of imports (Pl.44) rises by 
1 percent, this will lead to an increase in the price level of .0339 percent in the 
current quarter, but to an increase in the wage rate of only about half this 
amount. An increase in the price of imports thus has a negative effect on the 
real wage. 

The results of searching for the price and wage equations will now be 
discussed. The only searching that was done for the wage equation was to try 
alternative measures ofdemand pressure. The use of I/UR in place of UR led 
to almost identical results. The fits were essentially the same (SE = .00545 
versus .00546 above), and the t-statistic for the coefficient of l/l/R was 1.55, 
which compares to 1.53 above. The use of ZZin place of L’R produced poorer 
results. The I-statistic for the coetlicient of ZZ was only 0.39. The use of log 
(ZZ + .04), which is a nonlinear transformation of ZZ that takes on a value 
of minus infinity when Gh’PR exceeds GNPR * by 4.0 percent, in place of UR 
produced similar results to those for ZZ. The t-statistic for the coefficient of 
log (ZZ + .04) was 0.34. 

More searching was done for the price equation. (Results using the one- 
quarter-lagged values of the demand pressure variables rather than the cur- 
rent values gave better results, and only the results using the lagged values will 
be reported here.) A nonlinear transformation of ZZ_ , , log (ZZ, + a), where 
a is some preassigned number, led to results that were almost identical to 
those using ZZ- , For values of a of .O I, .04, and. 10 the t-statistics were 3.82, 
4.03, and 4.12 respectively, which compare to the value of 4.22 given above 
using ZZ_ I The fits were very close. Three other candidates for the demand 
pressure variable did not lead to significant coefficient estimates. They were 
(1) the initial stock of excess labor on hand, (2) the initial stock of excess 
capital on hand, and (3) the initial ratio ofthe stock of inventories to the level 
of sales. The excess capital variable was closest to being significant, with a 
r-statistic of 1.9 1. 
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The use of UR-, or l/UR_, in place of ZZ-, produced slightly better 
results. The f-statistics were 6.36 and 5.59 respectively, compared to 4.22 for 
ZZ_, , and the fits were somewhat better (SE = .00376 and .00387 respec- 
tively, compared to .00406 above). When UR-, and ZZ- I were both included 
in the equation, UR- I was significant but ZZ- , was not. A similar result was 
obtained when l/UR_ , and ZZ_ I were both included in the equation. In spite 
of these results, I decided to use ZZ- , as the demand pressure variable in the 
price equation. The unemployment rate is more difficult to predict than is 
GNPR (and thus ZZ) because it is more sensitive to errors made in predicting 
the labor force variables. My general experience is that versions of the price 
equation that use an unemployment rate variable as the demand pressure 
variable lead to less accurate predictions of prices within the context of the 
overall model than do other versions. This is true even though the other 
versions may not have as good single-equation fits. These differences are 
generally small, however, and the use of ZZ_, over UR- 1 OT I/ UR- I is not an 
important issue. The results in this book would not be changed very much if 
UR_, or I/UR_, were used instead. 

Two dummy variables were added to the price equation to try to pick up 
possible effects of the price freeze in 197 1 IV and the removal of the freeze in 
19721. One dummy variable had a value of 1 in 197 1 IV and 0 otherwise, and 
the other had a value of 1 in 19721 and 0 otherwise. Neither ofthese variables 
was significant, and their inclusion had little effect on the other coefficient 
estimates. The coefficient estimates were of the expected signs (negative and 
positive, respectively), but the t-statistics were only 0.12 and 1.47. The price 
freeze thus appeared to have too small an effect on P,to be picked up by an 
equation like Eq. 10, and therefore no price freeze variables were used. With 
the current wage rate included in the price equation, the wage rate lagged one 
quarter was not significant. The latter was thus not included in the final 
specification. 

With respect to employer social security tax rates, the tax rates have a 
positive effect on the price level through the W, (1 + dzg + d,,) term in Eq. 10. 
This term is the wage rate inclusive of employer social security taxes. The 
inclusion ofthese tax rates in the price equation means that an increase in the 
rates has a negative effect on the real wage. In other words, at least some ofthe 
increase in employer social security taxes is estimated to be passed along to 
workers in the form of a lower real wage. The inclusion of the social security 
tax rates in the price equation is not supported by the data. When the terms 
log W,and log (1 + ds, + d,,) are included separately in Eq. 10, the estimate 
of the tax variable is significant but of the wrong sign (- ,529 with a I-statistic 
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of 2.66). The main problem is that there is not much variation in the tax rates. 
Poor results are thus not surprising and are not necessarily to be trusted as 
indicating that the tax rates truly do not belong in the equation. The answer to 
this problem here was merely to assume that the tax rates affect the price level 
in the same way that the wage rate does. 

No evidence could be found that profit taxes affect the price level. When, 
for example, the variable log (1 + da + d,,) was added to Eq. IO, its coeffi- 
cient estimate was insignificant, with a t-statistic of 1.21 (da and d*, are the 
corporate profit tax rates). For the same variable lagged one quarter, the 
t-statistic was 1.12. Little evidence could thus be found that firms pass on 
profit taxes in the form of higher prices relative to wages. Again, however, 
there is not much variation in tax rates: so very little confidence should be 
placed on this negative result. Unlike the case for the social security tax rates, 
there is no obvious way to restrict the profit tax rates to enter the price 
equation, and therefore nothing was tried. The model thus has the property 
that a change in profit tax rates does not directly affect the real wage. 

In previous versions of the US model, two cost-of-capital variables were 
included in the price equation, the bond rate RB and an investment tax credit 
variable denoted TXCR. In the theoretical model the interest rate affects the 
firm’s decisions, and in the case of experiment 5 in Table 3-3 an increase in 
the interest rate led the firm to raise its prices in periods 2 and 3. The 
cost-of-capital variables were thus used to see if there was any empirical 
support for the proposition that these variables affect prices. When RB and 
TXCR are included in Eq. 10, they are significant, with t-statistics of 4.69 and 
2.17 respectively. The coefficient estimate of RE is positive (.00249) and the 
coefficient estimate of TXCR is negative (- .00239), both as expected. ( TXCR 
takes on a value of 1.0 when the credit of 7 percent is in full force- 1964I- 
1966111,196711- 19691,and 19711V-1975I;avalueof 1.43whenthecreditof 
10 percent is in force- 197511 on; a value of .5 when the credit of 7 percent is 
estimated to be half in force because of the Long amendment or timing 
considerations- 1962111- 1963IVand 1971111; and0.0 when the credit is not 
in force.) 

With RB included in the price equation, the model has the property that 
high interest rates_ otherthings being equal, are inflationary. A tight monetary 
policy defined as high interest rates has a direct positive effect on prices as well 
as the usual indirect negative effect on prices through the negative effect of 
high interest rates on demand. The direct positive interest rate effect on prices 
in this version is large, and for a number of experiments it dominates the 
indirect negative effect. I finally decided that the effect seems too large, and I 
have dropped the cost-of-capital variables from the price equation. It may be 
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that some left-out variable from the price equation, such as inflationary 
expectations, affects both RB and P,and that RB is spuriously picking up the 
effects of this variable on P,; This decision does have a significant effect on the 
properties of the model, and it should not be taken lightly. If RB actually 
belongs in the price equation, then excluding it has seriously &specified the 
model with respect to a number of policy properties. 

The specification of the production equation is the point at which the 
assumption that a firm’s decisions are made sequentially begins to be used. 
The equation is based on the assumption that the firm sector first sets its price, 
then knows what its sales for the current period will be, and from this latter 
information decides on what its production for the current period will be. 

In the theoretical model production is smoothed relative to sales, that is, 
the optimal production path of a firm generally has less variance than its 
expected sales path. The reason for this is the various costs of adjustment, 
which include costs of changing employment, costs of changing the capital 
stock, and costs of having the stock ofinventories deviate from ,/I, times sales. 
Ifa firm were only interested in minimizing inventory costs, it would produce 
according to the following equation (assuming that sales for the current 
period are known): 

(4.21) y=x+p,x- v-,, 

where Y is the level of production. X is the level of sales, and V-/_, is the stock 
of inventories at the beginning of the period. Since by definition, 
V - V_ I = Y - X, producing according to (4.2 1) would ensure that V = /&X. 
Because ofthe other adjustment costs, it is generally not optimal for a firm to 
produce according to (4.21). In the theoretical model there was no need to 
postulate explicitly how a firm’s production plan deviated from (4.21) be- 
cause its optimal production path just resulted. along with the other optimal 
paths, from the direct solution of its maximization problem. For the empiri- 
cal work, on the other hand, it is necessary to make further assumptions. 

The estimated production equation is based on the following three as- 
sumptions: 

(4.22) v* =/Ix, 

(4.23) Y*=x+C?(l’*- V_J 

(4.24) Y-Y_,==(Y*-Y-J, 
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where * denotes a desired value. Equation (4.22) states that the desired stock 
of inventories is proportional to current sales. Equation (4.23) states that the 
desired level of production is equal to sales plus some fraction of the differ- 
ence between the desired stock of inventories and the stock on hand at the end 
of the previous period. Equation (4.24) states that actual production partially 
adjusts to desired production each period. Combining the three equations 
yields 

(4.25) Y=(1-n)Y_,+A(1+cY~x-AcYv_,. 

The estimated equation is 

11. Y= 11.4 + ,162 Y_,+ 1.011 X- .193 V-‘_, 
(4.36) (3.67) (19.59) (4.44) 
- 2.06 0593 + ,793 0594+ 2.10 0601, 

(1.86) (0.64) (1.89) 

SE = 1.12, R2 = ,999, DW = 2.20,) = .605 
(6.73) 

where 0.593,0594, and 0601 are dummy variables for the 1959 steel strike. 
The implied value of A is 1 - ,162 = .838, which means that actual produc- 
tion adjusts 83.8 percent of the way to desired production in the current 
quarter. The implied value ofcv is ,230, which means that desired production 
is equal to sales plus 23.0 percent of the desired change in inventories. The 
implied value of/?is .898, which means that the desired stock of inventories is 
estimated to equal 89.8 percent of the (quarterly) level of sales. 

No searching was done for the production equation other than to try a few 
strike dummy variables. 

The Investment Equation 

The investment equation is based on the assumption that the production 
decision has already been made. In the theoretical model, because of costs of 
changing the capital stock, it may sometimes be optimal for a firm to hold 
excess capital. If there were no such costs, investment each period would 
merely be the amount needed to have enough capital to produce the output of 
the period. In the theoretical model there was no need to postulate explicitly 
how investment deviates from this amount, but for the empirical work this 
must be done. 

The estimated investment equation is based on the following three equa- 

tions: 
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(4.26) (KK-KK-,)*=cx,,(KK_, -KKMIN_,)+cu,AY+ol,AY_, 
+ a,AY_, + ff,AY-,, 

(4.27) IKF=(KK-KK_,)*+&KK_,, 

(4.28) IK, - IK,- I = %( IK; - IK,_ ,), 

where * again denotes a desired value. IK, is gross investment of the firm 
sector, KKis the capital stock, and KKMINis the minimum amount of capital 
needed to produce the output of the period. (KK - KK_,)* is desired net 
investment, and IK,* is desired gross investment. Equation (4.26) states that 
desired net investment is a function of the amount of excess capital on hand 
and of four change-in-output terms. If output has not changed for four 
periods and if there is no excess capital, then desired net investment is zero. 
The change-in-output terms are meant in part to be proxies for expected 
future output changes. Equation (4.27) relates desired gross investment to 
desired net investment. &KK- I is the depreciation ofthe capital stock during 
period t - 1. By definition, IKi-= KK - KK_ I + &KK_ I, and (4.27) is 
merely this same equation for the desired values. Equation (4.28) is a stock 
adjustment equation relating the desired change in gross investment to the 
actual change. It is meant to approximate cost of adjustment effects. 

Combining (4.26)-(4.28) yields 

(4.29) Ix,- IK,_, =rkq(KK, - KKMIN-,)+h,AY+ ,&AY-l 
+ &AY_, + &AY_, - &IK,-, - &KK-,). 

Equation (4.29) has two restrictions that were not imposed in the empirical 
work. First, there is no constant term in (4.29), but one was used in the 
estimated equation. Second, from the last term in (4.29) the coefficients of 
IK,_ I and &KK_ , are the same, and this constraint was not imposed. 

The estimated equation is 

12. AlK,= -.0146 - .0130 (KK- KKMln?_, + .0967 AY 
(0.11) (2.83) (5.70) 

+ .0004 AY-, + .0140 AY-, + .0196 AY_, 
(0.02) (0.88) (1.24) 

- ,107 IX,_,+ ,167 &KK_,. 
(2.48) (2.59) 

SE = ,390, R2 = ,534, DW = 2.13 

The estimated value ofA is. 107 iftaken from the ZKf-I term and. 167 iftaken 
from the &KK_, term. This means that gross investment adjusts between 
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about 10.7 and 16.7 percent to its desired value each quarter. The implied 
value of lu, is between - ,078 and - .I2 I, which means that between 7.8 and 
12.1 percent of the amount of excess capital on hand is desired to be 
eliminated each quarter. 

The estimate ofthe constant term in Eq. 12 is highly insignificant, and the 
results were little affected when the constant term was excluded. With respect 
to the other restriction, when the constraint on the coefficients of IKJ_, and 
&KK_, was imposed, the estimated value of A was essentially zero (an 
estimate of ,002, with a t-statistic of 0.12). This is the reason the restriction 
was not imposed, and it is a good example of the compromises that are 
sometimes made in empirical work. The theoretical restriction itself is, of 
course. not very tight in the sense that (4.29) only represents a rough approxi- 
mation to the investment decision in the theoretical model. 

Note that the interest rate does not appear as an explanatory variable in the 
investment equation. When the after-tax bond rate, RBA, was added to the 
equation, its coefficient estimate was significant but of the wrong sign (.209 
with a t-statistic of 3.48). Similar results were obtained by lagging RB.4 one 
and then two quarters. The coefficient estimates and t-statistics were ,223, 
3.49 and ,277, 3.92, respectively. There is thus no evidence that interest rates 
negatively affect investment in an equation like Eq. 12. Interest rates do, 
however, have important negative indirect effects on investment in the 
model. (See points 2 and 3 at the end of this section.) The investment tax 
credit variable discussed earlier, TXCR, was of the wrong expected sign and 
not significant when added to Eq. 12. Its coefficient estimate was - ,038, with 
a f-statistic of 0.3 1. 

The significance ofthe excess capital variable in Eq. 12 provides support for 
the proposition that firms spend time off their production functions. With 
respect to the output terms in the equation. only the current term is signifi- 
cant, and the results would not be much affected if the other three terms were 
dropped. 

The Three Employment and Hours Equations 

The employment and hours equations are similar in spirit to the investment 
equation. They are also based on the assumption that the production decision 
has already been made. Because of adjustment costs, it may sometimes be 
optimal in the theoretical model for firms to hold excess labor. Were it not for 
the costs of changing employment, the optimal level of employment would 
merely be the amount needed to produce the ouput of the period. In the 
theoretical model there was no need to postulate explicitly how employment 
deviates from this amount, but this must be done for the empirical work. 
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The estimated employment equation is based on the following three 
equations: 

(4.30) A log .I-,= 0~~ log ?!IzL + cu,A log Y + a,A log Y-, + (Y,A log Y_,, 
J,r, 

(4.3 1) J,?, = 
JHMIhL , 

H/t, ’ 

(4.32) “,r , = Ee”, 

where JHMIN is the number of worker hours required to produce the output 
of the period, Hi is the average number of hours per job that the firm would 
like to be worked if there were no adjustment costs, and Jf is the number of 
workers the firm would like to employ if there were no adjustment costs. The 
term log (J,_ ,/J,F I) in (4.30) will be referred to as the “amount of excess labor 
on hand.” Equation (4.30) states that the change in employment isafunction 
of the amount of excess labor on hand and three change-in-output terms (all 
changes are changes in logs). Ifoutput has not changed for three periods and if 
there is no excess labor on hand, the change in employment is zero. As was the 
case for investment, the change-in-output terms are meant in part to be 
proxies for expected future output changes. Equation (4.31) defines the 
desired number of jobs, which is simply equal to the required number of 
worker hours divided by the desired number of hours worked per job. 
Equation (4.32) postulates that the desired number of hours worked is a 
smoothly trending variable, where Hand 6 are constants. 

Combining (4.30)-(4.32) yields 

(4.33) A log J/ = a, log i? + o0 log JH&;r_ + o&z + ojA log Y 
I L 

+ozAlogY_,+Lu,AlogY_,. 

The estimated equation is 

13. J-1 A log+= -.885 - ,141 log JH,/& + .000176 t 
(3.76) (3.75) (4.28) 
+ ,281 Alog Yf ,119 AlogY_, 

(8.33) (3.03) 
+ ,033 A log Y-, - .00967 0593 + .00174 0594, 

(1.02) (2.70) (0.50) 

SE = .00335, R= = ,780, DW = 2.04,i, = ,447 
(4.44) 
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where 0593 and 0594 are dummy variables for the 1959 steel strike. The 
estimated value of cu, is - .14 1, which means that, other things being equal, 
14. I percent of the amount of excess labor on hand is eliminated each quarter. 
The implied value of H is 53 I .97, which at a weekly rate is 40.92 hours. The 
implied value of 6 is -.00125. The trend variable f is equal to 9 for the first 
quarter of the sample period (19541), and so the implied value of HFl for 
19541 at a weekly rate is 40.92 . exp (-.00125 X 9) = 40.46. For 19821111 is 
equal to 123, and therefore the implied value for this quarter is 40.92 . exp 
(- .00125 X 123) = 35.09. In general these numbers seem reasonable. The 
significance of the excess labor variable in Eq. 13, like the significance of the 
excess capital variable in Eq. 12, provides support for the proposition that 
firms spend some time off their production functions. 

The main hours equation is based on (4.31) and (4.32) and the following 
equation: 

(4.34) A log H,= A log k!L=i + 01~ log Ji-1+ (Y,A log Y. 
Hrll J,r, 

The first term on the RHS of (4.34) is the (logarithmic) difference between the 
actual number of hours paid for in the previous period and the desired 
number. The reason for the inclusion of this term in the hours equation but 
not in the employment equation is that, unlike J,, Hf fluctuates around a 
slowly trending level of hours. This restriction is captured by the first term in 
(4.34). The other two terms are the amount of excess labor on hand and the 
current change in output. Both of these terms have an important effect on the 
employment decision, and they should also affect the hours decision since the 
two are closely related. Past output changes might also be expected to affect 
the hours decision, but these were not found to be significant and thus are not 
included in (4.34). 

Combining (4.31), (4.32), and (4.34) yields 

(4.35) A log H,= (q, - JJlog 15 + i log H,-, + (~0 log JHi;;_ 
I 

+ (cyo - 1)& + a,A log Y. 

The estimated equation is 

14. AlogH,= 1.37 - 
J-l 

,284 log +I- $; log JHblN_, 
(4.95) (5.16) 
- .000250 t + ,120 A log Y. 

(4.94) (4.40) 

SE = .00285, Rz = ,398, DW = 2.18 
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The estimated value of 1 is -.2X4, which means that, other things being 
equal, actual hours are adjusted toward desired hours by 28.4 percent per 
quarter. The excess labor term is significant, with an estimated value ofu, of 
- .0659. The implied value of Ei is 534.60, which is 4 1.12 hours at a weekly 
rate. This compares closely to the value of 40.92 implied by Eq. 13. The 
implied value of 6 is -.00115, which compares closely to the value of 
-.00125 implied by Eq. 13. No attempt was made to impose the restriction 
that H and 6 are the same in Eqs. 13 and 14. Given the closeness of the 
estimates, it is unlikely that imposing this restriction would make much 
difference. Again, the significance of the excess labor variable is support for 
the theoretical model. 

The second hours equation explains overtime hours (HO). It is ofconsider- 
ably less importance than the employment equation and the other hours 
equation. One would expect HO to be related to total hours, H,, in the 
manner indicated in Figure 4-2. Up to some point A (for example, 40 hours 
per week), HO should be zero or some small constant amount, and after point 
A, increases in HO and H,should be roughly one for one. An approximation 
to the curve in Figure 4-2 is 

(4.36) HO = exp (cy, + qHf, 

which in log form is 

(4.37) log HO = a, + a2H/. 

The foregoing discussion is based on the implicit premise that H, has no 
trend. In practice H,has a negative trend, which means that A in Figure 4-2 is 
likely to be shifting left over time. In order to account for this effect, H,was 
detrended before being included in (4.37). H,was regressed on a constant and 
t for the 19521- 1982111 period, which resulted in an estimate of the coeffi- 
cient for t of - .56464. The variable included in the estimated equation was 
then H,+ .56464t, which is denoted Hjl. (This is Eq. 100 in Table A-5.) The 
estimated equation is 

15. log HO = -8.34 + .0223 Hi, 
(5.15) (7.38) 

SE = .0552, RZ = ,905, DW = 1.82,) = ,909 
(21.38) 

There is considerable serial correlation in this equation (j = .909), but as a 
rough approximation it seems satisfactory. 
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no 

I 

FigurcC2 Expected relationship between overtime hours (HO) and total hous 

The Demandfor A4oney Equation 

The estimated demand for money equation for the firm sector is 

17. log++= ,106 + ,920 log _, + .0477 log x 
(1.04) (26.10) (2.39) 
- .00700 RS( 1 - d2, - db). 

(3.26) 

SE = .0237, R2 = ,936, DW = 2.06 

The demand for real money balances, M,/PX, is a function of sales, X, and the 
after-tax short-term interest rate, RS( I - dz, - dzs). The tax rates used here 
are corporate tax rates, not personal tax rates as in Eq. 9. The level of sales is 
used as the transactions variable. 
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Thr Dividend Equation 

The estimated dividend equation is 

18. D,= -.0227 + ,978 O,-, + .0201 (n,- Ti,- T,J, 
(1.05) (108.28) (5.64) 

SE = ,125, R2 = ,999, DW = I.58 

where D,is the level of dividends and x1- T, - T, is the value of after-tax 
profits. This is a standard dividend equation in which the current level of 
dividends is a function of current and past values of after-tax profits. 

The Interest Payments Equation 

The current level of interest payments of the firm sector is a function of its 
outstanding debt and ofthe interest rates that were in effect at the times ofthe 
relevant debt issues. The estimated equation that attempts to approximate 
this is 

19. ‘NT,= -3.59 + ,146 IXT,-, + .0200 (--A,) + ,467 RB. 
(1.96) (8.59) (1.91) (4.25) 

SE = ,364, R2 = ,999, DW = 2.01,j = ,954 
(25.41) 

INTlis the level of interest payments, A+ the value of net financial assets of 
the firm sector, and RB is the bond rate. Ajs negative because the firm sector 
is a net debtor. Interest payments are estimated to be a function of the debt of 
the firm sector and the bond rate. 

Equation 19 has rather poor statistical properties. The coefficient estimates 
are not robust to slight changes in the specification, and the estimated serial 
correlation coefficient is high (j = ,954). This is not necessarily unexpected, 
since the equation does not capture the fact that debt is issued in a variety of 
maturities at different interest rates. Fortunately, the equation does not have 
an important effect on the properties of the model except for one of the 
experiments in Chapter 1 I, which concerns a version of the model in which 
there are rational expectations in the bond and stock markets. The results of 
this experiment indicate that the coefficient estimate ofRB in Eq. 19 may be 
too large. This issue is discussed in Section I I .7.3. 
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The Inventor}~ Valuation Adjustment Equation 

The equation explaining inventory valuation adjustment is 

20. WA = 1.52 - 95.2 PX+ 92.2 PX-,, 
(0.98) (3.51) (3.34) 

SE=1.24,R2=.865.DW=1.71,~= ,801 
(12.45) 

where IVA is the value of the inventory valuation adjustment and PX is the 
price level. In the theoretical model WA is equal to - (PX - PX_ ,) V- I, and 
Eq. 20 is an attempt to approximate this. The coefficient estimates for PXand 
PX_ I are of opposite sign and close to each other in absolute value, which is as 
expected. The variable V_, was added to the equation to see ifany effect of the 
stock of inventories on WA could be found. Its coefficient estimate was of the 
wrong sign (-.0410, with a t-statistic of 1.92), and therefore V-, was not 
included in the equation. 

The Capital Consumption Equation 

The capital consumption of the firm sector (CC,) is assumed to be a function 
of the current and past values of nominal investment expendhIreS 

(PIK IK,), where the lag structure is geometrically declining. The estimated 
equation is 

21. CC,= -.0930 + ,966 CC,-, + .0447 PIK. IK, 
(3.69) (67.13) (4.69) 

+ ,562 00811. 
(6.29) 

SE = ,145, RZ = ,999, DW = 1.99 

The dummy variable DD8 1 I takes on a value of 1 from 198 I I on and a value 
of 0 otherwise. Equation 21, like Eqs. 19 and 20, is only meant to be a rough 
approximation. Capital consumption is a function of current and past tax 
laws and accounting practices (as well as of current and past investment 
expenditures), both of which have changed over time. Equation 21 ignores 
these changes except for the inclusion of DD8 Il. There appeared to be an 
important break in the relationship between capital consumption and invest- 
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ment expenditures beginning in 198 1 I, which could be captured fairly well by 
merely adding 008 I 1 to the equation. 

The key equations of the firm sector are Eqs. lo- 14 and 16. Some of the 
features of these equations are as follows. 

I. Production is smoothed relative to sales. Investment, employment, and 
hours are smoothed relative to production. The buffer for production is the 
stock ofinventories. The buffer for investment is the amount ofexcess capital 
on hand, and the buffer for employment and hours is the amount of excess 
labor on hand. 

2. Although the bond rate is not an explanatory variable in the investment 
equation. interest rates have indirect negative effects on investment. Interest 
rates are explanatory variables in the consumer expenditure equations with 
negative coefficients, and thus an increase in interest rates directly lowers 
expenditures. This in turn lowers sales lx), which lowers production and then 
investment and employment. The main channel by which interest rates affect 
the economy is through their effects on consumer expenditures, 

3. Although interest rates affect investment in the manner just discussed, 
there is no means in the model by which interest rates affect capital-labor 
substitution. Any changes in the substitution of capital for labor (or vice 
versa) brought about by changes in the cost of capital relative to the cost of 
labor are not explained. The effects of long-run changes in the relationship of 
capital to labor are captured in the model through the peak-to-peak interpo- 
lations that are involved in the construction of excess capital and excess labor, 
in particular of KHMIN and JHMN. The interpolations are, however, 
exogenous, and thus nothing in the model is allowed to affect them. 

The spirit of the model is that firms spend much of the time “off” their 
production functions, which means that for much of the time one is not 
directly observing the number of capital and labor hours that are actually 
needed in the production process. If this is true, it is obviously going to be 
difficult to pick up the effects of, say. interest rate changes on the capital-labor 
ratio. I have made no attempt to do this in the model. If capital-labor 
substitution is a fairly slow and smooth process, then little is likely to be lost 
by the present approach, even with the use of the model for periods as long as, 
say, five years. If, on the other hand, substitution is fast or erratic, then the 
present model is likely to be seriously misspecified and should not hold up 
well in tests. 
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4.1.6 Stochastic Equations for the Financial Sectot 

The stochastic equations for the financial sector consist of an equation 
explaining member bank borrowing from the Federal Reserve. two term 
structure equations, an equation explaining the change in stock prices. and a 
demand for currency equation. 

The Bank Borrowing Equation 

The variable BO/BR is the ratio of borrowed reserves to total reserves. This 
ratio is assumed to be a function of the difference between the three-month 
Treasury bill rate /RS) and the discount rate (RD). The estimated equation is 

22. g= ,014s + .00455 (RS-RD). 
(3.79) (1.34) 

SE = .0162, R2 = ,382, DW = 2.321; = ,606 
(7.93) 

This equation does not fit very well, and the estimate of the serial correlation 
coefficient is fairly high. There is, however, at least some slight evidence that 
bank borrowing responds to the interest rate differential. 

The Two Term Structure Equations 

The expectations theory of the term structure of interest rates states that 
long-term rates are a function of the current and expected future short-term 
rates. The two long-term interest rates in the model are the bond rate (RB) 
and the mortgage rate (RA4j. These rates are assumed to be determined 
according to the expectations theory, where current and past values of the 
short-term interest rate are used as proxies for expected future values. The two 
estimated equations are 

23. RB= .114 + ,889 RB_,+ ,277 RS- ,218 RS_, 
(2.54) (53.00) (10.82) (6.48) 
+ ,074 RS-,, 

(3.48) 

SE=.171,R’=.997,DW= 1.74 
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24. RM= .343 + ,846 R.K,+ ,178 RS+ ,041 RS_, 
(3.36) (29.00) (4.64) (0.80) 
- ,043 RS_>. 

(1.23) 

SE = .258, R2 = .992, DW = 2.23 

Note that the lagged dependent variable is included as an explanatory variable 
in each equation, which implies a fairly complicated lag structure relating 
each long-term rate to the past values of the short-term rate. 

The expected rate of inflation variables that were discussed in Section 4. I .3 
were tried in the equations, but no significant results were obtained. The best 
that was done from all the regressions tried was a f-statistic of 1. I6 for the first 
expected wage inflation variable in the RB equation. One must thus conclude 
either that the expected inflation variables are poor measures of expectations 
or that any effects of expected future inflation rates on expected future 
nominal short-term interest rates are captured in the current and past short- 
term rates. 

The variable CG is the change in the market value of stocks held by the 
household sector. In the theoretical model the aggregate value of stocks is 
determined as the present discounted value of expected future after-tax cash 
flow, the discount rates being the current and expected future short-term 
interest rates. The theoretical model thus implies that CG should be a 
function of changes in expected future after-tax cash flow and of changes in 
current and expected future interest rates. In the empirical work the change in 
the bond rate, ARB, was used as a proxy for changes in expected future 
interest rates, and the current and one-quarter-lagged values of the change in 
after-tax cash flow, A(CF - T, - T/,/, were used as proxies for changes in 
expected future after-tax cash flow. The estimated equation is 

25. CC = 10.9 - 24.4 ARB+ 3.75 Ah(CF- Ti,- T/,) 
(2.23) (1.26) (1.49) 
+ 4.07 A(CF’- 7”- 7.,$)_,. 
(2.08) 

SE = 48.4, R= = ,145, DW = 1.90 
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The explanatory power of this equation is low, as would be expected, but at 
least some effect of interest rates and cash flow on stock prices seems to have 
been picked up. 

The Demand for Currmcy Equation 

The estimated demand for currency equation is 

26. log 
CC!R 

POP PX 

+ .0801 log $& 
(2.36) 

- .00313 RSA, 
(4.00) 

SE = .0103, R2 = ,937. DW = 2.69 

where Cb’R is the value of currency. This equation states that the real 
per-capita demand for currency is a function of the real per-capita level of 
sales and ofthe after-tax short-term interest rate. A time trend is also included 
in the equation, although it is not significant. 

4.1.7 The Stochastic Equation for the Foreign Sector 

There is one estimated equation for the foreign sector, an equation explaining 
the demand for imports (M). Since this demand is demand by the domestic 
sectors. the position of the equation is somewhat arbitrary. It was put here to 
highlight the fact that the demand for imports has an important effect on the 
savings of the foreign sector. 

It was argued in Section 3.2.2 that the demand for imports should be a 
function ofthe variables that affect a household’s maximization problem. For 
the empirical work, this would mean trying the variables that were used in 
Section 4.1.4 to explain the expenditure and labor supply decisions of the 
household sector. The one problem with this is that in practice many imports 
are for use by the firm sector, and it is not possible to get a breakdown of 
imports by sector of purchase. As a compromise, I replaced (as possible 
explanatory variables) the wage rate variable. KA, and the labor constraint 
variable, Z, by per-capita domestic sales, X/POP. The explanatory variables 
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that were tried included the wealth variable of the household sector, 
(AA/POP)_ /, the price of imports. the price of domestic goods, interest rates, 
and per-capita domestic sales. The wealth variable was not significant and 
thus was dropped. The equation that was chosen is 

27. 
IM 

- = -.0277 + ,752 
IM 

( ) 

X 
- , + .0256 - 

pop (4.44) (15.31) poP - (4.10) p0p 
- .0114 PIM_, + .0393 PX_, - .00126 R/WA_, 

(3.90) (4.64) (2.59) 
- .00654 0651 + .00356 0652 - .0109 0691 

(2.18) (1.17) (3.65) 
+ .0166 0692 - .00798 0714 

(5.42) (2.64) 
+ .0123 0721. 

(4.10) 

SE = .00294, Rz = .994, DW = 1.7 1 

The dummy variables are for periods in which there was a dock strike or 
recovery from a strike. 

Equation 27 is similar to the import equations that are estimated for the 
multicountry model in Section 4.2.5. The demand for imports is a positive 
function of domestic activity and of the domestic price level and a negative 
function of the price of imports and of the interest rate. The interest rate in 
this case is measured by the after-tax mortgage rate. RMA. The price variables 
and the interest rate are lagged one quarter. 

4.1.8 The Stochastic Equation for the State and Local Government Sector 

The stochastic equation for the state and local government sector explains 
unemployment insurance benefits (LB). The estimated equation is 

28. log L’B= ,369 + 1.58 log C’f ,465 log W, 
(0.69) (18.00) (6.06) 

SE = .0706, R2 = ,992, DW = 1.80,; = ,761 
(12.59) 

Unemployment insurance benefits are a function of the level of unemploy- 
ment (L!j and of the nominal wage rate. The inclusion of the nominal wage 
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rate is designed to try to pick up the effects of increases in wages and prices on 
legislated benefits per unemployed worker. 

4.1.9 Stochastic Equations for the Federal Government Sector 

There are tnw estimated equations for the federal government sector: the first 
is an equation explaining the interest payments of the federal government, 
and the second is an equation explaining the short-term interest rate. The 
second equation is interpreted as an interest rate reaction function of the 
Federal Reserve. 

The Interest Payments Equation 

The current level of interest payments ofthe federal government is a function 
of current and past government security issues and of the values of the interest 
rates at the time of the issues. The estimated equation that attempts to 
approximate this is 

29. log MT,= -.X70 f ,873 log IA’T,_, + ,148 log(--A,) 
(4.77) (29.65) (4.95) 
+ .0572 log RS + .08 18 log RB, 

(5.54) (2.18) 

SE = .0270, R’ = ,999, DW = 1.89 

where INT, is the level of interest payments, A, is the value of net financial 
assets of the federal government, RS is the current short-term interest rate, 
and RB is the current long-term interest rate. The federal government is a net 
debtor, and therefore A, is negative. This equation has better statistical 
properties than does the equation explaining the interest payments ofthe firm 
sector (Eq. 19), although it is still only a rough approximation. 

The Interest Rate Reaction Function of the Federal Reserve 

A key question in any macro model is what one assumes about monetary 
policy. In the theoretical model monetary policy is determined by an interest 
rate reaction function, and in the empirical work an equation like this was 
estimated. This equation is interpreted as an equation explaining the behav- 
ior of the Federal Reserve (Fed). 

In at least one respect, trying to explain Fed behavior is more difficult than, 
say, trying to explain the behavior of the household or firm sectors. Since the 
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Fed is run by a relatively small number of people, there can be fairly abrupt 
changes in behavior if the people with influence change their minds or are 
replaced by others with different views. Abrupt changes are less likely to 
happen for the household and firm sectors because of the large number of 
decision makers in each sector. Having said this. I have, however, found an 
equation that seems to explain Fed behavior fairly well from 1954 up to 
1979111, which is roughly the beginning of the time of Paul Volcker as 
chairman of the Fed. Beginning with 1979LtI there seems to have been an 
abrupt change in behavior, although, as will be seen, even this change seems 
capable of being modeled. 

The equation explaining Fed behavior has on the LHS the three-month 
Treasury bill rate /KY). This treatment is based on the assumption that the 
Fed has a target bill rate each quarter and achieves this target through 
manipulation of its policy instruments. The RHS variables in this equation 
are variables that seem likely to affect the target rate. The variables that were 
chosen are (1) the rate of inflation as measured by the percentage change in 
the price deflator for domestic sales. Pb, (2) the degree of labor market 
tightness as measured by JJ”, (3) the percentage change in real GNP, GNkR, 
and (4) the percentage change in the money supply lagged one quarter, hiI_, 
What seemed to happen when Volcker became chairman was that the size of 
the coefficient of Mi_, increased substantially. This was modeled by adding 
the variable 00793 A&, to the equation. where DO793 is a dummy 
variable that is 0 before 1979111 and I thereafter. The estimated equation is 

30. RS= -.946 + X58 RS_, + .0687 Pb + .0296 JJ* 
(2.99) (25.55) (2.11) (2.99) 
+ .0597 GN?‘R+ ,032 Mi-, + .I31 00793. Mi_, 

(2.92) (1.71) (4.20) 

SE= ,687, U2 = .953. DW = 1.91 

Equation 30 is a “leaning against the wind” equation in the sense that the 
Fed is predicted to allow the bill rate to rise in response to increases in 
inflation. labor market tightness, real growth. and money supply growth. 
What the results show is that the weight given to money supply growth in the 
setting of the bill rate target is much greater in the Volcker period than before 

~(.032 + .131 = ,163 versus ,032 before). Aside from the change in the equa- 
tion when Volcker became chairman, the coefficients do not appear to have 
changed much over time. A Chow test, for example, accepted the hypothesis 
that the coefficients are the same (aside from the Volcker change) for the 
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periods before and after 19691. (The F value was 1.17, which compares to the 
critical F value with 7, I1 I degrees of freedom of 2.10 at the 95-percent 
confidence level.) In other words, the test accepted the hypothesis that there 
was no structural change in Fed behavior when Arthur Bums became 
chairman. 

4.1 .I0 Possible Assumptions about Monetary and Fiscal Policies 

The main federal government fiscal policy variables in the model are the 
following: 

Purchases of goods 
Personal income tax parameter 
Profit tax rate 
Indirect business tax rate 
Employee social security tax rate 
Employer social security tax rate 
Number of civilian jobs 
Number of military jobs 
Transfer payments to households 

Some of these variables appear as explanatory variables in the stochastic 
equations and thus directly affect the decision variables; others indirectly 
affect the decision variables by influencing variables (through identities) 
which in turn influence, directly or indirectly, the decision variables. The 
response of the model to changes in the various fiscal policy variables is 
examined in Section 9.4. 

Monetary policy is less straightforward to discuss. It will be useful for 
present purposes to list some of the equations that are involved in determin- 
ing the effects of monetary policy on the economy. 

9. K=_wS .I, 

17. MI=l;,(RS, .). 

26. CUR =ha(RS, .), 

22. g = ,014s + .00455 (RS- RD), 

57. BR =-g&f,,, 

71. O=hM,+~,+hM/+hM,+~~+hM,-ACljR, 
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17. O=.S,-AA,-AM,+ACCJR+A(BR-BO)-AQ-DIs,, 

81. M1=M1_,+~~f~,+~,+~,fERDIF. 

The other key equation is the interest rate reaction function, Eq. 30, which 
explains RS. 

In considering the determination of variables in the model, it is convenient 
to match variables to equations, and this will be done in the following 
discussion. It should be remembered, however, that this is done only for 
expositional convenience. The model is simultaneous, and nearly all the 
equations are involved in the determination of each endogenous variable. 

Consider the matching of variables to equations in the block given above. 
The demand for money variables, M,, M, and CUR, can be matched to the 
stochastic equations that determine them, 9, 17, and 26. Bank borrowing, 
BO, can be matched to its stochastic equation, 22, and total bank reserves, 
BR, can be matched to its identity, 57. M,, can be matched to Eq. 71, which 
states that the sum of net demand deposits and currency across all sccton is 
zero. Ml can be matched to its identity, 8 1, This leaves Eq. 77, the federal 
government budget constraint; the question is what endogenous variable is to 
be matched to this equation. The government savings variable, S,, is deter- 
mined elsewhere in the model and thus is not a candidate. IfEq. 30 is included 
in the model (and thus RSmatched to it), the obvious variable to match to Eq. 
77 isA,, the net financial asset variable ofthe government. (A,will be referred 
to as the “government security” variable. Remember that A, is negative 
because the government is a net debtor.) This means that A, is the variable 
that adjusts to allow RS to be the value determined by Eq. 30. In other words, 
the target bill rate is assumed to be achieved by the purchase or sale of 
government securities, that is, by open market operations. 

If A, is taken to be endogenous, the following variables in the block given 
above are then exogenous: the discount rate, RD, the reserve requirement 
ratio, g, ; demand deposit and currency holdings ofthe foreign sector, the state 
and local government sector, and the federal government sector, M,, A+‘,, and 
M,; gold and foreign exchange holdings of the federal government, Q; the 
discrepancy term, DIS,; and the variable that is involved in the definition of 
A41, MDIF. Instead of treating A, as endogenous, one could take either RD or 
g, to be endogenous and match it to Eq. 77. This would mean that the target 
bill rate was achieved by changing the discount rate or the reserve require- 
ment ratio instead ofthe amount ofgovernment securities outstanding. Since 
the main instrument of monetary policy in practice is open market opera- 
tions, it seems better to treat A, as endogenous rather than RD or g, 
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One can also consider the case in which Eq. 30 is dropped from the model. 
In this case, RS is matched to Eq. 77 and A, is taken to be exogenous. The 
interest rate is “implicitly” determined: it is the rate needed to clear the asset 
market given a fixed value ofA,. (In the numerical solution of the model in 
this case, RS is solved using, say, Eq. 9, M,, is solved using Eq. 7 I ) Mb is solved 
using Eq. 57, and BR is solved using Eq. 77.) When Eq. 30 is dropped, 
monetary policy is exogenous. and the response ofthe model to changes in A, 
can be examined. 

In the exogenous monetary policy case, the main way in which monetary 
policy affects the economy is by changing interest rates. Changes in A, change 
interest rates, which in turn change real variables. The main effects of interest 
rates on the economy are the direct effects on consumer expenditures (Eqs. I > 
2, 3, and 4). What this means is that the three instruments of monetary 
policy--il,, RD, and g,-all do the same thing, namely, they affect the 
economy by affecting interest rates. Using all three instruments is essentially 
no different from using one with respect to trying to achieve, say, some real 
output target. It also means that in the endogenous monetary policy case 
where A, is endogenous and RD and g, are exogenous, changes in RD and g, 
have virtually no effect on the economy. Any effects that they might have are 
simply “undone” by changes in A, in the process of achieving the target 
interest rate implied by Eq. 30. 

It is also possible in the exogenous monetary policy case to take some 
variable other than A, to be exogenous. One possible choice is the money 
supply, Ml, and another is the level of nonborrowed reserves, BR - BO. Both 
of these are common variables to take as policy variables in monetary policy 
experiments. If either of these is taken to be exogenous, A, must be endoge- 
nous. 

To return to fiscal policy variables, it should be obvious that fiscal policy 
effects are not independent of what one assumes about monetary policy. For a 
given change in fiscal policy, there are a variety of assumptions that can be 
made about monetary policy. The main possible assumptions are (I) Eq. 30 
included in the model and thus monetary policy endogenous, (2) the bill rate 
exogenous, (3) the money supply exogenous, (4) nonborrowed reserves exoge- 
nous, and (5) government securities outstanding, A,, exogenous. In all but 
assumption 5, A, is endogenous. It will be seen in Section 9.4.4 that fiscal 
policy effects are in fact quite sensitive to what is assumed about monetary 
policy. The reason for this is that the different assumptions have quite 
different implications for interest rates. and the latter have large effects on the 
real side of the economy. 
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4.1 .ll General Remarks about the Transition 

I. The links between the theoretical model and the econometric specifica- 
tions are closer for the household sector than they are for the firm sector, 
although the specifications of the main equations for the firm sector are in the 
spirit ofthe theoretical model. An important simplification for the empirical 
work is the assumption that the firm sector’s decisions arc made sequentially. 
which is contrary to the case in the theoretical model. Also, the restriction that 
was imposed on the real wage rate in the empirical work, although it seems 
quite sensible to impose it in the aggregate, is not closely linked to the 
theoretical work, where the emphasis was on the behavior ofindividual firms. 

2. There is a heavy use of lagged dependent variables in the model, and they 
are very important explanatory variables. They can be looked upon as 
accounting in part for expectational effects and in part for lagged adjustment 
effects, where it is not possible to separate out these two types ofeffects. This 
treatment is discussed in Section 2.2.2. The more sophisticated treatment that 
was tried for the estimation of expectations regarding future inflation rates 
was not successful. The expectations variables were not significant in the 
consumer expenditure equations, where they should be if real rather than 
nominal interest rates affect behavior, or in the term structure equations. 
where they should be if expected future inflation rates are not adequately 
captured in the current and lagged values of the short-term interest rate. 

3. A number ofthe stochastic equations are not tied very closely (if at all) to 
decision variables in the theoretical model. These equations tend to be less 
important with respect to their effects on the main variables in the model. 
Equations in this category include the overtime hours equation. 15, the 
dividend equation, 18, the two interest payments equations. 19 and 29, the 
inventory valuation adjustment equation, 20, the capital consumption equa- 
tion, 21, and the unemployment insurance benefits equation. 28. Some of 
these equations are simply approximations to definitions that would hold if 
sufficient data were available. 

4. Equation 30 is more heroic than the other main behavioral equations in 
that it is an attempt to model the behavior of a small number of individuals. It 
can, of course, be dropped from the model and monetary policy taken to be 
exogenous. In this sense the equation is less important than the others. 

5. Since the theoretical model was used to guide the specification of the 
econometric model. it is likely that the two models have similar qualitative 
policy effects. The policy properties of the econometric model are examined 
in Section 9.4, and it is true that the qualitative effects are similar. For 
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example, the disequilibrium features ofthe theoretical model are captured in 
the econometric model through the labor constraint variable, Z, and the 
interest rate effects on households’ decisions in the theoretical model are 
captured in the econometric model through the interest rate variables in the 
expenditure equations. 

6. Two important variables in the model are taken to be exogenous when in 
fact they should not be. They are the import price deflator, PIM, and exports, 
EX. This limitation is eliminated in the next section, where the US model is 
embedded in the multicountry model. In fact, one way of looking at the 
multicountry model is that it is a way of making PIM and EX endogenous. 

4.2 The Multicountry (MC) Model 

4.2.1 Introduction 

The econometric model is extended to a number of countries in this section. 
Quarterly data have been collected or constructed for 64 countries (counting 
the United States), and the model contains estimated equations for 43 
countries. The basic estimation period is 19581- 1981IV (96 observations). 
For equations that are relevant only when exchange rates are flexible, the 
basic estimation period is 197211- 198 IIV (39 observations). The theoretical 
basis of the model was discussed in Section 3.2. 

The model differs from previous models in a number of ways, and it will be 
useful to discuss these briefly here. First, linkages among countries with 
respect to exchange rates, interest rates, and prices appear to be more impor- 
tant in the present model than they are in previous models, which have been 
primarily trade linkage models. The LINK model (Ball 1973), for example, is 
of this kind, although some recent work has been done on making capital 
movements endogenous in the model. (See Hickman 1974, p. 203, for a 
discussion of this: see also Berner et al. I976 for a discussion of a live-country 
model in which capital flows are endogenous.) Second, the theory on which 
the model is based differs somewhat from previous theories. This has been 
discussed in Section 3.2. Third, the number of countries in the model is larger 
than usual, and the data are all quarterly. Considerable work has gone into the 
construction of quarterly data bases for all the countries. Some of the 
quarterly data had to be interpolated from annual data, and a few data points 
had to be guessed. The collection and construction of the data bases are 
discussed in subsequent sections. 

Finally, there is an important difference between the approach I have taken 
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and an approach like that of Project LINK. I alone have estimated small 
models for each country and then linked them together, rather than, as 
Project LINK has done, taking models developed by others and linking them 
together. The advantage of the LINK approach is that larger models for each 
country can be used, it is clearly not feasible for one person to construct 
medium- or large-scale models for each country. The advantage of the present 
approach, on the other hand, is that the person constructing the individual 
models knows from the beginning that they are to be linked together, and this 
may lead to better specification of the linkages. It is unlikely, for example, that 
the specification of the exchange rate and interest rate linkages in the present 
model would develop from the LINK approach. Whether this possible gain in 
the linkage specification outweighs the loss of having t0 deal with small 
models of each country is an open question. 

4.2.2 Further Theory 

The theoretical model as represented by (TI)-(T17) in Section 3.2.5 cannot 
be implemented in practice. The main problem is that data on bilateral 
financial flows do not exist. In other words, data on domestic holdings ofthe 
securities of a particular foreign country do not exist, and therefore equations 
like (T13) and (T14) cannot be estimated. Moreover, data on the breakdown 
of the savings of a country between private and government savings (S, and 
S@) do not always exist. These and other data problems make the transition to 
a multicountly econometric model particularly difficult. In order to make the 
transition here, a special case of the theoretical model must be considered. 
This special case is discussed in this section. Since this discussion is an 
extension of the discussion of the theoretical model in Section 3.2, the t 
subscript has been retained for the variables. In the discussion of the econo- 
metric model, which begins in Section 4.2.3, the t subscript has been dropped. 

Interest Rate Reaction Functions 

The two monetarypolicyvariables in theequation set (Tl)-(T17)(otherthan 
the discount rates RD and rd, which are not ofconcern here) are A, and a,, If 
these two variables are taken to be exogenous, the two interest rates, R, and r,, 
arc “implicitly” determined. An alternative to this treatment is to postulate 
interest rate reaction functions for both R, and r,: 

(T18) R, =/Td. .I, 

(Tl9) 6 =f& J> 
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where the arguments in the functions are variables that affect the monetary 
authorities’ decisions regarding the interest rates. In this case A, and a,, are 
endogenous. 

Exchange Rate Reaction Functions 

The policy variable most closely related to the exchange rate, e,, is Qz (or q,), 
country l’s (or country 2’s) holdings of the international reserve. If Q, is taken 
to be exogenous, e, is implicitly determined. An alternative to this is to 
postulate an exchange rate reaction function: 

(T20) e, =/A(. .b 
where the arguments in the function are variables that affect the authorities’ 
decisions regarding the exchange rate. In this case Q, is endogenous. 

Perjkt Substitutability and the Forward Rate 

The special case of the theoretical model used here includes the interest rate 
and exchange rate reaction functions. It also includes the assumption that the 
securities of the two countries are perfect substitutes. Perfect substitution is 
defined as follows. The covered interest rate from country I’s perspective on 
the bond of country 2, say r{, is (e,/F,)( I + rJ - I, where F, is the forward 
rate. If for R, = r,’ people are indifferent as to which bond they hold: the bonds 
will be defined to be perfect substitutes. In this case the equation system 
(TI)-(T17) is modified as follows. First, (T13) and (T14) drop out, since the 
private sector is now indifferent between the two bonds. Second. arbitrage will 
ensure that R, = r;, and thus a new equation is added: 

WI) R,=(e,/F,)(I+u,)-1. 

Third. the model is underidentified with respect to A,, A$, a,. and a$ and 
one of these variables must be taken to be exogenous. (This indeterminacy is 
analogous to the indeterminacy that arises in, say, a two-consumer, two-firm 
model in which the two consumers are indifferent between the goods pro- 
duced by the two firms. It is not possible in this model to determine the 
allocation of the two goods between the two consumers.) 

Equation (I’2 1) introduces a new variable, F,, into the model, and therefore 
its determination must be specified. If it is assumed that F, equals the expected 
future spot rate, one could try to estimate an equation explaining F,, where 
the explanatory variables would be variables that one believes affect expecta- 
tions. Instead of estimating an equation, one could assume that expectations 
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are rational and estimate the model under this constraint. If F, is determined 
in either of these two ways, it will be said to play an “active” role in the model. 

If Fis active. it is not possible to have R,, r,, and e, all implicitly determined 
or determined by reaction functions. Given (T2 I) and the equation for F, 
(implicit ifthere are rational expectations, explicit otherwise), only two ofthe 
three variables can be implicitly determined or determined by reaction 
functions. (Also, if& is active and exchange rates are fixed. it is not possible to 
have both R, and r, implicitly determined or determined by reaction func- 
tions.) An alternative case to F, being active is the case in which R,, r,, and e, 
are implicitly determined or determined by reaction functions and F, is 
determined by (72 1). In this case F, will be said to play a “passive” role in the 
model. Given R,, r,, and et, F, merely adjusts to ensure that the arbitrage 
condition holds. The special case ofthe theoretical model used here is based 
on the assumption that F, is passive. 

In summary, the special case ofthe theoretical model used here is based on 
the assumptions that (1) the interest rates are determined by reaction func- 
tions, (2) the exchange rate is determined by a reaction function, (3) the 
securities ofthe different countries are perfect substitutes, and (4) the forward 
rate is passive. The assumption that is most questionable in this choice is 
probably the assumption that e, is determined by a reaction function. The 
alternative assumption is that e, is implicitly determined, with reserves, Qz , 

being exogenous. In practice there is obviously some intervention of the 
monetary authorities in the exchange markets, and therefore this alternative 
assumption is also questionable. The assumption that et is determined by a 
reaction function means that intervention is complete: the monetary author- 
ity has a target e, each period and achieves this target by appropriate changes 
in Q,. This assumption may not, however, be as restrictive as it first sounds. 
The monetary authority is likely to be aware of the market forces that are 
operating on r, in the absence of intervention (that is, the forces behind the 
determination of e, when e, is implicitly determined), and it may take these 
forces into account in setting its target each period. If some ofthe explanatory 
variables in the reaction function are in part measures ofthese forces, then the 
estimated reaction function may provide a better explanation of r, than one 
would otherwise have thought. Similar arguments apply to the assumption 
that R, and r, are determined by reaction functions. 

The assumption that F, is passive means that the forward market imposes 
no “discipline” on the monetary authority’s choice of the exchange rate. 
Again, if the monetary authority takes into account market forces operating 
on r, in the absence of intervention, including market forces in the forward 
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market, and if the explanatory variables in the reaction function for e, are in 
part measures of these forces, then the estimated reaction function for e, may 
not be too poor an approximation. 

Given the assumption that F, is passive and given that F, does not appear as 
an explanatory variable in any of the equations, F, plays no role in the 
empirical model. For each country it is determined by an estimated version of 
the arbitrage condition, (T2 I), but the predictions from these equations have 
no effect on the predictions of any of the other variables in the model. 

Fi.ued Exchange Rates 

The assumption that F, is passive is not sensible in the case of fixed exchange 
rates: for most observations F, is equal to or very close to e, when e, is fixed. A 
different choice was thus made for the fixed rate case. This choice was 
designed to try to account for the possibility that the bonds of the different 
countries are not perfect substitutes as well as for the fact that F, is not passive. 
The procedure that was followed in the fixed rate case is as follows. The 
United States was assumed to be the “leading” country with respect to the 
determination of interest rates. Assume in the above model that the United 
States is country I. Consider the determination of r,, country 2’s interest rate. 
If exchange rates are fixed, bonds are perfect substitutes, and F, is equal to e,, 
then r, is determined by (T2 I) and is equal to R,. In other words, country 2’s 
interest rate is merely country l’s interest rate: country 1 sets the one world 
interest rate and country 2’s monetary authority has no control over country 
2’s rate. If the bonds are not perfect substitutes, (T21) does not hold and 
country 2’s monetary authority can affect its rate. If, however, the bonds are 
close to being perfect substitutes, then very large changes in a, will be needed 
to change r, very much. 

In the empirical work, interest rate reaction functions were estimated for 
each country, but with the U.S. interest rate added as an explanatory variable 
to each equation. If the bonds are close to being perfect substitutes. the U.S. 
rate should be the only significant variable in these equations and should have 
a coefficient estimate close to 1 .O. If the bonds are not at all close substitutes, 
the coefficient estimate should be close to zero and the other variables should 
be significant. The in-between case should correspond to both the US. rate 
and the other variables being significant. 

This argument about the U.S. rate in the interest rate reaction functions 
does not pertain to the flexible exchange rate case. One would thus not expect 
the interest rate reaction functions to be the same in the fixed and flexible rate 
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cases, and therefore in the empirical work separate interest rate reaction 
functions were estimated for each country for the fixed and flexible rate 
periods. The U.S. rate may still be an explanatory variable in the reaction 
functions for the flexible rate period. This would be, however, because the 
U.S. rate is one of the variables that affect the monetary authority’s interest 
rate decision, not because the U.S. rate is being used to try to capture the 
degree of substitutability of the bonds. 

Contrary to the case for the other countries, the U.S. interest rate reaction 
function was estimated over the entire sample period. This procedure is 
consistent with the assumption made above that the United States is the 
interest rate leader in the fixed rate period. If it is the leader, then it is not 
constrained as the other countries are, so there is no reason on this account to 
expect the function to be different in the fixed and flexible rate periods. 

Aggregalion 

The final issue to consider regarding the special case of the theoretical model 
is the level of aggregation. The private and government sectors have been 
aggregated together for this case, and thus there is only one sector per country. 
In this case the budget constraint for country 1 is the sum of (T5) and (T6): 

(T5)’ O=S,-AA,-e&z:-AQ,. 

.S, is equal to S,, + S,, AA, is equal to A& + AAA,, and the p subscript has 
been dropped from a: since it is now unnecessary. The budget constraint for 
country 2 is similarly the sum of (T7) and (T8): 

(T7)’ 0 = St - ~0, - $AA: - $~q,. 

Equations (T15) and (T16) are now written as follows: 

(TIS)’ O=A,+A; 

(T16)’ O=a,+a,f 

Consider now a further type of aggregation. Let AA,’ = AA, + e,An: + AQ, 

and Au,’ = Aa, + :AAf + $Aq,. In this notation (T5)’ and (T7)’ are 

(T5)” 0 = s, - AA:, 

(T7)” 0 = s, - Au:. 
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If one adds the first difference of (T15)‘. the first difference of (T16)’ 
multiplied by r,, and (T17) in Section 3.2.5. the result is 

(T17)’ 0 = AA: + e,Aa:. 

Equation (T 17)’ is redundant, given (T5) ” and (T7)“, because S, and s, satisfy 
the property that S, + CJ, = 0. 

This aggregation is very convenient because it allows data on A,’ and a,’ to 
be constructed by summing past values of S, and S, from some given base 
period values. Data on S, (the balance of payments on current account) are 
available for most countries, whereas data on A,. A,? a,, and a,* (that is, 
bilateral financial data) are generally not available. The cost of this type of 
aggregation is that capital gains and losses on bonds from exchange rate 
changes arc not accounted for. Given the current data, there is little that can 
be done about this. The key assumption behind this aggregation is that the 
securities of the different countries are perfect substitutes. If this were not so, 
(TI 3) and (T14) would not drop out, and bilateral financial data would be 
needed to estimate them. 

Final Equations 

To summarize, the special case of the theoretical model consists of the 
following equations: 

(TI)’ .S =.&I,(. .L [savings of country I] 

(T3)’ s, =.M. .L [savings of country 21 

(T5)” O=S,-AA;, [budget constraint of country I] 

(T7)” 0 = S, - Au;, [budget constraint of country 21 

(T18) R, =M. .L [interest rate reaction function of country I] 

(T19) r, =M. .L [interest rate reaction function of country 21 

(T20) e, =&(. .), [exchange rate reaction function] 

(T21) R, = (e,/F,)( 1 + r,) - 1. [arbitrage condition] 

This is the model that has guided the econometric specifications. 
It should finally be noted that although nothing has been said about the 

determination of S, and s, in this section, this determination is a critical part of 
the model. Equations (Tl)’ and (T3)’ are merely a convenient way of 
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summarizing part of the model. In the complete model S, and s, are deter- 
mined by definitions and are affected by nearly every variable in the model. 

4.2.3 Data Collection and Choice of Variables and Identities 

The discussion in this section relies heavily on the tables in Appendix B, 
located at the end of the book. It is assumed that these tables will have been 
studied carefully before this section is read. 

The Data and Variables (Tables B-l, B-2, B-7) 

The raw data were taken from two ofthe four tapes that are constructed every 
month by the International Monetary Fund: the International Financial 
Statistics (IFS) tape and the Direction ofTrade (DOT) tape. The way in which 
each variable was constructed is explained in brackets in Table B-2 of 
Appendix B. Some variables were taken directly from the tapes, and some 
were constructed from other variables. When “IFS’ precedes a number in the 
table, this refers to the variable on the IFS tape with that particular number. 
Some adjustments were made to the raw data, and these are explained in 
Appendix B. The main adjustment was the construction of quarterly Na- 
tional Income Accounts (NIA) data from annual data when the quarterly data 
were not available. Another important adjustment concerns the linking ofthe 
Balance of Payments data to the other export and import data. The two key 
variables involved in this process are S’ and TT”. The variable .S;* is the 
balance of payments on current account, and TTY is the value of net 
transfers. The construction of these variables is explained in Table B-7 in 
Appendix B. Most of the data are not seasonally adjusted. 

Note that two interest rates are listed in Table B-2. the short-term rate. RS,, 
and the long-term rate, RB,. For many countries only discount rate data are 
available for RS,, and this is an important limitation of the data base. The 
availability of interest data by country is listed in Table B-l in Appendix B. 

The variable Af in Table B-2, which is the net stock offoreign security and 
reserve holdings, was constructed by summing past values of s;” from a base 
period value of zero. The summation began in the first quarter for which data 
on S: existed. This means that the A: series is off by a constant amount each 
period (the difference between the true value of Af in the base period and 
zero). In the estimation work the functional forms were chosen in such a way 
that this error was always absorbed in the estimate of the constant term. It is 
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important to note that At measures only the net asset position of the country 
vis-ivis the rest of the world. Domestic wealth, such as the domestically 
owned housing stock and plant and equipment stock, is not included. 

The Identities (Table B-3) 

Table B-3 contains a list of the equations for country i. There are up to 11 
estimated equations per country, and these are listed first in the table. 
Equations 12-2 1 are definitions. This section provides a discussion of these 
equations except for the specification of the explanatory variables in the 
stochastic equations, which is discussed in Section 4.2.5. 

It will first be useful to consider the matching of the equations in Table B-3 
to the equations listed earlier at the end of Section 4.2.2. The level of savings 
of country i, which is represented by (Tl)’ or (T3)’ above, is determined by 
Eq. 17, a definition, in the table, As noted earlier, the level of savings, SF, is 
the balance of payments on current account. Almost every variable in the 
model is at least indirectly involved in its determination. Equation 17 states 
that ST is equal to export revenue minus import costs plus net transfers. 
Given SF, the asset variable At is determined by Bq, 18, which is analogous to 
(T5)” or (T7)” above. This is the budget constraint of country i. 

Equations 7a and 7b are the interest rate reaction functions, which are 
analogous to (T18) or (Tl9), and Eq. 9b is the exchange rate reaction 
function, which is analogous to (T20). The “a” indicates that the equation is 
estimated over the fixed exchange rate period, and the “b” indicates that it is 
estimated over the flexible rate period. Equation lob is an estimate of the 
arbitrage condition, (T2 1) above. The exchange rate e, explained by Eq. 9b is 
the average exchange rate for the period, whereas the exchange rate ee, in the 
arbitrage equation lob is the end-of-period rate. ee, is end-of-period because 
the forward rate, Fi, is also end-of-period. Equation 20 links e, to ee,, where 
v/ri in the equation is the historic ratio ofe, to (ee, + ee,_,)/2. wIi is taken to be 
exogenous. As noted in Section 4.2.2, F, plays no role in the model, and 
therefore neither does ee,. Equation lob is included in the model merely to 
see how closely the data meet the arbitrage condition. 

This completes the matching of the equations in Table B-3 to those at the 
end of Section 4.2.2. The other equations are as follows. Equation 1 deter- 
mines the demand for merchandise imports, and Eq. 14 provides the link 
from merchandise imports to total NIA imports. Equations 2 and 3 deter- 
mine the demands for consumption and investment, respectively. Equation 
16 is the definition for final sales. The level of final sales is equal to consump 
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tion plus investment plus government spending plus exports minus imports 
plus a discrepancy term. Government spending is exogenous. Exports are 
determined when the countries are linked together. The key export variable is 
X75$,, and Eq. 15 links this variable to NIA exports. Equation 4 determines 
production, and Eq. 12 determines inventory investment, which is the differ- 
ence between production and sales. Equation 13 defines the stock of invento- 
ries. Equation 5, the key price equation in the model, determines the GNP 
deflator. The other price equation in the model is Eq. 11, which determines 
the export price index as a function of the GNP deflator and other variables. 

Equation 6 determines the demand for money. Even though the money 
supply does not appear in the budget constraint of the country because it is 
netted out in the aggregation, it does appear as an explanatory variable in the 
interest rate reaction functions and thus must be explained. The money 
supply is netted out in the aggregation because foreign holdings of domestic 
money are effectively ignored by being included in Af. This had to be done 
because bilateral data on money holdingsdo not exist. Equation 8 determines 
the long-term interest rate, RB,. It is a standard term structure equation. 

Trade and Price Linkages (Table B-4) 

The trade and price linkages are presented in Table B-4. Table B-4 takes as 
input from each country the total value of merchandise imports in 75$, 
M75$A,, the export price index, KY;, and the exchange rate, e,. It returns for 
each country the total value of merchandise exports in 75$,X75$,, the import 
price index, Phfi, and the world price index, PI&‘&. These last three variables 
are used as inputs by each country. The model is solved for each quarter by 
iterating between the equations for each country in Table B-3 and the 
equations in Table B-4. 

Note from Table B-2 that the data taken from the DOT tape are merchan- 
dise exports from i to j in $, Xx$,. These data were converted to 75$ by 
multiplying Xx$, by e,l(e&‘XJ (see XX75$,Y in Table B-2). This could only 
be done, however, ifdata on e, and PXi existed. Type A countries are countries 
for which these data exist, and type B countries are the remaining countries. 
The share variable aji that is used in Table B-4 is defined in Table B-2. or,[ is the 
share of i’s total merchandise imports from type A countries imported from j 
in75$. IfjisatypeBcountry, thena,iszero.Given thedefinitionofM75$A, 
in Table B-2, aji has the property thatZjtiji = I. Table B-4 deals only with type 
A countries. Total merchandise imports of a country from type B countries, 
M75$B, in Table B-2, is taken to be exogenous. 
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4.2.4 Treatment of Unobserved Variables 

Expectations 

As discussed earlier, an important expectational assumption in the multi- 
country model is that the forward rate is passive. No constraint has been 
imposed that it equals the expected future spot rate, and so in general this will 
not be true. It is not the case, for example. that the forward rate equals the 
future spot rate that the model predicts. 

As was the case for the US model, expectations are assumed to be ac- 
counted for by the use of current and lagged values as proxies for expected 
future values. Nothing different from the standard procedure discussed in 
Section 2.2.2 was done. 

The Demand Pressure Variable 

A demand pressure variable, denoted ZZ,, was used in the price equation for 
each country. It was constructed as follows. (Y, is real gross national product 
or real gross domestic product, and POP, is the level of population.) Log(Y,/ 
POPJ was first regressed on a constant, time, e three seasonal dummy 
variables, and the estimated standard error, SE,, and the fitted values, 
loglYi/POPi), from this regression were recorded. (The results from these 
regressions are presented in Table 4-l 3 later in the chapter.) A new series, 
(Yi/pOpJ*. was then constructed, where 

(4.38) (&)*=exp[,.+4.%]. 

ZZ, was taken to be 

ZZ, is similar to the demand pressure variable ZZ in the US model. In the 
US model ZZ is equal to (GNPR* - GNPR)/GNPR*, where GNPR* is 
constructed from peak-to-peak interpolations of the GNPR series. In the 
present case, (YJPOPJ * is not constructed from peak-to-peak interpolations 
but is instead a variable that is the antilog of a variable whose value each 
quarter is 4 standard erron greater than the value predicted by the regression 
of log ( Yi/POPi) on a constant. time, and three seasonal dummy variables. 
The use of4 standard errors in this construction is not critical; similar results 
would have been obtained had the number been, say, 2 or 3. To put it another 
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way, as is the case for the US model, the data are not capable of discriminating 
among different measures of demand pressure. 

4.25 Stochastic Equations for the Individual Countries 
(Tables 4-1 through 4-13) 

The estimated equations for the individual countries are presented in Tables 
4-l through 4-13. Equations I, 2, 4, 5, 6, and 8 were estimated by 2SLS for 
most countries; the other equations were estimated by OLS. The estimation 
technique for each equation is indicated in the tables. The first-stage regres- 
sors that were used for each equation estimated by 2SLS are not presented in 
this book, since this would take up too much space. (The list of these 
regressors is available from the author upon request.) The selection criterion 
for the first-stage regressors was the same as that used for the US model, which 
is explained in Chapter 6. Briefly, the main predetermined variables in each 
country’s model were chosen to constitute a”basic” set for that country, and 
other variables were added to this set for each individual equation. The 
variables that were added depended on the RHS endogenous variables in the 
equation being estimated. 

All equations except 10b and I1 were estimated with a constant and three 
seasonal dummy variables. To conserve space. the coefficient estimates of 
these four variables are not reported in the tables. Data limitations prevented 
all equations from being estimated for all countries and also required that 
shorter sample periods from the basic period be used for many countries. The 
main part of the model, excluding the United States, consists of the countries 
Canada through the United Kingdom. 

The searching procedure for the stochastic equations was as follows. 
Lagged dependent variables were used extensively to try to account for 
expectational and lagged adjustment effects. Explanatory variables were 
dropped from the equations if they had coefficient estimates of the wrong 
expected sign. In many cases variables were left in the equations if their 
coefficient estimates were of the expected sign even if the estimates were not 
significant by conventional standards. There is considerable collinearity 
among many of the explanatory variables. especially the price variables, and 
the number of observations is fairly small for equations estimated only over 
the flexible exchange rate period. Many of the coefficients are thus not likely 
to be estimated very precisely, and this is the reason for retaining variables 
even if their coefficient estimates had fairly large estimated standard errors. 

Both current and one-quarter-lagged values were generally tried for the 
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explanatory price and interest rate variables, and the values that gave the best 
results were used. Similarly, both the short-term and long-term interest rate 
variables were tried, and the variable that gave the best results was used. A 
number of the equations were estimated under the assumption of first-order 
serial correlation of the error term. ) in the tables denotes the estimate of the 
serial correlation coefficient. 
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Subject to data limitations. the specification of the stochastic equations 
follows fairly closely the specification of the equivalent equations in the US 
model. When it does not, this will be noted. The asset variable, A,?, is an 
important explanatory variable in a number of the equations, and one should 
be aware of its limitations. As noted earlier, this variable measures only the 
net asset position of the country vis-a-vis the rest of the world; it does not 
include the domestic wealth ofthe country. Also, its value for each country is 
offby a constant amount, and this required a choice for the functional form of 
the variable in the equations that one might not have chosen otherwise. 

The following subsections present a brief discussion of the results in each 
table. For a complete picture ofthe results, the tables should be read carefully 
along with the discussion. 

The 40 Demandfor-Import Equations (Table 4-I) 

Equation 1 explains the real per-capita merchandise imports ofcountry i. The 
explanatory variables include the price of domestic goods, the price of 
imports, the interest rates, per-capita income, and the lagged value of real 
per-capita assets. The variables are in logarithms except for the interest rates 
and the asset variable. These demand-for-import equations are similar to the 
demand-for-import equation in the US model, Eq. 27; the main differences 
are that Eq. 27 is not in log form and that the asset variable was not found to 
be significant for the United States and was thus dropped from the equation. 
The log versus linear difference is not important in that similar results would 
have been obtained had the US equation been in log form or the present 
equations in linear form. 

The results in Table 4- 1 seem fairly good. Most of the variables appear in 
the equations for the first 18 countries (Canada through Spain). The two price 
variables (log PY, and log PM;) are expected to have coefficients of opposite 
signs and of roughly the same size in absolute value, and this was generally 
found to be the case. For the oil exporting countries Nigeria, Saudi Arabia, 
and Venezuela, the asset variable is highly significant. This means that as 
assets increase during rises in oil prices, the countries are predicted to increase 
their demand for imports, which then lessens their buildup of assets. 

The 38 Consumption Equations (Table 4-2) 

Equation 2 explains real per-capita consumption. The explanatory variables 
include the interest rates, real per-capita income, and the lagged value of real 
per-capita assets. The use of income as an explanatory variable in the 
consumption equations is inconsistent with the theoretical model of house- 
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hold behavior in Chapter 3. Ifa household is choosing consumption and labor 
supply to maximize utility, income is not the appropriate variable to use in 
the consumption equation. This procedure can be justified, however, if 
households are always constrained in their labor supply decision, and this is 
what must be assumed here. This is an important difference between the US 
model and the models of the other countries. 

The results in Table 4-2 show that the interest rate and asset variables 
appear in most of the equations through the equations for Spain. It thus 
appears that interest rate and wealth effects on consumption have been picked 
up, as well as the usual income effect. 

The interest rate variables in both the import and consumption equations 
are nominal rates. As was done in the estimation of the consumption equa- 
tions for the US model. various proxies ofexpected future inflation rates were 
added to the equations (in addition to the nominal interest rate) to see if their 
coefficient estimates had the expected positive sign. The proxies consisted of 
various weighted averages of current and past inflation rates. As in the US. 
case. the results were not very good, which again may be due to the difficulty 
of measuring expected future inflation rates. More attempts of this kind 
should be made in future work, but for present purposes the nominal rates 
have been used. 

The 23 Investment Equations (Table 4-3) 

The explanation of investment is complicated by the fact that capital stock 
data were not constructed for the countries. (No benchmark capital stock data 
were available from the IFS tape.) This means that the specification of the 
investment equation for the US model, which relied on measures of the 
capital stock and of the amount of excess capital on hand, could not be used. 
What was done instead was to specify an investment equation that did not 
require a measure of the capital stock. The equations are as follows: 

(4.40) K,--k;_,=I,-DEP,, 

(4.41) DEP, = &, + p,t: 

(4.42) K: = a,Y(-, + cuJ_, + (YJ-) + wJ-~, 

(4.43) (K, - K;_,)* = A,(K: -K;-,), 0 <A, 5 1, 

(4.44) I:=(K,--K;_,)*+DEP;, 

(4.45) I, - I,_, = ,x*(1: - Ii_,), O<&Cl 
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where Ki is the actual value of the capital stock, I, is gross investment, DEP, is 
depreciation, Y, is the level of output, K: is the desired value of the capital 
stock, (K, - K,_,)* is desired net investment. and IT is desired gross invest- 
ment. 

Equation (4.40) is a definition: the change in the capital stock equals gross 
investment minus depreciation. In the absence of data on depreciation, it is 
assumed in (4.41) that depreciation is simply a function of a constant and 
time. The desired capital stock in (4.42) is assumed to be a function ofthe past 
four values of output; the past output values are meant as proxies for expected 
future values. Desired net investment in (4.43) is some fraction 1, of the 
difference between the desired capital stock and the actual capital stock ofthe 
previous period. Desired gross investment in (4.44) is equal to desired net 
investment plus depreciation. Equation (4.44) is the same as the definition 
(4.40) except that it is in terms ofdesired rather than actual values. The actual 
change in gross investment in (4.45) is some fraction i; of the difference 
between desired gross investment and actual gross investment of the previous 
period. 

This specification is in the spirit ofthe theoretical model offirm behavior in 
Chapter 3 in the sense that the lagged adjustment equations (4.43) and (4.45) 
are meant to reflect costs of adjustment. It seems likely that & will be much 
larger than A,, and it may in fact be one, which would mean that there are no 
adjustment costs with respect to changing gross investment. 

Combining (4.40)-(4.45) yields the following equation to estimate: 

If & = I, the lagged dependent variable, AZi-I, drops out of the equation. If 
p, > 0, the coefficient oft is positive, and if & > 0 and /?, > 0, the constant 
term in the equation is positive. With respect to the stochastic specification, if 
an error term u, is added to (4.49, then the error term in (4.46) is u, - u,_, 
This means that the error term in (4.46) will be negatively serially correlated 
unless u, is first-order serially correlated with a serial correlation coefficient 
greater than or equal to one. Note that by taking first differences the capital 
stock variable has been eliminated from (4.46). 

The estimates of (4.46) are presented in Table 4-3 for 23 countries. (All 
these equations were estimated by OLS because there are no RHS endoge- 
nous variables.) All the estimates of the constant terms are positive. For most 
countries the estimate of the coefficient of AZi_, was small and insignificant, 
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and for most countries the variable wasdropped. This means that the estimate 
of ,& is one for most countries. All the estimates of the coefficient of I,-, are 
negative, as expected. The implied estimate of& ranges from .03 1 for Spain to 
.3 17 for Argentina. Most of the equations showed little evidence of serial 
correlation of the error term, which means that the error term in (4.45) has a 
high degree of positive serial correlation. The results for five countries showed 
enough evidence of negative serial correlation to warrant estimating the 
equations under the assumption of first-order serial correlation. 

The output terms were left in the equations if their coefficient estimates 
were positive. There is generally a high degree of collinearity among the 
terms, and thus the coefficient estimates for the individual output terms are 
generally not very precise. 

Although the results in Table 4-3 look reasonable, the results in general of 
estimating the investment equation are at best fair. There are two main 
problems: the first is that reasonable results could be found for only 23 
countries; the second is that the results are highly sensitive to whether or not 
the current change in output, A Y, , is included in the equation. Ifthe term 0~~ Y, 
is included in (4.42), so that the desired capital stock is also a function of the 
current level of output, then the term ,lJ,c@Y, is included in (4.46). When 
AY, was included in the estimated equations, its coefficient estimate seemed 
much too large and the other coefficient estimates were substantially changed. 
Even though most of the equations were estimated by 2SLS, there still 
appeared to be substantial amounts of simultaneity bias. This problem 
existed almost without exception across the countries. In the end the decision 
was made to drop AY, from all the investment equations, but this lack of 
robustness is not an encouraging feature of the results. 

The 13 Production Equations (Table 4-4) 

Equation 4 explains the level of production. It is based on the same three 
equations that were used for the US model-(4.22), (4.23), and (4.24). These 
equations are repeated here. 

(4.22) v* = fix, 

(4.23) Y*-Xfa(V- V-J. 

(4.24) Y-Y_,=A(Y*-Y-,), 

Combining the three equations yields 

(4.25) Y=A(l +rug)x-~v_,+(I -,QY_,, 

which is the equation estimated. 
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The results of estimating (4.25) for I3 countries are presented in Table 4-4. 
The implied values of A, 01, and ,Lf are presented along with the actual 
coetftcient estimates. The estimates of L range from 53 for Austria to .97 for 
Denmark. (2 is I .O for Finland because Yi-, was dropped from the equation; 
this variable was dropped because its coefficient estimate was highly insignifi- 
cant.) The estimates ofa range from ,029 for Spain to I75 for Korea. The fact 
that the estimates of J. are much larger than the estimates of 01 implies that 
production adjusts much faster to its desired level than does the stocky of 
inventories. Serial correlation of the error terms is quite pronounced in most 
of the equations. 

Equation 4 is essentially an inventory investment equation, and these types 
of equations are notoriously difficult to estimate. Reasonable results were 
obtained for the 13 countries in Table 4-4, but only for these 13. Estimating 
the equation for other countries led to unreasonable implied values ofat least 
one ofthe three coefficients, i., a, and p. As with the investment results in the 
previous subsection, the production results must be interpreted with caution, 
although there is no equivalent problem here to the robustness problem 
encountered in the estimation of the investment equation. 

The 36 Price Equations (Table 4-5) 

Equation 5 explains the GNP deflator. It is the key price equation in the 
model for each country. The two main explanatory variables in the equation, 
aside from the lagged dependent variable, are the price of imports, PM,, and 
the demand pressure variable, 22,. Equation 5 is similar to the price equation 
for the US model, Eq. 10 in Table A-5: the main difference is that Eq. 10 
includes the wage rate, which Eq. 5 does not. Sufficient data on wage rates do 
not exist to allow a wage equation to be estimated along with a price equation. 

The results of estimating Eq. 5 for 36 countries are presented in Table 4-5. 
It is clear from the results that import prices have an important effect on 
domestic prices for most countries. The import price variable appearsin 34 of 
the 36 equations with the expected positive sign. The demand pressure 
variable appears in the equation for most of the first 18 countries. Serial 
correlation of the error term is not a problem for most countries, and in 
general the results seem good. 

The 26 Dmandfor-Money Equations (Table 4-61 

Equation 6 explains the per-capita demand for money. Both the interest rate 
and the income variables are generally significant in this equation. For all 
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countries except Austria and Sweden, the estimated coefficient of the interest 
rate variable is of the expected negative sign. 

The per-capita money and income variables in Table 4-6 are nominal 
rather than real. This is contrary to the case for the money and income 
variables in the demand-for-money equations in the US model, which are in 
real terms. Some experimentation was done for the other countries using real 
variables, but on average the results did not seem to be as good. One of the 
reasons for this may be errors of measurement in the price deflators. More 
experimentation should be done in future work, but for present purposes the 
results in Table 4-6 seem reasonably good. 

The Interest Rate Reaction Functions: 23 under Fixed Exchange Rates and 
20 under Flexible Exchange Rates (Table 4-7 and 4-8) 

The candidates for inclusion as explanatory variables in the interest rate 
reaction functions are variables that one believes may affect the monetary 
authorities’ decisions regarding short-term interest rates. In addition, the U.S. 
interest rate may be an important explanatory variable in the equations 
estimated over the fixed exchange rate period if bonds are close substitutes. 
The variables that were tried include (1) the lagged rate of inflation, (2) the 
lagged rate of growth of the money supply, (3) the demand pressure variable, 
(4) the change in assets, (5) the lagged rate of change of import prices, (6) the 
exchange rate (Eq. 7b only), and (7) the German interest rate. The form of 
the asset variable that was tried is A:/(PYiPOPi). Except for division by 
PYiPOPi, the change in this variable is the balance of payments on current 
account. For some countries. depending on the initial results, the current and 
one-period-lagged values were entered separately. It may be that the mone- 
tary authorities respond in part to the level ofassets and in part to the change, 
and entering the current and lagged values separately will pick this up. 

The results of estimating Eqs. 7a and 7b are presented in Tables 4-7 and 
4-8. Although the equations are estimated over fairly small numbers of 
observations because of the breaking up of the sample periods, many of the 
explanatory variables appear in the equations and many are significant. The 
overall results provide fairly strong support for the proposition that monetary 
authorities in other countries “lean against the wind.” This conclusion is 
consistent with the results for the US model. The U.S. interest rate, as 
expected, is a more important explanatory variable in the fixed exchange rate 
period than it is in the flexible rate period. The variable that is least significant 
in Tables 4-7 and 4-8 is the lagged growth of the money supply. Contrary to 
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the case for the United States, especially in the Volcker regime, the monetary 
authorities of other countries do not appear to be influenced very much in 
their setting of interest rate targets by the money supply growth itself. In other 
words, money supply growth does not appear to provide independent explan- 
atory power for the interest rate setting behavior of most countries, given the 
other variables in the equations. 

The 17 Term Structure Equations (Table 4-9) 

Equation 8 is a standard term structure equation. The current and lagged 
short-term interest rates in the equation are meant to be proxies for expected 
future short-term interest rates. This is the same equation as the one that was 
estimated for the bond and mortgage rates in the US model (Eqs. 23 and 24 in 
Table A-5). The results of estimating equation 8 for 17 countries are presented 
in Table 4-9. The 17 countries are the ones for which data on a long-term rate 
exist. The current short-term rate is significant for all countries except 
Portugal and New Zealand. In general, the results indicate that current and 
lagged short-term rates affect long-term rates. 

The 22 Exchange Rate Equations (Table 4-10) 

Equation 9b explains the spot exchange rate. Candidates for inclusion as 
explanatory variables in this equation are variables that one believes affect the 
monetary authority’s decision regarding the exchange rate. If, as mentioned 
in Section 4.2.2, a monetary authority takes market forces into account in 
choosing its exchange rate target, then variables measuring these forces 
should be included in the equation. The variables that were tried include (I) 
the price level of country i relative to the U.S. price level, (2) the short-term 
interest rate of country i relative to the US. rate, (3) the demand pressure 
variable of country i relative to the U.S. demand pressure variable, ZZ,, (4) 
the one-quarter-lagged value of the change in real per-capita net foreign assets 
of country i relative to the change in the same variable for the United States, 
and (5) the German exchange rate. 

The results of estimating Eq. 9b for 22 countries are presented in Table 
4-10. It is clear from the current literature on exchange rates that no one 
explanation of exchange rates has emerged as being obviously the best. 
Whether the current explanation as reflected in the results in Table 4- 10 turns 
out to be the best is clearly an open question. The sample period in the flexible 
exchange rate regime is still fairly short, and more observations are needed 
before much can be said. In general, the results in Table 4-10 do not seem too 
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bad. The German exchange rate is an important explanatory variable in the 
equations for the other European countries. which is as expected. The relative 
inflation variable appears in all but six of the equations, and it is the next most 
important variable after the German exchange rate and the lagged dependent 
variable. The next most important variable is the relative change in assets 
variable, which appears in half of the equations. (Note with respect to the 
relative change in assets variable in Table 4-10 that since AtA:_,/ 
(PYi_,POPi_,)] is in 1975 local currency, the respective variable for the 
United States must be multiplied by the 1975 exchange rate, e,,, , to make the 
units comparable.) The relative interest rate variable and the relative demand 
pressure variable are ofabout equal importance, each appearing in 9 ofthe 22 
equations. 

Since the LHS variable is the log of the exchange rate, the standard errors 
are roughly in percentage terms. The standard errors for many European 
countries are very low- in a number of cases less than 2.0 percent -but this 
is misleading because of the inclusion of the German exchange rate in the 
equations. A much better way of examining how well the equations fit is to 
solve the overall model; the results ofdoing this are presented and discussed in 
Section 8.6. The standard error for the German equation in Table 4-10 is 3.94 
percent, and the standard error for the Japanese equation, which does not 
include the German rate as an explanatory variable, is 3.60 percent. These 
errors do not seem bad, given the variability of exchange rates, but again one 
should wait for the results of solving the overall model. 

The signs of the estimated effects are as follows. (Remember that an 
increase in the exchange rate is a depreciation and that all changes are relative 
to changes for the United States. Moreover, not all the effects operate for all 
countries). (I) An increase in a country’s price level has a positive effect on its 
exchange rate (a depreciation). (2) As real output in a country increases, the 
demand pressure variable ZZ, decreases, and a decrease in ZZ, leads to an 
increase in the exchange rate. Therefore, an increase in real output has a 
positive effect on the exchange rate (a depreciation). (3) An increase in a 
country’s short-term interest rate has a negative effect on its exchange rate (an 
appreciation). (4) An increase in a country’s net foreign assets has a negative 
effect on its exchange rate (an appreciation). 

The 13 Forward Rate Equatioar (Table 4-11) 

Equation IOb is the estimated arbitrage condition. Although this equation 
plays no role in the model, it allows one to see how closely the quarterly data 
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match the arbitrage condition. The results are presented in Table 4-l 1. Ifthe 
arbitrage condition were met exactly, the coefficient estimates of log ee, and 

(1 + RS;/lOO) 
a log (I + R&/100) 

III the table would be 1 .O. and the fit would be perfect. 

As can be seen, the results do indicate that the data are consistent with the 
arbitrage condition, especially considering the poor quality of some of the 
interest rate data. 

The 32 Export Price Equations (Table 4.12j 

Equation 11 provides a link from the GNP deflator to the export price index. 
Export prices are needed when the countries are linked together (see Table 
B-4 in Appendix B). If a country produced only one good, then the export 
price would be the domestic price and only one price equation would be 
needed. In practice, of course, a country produces many goods, only some of 
which are exported. If a country is a price taker with respect to its exports. 
then its export prices would just be the world prices ofthe export goods. To try 
to capture the in-between case where a country has some effect on its export 
prices but not complete control over every price, the export price index was 
regressed on the GNP deflator and a world price index. 

The world price index, PW$,, isdefined in Table B-2 ofAppendix B. It is a 
weighted average of the export prices (in dollars) of the individual countries. 
Type B countries and oil exporting countries (countries 26 through 35) are 
excluded from the calculations. The weight for each country is the ratio of its 
total exports to the total exports of all the countries. The world price index 
differs for different countries because the individual country is excluded from 
the calculations for itself. 

Since the world price index is in dollars, it needs to be multiplied by the 
exchange rate to convert it into local currency before being used as an 
explanatory variable in the export price equation for a given country. (The 
export price index explained by Eq. 11 is in local currency.) For some 
countries, depending on the initial results, this was done, but for others the 
world price index in dollars and the exchange rate were entered separately. 

The results ofestimating Eq. 11 are presented in Table 4- 12. They show, as 
expected, that export prices are in part linked to domestic prices and in part to 
world prices. Serial correlation of the error term is quite pronounced in nearly 
all the equations. It should be kept in mind that Eq. 1 I is meant only as a 
rough approximation. If more disaggregated data were available, one would 
want to estimate separate price equations for each good, where some goods’ 
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prices would be strongly influenced by world prices and some would not. This 
type of disaggregation is beyond the scope of the present model. 

The world price index for each country, PW$,, is an endogenous variable 
in the model because it is a function of other countries’ export prices, which 
are endogenous. 

4.2.6 The 2,388 Trade Share Equations 

The variable to be explained in this section isoj,, the share ofcountry i’s total 
merchandise imports from type A countries imported from country j(in units 
of 75$). (The I subscript has been used for the discussion in this section.) Type 
A countries are countries for which data on exchange rates and on export 
prices exist. These data, as can be seen in Table B-2, are needed to construct 
ojir. There are 47 type A countries out of the total of 64. The oji, obey the 
property that &,&jit = 1, where the summation is over type A countries. The 
data are quarterly, and t mm from 197 11 through 198 1 IV for a total of 44 
observations per ji pair. 

One would expect cujiI to be a function ofcountryj’s export price relative to 
an index of export prices of all countries that export to country i. The 
empirical work consisted of trying to estimate the effects of relative prices on 
trade shares. A separate equation was estimated for each ji pair, which is the 
following: 

pxsj* 
+ he &&*i~x$w + uji,, t= 1, ,44. 

Dl,, D2,, and 03, are seasonal dummy variables. PA’%, is the price index of 
country j’s exports, and &,aki,PX&, is an index of all countries’ export 
prices, where the weight for a given country k is the share of country k’s 
exports to country iin the total imports ofcountry i. The notation /ozA means 
that the summation is only over type A countries. 

If equations for all ji pairs had been estimated, there would have been a 
total of 47 X 64 = 3,008 estimated equations. In fact, only 2,388 equations 
were estimated. Data did not exist for all pairs and all quarters, and if fewer 
than 21 observations were available for a given pair, the equation was not 
estimated for that pair. In a few cases observations were excluded from a 
particular regression because they were extreme; these observations were 
primarily at the beginning and end of the sample period. It seemed likely in 
these cases that measurement error was a serious problem, and this was the 
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reason for excluding the observations. The extreme observations were chosen 
from an examination of the plot of each dependent variable over its potential 
sample period. About 300 equations had one or more observations excluded 
by this procedure. Almost all these equations were for ji pairs where neither j 
nor i was an industrialized country. 

I wrote a special computer program to estimate the 2,388 equations, since 
the use ofa package program for this purpose would have been unwieldy. The 
total time to estimate the equations on an IBM 434 1 was about I .5 minutes. 

It is not practical to present all 2,388 estimates of each coefficient, and 
therefore only a summary of the estimates is given. This summary is pre- 
sented in Table 4-14. The main coefficient ofinterest ispjiG, the coefficient of 
the relative price variable. The significance of the estimate of this coefficient is 
reported first in the table. Considering all countries, 72.0 percent of the 
estimates were of the correct sign: 2 1.9 percent were of the correct sign and 
had t-statistics greater than or equal to 2.0; and 46.2 percent were of the 
correct sign and had t-statistics greater than or equal to 1 .O. These numbers 
are somewhat higher for the first 15 countries alone, which are the main 
countries in the model. Considering all countries, 3.0 percent were of the 
incorrect sign and had t-statistics greater than or equal to 2.0, and 10.2 
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percent were of the incorrect sign and had t-statistics greater than or equal to 
1 .O. These numbers are lower for the first 15 countries. 

These results seem to provide some support for the hypothesis that relative 
prices affect trade shares. The estimates are not very precise, which is at least 
partly explained by the fairly small number of observations per estimated 
equation. One would hope for more precise estimates in the future as more 
observations become available. 

Results on the average size ofthe coefficient estimates are presented in the 
second halfofTable 4-14. For these results only the estimates with the correct 
sign are used. Both weighted and unweighted estimates are reported in the 
table. The weights are the means of the LHS variable in the estimated 
equations. normalized to add to 1 .O. The term @&( I - &) is the estimated 
long-run effect of relative prices on trade shares. &s is the coefficient estimate 
of the lagged dependent variable. The short-run estimates vary from -.OlOO 
to - .0740, depending on the weighting, and the long-run estimates vary from 
-.0316 to-.2184. 

The trade share equations with the wrong sign for& were not used in the 
solution of the model. Instead, the equations were reestimated with the 
relative price variable omitted, and these new equations were used. This 
means that aji, is simply determined by a first-order autoregressive equation if 
/$, is of the wrong sign for the particular ji pair. 

It should also be noted regarding the solution of the model that the 
predicted values of tijic, say, Gji,, do not obey the property that Xjtihji, = 1. 
Unless this property is obeyed, the sum of total world exports will not equal 
the sum of total world imports. For solution purposes each gjif was divided by 
Zjti&, and this adjusted figure was used as the predicted trade share. In other 
words, the values predicted by (4.44) were adjusted to satisfy the requirement 
that the trade shares sum to one. The overall solution of the MC model is 
discussed in Section 7.5.2. 



5 Other Econometric Models 

5.1 An Autoregressive Model 

5.1 .l. The United States Model (ARUS) 

An easy model to work with for comparison purposes is one in which each 
endogenous variable is simply a function ofits own lagged values. This model, 
which will be called an autoregressive model, consists of a set of completely 
unrelated equations. For the U.S. data I have used a lag length of 8 and have 
added a constant term and a time trend to the equation. Ten equations were 
estimated, one each for real GNP (&VI%), the GNP deflator (GNPD), the 
unemployment rate (LX), the bill rate (RS), the money supply (Ml), the wage 
rate (I+>), profits (n,j, the savings rate (SR), the savings of the federal govern- 
ment (.SJ, and the savings of the foreign sector (S,). 

The estimated equations are presented in Table 5-l. The first lag provides 
most of the explanatory power in these equations, which is typically the case 
with macro time series data. All the lags of length 1 are significant. Of the 
other lags, five of length 2 are significant (out of ten), one of length 3, two of 
length 4, two oflength 5, one oflength 6, two oflength 7, and three oflength 8. 
Five of the coefficient estimates of the time trend are significant. 

5.1.2 The Multicountry Model (ARMC) 

An autoregressive model was also estimated for the variables in the multi- 
country model. Each of the variables that appears on the LHS of a stochastic 
equation in the regular model was regressed on a constant, a time trend, three 
seasonal dummy variables, and the first four lagged values. The same estima- 
tion periods were used for these equations as were used for the equations in 
the regular model. Equations were not estimated for variables explained by 
definitions in the regular model. The accuracy ofthe MC and ARMC models 
is compared in Section 8.6. 



_ 

5.2 Two Vector Autoragressive Models (VARlUS and VAR2US) 

Vector autoregressive models are also useful for comparison purposes, and 
two have been considered here. Both consist of five equations, explaining 
respectively the log of real GNP (log GNPR), the log ofthe GNP deflator (log 
GNPD), the unemployment rate (UR), the bill rate (RS), and the log of the 
money supply (log A41). For the first model the explanatory variables in each 
equation consist of a constant, a time trend, and the first six lagged values of 
each of the five variables, for a total of 32 coefficients to estimate per equation. 
For the second model the explanatory variables in each equation consist of a 
constant, a time trend, the first six lagged values ofthe own variable, and the 
first two lag& values of each of the other four variables, for a total of 16 
coefficients to estimate per equation. For the second model each equation has 
a different set of RHS variables. 
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The summary statistics for the two models are presented in Table 5-2. The 
SE’s for VAR 1 US are only slightly lower than the SE’s for VAR2US, and thus 
little explanatory power has been lost by excluding lags 3 through 6 of the 
variables other than the own variable. VAR2US has the advantage that many 
fewer coefficients are estimated per equation, and thus the degrees of freedom 
problem is considerably reduced. Vector autoregressive models in general 
have the problem of rapidly decreasing degrees of freedom as the number of 
variables is increased, and one way of dealing with this problem is to exclude 
all but the first two or so lags of the non-own variables in each equation. As 
just seen, little explanatory power is lost by following this approach. Another 
way of dealing with the degrees of freedom problem, which has not been 
pursued here, is to impose various constraints on the coefficients, either 
within or across equations. 

5.3 A Twelve-Equation Linear Model (LINUS) 

The twelve-equation linear model has eight stochastic equations and four 
identities. With respect to the use of economic theory in the model, it is 
somewhere between the US model and the autoregressive models; there is 
some theory behind the specifications, but it is very crude. The model is of 
interest in providing another basis of comparison for the US model. By 
comparing it to the US model, one can get an idea of how much gain there is 
(if any) in going from a simple theory to a more sophisticated one. It is also of 
interest to see how a model like this compares to the autoregressive models. 



202 Macroeconometric Models 

The equations are as follows. 

1. CS= -.447 + ,989 CS-, + .00945 GNZ’R - ,111 RS 
(3.05) (106.37) (3.24) (8.19) 

[consumption of services] 

SE= ,260, RZ= ,999. DW’= 2.13,$= -.229 
(2.58) 

2. CA’= 2.69 + ,800 CA’_, + .0439 GiVPR - .0772 RX, 
(2.54) (I 1.09) (3.05) (2.03) 

[consumption of nondurables] 

SE = .493, R2 = ,999. DlV= 1.94> ji = ,206 
(2.03) 

3. CD = -2.45 + ,760 CD_, + .0369 GNPR - ,210 RALt 
(3.83) (13.34) (4.83) (4.29) 

[consumption of durables] 

SE = ,768, R2 = ,993, DW= 2.01 

4. IH, = 1.97 + ,505 IHh_, f .0259 GNPR - ,442 RM_, 
(1.98) (4.17) (4.37) (4.75) 

[housing investment, h] 

SE= ,395, R2 = ,975, DW= 1.96,ji= ,816 
(9.10) 

5. Y= 9.93 + ,177 Y_, + .972 X- ,166 V_, [production] 
(4.35) (3.64) (17.20) (4.32) 

SE= 1.16, R2 = .999, DW= 2.19,;= ,535 
(5.82) 

6. ZK,= - 1.21 + ,822 IK/_, .00760 KK_, + .0592 Y 
(4.53) (17.14) (4.21) (2.88) 
- .0200 Y-, [investment,/] 

(0.79) 

SE = .424_ RZ = ,996, DW= 1.90 
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7. RM= ,329 + ,842 R-M_, + ,216 RS- ,066 RS_, 
(3.20) (28.60) (7.32) (1.31) 
- ,025 R& [mortgage rate] 

(0.72) 

SE=.261,R2=.992,DW=2.11 

8. RS= -.310 + ,852 RS_, + .0557 GNPR - .0527 GNPR_, 
(0.89) (14.24) (1.55) (1.41) 
+ .0387 Mi_, + ,132 DO793 Mi_, [bill rate] 

(1.76) (3.92) 

SE= .732,R2= ,947, DW= 1.71 

9. X=CS+C.~+CD+IH,+IK,+Q, [total sales] 

10. v= v_, f Y-X [stock of inventories] 

11. GNPR= Y+Q2 [real GNP] 

12. KK = ( 1 - &&CC, + IK, [capital stock] 

Equations l-4 are expenditure equations of the household sector. Each 
expenditure item is a function of its lagged value, real GNP, and either the 
short-term or the long-term interest rate. These equations differ from the 
expenditure equations in the US model in including real GNP and in 
excluding the price level, the wage rate, the initial value of assets, nonlabor 
income, and the labor constraint variable. The equations are also not in 
per-capita terms, and the housing investment equation does not include the 
lagged stock of housing. The GNP variable in these equations may capture 
some of the effects of the wage rate and the labor constraint variable in the US 
model. As discussed in Section 4. I .4, in periods of loose labor markets, when 
the labor constraint variable is not zero, the wage rate and the labor constraint 
variable are highly correlated with income. 

The production equation, Eq. 5. is the same as Eq. 11 in the US model 
except for the exclusion here ofthe strike dummy variables, The investment 
equation, Eq. 6, is a simplified version of Eq. 12 in the US model. Investment 
is a function of its lagged value. the lagged value of the capital stock, and 
current and lagged output. No consideration is given here to the treatment of 
excess capital, which played an important role in the US model. 

Equation 7 is a term structure equation explaining the mortgage rate. It is 
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the same as Eq. 24 in the US model. The coefficient estimates in the two 
equations differ slightly as a result of the use of different sets of first-stage 
regressors in the estimation of the equations. Equation 8 explains the short- 
term interest rate, and it can be interpreted as an interest rate reaction 
function. It is a simplified version of Eq. 30 in the US model. 

Equation 9 defines final sales, X. The variable e,, which is taken to be 
exogenous, is the difference in the data between X and C.S + CN + CS + 
IHh + ZKp In other words, Q, is simply defined to make the definition hold. 
Equation 10 defines the stock of inventories; it is the same as Eq. 63 in the US 
model. Equation 1 I relates production, Y, to real GNP. Again. the variable 
Q2, which is taken to be exogenous, is simply the difference in the data 
between real GNP and Y. Equation 12 defines the capital stock; it is the same 
as Eq. 92 in the US model. The depreciation rate &is taken to be exogenous. 

The exogenous variables in the model other than Q, , Q2, and 8, arc Mi-, 
and 00793 Mi-, These last two variables, the percentage change in the 
money supply lagged one quarter and the same variable for the period 1979111 
and beyond, appear only in the interest rate reaction function. 

The equations were estimated by 2SLS for the 19541-1982111 period. 
Equations 1,2,4, and 5 were estimated under the assumption of first-order 
serial correlation of the error term. The same set of first-stage regressors was 
used for each equation. The variables in this set in alphabetical order are as 
follows: constant term, CD-,, CD_,, CN_,, CN+, CX,, CS-,, 
DO793 . Mi_, . DD793_, . Mi-,, GNPR_, , GNPR_,, IHh-, , IHh--2, IKf-, > 
IKI_,,KK_,,K~~,Mi_,,Mi_,,Q,,Q,,RM_,,RM_~,RS_,,RS_,,RS_,, 
v-, ) v-2, Y_, , Y-2. 

5.4 Sargent’s Classical Macroeconomic Model (SARUS) 

Sargent’s (1976) model is an econometric version of the class of rational 
expectations models that was discussed in Section 3.1.7. It is an interesting 
model to consider both because it is the main empirical model of this class 
and because it incorporates the assumption of rational expectations. The 
assumption ofrational expectations imposes difficult econometric problems, 
and Sargent’s model is good for illustrating the estimation and solution 
methods presented in Chapter 11. 

The model as Sargent estimated it is presented in Table 5-3. Sargent made 
two econometric mistakes in estimating this model: the first was to include 
variables in the regression to obtain E,_,P, and in the first-stage regressions of 
the 2SLS technique that are not in the model; the second was to fail to note 
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that Eq. (5~) is not identified unless one assumes that the error terms in Eqs. 
(4) and (5~) are uncorrelated. If this assumption is made, then R, can be 
treated as predetermined in the estimation of Eq. (SC). Sargent did not treat R, 
as predetermined, and he should not have been able to estimate Eq. (SC) by 
2SLS. The reason he did not encounter any difficulties is that he used more 
variables in the first-stage regression for R, than he should have. 

One way of dealing with these mistakes would be to expand the model to 
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include more variables. For those who are interested in this kind of model, 
this would be interesting work. For present purposes, however, I have not 
chosen to expand the model; I have instead concentrated on obtaining 
estimates under the assumption that the model as presented in Table 5-3 is 
correctly specified. 

The model as I have estimated it is presented in Table 5-4. The changes are 
as follows. (I) The variables that Sargent used in the first-stage regressions that 
are not in the model were excluded from consideration. (2) The error term in 
Eq, (4) was assumed to be uncorrelated with the other error terms in the 
model, and R, was taken to be predetermined in the estimation of Eq. (5~). (3) 
In place of using the filters for Eqs. (3) and (SC), the equations were estimated 
under the assumption of first-order and second-order serial correlation of the 
error terms. Sargent’s use of the filters is equivalent to constraining the 
first-order and second-order serial correlation coefficients to particular num- 
bers, and thus the approach followed here is less restrictive. (4) The expected 
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values ofthe two exogenous variables in the model, m, and pop,, were taken to 
be the predicted values from two eighth-order autoregressive equations. (5) 
Finally, the model was estimated by the method described in Chapter I 1. This 
method, full information maximum likelihood, takes account of all the 
nonlinear restrictions that are implied by the rational expectations assump 
tion. 

It is not convenient to discuss the coefficient estimates of Sargent’s model 
until the method in Chapter I1 has been described, and therefore the esti- 
mates will be presented and explained in Chapter Il. 



6 Estimation 

6.1 Introduction 

Macroeconometric models are typically nonlinear, simultaneous, and large. 
They also tend to have error terms that are serially correlated. The focus of 
this chapter is on models with these characteristics. The notation that will be 
used in this chapter and in Chapters 7- 10 is as follows. Write the model as 

(6.1) f;(Y,, &, 4 = 4, i= 1, ,n, t=1,. ,r, 

where y, is an ndimensional vector of endogenous variables, x, is a vector of 
predetermined variables, q is a vector of unknown coefficients, and ui, is an 
error term. Assume that the first m equations are stochastic, with the remain- 
ing ui, (i = m + 1, , n) identically zero for all 1. 

Let J, be the n X n Jacobian matrix whose ij element is ah;layjAi, j= 
1, , n). Also, let u, be the T-dimensional vector (ui,, , uir)‘, and let 
u be the m . T-dimensional vector (u I,, , U,T. > %d, , %A’. 
Let a denote the k-dimensional vector (01;) , 01;) of all the unknown 
coefficients. Finally, let G;be the k, X Tmatrix whose tth column is al(_v,, x,, 
ai)/&xi, where ki is the dimension of q, and let G’ be the k X m . Tmatrix, 

G; 0 . . 0 
0 G; 

1: 0 ..( 1 G:. 

where k = ZZc I ki. These vectors and matrices will be used in the following 
sections. 

6.2 Treatment of Serial Correlation 

A convenient way ofdealing with serially correlated error terms is to treat the 
serial correlation coefficients as structural coefficients and to transform the 
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Since many equations in macroeconometric models have lagged dependent 
variables, the DW test is of limited use. My response to this problem is to 
estimate the equations initially under the assumption of serial correlation 
(usually first-order) by some consistent technique (usually 2SLS). From this, 
one can test the hypothesis that the serial correlation coefficients are zero, 
which is simply a &test on each coefficient. This test is valid asymptotically if 
one has correctly estimated the asymptotic covariance matrix ofthe estimated 
coefficients, and it is not restricted to equations without lagged dependent 
variables. It also easily handles serial correlation of higher than first order. 
since all this requires is estimating the equation under the assumption ofthe 
particular order. If a test indicates that a serial correlation coefficient is zero, 
the equation can be reestimated without this coefficient being included. 

Although this is the general procedure that I follow in handling serial 
correlation problems, I still include the DW statistic in the presentation ofthe 
results for a particular equation (see Chapter 4). Since the DW statistic is 
biased toward acceptance of the hypothesis of no serial correlation when there 
are lagged dependent variables, a value that rejects the hypothesis indicates 
that there are likely to be problems. The DW test is thus useful for testing in 
one direction, and this is the reason I tend to include it in the results. 

6.3 Estimation Techniques 

6.3.1 Ordinary Least Squares (OLS) 

The OLS technique is a special case of the 2SLS technique, where 0, in (6.5) 
and (6.6) below is the identity matrix. It is thus unnecessary to consider this 
technique separately from the 2SLS technique. 

6.3.2 Two-Stage Least Squares (2SLS) 

Generul Case 

2SLS estimates of LY, (say &J are obtained by minimizing 

(6.5) u~z,(z~z,)-‘z~ui = &DiUi 

with respect to cxi, where Z, is a TX K, matrix of predetermined variables. Zi 
and K, can differ from equation to equation. An estimate of the covariance 
matrix of @ (sap Pz;,) is 

(6.6) P2i; = i?,,(i;:&~i)-~, 

where 6, is Gi evaluated at&and ?Jij = T-l EL, Lit, a, =f;(r,, x,, &J. 
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The 2SLS estimator in this form is presented in Amemiya (1974). It 
handles the case of nonlinearity in both variables and coefficients. In earlier 
work, Kelejian ( 197 I) considered the case of nonlinearity in variables only. 
Bierens ( I98 1, p. 106) has pointed out that Amemiya’s proofofconsistency of 
this estimator is valid only in the case of linearity in the coefficients, that is, 
only in Kelejian’s case. Bierens supplies a proof of consistency and asympto- 
tic normality in the general case. 

It will be useful to consider the special case in which the equation to be 
estimated is linear in coefficients. Write equation i in this case as 

(6.7) y,=x;oli+u,, 

where y,is the T-dimensional vector&, , yir)‘and X,isa TX kimatrix 
of observations on the explanatory variables in the equation. Xi includes both 
endogenous and predetermined variables. Both y, and the variables in X, can 
be nonlinear functions of other variables, and thus (6.7) is much more general 
than the standard linear model. All that is required is that the equation be 
linear in 01,. Substituting ui = J+ - X,(Y~ into (6.5), differentiating with respect 
to cu,, and setting the derivatives equal to zero yields the following formula for 
&i: 

(6.8) & = (X:D,X,)-‘x;D,y, = (~:XJ-l‘& 

where ,?i = QX, is the matrix of predicted values ofthe regression ofX, on 2,. 
Since 0: = Di and &Di = Di, ,%?$; = ,?;D&X, = $D,X, = *Xi, and thus 
(6.8) can be written 

(6.9) & = (&Q’&,: 

which is the standard 2SLS formula in the linear-in-coefficients case. In this 
case G; is simply Xi, and the formula (6.6) for pzii reduces to 

(6. IO) P*ii = CFii($~i)-I. 

Linear-in-Coe$icirnts Case wilh Serial Correlarion 

It will also be useful to consider the linear-in-coefficients case with serially 
correlated errors. Assume that ui in (6.7) is first-order serially correlated: 

(6. I 1) ui = “i_Ipi + Ei, 
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Transforming (6.7) in the manner discussed above yields 

(6.12) yi - yi-rpi = (Xi - Xi-,Q.Yi + Ei. 

Minimizing e;Diei with respect to oi and pi results in the following first-order 
conditions: 

(6.13) Gi = [_)‘(Xi - X,_,;J-r(~)‘(, - y,-,&), 

(6.14) di= 
(Pi_, -/?-,&i)~(yi-Xi~i) 

(Pi-r - J?i_,&J’(.!J_, -X,-,&J ’ 

where ai = Q(X, - Xi_&, pi_, = DJJ;_ , , and Xi,_, = DJ-, If 
Xi_, is included in Z,, then 2i_, = Xi_, (since Xi_, is merely the predicted 
values from a regression of Xi_, on itself and other variables), and therefore 
X,-X,_,& = Xi - Xi_,ji. If in addition y,_i is included in Z,, then J$_, = 
yi_, , and (6.14) becomes 

“I ^ 
(6.14)’ ;i = &;:, > 

where ai_, = yi_, - A’_,&i and iii = yi -Xi&,. This is merely the fortnula for 
the coefficient estimate of the regression of r& on (I_, 

Equations (6.13) and (6.14) can easily be solved iteratively. Given an initial 
guess for ji, hi can be computed from (6. I3), and then given &, )i can be 
computed from (6.14). Given this new value ofji, a new value of bi can be 
computed from (6.13), and so on. If convergence is reached, which means 
that the values of hi andfii on successive iterations are within some prescribed 
tolerance level, the first-order conditions have been solved. 

Equations with RHS endogenous variables and serially correlated errors 
(that is, Eqs. 6.7 and 6.1 I) occur frequently in practice, and the 2SLS 
estitnator for this case has been widely used. This estimator was discussed in 
Fair (1970), and I programmed it into the TSP regression package in 1968 
under the name TSCORC. (“CORC” refers to the fact that the iterative 
procedure used to solve Eqs. 6.13 and 6. I4 is like the Cochrane-Orcutt [ 19491 
iterative procedure in the nonsimultaneous equations case.) There is an 
important difference between (6.13) and the formula for sLi proposed in Fair 
( 1970), and given the widespread use of the TSCORC command, this differ- 
ence should be noted. Let Xi= (Y, X,J, where Yi is the matrix of RHS 
endogenous variables in ($7) and Xii is the matrix of predetermined var- 
iables. Let pi = DiYi and X, = (Y? X,J. The formula proposed for &; was 

(6.13)’ iuj = [($ - x,_,j+)+i - xi_,fii)]-r(,?i - Xi_,F,)‘(Y, - y-,JJ. 
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This is the formula for the coefficient estimates of the regression of yi - JJ+. ,,& 
on 2i - Xi_,jj. Equation (6.13) reduces to (6.13)’ when &andXi_, =( Yi-, 
X2,_,) are included in Z,, that is, when the exogenous, lagged endogenous, 
and lagged exogenous variables in the equation being estimated sre included 
among the first-stage regressors. The inclusion ofXzi means that yL =fi, and, 
as noted earlier, the inclusion ofX,_, means that Xi - Xi_,ji = Xi - Xi-,ji. 
The proposed formula for;< was (6.14)‘, which, as noted above, is the same as 
(6.14) only ifX+, and yi_, are included in Z,. Solving (6.13)’ and (6.14)’ is 
thus not the same as solving (6.13) and (6.14) unless X,i, Xi_, , and y,-, are 
included in Zi. It can be shown that if this is not done, solving (6.13)’ and 
(6.14)’ does not result in consistent estimates. The need to include X,;, Xi-, , 
and y,_, among the first-stage regressors was stressed in Fair (1970), but one 
should keep in mind that this is not absolutely necessary ifthe formulas (6.13) 
and (6.14) are used. In general, however, Xzi, Xi-, , and y,-, are obvious 
variables to include among the first-stage regressors, and for most problems 
this should probably be done even if one is using a program that solves (6.13) 
and (6.14) rather than (6.13)’ and (6.14)‘. 

In the case of linearity in the coefficients and first-order serial correlation, 
G, = (Xi - X,_,p, yi_l - X+,cu,), and the formula (6.6) for p*;, can be 
written 

IfXzi, Xi_, , and J&~ are included in Z,, then (6.15) becomes 

(6.15)’ vz;,= 
(&Xi-,ji)~(~i -X,-,jJ (~i-X,_,~i)‘&_l 

a:_& - Xi_,&) a:_,&_, 

where, as above, Lii-, =x,-~ -Xi_&. This is the formula presented in Fair 
(1970). Remember that Vzii in this case is the covariance matrix for (& $J,,), 
not hLi alone. It was suggested in Fair ( 1970, p. 5 14) that the off-diagonal terms 
in (6.15)’ be ignored (that is, set to zero) when computing pz;,,, and this was 
initially done for the TSCORC option in TSP. This is not, however, a good 
idea, as Fisher, Cootner, and Baily (1972, p. 575, n. 6) first pointed out. The 
saving in computational costs from ignoring the off-diagonal terms is small, 
and in general one should not ignore the correlation between & and j$ in 
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computing pzii. In later versions of TSP the TSCORC option was changed to 
compute vzii according to (6.15)‘, but many copies were distributed before 
this change was made. 

The generalization of the preceding discussion to higher-order serial corre- 
lation is straightfonuard. and this will not be done here except to make one 
point. As the order ofthe serial correlation increases, the number of variables 
that must be included among the first-stage regressors to ensure consistent 
estimates increases if the higher-order equivalents of (6.13)’ and (6.14)’ are 
used. In going from first to second, for example, the new variables that must 
be included are Xi_, and Y~-~. At some point it may not be sensible, given the 
number of observations, to include all these variables, in which case the 
higher-order equivalents of (6.13) and (6.14) should be used for the estimates. 

Restrictions on the Coefficients 

In the general nonlinear case in which (6.5) is minimized using an algorithm 
like DFP, restrictions on the coefficients are easy to handle. Minimization is 
merely over the set of unrestricted coefficients. For each set of unrestricted 
coefficients tried by the algorithm, the restricted coefficients are first calcu- 
lated and then the objective function (6.5) is computed. Except for calculating 
the restricted coefficients given the unrestricted ones, no extra work is in- 
volved in accounting for the restrictions. 

In the case in which the restrictions are linear and the model is otherwise 
only nonlinear in variables, an alternative procedure is available for handling 
the restrictions. To see this, assume that a restriction is 

(6.16) Rq = r> 

where R is 1 X ki, ei is k, X 1, and r is a scalar. R and I are assumed to be 
known. Let cyli denote the first element of o+, and assume without loss of 
generality that the first element ofR is nonrero. Given this assumption, (6.16) 
can be solved for a,; 

(6.17) cyli = R*af + I*, 

where R* is 1 X ki - I and olr is ki - 1 X 1. The vector elf excludes CU,~. 
Given (6.17). (6.7) can be written 

(6.18) J?~ = X,iol,i +X2,$ + ui = X,,(R*ar + r*) + X2& + ui 
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wherey: = y;“,- X,ir*andX: =X,,R* +X,i.ThevectorX,iisa TX 1 vector 
of observations on the variable corresponding to ali, and X,i is a TX ki - 1 
matrix ofobservations on the other explanatory variables. Given that R* and 
r* are known, ~7 and XT are known, and therefore (6.19) can be estimated in 
the usual way. The original equation has been transformed into one that is 
linear in the unrestricted coefficients. The extra work in this case is merely to 
create the transformed variables. 

The coefficient restriction in the US model that is represented by (4.20) is a 
linear restriction on the coefficients of the wage equation (n , y2, and yx) if the 
coefficients of the price equation (p, and /$) are given. For all the limited 
information estimation techniques (that is, all the techniques except 3SLS 
and FIML), the variables in the wage equation were transformed into an 
equation like (6.19) before estimation. This required that the price equation 
be estimated first to get the estimates of/?, and p2 to be used in the transfor- 
mation. This procedure was not followed for the 3SLS and F’IML estimates, 
since the restriction (4.20) is not linear within the context ofall the equations 
of the model. 

Choice of First-Stage Regressors 

Before estimating an equation by 2SLS, the first-stage regressors (FSRs) must 
be chosen. Since analytic expressions for the reduced form equations are not 
available for most nonlinear models. they cannot be used to guide the choice 
of FSRs. One must choose, given knowledge of the model, FSRs that seem 
likely to be important explanatory variables in the (unknown) reduced form 
equations for the RHS endogenous variables in the equation being estimated. 

There is considerable judgment involved in the choice of FSRs for a 
particular equation, and there are only a few rules of thumb that can be given. 
Consider estimating an equation with y>, and Ye, as RHS endogenous vari- 
ables. Assume that the structural equations that determine )?*, and J$, have y4, 
and ysr as RHS endogenous variables. One obvious choice of FSRs is to use 
predetermined variables that are in the structural equations that explain j’z’21 
and .v~,. Another choice is predetermined variables that are in the structural 
equations that explain 4$, and y,,. One can continue this procedure through 
further layers as desired. (This rule of thumb is discussed in Fisher 1965.) 
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A rule of thumb about functional forms is to use mostly logarithms of 
variables ifthe RHS endogenous variables are in logarithms and to use mostly 
linear variables if the RHS endogenous variables are linear. Sometimes 
squares and cubes of variables are used, and sometimes variables multiplied 
by each other are used. There is no requirement that the same set of FSRs be 
used for different equations (although the same set must be used for all the 
RHS endogenous variables in a particular equation), and thus one may want 
to use different sets across equations, each set depending on the particular 
RHS endogenous variables in the equation. 

The predetermined variables in the equation being estimated should also 
be included among the FSRs. Not doing so means treating these variables as 
endogenous. There is, however, an exception to this in the linear-in-coeffi- 
cients case, which should be explained to avoid possible confusion. Consider 
(4.7) and let X, = (Y, X,J, where Y, is the matrix of RHS endogenous 
variablesandXziis the matrix of predetermined variables. If,?iisdefined to be 
(pi X,J, where pi = DiYj, rather than &Xi, and if formula (6.8) is used to 
compute &, then Xzi is treated as exogenous even if it is not included in Z,. 
Equation (6.8) is the instrumental variables formula for hi, and when 
(p: X,;) is used for ,!?i, X,; is serving as its own instrument. When (pi X,J is 
used for fi, and X,; is not included in X;, (6.8) and (6.9) are not the same, and 
(6.9) does not produce consistent estimates. (See McCarthy 197 I .) Equations 
(6.8) and (6.9) are the same only if Xzi is included in Z,. 

Covnrinnce Matrix ofAN the Esfimated Coeficients 

Some of the stochastic simulation work in Chapters 7, 8, and 9 requires the 
covariance matrix of all the coefficients estimates, that is, the k X k covar- 
iance matrix of &, where & = (& , , A$,.)‘. For the completely linear case 
(linear in both variables and coefficients), this covariance matrix is presented 
in Theil ( 197 I, pp. 499 - 500) for the case in which the same set of FSRs is 
used for each equation. For the more general case of a nonlinear model and a 
different set of FSRs for each equation, it is straightforward to show that the 
covariance matrix (say V2) is 

(6.20) vz = 

J 
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where 

(6.21) 1 -I , 
(6.22) Vzij = oti plim + G;D,G, 

-I I[ plim + G;DiD,Gj 1 
plim + G;D,Gj 1 -I 

An estimate of Vzjj is vzii in (6.6). An estimate of Vzti (say p2J is 

Regarding the proof that Vz in (6.20) is the correct covariance matrix, the 
derivation in Theil can easily be modified to incorporate the case of different 
sets ofFSRs. Nonlinearity can be handled as in Amemiya ( 1974, appendix 1 ), 
that is, by a Taylor expansion ofeach equation. The formal proofthat Vz is as 
in (6.20), (6.21), and (6.22) is straightforward but lengthy, and it is omitted 
here. Jorgenson and Laffont (I 974, p. 363) incorrectly assert that the off-diag- 
onal blocks of V2 are zero. 

6.3.3 Three-Stage Least Squares (3SLS) 

3SLS estimates of a! (say &) are obtained by minimizing 

(6.24) u’ [t-l @ Z(Z’Z)-‘Z’]u = u’Du 

with respect to CY, where 2 is a consistent estimate of E and Z is a TX K 
matrix of predetermined variables. As estimate of the covariance matrix of& 
(say P3) is 

(6.25) & = (C?‘Di;)-I, 

where C? is G evaluated at & E is usually estimated from the 2SLS estimated 
residuals. This estimator is presented in Jorgenson and Laffont (1974), and it 
is further discussed in Amemiya (1977). Both prove consistency and asymp 
totic normality of 3SLS. 

The 3SLS estimator that is based on minimizing (6.24) uses the same Z 
matrix for each equation. In small samples this can be a disadvantage of 3SLS 
relative to 2SLS. It is possible to modify (6.24) to include the case ofdifferent 
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Z, matrices for each equation, and although this modification is not in general 
practical for large models, it is of some interest to consider. This estimator is 

with respect to (Y. An estimate of the covariance matrix of this estimator is 
(C?‘Bod)-‘. (6.26) reduces to (6.24) when Z, = = Z, = Z. The compu- 
tational problem with this estimator is that it requires inverting the middle 
matrix in brackets. This matrix is of dimension K* = EE, Xi, which is 
generally a large number. For small to moderate models, however, it may be 
feasible to invert this matrix. This estimator has the advantage of being the 
natural full-information extension of 2SLS when different sets of FSRs are 
used. This estimator is a special case of one of the 3SLS estimators in 
Amemiya (1977, p. 963), namely the estimator determined by his equation 
(5.4), where his S, is the first matrix in brackets in (6.26) above. 

If the estimator that minimizes (6.26) is used, a different set of FSRs can be 
used for each equation, and the same considerations apply here as apply for 
the 2SLS estimator. If the estimator that minimizes (6.24) is used, the same 
set of FSRs must be used for all equations. This set should be roughly equal to 
the union of the sets that are used (or that would be used) for the 2SLS 
estimator. The actual set used may have to be smaller than the union if the 
union contains more variables than seem sensible given the number of 
observations. Also, some nonlinear functions of the basic variables may be 
highly collinear (say. x,,, log x1,. and XT,), and one or more of these may be 
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able to be excluded without much loss ofexplanatory power in the lint-stage 
regressions. 

6.3.4 Full Information Maximum Likelihood (FIML) 

Under the assumption that (u,,, , u,,) is independently and identically 
distributed as multivariate N(O,S), the density function for one observation is 

(6.27) 
> 

, 

where S* = SF and S$ is the ij element of S*. The Jacobian J, is defined in 
Section 6.1. The likelihood function of the sample t = 1, , T is 

T 

(6.28) L* = (2n)-*IS*lfnIJ,lexp 
*=I 

and the log of L* is 

(6.29) log I,* = -7 log 272 + ; loglS*l+ i loglJ,l - ; 2 uirF1;u,.C. 
<=I &.,,I 

Since log L* is a monotonic function of L*, maximizing log L* is equivalent 
to maximizing L*. 

The problem of maximizing log L* can be broken up into two parts: the 
first is to maximize log L* with respect to the elements of&‘*, and the second is 
to substitute the resulting expression for S* into (6.29) and to maximize this 
“concentrated” likelihood function with respect to LY. The derivative of log L* 
with respect to S$ is 

(6.30) 

where s*b is the Lj element of S*-‘. This derivative uses the fact that 

a MA I - = a’J for a matrix A. Setting (6.30) equal to zero and solving for s*g aa, 
yields 

(6.3 I) 
I = $*” = - x *rip,, 
T,=, 
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Since S* = S’, s*” = su, and therefore sti = + i u,u,. Substituting (6.3 1) 
r-1 

into (6.29) yields 

(6.32) log L* = -y log 2n +; loglS*l+ f: loglJ,I -J$ 
(-1 

The-? term comes from the fact that -; 2 ui&uj, = -; z .i& ui,uj, = 
1.1.1 r., 1-t 

-; 2 $?*Q= -$ The first and last terms on the RHS of (6.32) are 
i., 

constants. and thus the expression to be maximized with respect to (Y consists 
ofjust the middle two terms. Since loglS*l = logIS’ = -log/SI, the function 
to be maximized can be written 

(6.33) L = -; loglS[ + i log/.&l, 
I-I 

1 = 
where, as noted earlier, the ijelement ofS, sb, is T c u. u. FIML estimates 

I=1 I”’ 
of OL are thus obtained by maximizing L with respect to cx. An estimate of the 
covariance matrix of these estimates (say PA) is 

(6.34) 

where the derivatives are evaluated at the optimum. 
Phillips (1982) has pointed out that Amemiya’s proof of consistency and 

asymptotic efficiency (1977) is based on an incorrect lemma. This is corrected 
in a later paper (Amemiya 1982). Amemiya’s article ( 1977), as corrected, 
shows that in the nonlinear case FIML is asymptotically more efficient than 
3SLS under the assumption of normality. In the linear case RML is consist- 
ent even if the error terms are not normally distributed, where “FIML” means 
the full information maximum likelihood estimator derived under the as- 
sumption of normality. In the nonlinear case this is not in general true, 
although it sometimes is. Phillips (1982) presents an example of a nonlinear 
model for which FIML is consistent for a wide class of error distributions. He 
also proves a “possibility” theorem, which shows that when FIML is consist- 
ent under normality it is always possible to find a nonnormal error distribu- 
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tion for which consistency is maintained. The assumption of normality is not 
necessary for the consistency of 3SLS. Given that 3SLS is consistent under a 
broader class of error distributions than is FlML, it is in this sense a more 
robust estimator. There is thus a trade-off between more robustness for 3SLS 
and more efficiency for FIML if the error terms are normal. 

In the linear case Hausman ( 1975) has shown that RML can be interpreted 
as an instrumental variables estimator in which all the nonlinear restrictions 
on the reduced fortn coefficients are taken into account in forming the 
instruments. This is contrary to the case for 3SLS, which forms the instru- 
ments from unrestricted estimates of the reduced form equations. FIML thus 
uses more information about the model than does 3SLS. In the linear case this 
makes no difference asymptotically because both estimates of the reduced 
form coefficient matrix are consistent (assuming that 3SLS uses all the 
explanatory variables in the reduced form equations as first-stage regressors). 
In the nonlinear case, however, it does make a difference because 3SLS does 
not obtain consistent estimates of the reduced form equations. In general, 
analytic expressions for the reduced form equations are not available, and 
3SLS must be based on approximations to the equations. No such approxi- 
mations are involved for F’IML, and this is the reason it is asymptotically 
more efficient. 

Another interesting difference between FIML and 3SLS concerns the LHS 
variable in each equation. Chow (1964) has shown in the linear case that 
FIML is the natural generalization of least squares in the sense that it 
minimizes the generalized variance of linear combinations of the endogenous 
variables. This is not true of 3SLS, which follows the principle of generalized 
variance but not oflinear combinations. What Chow’s interpretation shows is 
that there is no natural LHS variable for FIML: because of the linear 
combination aspect, each variable in the equation is treated equally. For 
3SLS, on the other hand, a LHS variable must be chosen ahead of time for 
each equation. 

For macroeconometric work it is unclear whether the symmetrica treat- 
ment of the endogenous variables by FIML is desirable or not. If the equa- 
tions that are estimated are decision equations, as is the case for the model in 
Chapter 4, there is a natural LHS variable for each equation. FIML ignores 
this restriction, whereas 3SLS does not, so this may be an argument in favor of 
3SLS. Given this difference and given the fact that 3SLS is more robust to 
specification errors regarding the distribution of the error terms, the question 
of which estimator is likely to be better in practice is far from clear. 
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6.3.5 Least Absolute Deviations (LAD) 

LAD estimates of C-Z, (say hi) are obtained by minimizing 

(6.35) 2 I-U 

with respect to oli. For the general nonlinear model the asymptotic distribu- 
tion of iu, is not known. For the standard regression model yi = Xicxi + uj, 
where Xi is a matrix of exogenous variables and nit is independent and 
identically distributed with distribution function P: Bassett and Koenker 
(1978) have shown that the asymptotic distribution of&, is normal with mean 

oii (thus h, is consistent) and covariance matrix w2Q, where Q = lim +,I’;?;. 

and oz is the asymptotic variance of the sample median from random 
samples with distribution F. Amemiya (1982)suppliesan alternativeproofof 
this proposition. 

The LAD estimator is an example of a robust estimator. An estimator is 
said to be more robust than another if its properties are less sensitive to 
changes in the assumptions about the model, particularly assumptions about 
the distribution of the error terms. In a number of cases the LAD estimator 
has been shown to be more robust that the OLS estimator to deviations ofthe 
error terms from normality. In particular, the LAD estimator seems well 
suited to cases in which the distribution of the error terms is fat-tailed. 

The literature in statistics on robust estimation is now quite extensive, and 
there are many types of robust estimators. The estimators differ primarily in 
how error terms that are large in absolute value (that is_ outliers) are weighted. 
These estimators have not been used very much in applied econometric work, 
so there is little experience to guide the choice ofestimator. Since LAD is the 
simplest of the estimators, it seems to be the best one to start with. An 
interesting open question is how useful any of the robust estimators are for 
empirical work in economics. 

6.3.6 Two-Stage Least Absolute Deviations (2StAD) 

There are two ways of interpreting the 2SLS estimator that is based on the 
minimization of (6.5), and these need to be discussed before considering the 
LAD analogue of 2SLS. For purposes ofthe discussion in this section and in 
Section 6.5.4, it will be assumed that the model (6.1) can be written 

(6. I) Yi:,, = h(Y,> x,, 4 + Ui,, i= 1, .n. t=1,. ,T> 
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where in the ith equation yi, appears only on the LHS. Given this and given 
that 0: = Di and O,Di = Di, (6.5) can be written 

(6.36) u:D,ui = u;DiD,ui 
= (Jj; - h;)DiDi(J$ - hi) 
= (yjDi - /z;Di)(DLvi - Ofhi) 
= (jy - h;)(j; - r;,) 
=&pi - 29;/5 + &I;,, 

where i; = D,y, and & = D,h;. Instead of minimizing (6.36), consider mini- 
mizing 

(6.37) (J$ - h^l)(J$ - hi) = L’;JQ - 2J& + /;I/;,. 

Given that pi& = y;DiDihi = y;Dihi = y$, and given that j?:ji and y;y, are 
not a function of 01~: minimizing (6.36) with respect to oli is equivalent to 
minimizing (6.37). Therefore, the 2SLS estimator can be interpreted as 
minimizing either (pi - &)(J;, - I$ or (y: - @(yi - &). The first interpreta- 
tion is Basmann’s (1957) and the second is Theil’s (1953). 

For the LAD analogue it is unclear which interpretation should be used. 
Using Basmann’s one would minimize 

and using Theil’s one would minimize 

In this case the choice matters in that minimizing (6.38) and minimizing 
(6.39) lead to different estimates. Amemiya (1982) has proposed minimizing 

(6.40) ,$ lwi,+ (1 - &Pi, - /;,,I, 

where 4 is chosen ahead of time by the investigator. The estimator that is 
based on minimizing (6.40) will be called 2SLAD. 

For the general nonlinear model the asymptotic distribution of 2SLAD is 
not known. For the linear model Amemiya (1982) has proved that 2SLAD is 
consistent. He has also in the linear case derived formulas for the asymptotic 
covariance matrix of the estimator for particular assumptions about the 
distributions of the error terms. If all the distributions are normal, he has 
proved that 2SLAD is asymptotically normal. 
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6.4 Sample Size Requirements for FIML and the Estimation of Subsets 
of Coefffcients 

6.4.1 Sample Size Requirements 

For large models there may not be enough observations to estimate all the 
coefficients by FIML. For a linear model without identities, Sargan (1975) has 
shown that the FIML likelihood function has an infinite maximum if the 
number of observations is less than the number ofendogenous and exogenous 
variables. With respect to more general models, Parke (1982b) has derived the 
FIML sample size requirement for models with identities, nonlinearity in 
variables. and serial correlation coefficients. It will be useful to consider 
Parke’s main results. 

Consider first the case ofno identities and no serial correlation coefficients. 
If the model is only nonlinear in variables, it can be written 

(6.41) QA = CJ, 

where Q is a TX 4 matrix of variables that are functions of the basic 
endogenous and exogenous variables, A is a 4 X m matrix of coefficients, and 
U is a TX m matrix of error terms. In general the variables in Q are nonlinear 
functions of the basic endogenous and exogenous variables, although many of 
them may simply be the basic variables. The total number of variables in the 
model is 4. Under the assumption that each of these variables appears at least 
once in the mode1 with a nonzero coefficient (a trivial assumption), Parke has 
shown that the sample size requirement for FIML is T 2 4. 

Adding identities does not in geneml change this requirement. One need 
not include in Q variables that appear in identities but not in the structural 
equations when one is calculating the sample size requirement. When the 
identity is what Parke calls a “closed” identity, one that imposes a linear 
dependency on the columns of Q, the sample size requirement is less. For i 
closed identities the dependencies can be written 

(6.42) QP = 0, 

where P is a 4 X i matrix of known coefficients. For i closed identities the 
sample size requirement is T 2 4 - i. 

An example of a model with a closed identity is the following: 

(6.45) Qa = QI, + Q,,. 
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In this case Qx,, could be substituted out ofthe stochastic equations (6.43) and 
(6.44) without introducing any new variables, and therefore it is not a variable 
that needs to be counted against the sample size requirement. Identitiesofthis 
type are likely to be rare. (There are, for example, no closed identities in the 
model in Chapter 4.) A much more common identity in the model just 
presented would be f&, = Q1, + Q>, + Qs,. where QG, does not appear in the 
stochastic equations. In this case the identity is “open,” and f&,, does count 
against the sample size requirement. 

The treatment of serial correlation is somewhat more involved. Assume 
that x, appears in equation i, where equation i has first-order serially corre- 
lated errors. After the equation is transformed, the variable appears as x; = 
xjt - pi.+, If xjt and xjz_l appear nowhere else in the model, x$ can be 
counted as only one variable. Otherwise, both xj, and x~,_~ must be counted. 
Even ifxjz appears in many equations with first-order serially correlated errors 
(and in general different serial correlation coefficients), the number of vari- 
ables to be counted is still only two (xjz and x,_,). What this says is that the 
introduction of tint-order serial correlation to an equation at most increases 
the number of variables to be counted by the number of original variables in 
the equation. The increase is less than this if at least some of the original 
variables and their one-period-lagged values do not appear elsewhere in the 
model. If none of the original variables and their lagged values appear 
elsewhere in the model, the introduction of serial correlation to an equation 
does not increase the number of variables to be counted. Similar arguments 
apply to higher-order serial correlation. For example, the introduction of 
second-order serial correlation at most increases the number ofvariables to be 
counted by twice the number of original variables in the equation. 

The introduction of a constraint across coefficients does not in general 
reduce the sample size requirement. If it does, it is sometimes possible to write 
the model with fewer variables after the constraint is imposed. Brown (198 1) 
shows that this is always the case for a linear constraint across the coefficients 
in a single equation. As a general rule of thumb, if it is not obvious that a 
constraint can be used to write the model with fewer variables, it should be 
assumed that the constraint does not reduce the sample size requirement. 

6.4.2 Estimation of Subsets of Coefficients 

It is possible to reduce the sample size requirement of FIML by fixing some 
coefficients at, say, their 2SLS values (or some other consistently estimated 
values) and estimating the remaining coefficients by FIML. One can fix either 
all the coefficients in a given equation or only some of them. If all the 
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coefficients are fixed, the equation is still taken to be part of the estimation 
problem in the sense that the covariance matrix Sin (6.33) is still n? X M, but 
none of the coefficients in the equation are estimated by FlML. 

Consider the problem by estimating the free coefficients by F’IML, and 
write the relevant subset of the model as 

(6.46) Q,A, = CT, > 

where Q, is TX 41) A, is 9, X wzl, and C!~ is TX m, The matrix A, is the 
matrix of free coefficients, and m, is the number of equations in which at least 
one coefficient is free. CJ~, as will be seen, is the number of variables that count 
for purposes of calculating the sample size requirement. Its determination 
requires some explanation. Assume that x, and xk, appear in equation i and 
that their coefficients (ai, and LYJ are fixed. Assume that log ).‘;< is the LHS 
variable. This equation can be rewritten with logy,, - &xj, - h&t on the 
LHS and x,, and x, eliminated from the RHS. (cii, and 6, are the consistent 
estimates of Lyi, and (Y,~ .) If log Ye,, xj,, and xk, do not appear elsewhere in the 
model, this fixing of the coefficients has eliminated two variables. If log pir 
does appear elsewhere but xj, and x, do not, only one variable has been 
eliminated because the new LHS variable and log y;, count as separate 
variables. Ifx, and x,. appear elsewhere, no variables are eliminated. If all the 
coefficients in an equation are fixed, a variable in the equation is eliminated if 
it appears nowhere else in the model. 4, is the number of variables that remain 
after all possible eliminations. 

Parke has shown that the sample size requirement for this reduced problem 
is T 2 q, + m2 - i, , where m2 = m - m, is the number of equations for which 
none ofthe coefficients are estimated and i, is the number of closed identities 
that pertain to the reduced set of equations (that is, the set of equations not 
counting the m2 equations for which no coefficients are estimated). Note that 
one observation is needed for each ofthe m2 equations that are not estimated. 

Given this result, ifthe sample size requirement is not met for the complete 
model. the problem can be reduced by fixing various coefficients until it is 
met. An example of this procedure is presented in Section 6.52. 

It should finally be noted that because of computational costs, one may 
want to restrict the size of the estimation problem even if the sample size 
requirement is met. The obvious way to do this is to fix some of the 
coefficients at their 2SLS estimates. This can be done for both the FIML and 
3SLS estimators. 

When only a subset of the coefficients is estimated by FIML or 3SLS, the 
easiest thing to do with regard to the estimation ofthe covariance matrix ofall 
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the coefficient estimates is to assume that the coefficient estimates that are 
fixed with respect to the FIML or 3SLS estimation problem are uncorrelated 
with the FIML or 3SLS coefficient estimates. This allows the covariance 
matrix of all the coefficient estimates to be pieced together from the cover- 
iance matrix of the fixed estimates and the covariance matrix of the FIML or 
3SLS estimates. Since correlation of coefficient estimates across equations is 
usually small relative to the correlation within an equation. the erron intro- 
duced by this procedure are likely to be fairly small in most applications. This 
is particularly true if the coefficient estimates that are fixed are of lesser 
importance than the others. 

6.5 Computational Procedures and Results 

6.5.1 OLS and 2SLS 

For equations that are nonlinear in variables only, closed-form expressions 
exist for the OLS and 2SLS estimators. For 2SLS the expression is (6.9), and 
for OLS it is (6.9) with X;replacing fi. Ifthe nonlinearity in coefficients is due 
only to the presence of serially correlated error terms, the estimates can be 
obtained by solving (6.13) and (6.14) (or Eqs. 6.13’and 6.14’) or higher-order 
versions of these iteratively. For general nonlinearities in coefficients, (6.5) 
must be minimized using some general-purpose algorithm like the DFP 
algorithm discussed in Section 2.5. 

Results.for the b’S Model 

The 2SLS estimates of the US model are presented in Chapter 4. The 
first-stage regressors that were used for these estimates are given in Table 6-1. 
Two common sets are presented first in Table 6- 1, one for equations in which 
the RHS endogenous variables are primarily linear and one for equations in 
which the RHS endogenous variables are primarily in logarithms. The addi- 
tional FSRs that were used for each equation are presented second. These 
FSRs are primarily variables that appear as explanatory variables in the 
equation being estimated but that are not part of the common set. The 
common sets include 34 variables, and the number of additional variables 
ranges from 0 to 9. The equations that are estimated by OLS have no RHS 
endogenous variables. 

The time taken to estimate the 30 equations by 2SLS was about 3.0 minutes 
on the IBM 4341 and about 8.4 minutes on the VAX. The estimation ofthe 
covariance matrix ofall the coefficient estimates, vz in (6.20), took about 5.5 





- 



230 Macroeconometric Models 

minutes on the IBM 4341 and about 7.8 minutes on the VAX. The deriva- 
tives in the Gi matrices that are needed for the estimation of the covariance 
matrix were computed numerically. 

Eight of the 30 equations were estimated under the assumption of first- 
order serial correlation of the error terms. The iterative procedure described 
above was used. The starting value ofp was always zero, and the number of 
iterations required for convergence was 10, 7, 1 I> 4, 13, 6, 4, and 5 respec- 
tively. Convergence was defined to take place when successive estimates ofp 
were within .OOl of each other. 

OLS estimation ofthe 30 equations took about .2 minutes on the IBM 434 1 
and about .5 minutes on the VAX, which compares to about 3.0 and 8.4 
minutes respectively for 2SLS estimation. The number of coefficients esti- 
mated in any one equation is small compared to the number estimated in the 
first-stage regressions, and this is the reason for the considerably larger 
expense of the 2SLS estimates. The maximum number of coefficients esti- 
mated in an equation is 12, whereas the minimum number estimated in a 
first-stage regression is 34. Nevertheless, the cost of 2SLS estimation is small 
relative to many other costs reported below. 

6.5.2 FIML 

Until recently the estimation of large nonlinear models by FIML was not 
computationally feasible, but this has now changed. The computational 
problem can be separated into two main parts: the first is to find a fast way of 
computing L in (6.33) for a given value of cy, and the second is to find an 
algorithm capable of maximizing L. 

The main cost of computing L is computing the Jacobian term. Two 
savings can be made here. One is to exploit the sparseness ofthe Jacobian. The 
number of nonzero elements in J, is usually much less than nz. For the US 
model, for example, n is 128 (son* = 16,384), whereas the number of nonzero 
elements is only 441. Considerable computer time is saved by using sparse 
matrix routines to calculate the determinant ofJ,. 

The second saving is based on an approximation. Consider approximating 
XL, loglJ,l by simply the average of the first and last terms in the summation 

T 
multiplied by T: - (loglJ, I + loglJ,I). Let S,, denote the true summation, and 

2 
let S, denote the approximation. It turns out in the applications I have dealt 
with that S, - S, does not change very much as the coefficients change from 
their starting values (usually the 2SLS estimates) to the values that maximize 
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the likelihood function. In other words, S, - S, is nearly a constant. This 
means that S, can be used instead of S,, in computing L, and thus considerable 
computer time is saved since the determinant ofthe Jacobian only needs to be 
computed twice rather than T times for each evaluation of L. For the US 
model T is 115. Using S, in place of S, means, of course. that the coefficient 
values that maximize the likelihood function are not the exact FIML esti- 
mates. If one is concerned about the accuracy ofthe approximation, one can 
switch from S, to S, after finding the maximum using S, If the approxima- 
tion is good, one should see little further change in the coefficients: otherwise 
additional iterations using the algorithm will be needed to find the true 
maximum. 

The choice of algorithm turns out to be crucial in maximizing L for large 
nonlinear models. My experience is that general-purpose algorithms like DFP 
do not work, and in fact the only algorithm that does seem to work is the 
Parke algorithm (1982a), which is a special-purpose algorithm designed for 
FIML and 3SLS estimation. This algorithm exploits two key features of 
models. The first is that the mean of a particular equation’s estimated 
residuals is approximately zero for the FIML and 3SLS estimates. For OLS 
this must be true, and empirically it turns out that it is approximately true for 
other estimators. The second feature is that the correlation of coefficient 
estimates within an equation is usually much greater than the correlation of 
coefficients across equations. 

The problem with algorithms like DFP that require numerical first deriva- 
tives is that the computed gradients do not appear to be good guides regarding 
the directions to move in. Gradients are computed by perturbing one coeffi- 
cient at a time. When a coefficient ischanged without the constant term in the 
equation also being changed to preserve the mean of the residuals, a large 
change in L results (and thus a large derivative). This result can obviously be 
quite misleading. The Parke algorithm avoids this problem by spending most 
of its time perturbing two coefficients at once, namely a given coefficient and 
the constant term in the equation in which the coefficient appears. The 
constant term is perturbed to keep the mean ofthe residualsunchanged. (The 
algorithm does not, of course. do this all the time, since the means of the 
residuals must also be estimated). To take advantage of the generally larger 
correlation within an equation than between equations, the Parke algorithm 
spends more time searching within equations than between them. General- 
purpose algorithms do not do this, since they have no knowledge of the 
structure of the problem. 

It should also be noted regarding the computational problem that if only a 
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few coefficients are changed before a new value of L is computed, consider- 
able savings can be made by taking advantage of this fact. If, for example, the 
coefficients are not in the Jacobian, the Jacobian term does not have to be 
recomputed. If only a few equations are affected by the change in coefficients, 
only a few rows and columns in the S matrix have to be recomputed. Since the 
Parke algorithm spends much of its time perturbing two coefficients at a time, 
it is particularly suited for these kinds of savings. 

The estimated covariance matrix for the FIML coefficient estimates, p4 in 
(6.34) is difficult to compute. It is not part of the output of the Parke 
algorithm, and thus extra work is involved in computing it once the algorithm 
has found the optimum. My experience is that simply trying to compute the 
second derivatives of L numerically does not result in a positive-definite 
matrix. Although the true second-derivative matrices at the optimum are 
undoubtedly positive-definite, they seem to be nearly singular. If this is true, 
small errors in the numerical approximations to the second derivatives may 
be sufficient to make the matrix not positive-definite. 

Fortunately, there is an approach to computing pd that does work, which is 
derived from Parke (1982a). Parke’s results suggest that the inadequate 
numerical approximations may be due to the fact that the means of the RHS 
variables in the estimated equations are not zero. If so, the problem can be 
solved by subtracting the means from the RHS variables before taking 
numerical derivatives. Let /I denote the coefficient vector that pertains to the 
model after the tneans have been subtracted, and let a denote the original 
coefficient vector. The relationship between (Y and p is 

(6.47) CY=M./?, 

where Mis a k X k square matrix that is composed ofthe identity matrix plus 
additional nonzero elements that represent the means adjustments. Unless 
there are constraints across equations, M is block-diagonal. Assume, for 
example, that the first equation of the model is 

(6.48) Yl, = PI + Pz(Y21 - %) + Ps(Y,* - m3 + u,,, t=1,. ,I”, 

where rn2 and ms are the sample means of yz, and Y,, respectively. This 
equation can be written 
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In this case the part of (6.47) that corresponds to the first equation is 

(6.50) (ii)-(s -” -r)(;;). 

Parke found that the covariance matrix of B could easily be computed 
numerically. Let p&$) denote this matrix: 

Given p&?), the covariance matrix of u is simply 

(6.52) I$ = M. VJfl) M’. 

p4 can thus be obtained by first computing the covariance matrix of the 
coefficients of the transformed model (that is, the model in which the RHS 
variables have zero means) and then using (6.52) to get the covariance matrix 
of the original coefficients. 

Results for the US Model 

The solution ofthe FIML estimation problem for the US model is reported in 
Table 6-2. Thereare 169 unconstrainedcoefficientsin the model: 107 ofthese 
were estimated by FIML, with the remaining tixed at their 2SLS estimates. 
The coefficients that were not estimated by FIML include the dummy 
variable coefficients in Eqs. I 1, 13, and 27 and all the coefficients in Eqs. 5,6. 
7. 8. 15, lg. 19,20,21. 25, 28, and 29. These coefficients and equationswere 
judged to be less important than the others, although this is obviously a 
subjective choice. The sample size requirement for this subset ofcoefficients is 
99. There are 115 observations. 

The starting values were the 2SLS estimates. The value of L in (6.34) at 
these estimates is 5098.66. The change in L after 70 iterations in Table 6-2 is 
18 I .76. On the first iteration the Parke algorithm increased L by 67.07, and on 
the second and third iterations it increased L by 8.68 and 7.64 respectively. 
The change after three iterations was thus 83.39. which is 45.9 percent ofthe 
total change. This illustrates ageneral feature ofthe Parke algorithm: it climbs 
very quickly for the first few iterations and then slows down considerably for 
the rest. 



Between iterations 58 and 62 the number of Jacobians computed to 
approximate the sum was increased from 2 to 13. When I3 Jacobians were 
used, the sum was approximated by interpolating between the points. As can 
be seen in the table, the change in L was little affected by this. If the use of 2 
Jacobians in fact provided a poor approximation, it is likely that the Parke 
algorithm would have increased L by much more than it did on the first few 
iterations after the switch. That it did not is some evidence in favor of the 
approximation. 

Another way of looking at the 2 versus 13 question is to consider how 
sensitive the difference in L computed the two ways is to changes in the 
coefficients. The following results help answer this: 
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V&e qf L 2 Jacobians 

I. at start (ZSLS estimates) 5,098.66 
L after 59 iterations L279.53 
L after 62 iterations 5,279.82 
L after 70 iterations 5,280.42 

13 Jacobians 

5,284.49 
5,464.04 
5.464.34 
5,464.96 

.!Aff^prmcr 

- 185.83 
-184.51 
- 184.52 
- 184.54 

It is clear that the difference is little affected by the change in the coellicients 
from the 2SLS estimates to the estimates at the end of iteration 70. It thus 
seems that the use of 2 Jacobians is adequate. Note that this saves consider- 
able time, since the cost ofone iteration ofthe Parke algorithm increases from 
about2.8 minutestoabout 5.4 minuteson theIBM4341 when 13 ratherthan 
2 Jacobians are used. 

As discussed earlier, when only one or two coefficients are being changed by 
the algorithm, many of the calculations involved in computingL do not have 
to be performed. In the present example, if these cost savings had not been 
used, the time taken for one iteration of the Parke algorithm would have 
increased by about a factor of 4.5, which is a considerable difference. As will 
be seen in the next section. this difference is even more pronounced in the 
3SLS estimation problem. 

It is a characteristic of the estimation problem that the likelihood function 
is fairly flat in the vicinity of the optimum. For example, the change in L on 
iteration 70 was only .06, and yet, as reported in note b in the table, 26 
coefficients changed by 1 .O percent or more and 4 changed by 5.0 percent of 
more. The largest three changes were 8.1, 12.6, and 18.4 percent. The 
coefficients that change this much are obviously not significant, and they are 
not coefficients that are very important in the model. Nevertheless, these 
results do point out one of the reasons the FIML estimation problem is so 
hard to solve. 

As noted in Table 6-2, the total time for the FIML estimation problem was 
about 3.5 hours on the IBM 4341. The time taken to compute the FIML 
covariance matrix after the coefficient estimates were obtained was about 53 
minutes. The M transformation discussed earlier was used in the calculation 
of this matrix, and the second derivatives were obtained numerically. 

6.5.3 3SLS 

The 3SLS estimation problem is to minimize (6.24). The only cost saving to 
note for this problem is that the D matrix, which is M . TX m r, need not be 
calculated anew each time (6.24) is computed if only a few coefficients are 
changed. 
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The first-stage regressors for this problem are presented in Table 6-3. There 
are 49 variables in this set. A number of the variables in Table 6-1 that were 
used for the 2SLS estimates were not used for the 3SLS estimates because of 
the desire to keep the number relatively small. The 2SLS estimates of the 



238 Macroeconometric Models 

residuals were used to compute 2 in (6.24), which remained unchanged 
throughout the solution of the problem. 

The same subset ofcoefficients was estimated by 3SLS as was estimated by 
FIML. The solution of the 3SLS problem is reported in Table 6-4. This 
problem was easier to solve than the FIML problem. Again, the 2SLS 
estimates were used as starting values. The total change in the objective 
function, F, after 26 iterationswas46.55, ofwhich 39.81 was obtained by the 
Parke algorithm after 3 iterations. On iteration 26, eight coefficients changed 
by 1 .O percent or more, and the largest three changes were 6.6. 10.5, and 26.7 
percent. 

Each iteration requires about 4 minutes on the IBM 4341 and about 1 I 
minutes on the VAX. The total time for the 26 iterations on the IBM 4341 
was about 1.7 hours. The D matrix for the US model is 3,450 X 3,450 (m = 
30, T= 115), and considerable time was saved by not computing this matrix 
from scratch any more times than were absolutely necessary. If the entire 
matrix had been computed each time that (6.24) was computed, the time per 
iteration would have increased by about a factor of 17, and thus the total time 
would have increased from 1.7 hours to 28.9 hours. 

The time taken to compute the 3SLS covariance matrix, ps in (6.25), was 
about 23 minutes on the IBM 4341 and about II minutes on the VAX. The 
derivative matrix d that is needed for this calculation was computed numeri- 
cally. The reason the IBM 4341 time is large relative to the VAX time is that 
in the calculation of pa much reading and writing from the disk is done, and 
the IBM 4341 is relatively slow at this. 

6.5.4 LAD and 2SLAD 

The LAD and 2SLAD computational problem is to minimize 

(6.53) 2 hl 

with respect to oi, where uil = ud = y, - h, for LAD and u, = qyil + 
(I - y)gft - 6, for 2SLAD. This computational problem is not particularly 
easy, especially when uil is a nonlinear function ofol,. I have had no success in 
trying to minimize(653)using theDFPalgorithm and Powell’s no-derivative 
algorithm (1964). (When the DFP algorithm was tried, the derivatives were 
computed numerically. The problem that they do not exist everywhere was 
ignored.) Both algorithms failed to get close to the optimum in most of the 
cases that I tried. 
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Because the standard algorithms do not work, other approaches must be 
tried. I have used two, one that worked well and one that did not. The one that 
worked well uses the fact that 

where vvi, = /I+~/. For a given set of values of ivi, (t = 1, , T), minimizing 
(6.54) is simply a weighted least squares problem. If vi, is a linear function of 
cyj, closed-form expressions exist for &; otherwise a nonlinear optimization 
algorithm can be used. This suggests the following iterative procedure. (I) 
Pick an initial set of values of wit These can be the absolute values of the OLS 
or 2SLS estimated residuals. (2) Given these values, minimize (6.54). (3) 
Given the estimate of oli from step 2, compute new values of vi, and thus new 
values of +v>(. (4) With the new weights, go back to step 2 and minimize (6.54) 
again. Keep repeating steps 2 and 3 until successive estimates ofcvi are within 
some prescribed tolerance level. If on any step some value of uSi, is smaller 
than some small preassigned number (say E). the value of wi, should be set 
equal to E. 

The accuracy of the estimates using this approach is a function of E: the 
smaller is E, the greater is the accuracy. If vi, is a linear function of ol;, the 
estimates will never be exact because the true estimates correspond to ki 
values of u~,~ being exactly zero, where ki is the number of elements of ai. 

In the case in which the equation to be estimated is linear in coefficients, the 
closed-form expression for & for a given set of values of ivir is 

(6.55) &, = &,,@-r,$yj+ 

2: is the same as ,?i in (6.9) except that each element in row t of.$ is divided 
by 6. The vector dt equals ~JJ~ + (I - q)jJj except that row 1 is divided by 
J;;,. ($i equals D(JI .) 

Ifthe equation is linear in coefficients but has serially correlated errors: vi, is 
not a linear function of the coefficients inclusive of the serial correlation 
coefficients. and therefore a closed-form expression does not exist. It is 
possible in his case, however, to solve for the estimates by iteratively solving 
equations like (6.13) and (6.14). This avoids having to use a general-purpose 
algorithm like DFP. Assuming that Xi_, and yi_, are included in Z,, the two 
equations for the first-order serial correlation case are 

(6.57) j& = a 
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Figure 6-I Approximation ofA@,, .L3) to Iq,l 

,?T* is the matrix $ - Xi_l& with each element in row t divided by Gt; &* 
is the vector qyi + (1 - q).& - y,_,j, with row I divided by &,; ii?-, is the 
vector yi_, - Xii_& with row I divided by Jk;;;; and t$ is the vector qy, + 
(1 - q)ji - Xii$ with row I divided by &,. For a given set of weights, (6.56) 
and (6.57) can be solved iteratively. 

The second approach is derived from Tishler and Zang (1980). The prob 
lem of minimizing (6.53) is changed to a problem of minimizing 

-4 if q, 5 --I( 
(6.59) 4%,8) = 

I 
(L'Z +P*)/u if-/?<v,,</J. 
0, if uif 2fl 

The value ofpis some small preassigned number. Since lim A(+,# =IuJ, the 

smaller isp, the closer is (6.53) to (6.59). The approxim%& ofA(v,, /I’) tolq,;,l 
is presented in Figure 6-I. Since A(+, p) is once continuously differentiable, 
an optimization algorithm like DFP can be used to minimize (6.59) for a 
given value of p, The smaller is 8, the more difficult the minimization 
problem is likely to be_ and thus there is a trade-off between accuracy and ease 
of solution. 
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Four sets of estimates of the US model were obtained: LAD, 2SLAD using 
4 = 0.0, 2SLAD using q = 0.5, and 2SLAD using 4 = 1 .O. The method of 
Tishler and Zang did not work well, in the sense that the results were quite 
sensitive to the value ofg chosen, and therefore it was dropped from further 
consideration fairly early in the calculations. For small values offi the DFF’ 
algorithm, which was the algorithm used, failed to converge, and for large 
values of fi the algorithm converged to answers that implied values of the true 
objective function, (6.53), that were larger than those obtained by the first 
method. It was difficult to find in-between values ofa that worked well. 

The first method, on the other hand, worked extremely well. For ZSLAD 
using 4 = 0.5, for example, the number ofiterations required for convergence 
for the 30 equations ranged from 4 to 145, with an average of 35.6. Conver- 
gence was taken to be achieved when successive estimates ofeach coefficient 
were within .002 percent of each other. The value used for E was .OOOOOOl. 
The total time for estimating the model by LAD was about 2.2 minutes on the 
IBM 4341 and about 5.7 minutes on the VAX. The total time for each ofthe 
three 2SLAD estimation problems was about 6.5 minutes on the IBM 4341 
and about 16.5 minutes on the VAX. Of the 120 equations estimated, none 
had a residual that was smaller than E in absolute value at the time that 
convergence was achieved. These results are very encouraging, and they 
indicate that computational costs are not likely to be a serious problem in the 
future with respect to LAD and 2SLAD estimation. 

6.6 Comparison of the OLS, 2SLS, 3SLS, FIML, LAD, and 2SLAD 
Results for the US Model 

If the model is correctly specified and all the assumptions about the error 
terms are correct, all but the OLS and LAD estimates of the US model are 
consistent. They should thus differ from each other only because of a finite 
sample size. In practice the model is likely to be misspecihed. and not all the 
assumptions about the error terms are likely to be correct. Given this, it is not 
obvious how the estimates should compare. In this section the quantitative 
differences among the estimates are examined. The consequences of these 
differences for the predictive accuracy of the model are discussed in Section 
8.5.5, and the consequences for the properties of the model are discussed in 
Section 9.4.5. 

Table 6-5 presents acomparison ofthe estimates for six equations: the three 
consumption equations, 1, 2. and 3; the price equation. 10; the production 
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equation, 11; and the interest rate reaction function, 30. The 2SLS estimates 
are used as the basis ofcomparison. Each number in a “b” column in the table 
is the difference between the particular estimate and the 2SLS estimate 
divided by the standard error of the 2SLS estimate. These numbers thus 
indicate how many standard errors the estimates are from the 2SLS estimates. 
where the standard errors that are used are 2SLS standard errors. Table 6-6 
provides summary measures for all the coefficient estimates. 

The main conclusion to be drawn from these results is that all the estimates 
are fairly close to each other except for the F’IML estimates. Consider Table 
6-6: only 3 of the 107 3SLS coefficient estimates are more than 1.5 standard 
errors away from the 2SLS estimates, whereas 38 ofthe RML estimates are. 
Only 1 ofthe 169 OLS estimatesismore than 1.5 standard errorsaway. Ofthe 
2SLAD estimates, 7 are more than 1.5 standard errors away for 4 = 0.0, 12 are 
forq=0.5, and 19 are forq = 1.0. For LAD the number is 15. Very fewofthe 
estimates changed signs, as can be seen in the bottom half of Table 6-6. Even 
for FIML_ only 6 estimates changed sign. 

With respect to the individual estimates in Table 6-5, one important 
difference between the FIML estimates and the others occurs in Eq. 11, the 
equation determining production, Y. Coefficient 3 in Eq. 1 I is the coefficient 
for the sales variable, X. For all the estimates except FIML, this coefficient is 
around 1 .O, whereas for FIML it is around I .4. Also, coefficient 2 in Eq. 1 I _ 
which is the coefficient of the lagged dependent variable, is around .I5 for the 
other estimates and close to zero for FIML. The FIML estimates of the lagged 
dependent variable coefficients in two of the three consumption equations 
(Eqs. 2 and 3) are likewise quite different from the others. In both equations 
the lagged dependent variable coefficient is number 2. The FIML and 2SLS 
estimates in the two equations are. respectively, ,666 I9 versus .4 1164 and 
.45821 versus .07423. 

It should be stressed that the only reason for the present comparison is to 
get a general idea of how close the estimates are. Of more importance are the 
comparisons in Sections 8.5.5 and 9.4.5, which examine the estimates within 
the context of the overall model. What can be said so far is that the RML 
estimates differ most from the others when the examination is coefficient by 
coefficient. 

Comparison ofStandard Errors 

Table 6-7 presents a comparison of the 2SLS. 3SLS, and RML estimated 
standard errors. As expected, the 2SLS standard errors are generally larger 
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than the 3SLS standard errors_ where the average of the ratios of the two is 
I .27. This is not always the case, however, as can be seen for coefficients l-6 
and 8 in Eq. 4, where the 2SLS standard errors are smaller. This difference is 
due to the different first-stage regressors that are used by 2SLS and 3SLS. As 
discussed earlier, 2SLS uses different sets of FSRs for different equations, 
whereas 3SLS uses a common set that is smaller than the union of the 2SLS 
sets. This can cause the 2SLS standard errors to be smaller. In the present case, 
Eq. 4 has no RHS endogenous variables, and thus the 2SLS estimates are the 
OLS estimates. The FSRs in this case include all the explanatory variables in 
the equation. Not all of these explanatory variables were included in the 
common set of FSRs for the 3SLS estimates, and therefore some of the 
variables in the equation were treated as endogenous. This was enough to lead 
to larger 3SLS standard errors for some of the coefficients. 



The more interesting result in Table 6-7 is that the 3SLS standard errors are 
generally smaller than the FIML standard errors. The average of the ratios of 
the two is .74. This result has also been obtained, but not discussed, by 
Hausman (I 974). For 10 of the 12 estimated coefficients of Klein’s model I 
that are reported in Hausman’s table 1, p. 649, the FIML standard error is 
larger than the corresponding 3SLS standard error. 

My conjecture as to why the 3SLS standard errors are generally smaller is 
the following. Given the large number of FSRs that are used by 3SLS, the 
predicted values of the endogenous variables from the first-stage regressions 
are fairly close to the actual values. For FIML, on the other hand, we know 
from Hausman’s interpretation (1975) of the FIML estimator as an instru- 
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mental variables estimator that FIML takes into account the nonlinear 
restrictions on the reduced form coefficients in forming the instruments. This 
means that in small samples the instruments that FIML forms are likely to be 
based on worse first-stage fits of the endogenous variables than are the 
instruments that 3SLS forms. In a loose sense, this situation is analogous to 
the fact that in the 2SLS case the more variables that are used in the first-stage 
regressions. the better is the tit in the second-stage regression. 

Possible Use cfrhr Huusman Test 

An interesting question is whether Hausman’s m-statistic (1978) provides a 
useful way of examining the differences among the estimates. The m-statistic 
is as follows. Consider two estimators, j0 and /?, , where under some null 
hypothesis both estimators are consistent but only ,$ is asymptotically effi- 
tient. -while under the alternative hypothesis only pi is consistent. Let 4 = 
/J’, - /la, and let V. and vt denote consistent estimates of the asymptotic 
covariance matrices ( vr, and Vi) of ,$, and ,&, respectively. Hausman’s 
m-statistic is @(v, - VJ’@, and he has shown that it is asymptotically 
distributed as x2 with k degrees of freedom, where k is the dimension of 8. 
Note that under the null hypothesis V, - V. is positive-definite. 

Consider now comparing the FIML and 3SLS estimates. Under the null 
hypothesis of correct specification and normally distributed errors, both 
estimates are consistent, but only the FIML estimates are asymptotically 
efficient. On the other hand, 3SLS estimates are consistent for a broad class of 
error distributions, whereas for many distributions FIML estimates are in- 
consistent. If the alternative hypothesis is taken to be that the error distribu- 
tion is one that leads to consistent 3SLS estimates but inconsistent FIML 
estimates, then in principle Hausman’s m-statistic can be used to test the null 
hypothesis of normality against the alternative. Let W) and d@) denote the 
3SLS and FIML estimates of (Y respectively, and let rj = &(a) - &@J, The 
m-statistic in this case is $(ps - pJi& where the estimated covariance 
matrices vJ and p* are defined in (6.25) and (6.34) respectively. 

In practice the test cannot be performed if pr - pg is not positive-definite. 
For the US model it is clear from Table 6-7 that pr - pa is not positive-deft- 
nite, since most of the diagonal elements of pr are smaller than the corre- 
sponding elements of vd. Ifanything, & - pa is closer to being negative-deft- 
nite, although this is not true either since some of the diagonal elements of pd 
are smaller than the corresponding elements of pa The matrix Pa - vd is also 
not positive-definite for Klein’s model I. since, as noted earlier, Hausman’s 
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results (I 974) show that 10 of the 12 estimated coeffcients have larger FlML 
standard errors than 3SLS standard errors. It thus seems unlikely that 1’, - pd 
will be positive-definite in practice for most models, and therefore the m-sta- 
tistic is not likely to be useful for testing the normality hypothesis. (If the 
model is linear, the test obviously has no power, since RML, like 3SLS, is 
consistent for a broad class of error distributions.) 

The m-statistic can also be used in principle to compare the FIML and 
2SLS estimates. Under the null hypothesis of normally distributed errors and 
correct specification, both estimates are consistent, but only the FIML esti- 
mates are asymptotically efficient. Under the alternative hypothesis of nor- 
mality and misspecification of some subset of the equations, all the FIML 
estimates are inconsistent, but only the ZSLS estimates of the misspecitied 
subset are inconsistent. The m-statistic can thus be applied to one or more 
equations at a time to test the hypothesis that the rest ofthe model is correctly 
specified. If for some subset the m-statistic exceeds the critical value, the test 
would indicate that there is misspecification somewhere in the rest of the 
model. 

In practice this test cannot be applied if pz - fd is not positive-definite, and 
for the US model, as is clear from Table 6-7, vz - PA is not positive-definite, 
Many of the diagonal elements of vz are smaller than the corresponding 
elements of pa. It thus also seems unlikely that this test of misspecification 
will be useful in practice. 

Finally, the specification hypothesis can be tested in certain circumstances 
using the m-statistic on the 2SLS and 3SLS estimates. Ifboth estimators are 
members of a class of estimators for which 3SLS is asymptotically efficient. 
the test can be applied. The problem is that when the two estimators are based 
on different sets of FSRs, as is usually the case with large models, they are not 
members of the same class. One cannot argue. for example, that the 3SLS 
estimates given above for the US model are asymptotically efficient relative to 
the 2SLS estimates, and thus the Hausman test cannot be applied in this case. 

In summary, the m-statistic does not seem useful for testing either the 
normality hypothesis or the correct specification hypothesis. Regarding the 
latter, my feeling is that it is better simply to assume that the model is 
misspecified (so that no test is needed) and to try to estimate the degree of 
misspecification. This is the procedure followed for the comparison method 
in Chapter 8. 



7 Solution 

7.1 Definition of Terms 

Once the stochastic equations of a model have been estimated and the 
identities have been written down, the next step is to solve the model. There 
are various meanings to the word “solve,” and it will be useful to begin this 
discussion with some definitions. “Solve” and “simulate” mean the same 
thing. A “static” solution or simulation is one in which the actual values ofthe 
predetermined variables are used for the solution each period. Predetermined 
variables include both exogenous and lagged endogenous variables. A “dy- 
namic” simulation is one in which the predicted values of the endogenous 
variables from the solutions for the previous periods are used for the values of 
the lagged endogenous variables for the solution for the current period. 

“Forecast” and “prediction” are generally used to mean the same thing, 
and they are so used here. They mean the same thing as solution and 
simulation. An “outside-sample” forecast or prediction is one for a period 
that is not included within the estimation perioa otherwise the forecast is 
“within-sample.” An “ex post” forecast is one in which the actual values of 
the exogenous variables are used. An ex post forecast can be outside sample, 
but it must be within the period for which there are data on the exogenous 
variables. An “ex ante” forecast is made for a period beyond the period for 
which data exist; it is a forecast in which guessed values of the exogenous 
variables are used. In other words, ex ante forecasts are for a period that is 
truly unknown. Ex ante forecasts must be outside sample and (if the forecast 
is for more than one period ahead) dynamic. The forecasts must be dynamic 
because the values of the lagged endogenous variables are only known for the 
initial period. 

In order to solve a model some assumption must be made about the error 
terms in the stochastic equations. If only one set of values of the error terms is 
used, the simulation is said to be “deterministic.” The expected values of 
most error terms in most models are zero, and for most deterministic 
simulations the error terms are set to zero. For linear models the procedure of 
setting the error terms equal to their expected values and solving the model 
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results in the predicted values ofthe endogenous variables being equal to their 
expected values. This is not the case, however. for nonlinear models (see, for 
example, Howrey and Kelejian 1971) which is simply due to the fact that a 
nonlinear function of expected values is not equal to the expected value ofthe 
nonlinear function. A “stochastic” simulation is one in which many draws of 
the error terms are made in the process of solving the model. This procedure is 
discussed in Section 7.3. Aside from sampling error and a few other approxi- 
mations, solving a nonlinear model by means of stochastic simulation does 
result in the predicted values being equal to the expected values. As will be 
seen in Chapters 8 and 9, stochastic simulation is useful for other purposes as 
well. 

7.2 The Gauss-Seidel Technique 

Most macroeconometric models are solved using the Gauss-Seidel technique. 
It is a remarkably simple technique and in most cases works remarkably well. 
This technique is used for all of the main procedures discussed in the rest of 
this book. The vast majority of computer time used for any of these proce- 
dures is spent solving the model using the Gauss-Seidel technique, and thus 
the technique is obviously of crucial importance. The technique is easiest to 
describe by means of an example. 

Assume that the model (6.1) consists of three equations, and let x, denote 
the vector of predetermined variables in equation i. The model is as follows: 

(7.1) j;(Y,,, Y2,> I%,> Xl,> o,) = % 

(7.2) f,(Y,,> I+,> I%,> .?!I> o2) = %,> 

(7.3) f,(Yi,> Y2,, Y3,> x3,. %) = %, 

where yii, y,,, and y,, are scalars. The technique requires that the equations be 
rewritten with each endogenous variable on the LHS of one equation. This is 
usually quite easy for macroeconometric models, since most equations have 
an obvious LHS variable. If, say, the LHS variable for (7.2) is log (y,J.vs,). then 
y,, can be written on the LHS by taking exponents and multiplying the 
resulting expression by J’~,. The technique does not require that each endoge- 
nous variable be isolated on the LHS; the LHS variable can also appear on the 
RHS. It is almost always possible in macroeconometric work, however, to 
isolate the variable, and this will be assumed in the following example. 

The model (7.1)-(7.3) will be written 
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In order to solve the model, values of the coefficients and the error terms are 
needed. It is unimportant for now what values are used, as long as some values 
are available. Given these values and given values of the predetermined 
variables. the solution proceeds as follows. Initial values of the endogenous 
variables are guessed. These are usually either actual values or predicted 
values from the previous period. Given these values, (7.1)‘-(7.3)’ can be 
solved for a new set of values. This requires one “pass” through the model: 
each equation is solved once. One pass through the model is also called an 
“iteration.” Given this new set of values, the model can be solved again to get 
another set. and so on. Convergence is reached if for each endogenous 
variable the values on successive iterations are within some prescribed toler- 
ance level. 

There are two main options that can be used when passing through the 
model. One is to use the values from the previous iteration for all the 
computations for the current iteration. and the other is to use, whenever 
possible, the values from the current iteration in solving the remaining 
equations. Following the second option in the example just given would mean 
using the current solution for Ylr in the solution of pzl and Y3, and using the 
current solutions for J+, and Yzt in the solution of y,, In most cases conver- 
gence is somewhat faster using the second option. Ifthe second option is used, 
the order of the equations obviously matters in terms of the likely speed of 
convergence. The first option is sometimes called the Jacobi technique rather 
than the Gauss-Seidel technique, but for present purposes both options will 

be referred to as the Gauss-Seidel technique. 
There is no guarantee that the Gauss-Seidel technique will converge. It is 

easy to construct examples in which it does not, and I have seen many 
examples in practice where it did not. The advantage of the technique, 
however. is that it can usually be made to converge (assuming an actual 
solution exists) with sufficient damping. By “damping” is meant the follow- 
ing. Let pz-” denote the solution value ofY,, for iteration n - I (orthe initial 
value if n is I), and let fi:’ denote the value computed by solving (7.1) on 
iteration n. Instead of using $,:’ as the solution value for iteration n, one can 
instead adjust .CE-” only partway toward 3;‘: 
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If A is 1. there is no damping, but otherwise there is. Damping can be done for 
any or all ofthe endogenous variables, and different values ofi. can be used for 
different variables. 

My experience is that one can usually make 1 small enough to achieve 
convergence. The cost of damping is, of course, slow convergence. In some 
cases I have seen values as low as .05 needed. In the vast majority of the 
problems that I have solved, however, no damping at all was needed. Two 
other ways in which one can deal with problems of convergence are to try 
different starting values and to reorder the equations. This involves, however, 
more work than merely rerunning the problem with lower values ofA, and I 
have generally not found it necessary to experiment with starting values and 
the order of the equations. 

Note that nothing is changed in the foregoing discussion if, say, yr, is also on 
the RHS of (7.1)‘. One still passes though the model in the same way. This 
generally means, however, that it takes longer to converge, and more damp- 
ing may be required than if yII is only on the LHS; thus it is better to isolate 
variables on the LHS whenever possible. 

The question of what to use for a stopping rule is not as easy at it might 
sound. The stopping rule can either be in absolute or percentage terms. In 
absolute terms it is 

(7.5) I@;’ - pi;-“1 < Ei 

and in percentage terms it is 

where l i is the tolerance criterion for variable i. (If damping is used, $$’ in 
(7.5) and (7.6) should be replaced with ji;‘.) 

The problem comes in choosing the values for ei. It is inconvenient to have 
to choose different values of the tolerance criterion for different variables, and 
one would like to use just one value of< throughout. This is not, however, a 
sensible procedure if the units of the variables differ and if the absolute 
criterion is used. Setting the value of6 small enough for the required accuracy 
of the variable with the smallest units is likely to lead to an excess number of 
iterations, since a large number of iterations are likely to be needed to satisfy 
the criterion for the variables with the largest units. Setting E greater than this 
value, on the other hand, runs the risk of not achieving the desired accuracy 
for some variables. This problem is lessened ifthe percentage criterion is used, 
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but in this case one must be concerned with variables, like the level of savings 
of a sector, that can be zero or close to zero. 

My experience is that the number of iterations needed for convergence is 
quite sensitive to the stopping rule. It does not seem to be the case, for 
example, that once one has converged for most variables, one or two addi- 
tional iterations increase the accuracy for the remaining variables very much. 
There is no real answer to this problem. One must do some initial experimen- 
tation to decide how many different values of e are needed and whether to use 
the absolute or percentage criterion for a given variable. 

7.3 Stochastic Simulation 

7.3.1 The Basic Procedure 

Stochastic simulation can be either with respect to the error terms or the 
coefficient estimates, or both. It requires that an assumption be made about 
the distributions of the error terms and/or coefficient estimates. In practice 
these distributions are almost always assumed to be normal, although in 
principle other assumptions can be made. For the present discussion the 
normality assumption will be used. In particular, it is assumed that 
uI = (Us,, , u,,)’ is independently and identically distributed as multi- 
variate N(0, S). This is the Same assumption that was used for the FIML 
estimates in Chapter 6. Given an estimation technique and the data, one can 
estimate the coefficients, the covariance matrix of the coefficient estimates, 
and the covariance matrix ofthe error terms. Denote the estimates of the two 
covariance matrices pand s^ respectively. The dimension of $is m X M, and 

the dimension of P is k X k. s can be computed as h(i@, where 0 is the 

RI X T matrix of values of the estimated error terms. The computation of p 
depends on the particular estimation technique used. Given Pand given the 
normality assumption, an estimate of the distribution of the coefficient 
estimates is N(&, $). where iu is the k X 1 vector of coefficient estimates. 

,Let u: denote a particular draw of the WI error terms for period t from the 
N(0, 3) distribution, and let LY* denote a particular draw of the k coefficients 
from the N(&, P) distribution. Given u: for each period t of the simulation 
and given (Y*, one can solve the model. This is merely a deterministic 
simulation for the given values of the error terms and coefficients. Call this 
simulation a “trial.” Another trial can be made by drawing a new set of values 
of u: for each period t and a new set of values ofol*. This can be done as many 
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times as desired. From each trial one obtains a prediction of each endogenous 
variable for each period. Let & denote the value on the jth trial of the 
k-period-ahead prediction of variable i from a simulation beginning in period 
1. For Jtrials, the estimate of the expected value of the variable, denoted $i,k, is 

Let & denote the variance of the forecast error for a k-period-ahead 
forecast of variable i from a simulation beginning in period t. Given the J 
trials, a stochastic-simulation estimate of & (denoted &J is 

where j’,, is determined in (7.7). 
It is also possible to treat the coefficients as known and draw only from the 

distribution of the error terms. For a one-period-ahead forecast and known 
coefficients, the estimated variance is merely the estimated variance of the 
reduced form error term. 

It should be stressed that these stochastic-simulation estimates ofthe means 
and variances are not exact. There are two reasons for this. The first is that the 
true distributions ofthe error terms and coefficient estimates are not known; 
one must always draw from estimated distributions. The second is sampling 
error that results from taking only a finite number of draws. 

7.3.2 The Possible Nonexistence of Moments 

It may be the case that the forecast means and variances do not exist, and this 
problem requires some discussion. For linear models Sargan (1976) has 
shown that for most overidentified models the 2SLS and 3SLS reduced form 
estimators have no moments of positive integral order. (A general theorem 
regarding the nonexistence of moments is given in Phillips 1984, theorem 
3.9.1.) For linear models Sargan (1973) has also shown that the FIML reduced 
form estimates have finite moments of up to order T-K-G, where T is the 
number of observations, Kis the number ofexogenous variables in the model. 
and G is the number of endogenous variables in the model. 

In practice, the possible nonexistence of moments is generally ignored: 
means and variances are estimated as if they always exist. One reason the 
nonexistence of moments does not appear to arise in practice is that extreme 
draws of the error terms and coefficient estimates are generally not used. By 
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“extreme“ in this case is meant a draw that results in the failure of the 
Gauss-Seidel technique to find a solution ofthe model. In many ofthese cases 
it may be that with further damping and experimenting with the technique 
the solution could be found, but in some cases it may be that a solution truly 
does not exist. By throwing away the extreme draws. one is effectively 
sampling from truncated distributions, where the moments are likely to exist. 

It is possible to compute more robust measures of central tendency and 
dispersion. such as the median, range. and interquartile range, and for some 
of the results in Chapter 8 I have reported measures like this. The measure of 
dispersion that I have used (denoted 6,) is the following: 

FF,~ is the value for which 34.135 percent of the Jtrial values lie above it and 
below the median, and $$ is the value for which 34. I35 percent of the Jtrial 
values lie below it and above the median. For the normal distribution sUk 
equals &except for sampling error, and thus the size of&,, is something that 
one may have some feeling for. Its size is similar to the size of the square root 
ofthe variance ifthe variance exists and if the ttue error distribution is close to 
being normal. Another way of looking at S,, is that it is like, say, the 
interquartile range except that pix - 4’~~ encompasses 68.270 percent of the 
values rather than 50.0 percent ofthe values. Ifthe variance does not exist for 
a particular problem and if the number of trials is large. one might expect airk 
to be considerably larger than a,,,. Therefore, by computing both measures 
one has at least a loose check on the possible nonexistence of moments. 

Another approach to the problem ofthe possible nonexistence ofmoments 
is to modify an estimator in such a way that it is guaranteed to have moments. 
For linear models, for example, Maasoumi (1978) has proposed an estimator 
of the reduced form coefficients that is a weighted average of the unrestricted 
least squares estimator and the 3SLS estimator. The weight on the least 
squares estimator, which has finite moments, is nonzero when the two sets of 
estimates are far from each other according to a certain criterion. This way of 
truncating the 3SLS estimator is enough to ensure that the modified version 
has fmite moments of up to order T-K-G, where Tis the number of observa- 
tions, K is the number of exogenous variables, and G is the number of 
endogenous variables. 

It is not clear whether an approach like Maasoumi’s can be extended to 
nonlinear models and whether it will be practical ifit can. It may be that the 
main way in which this problem is dealt with in practice for large nonlinear 
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models is merely to truncate the distributions by not using extreme draws that 
occur during the stochastic simulations. 

7.3.3 Numerical Procedures for Drawing Values 

A standard way of drawing values of a * from the N(&, P) distribution is to ( 1) 
factor numerically (using a subroutine package) pinto PP’, (2) draw (again 
using a subroutine package) k values of a standard normal random variable 
with mean 0 and variance 1, and (3) compute (Y* as & + Pe, where e is the 
kX 1 vector of the standard normal draws. Since Eee’ = I, then 
E(o* - &)(a* - &)’ = EPee’P’ = p, which is as desired for the distribution 
of o1*. A similar procedure can be used to draw values of u: from the hT(O, 3) 
distribution: 3 is factored into PP’, and u: is computed as PC, where e is a 
m X I vector of standard normal draws. 

An alternative procedure for drawing values of the error terms, derived 
from McCarthy ( 1972) has also been used in practice. For this procedure one 
begins with them X Tmatrix ofestimated error terms, 6’. Tstandard normal 
random variables are then drawn, and U: is computed as T*&, where e is a 
TX 1 vector of the standard normal draws. It is easy to show that the 

covariance matrix of u: is ,?, where, as earlier, 3 is $?crf. 

An alternative procedure is also available for drawing values of the coeffi- 
cients. Given the estimation period (say, I through T) and given 2, one can 
draw T values of U: (t = 1, , T). One can then add these errors to the 
model and solve the model over the estimation period (static simulation, 
using the original values of the coefficient estimates). The predicted values of 
the endogenous variables from this solution can be taken to be a new data 
base, from which a new set of coefficients can be estimated. This set can then 
be taken to be one draw of the coefficients. This procedure is more expensive 
than drawing from the l\i(S, fi distribution, since reestimation is required for 
each draw, but it has the advantage of not being based on a fixed estimate of 
the distribution of the coefficient estimates, It is, of course, based on a fixed 
value of 2 and a fixed set of original coefficient estimates. 

7.3.4 Previous Studies and Results 

Stochastic simulation has not been widely used in practice, but a few studies 
do exist. Studies in which only draws from the distribution ofthe error terms 
have been made include Nagar (1969); Evans, Klein, and Saito (1972); 
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Fromm, Klein, and Schink (1972); Green, Leibenberg, and Hirsch (1972); 
Cooper and Fischer (1972); Sowey (1973); Cooper (1974); Garbade (1975); 
Bianchi, Calzolati. and Corsi (1976); and CaIzolari and Corsi (1977). Studies 
in which draws from both the distribution of the error terms and the distribu- 
tion of the coefficient estimates have been made include S&ink (1971), 
(1974); Haitovsky and Wallace (1972); Cooper and Fischer (1974); Muench, 
Rolnick, Wallace. and Weiler (1974); and Fair (1980a). 

One important empirical conclusion that can be drawn from these stochas- 
tic simulation studies is that the values computed from deterministic simula- 
tions are quite close to the mean predicted values computed from stochastic 
simulations, In other words, the bias that results from using deterministic 
simulation to solve nonlinear models appears to be small. This conclusion has 
been reached by Nagar ( 1969); Sowey (1973): Cooper (1974); Bianchi, Calzo- 
lari, and Corsi (1976); and Calzolari and Corsi (1977) for stochastic simula- 
tion with respect to the error terms only and by Fair (1980a) for stochastic 
simulation with respect to both error terms and coefficients. The results 
reported in Section 7.5.1 for the US model also confirm this conclusion. 

7.4 Subjective Adjustment of Models 

In actual forecasting situations most models are “subjectively adjusted” 
before the forecasts are computed. The adjustments take the form of either 
using values other than zero for the future error terms or using values other 
than the estimated values for the coefficients. Different values of the same 
coefficient are sometimes used for different periods. Adjusting the values of 
constant terms is equivalent to adjusting the values of the error terms, given 
that a different value of the constant term can be used each period. Adjust- 
ments of this type are sometimes called “add factors.” One interpretation of 
add factors, which is stressed by Intriligator (1978, p. 5 16), is that they are the 
user’s estimates of the future values of the error terms. With enough add 
factors it is possible to have the forecasts from a model be whatever the user 
wants, subject to the restriction that the identities must be satisfied. Most add 
factors are subjective in that the procedure by which they were chosen cannot 
be replicated by others. A few add factors are objective; for example, the 
procedure of setting the future values ofthe error terms equal to the average of 
the past two estimated values is an objective one. This procedure, along with 
another type of mechanical adjustment procedure, is used for some of the 
results in Haitovsky, Treyz, and Su (1974). (See Green, Liebenberg, and 
Hirsch 1972 for other examples.) 
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7.5 Computational Results 

7.5.1 The US Model 

The US model consists of 30 stochastic equations, 169 unrestricted coeffi- 
cients, and 98 identities. The covariance matrix ofthe error terms (SJ is thus 
30 X 30. and the covariance matrix of the coefficient estimates (Vj is 
169 X 169. 

For the solution of the model, the stopping rule for the Gauss-Seidel 
technique was taken to be in percentage terms and the tolerance value was 
chosen to be .OOl percent. The first 30 equations, which are the stochastic 
equations, were used for the convergence check. If each of the successive 
predictions of the first 30 variables were within the tolerance value. conver- 
gence was taken to be achieved. Not checking the identities avoided the 
problem that some of the values of the variables determined by identities are 
close to zero. Experimentation with alternative (and more precise) stopping 
rules indicated that the procedure of checking only the first 30 variables 
provided sufficient accuracy. The number of iterations needed for conver- 
gence varied between about 7 and 13 for a typical job. The time taken to solve 
the model for one quarter was about .2 seconds on the IBM 4341 and about 
1.5 seconds on the VAX. No damping was used for any ofthe variables for the 
Gauss-Seidel technique. 

The results of solving the model for the 197X1- 19791V period are pre- 
sented in Table 7-1. The 2SLS estimates were used for these results. The 
values in the 0 rows are predicted values from a deterministic simulation, 
where the error terms have been set equal to zero. The time for this simulation 
was about 1.6 seconds on the IBM 4341 (.2 seconds X 8 quarters) and about 
12 seconds on the VAX (1.5 seconds X 8 quarters). The values in the a rows 
are predicted values from a stochastic simulation in which only error terms 
are drawn. Each trial for this simulation consists of 8 draws of 30 values each 
from the N(0, s) distribution. A total of250 trials were made. The cost of each 
trial is roughly the cost of solving the model once for the eight quarters. The 
total cost for the 250 trials, as noted at the bottom of Table 7- 1, was about 6.7 
minutes on the IBM 4341 and 49 minutes on the VAX. 

The values in the b and b’ rows are predicted values from a stochastic 
simulation in which draws of both error terms and coefficients are made. The 
results in the two rows are based on the same simulation. The b-row values are 
mean values, and the b’-row values are median values. Each trial for this 
simulation consists of eight draws of 30 values each from the N(0, 3) 
distribution and one draw of 169 values from the N(&, P) distribution. A total 
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of 250 trials were also made for this simulation. The total cost for the 250 
trials was about the same as the cost ofthe 250 trials for the a-row simulation. 

The main conclusion to be drawn from the results in Table 7-1 is that the 
predicted values from the deterministic simulation are quite close to the 
corresponding predicted values from the stochastic simulations. This, as 
noted in Section 7.3, is a common result. The bias that results from solving 
nonlinear models deterministically appears to be small for most models. 

The other important conclusion from the results is that the median values 
are quite close to the corresponding mean values. In other words, the results 
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are not sensitive to the use of a more robust measure of central tendency. For 
none of the draws for the results in the table did the Gauss-Seidel technique 
fail to find a solution, and therefore no draws had to be discarded as being too 
extreme. 

7.5.2 The MC Model 

The solution of the MC model is a fairly large computational problem. For 
each of the 42 countries for which there are estimated equations (not counting 
the United States), there are up to 11 stochastic equations and 9 identities. In 
addition. there are 2,388 estimated trade share equations. The model is solved 
in the following way. 

I. Given exports, X75$,, and the import price index, PM,, country i’s 
model is solved using the Gauss-Seidel technique. Each model consists of all 
or some subset of the 20 equations in Table B-3 (Appendix B). 

2. Given the solution ofeach country’s model, the calculationsin Table B-4 
(Appendix B), including the calculations of the trade shares, are performed. 
Table B-4 takes from each country the predicted value of imports, M75$.4,, 
the predicted value ofthe export price index, P,I’;. and the predicted value of 
the exchange rate, e,. It returns to each country the predicted value of its 
exports. X75$, the predicted value of its import price index, P.Wi, and the 
predicted value of the world price index, PW$,. 

3. Given X75$! and PIWj from step 2, each country’s model is solved again. 
The Table B-4 calculations are then performed again. This process is repeated 
until the successive predicted values from one iteration to the next are within 
some prescribed tolerance level. 

This procedure consists of two types of iterations. The first is the standard 
Gauss-Seidel type for each country’s model separately (step 1). and the second 
is the iteration between Tables B-3 and B-4 (step 3). The tolerance criterion 
for the second type of iteration should be greater than that for the first, since 
otherwise sufficient accuracy may not be achieved for the first type of iteration 
to achieve the required accuracy for the second. 

This procedure worked quite well for the MC model. The average number 
of iterations for each country’s model was usually less than 10, and the 
number of iterations ofthe second type varied between about 3 and 15. The 
total time taken to solve the model for one quarter varied between about 20 
and 40 seconds on the IBM 434 1 and about 2 and 4 minutes on the VAX. As 
noted earlier, the times for the US model for one quarter are .2 seconds on the 



260 Macroeconometric Models 

IBM 4341 and 1.5 seconds on the VAX. The MC model is thus considerably 
more expensive to solve than the US model. For this reason, no stochastic 
simulation experiments were performed for the MC model. Deterministic 
simulations were used to examine both the model’s predictive accuracy and 
its properties. The accuracy is examined in Section 8.6, and the properties are 
discussed in Section 9.5. 



8 Evaluating Predictive Accuracy 

8.1 Introduction 

This chapter deals with one ofthe most important issues in macroeconomics: 
the evaluation and testing of models. The central question in this area is how 
to decide which model out ofa number best approximates the structure ofthe 
economy. Although an obvious answer is to choose the model that fits the 
data best, the problem comes in deciding what criterion to use to judge which 
model fits the data best. In the next two sections the standard ways in which 
this problem has been treated are discussed: Section 8.2 considers the evalua- 
tion of ex ante forecasts, and Section 8.3 considers the evaluation of ex post 
forecasts. My method for dealing with this problem is explained in Section 
8.4. Results for various models are presented in Sections 8.5 and 8.6. 

The three most common measures of predictive accuracy that have been 
used to evaluate ex ante and ex post forecasts are root mean squared error 
(RMSE), mean absolute error (MAE), and Theil’s (1966, p. 28) inequality 
coefficient(U). Let j& be the forecast of variable i for period I, and let y,, be the 
actual value. j$ can be a prediction for more than one period ahead. Assum- 
ing that observations on j$,, and y,, are available for t = 1, , T, the three 
measures are 

(8.1) RMSE= ds> 

(8.2) MAE = + 2 Ik, - &I> 

(*,3) “= &$FG 

where A in (8.3) denotes either absolute or percentage change. All three 
measures are zero if the forecasts are perfect. The MAE measure penalizes 
large errors less than does the RMSE measure. The value of U is one for a 
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no-change forecast (Aji, = 0). A value of U greater than one means that the 
forecast is less accurate than the simple forecast of no change. 

8.2 Evaluation of Ex Ante Forecasts 

The procedure followed to evaluate ex ante forecasts is simply to collect the 
forecast data for a certain period and to compute one or more of the three 
measures just mentioned. Forecasts from different models are evaluated by 
comparing the error measures across models. An important practical prob- 
lem that arises in evaluating ex ante forecasting accuracy is the problem of 
data revisions. Given that the data for many variables are revised a number of 
times before becoming “final, ” it is not clear whether the forecast values 
should be compared to the first-released values, to the final values, or to some 
values in between. There is no obvious answer to this problem. If the revision 
for a particular variable is a benchmark revision, where the level of the 
variable is revised beginning at least a few periods before the start of the 
prediction period, then a common procedure is to adjust the forecast value by 
adding the forecasted change (Al’,,), which is based on the old data, to the new 
lagged value (J+-,). The adjusted forecast value is then compared to the new 
data. If, say, the revision took the form ofaddinga constant amount y,to each 
ofthe old values ofyi,,, then this procedure merely adds the same y, to each of 
the forecasted values of JQ,. This procedure is often followed even if the 
revisions are not all benchmark revisions, on the implicit assumption that 
they are more like benchmark revisions than other kinds. Following this 
procedure also means that if forecast changes are being evaluated, as in the (I 
measure, no adjustments are needed. 

A number of studies have examined ex ante forecasting accuracy using one 
or more of the above measures; some of the more recent ones are McNees 
(1973, 1974, 1975, 1976) and Zarnowitz (1979). It is usually the case that 
forecasts from both model builders and non-model builders are examined 
and compared. A common “base” set of forecasts to use for comparison 
purposes is the set from the ASA/NBER Business Outlook Survey. A general 
conclusion from these studies is that there is no obvious “winner” among the 
various forecasters (see, for example, Zarnowitz 1979, pp. 23, 30). The 
relative performance of the forecasters varies considerably across variables 
and length ahead ofthe forecast, and the differences among the forecasters for 
a given variable and length ahead are generally small. This means that there is 
as yet little evidence that the forecasts from model builders are more accurate 
than, say, the forecasts from the ASA/NBER Survey. 
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Ex ante forecasting comparisons are unfortunately oflittle interest from the 
point of view of examining the predictive accuracy of models. There are two 
reasons for this; the first is that the ex ante forecasts are based on guessed 
rather than actual values of the exogenous variables. Given only the actual 
and predicted values of the endogenous variables, there is no way of separat- 
ing a given error into that part due to bad guesses and that part due to other 
factors. A model should not necessarily be penalized for bad exogenous-vari- 
able guesses from its users. (More will be said about this in Section 8.4.) The 
second, and more important, reason is that almost all the forecasts examined 
in these studies are generated from subjectively adjusted models. (The use of 
add factors is discussed in Section 7.4.) It is thus the accuracy of the forecast- 
ing performance of the model builders rather than that ofthe models that is 
being examined. 

There is some indirect evidence that the use of add factors is quite impor- 
tant in practice. The studies of Evans, Haitovsky, and Treyz (1972) and 
Haitovsky and Treyz ( 1972) analyzing the Wharton and OBE models found 
that the ex ante forecasts from the model builders were more accurate than 
the ex post forecasts from the models, even when the same add factors that 
were used for the ex ante forecasts were used for the ex post forecasts. In other 
words, the use of actual rather than guessed values ofthe exogenous variables 
decreased the accuracy of the forecasts. This general conclusion can also be 
drawn from the results for the BEA model in table 3 in Hirsch, Grimm, and 
Narasimham (1974). This conclusion is consistent with the view that the add 
factors are (in a loose sense) more important than the model in determining 
the ex ante forecasts: what one would otherwise consider to be an improve- 
ment for the model, namely the use of more accurate exogenous-variable 
values, worsens the forecasting accuracy. 

In regard to nonsubjectively-adjusted ex ante forecasts, there is some 
evidence that their accuracy is improved by the use of actual rather than 
guessed values of the exogenous variables. During the period 197OIIIL 
197311, I made ex ante forecasts using a short-run forecasting model (Fair 
197 I b). No add factors were used for these forecasts. The accuracy of these 
forecasts is examined in Fair (1974b), and the results indicate that the 
accuracy is generally improved when actual rather than guessed values ofthe 
exogenous variables are used. 

It is finally of interest to note, although nothing really follows from this, 
that the (nonsubjectively-adjusted) ex ante forecasts from my forecasting 
model were on average less accurate than the subjectively adjusted forecasts 
(McNees 1973), whereas the ex post forecasts (that is, the forecasts based on 
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the actual values of the exogenous variables) were on average of about the 
same degree of accuracy as the subjectively adjusted forecasts (Fair 1974b). 

8.3 Evaluation of Ex Post Forecasts 

The RMSE, MAE, and U measures have also been widely used to evaluate the 
accuracy of ex post forecasts. One of the better-known comparisons of ex post 
forecasting accuracy is described in Fromm and Klein (1976), where eleven 
models are analyzed. The standard procedure for ex post comparisons is to 
compute ex post forecasts over a common simulation period, calculate for 
each model and variable an error measure, and compare the values of the 
error measure across models. If the forecasts are outside-sample, there is 
usually some attempt to have the ends of the estimation periods for the 
models be approximately the same. It is generally the case that forecasting 
accuracy deteriorates the further away the forecast period is from the estima- 
tion period, and this is the reason for wanting to make the estimation periods 
as similar as possible for different models. 

The use ofthe RMSE measure, or one ofthe other measures, to evaluate ex 
post forecasts is straightforward, and little more needs to be said about it. 
Sometimes the accuracy of a given model is compared to the accuracy of a 
“naive” model, which can range from the simple assumption of no change in 
each variable to an autoregressive moving average (ARIMA) process for each 
variable. (The comparison with the no-change model is, of course, already 
implicit in the U measure.) It is sometimes the case that turning-point 
observations are examined separately; by “turning point” is meant a point at 
which the change in a variable switches sign. There is nothing inherent in the 
statistical specification of models that would lead one to examine turning 
points separately. but there is a strand of the literature in which turning-point 
accuracy has been emphasized. 

Although the use of the RMSE or a similar measure is widespread, there are 
two serious problems associated with this general procedure. The first con- 
cerns the exogenous variables. Models differ both in the number and types of 
variables that are taken to be exogenous and in the sensitivity of the predicted 
values of the endogenous variables to the exogenous-variable values. The 
procedure of comparing RMSEs or similar measures across models does not 
take these differences into account. If one model is less “endogenous” than 
another (say that prices are taken to be exogenous in one model but not in 
another), it has an unfair advantage in the calculation of the error measures. 
The other problem concerns the fact that forecast error variances vary across 
time. both because of nonlinearities in the model and because of variation in 
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the exogenous variables. Although RMSEs are in some loose sense estimates 
of the averages of the variances across time, no rigorous statistical interpreta- 
tion can be placed on them: they are not estimates of any parameters of the 
model. 

Another problem associated with within-sample calculations of the error 
measures is the possible existence of data mining. If in the process of 
constructing a model one has, by running many regressions, searched dili- 
gently for the best-fitting equation for each variable, there is a danger that the 
equations chosen, while providing good fits within the estimation period, are 
poor approximations to the structure. Within-sample error calculations are 
not likely to discover this, and thus they may give a very misleading impres- 
sion of the true accuracy of the model. Outside-sample error calculations 
should pick up this problem, however, and this is the reason that more weight 
is generally placed on outside-sample results. 

Nelson (1972) used an alternative procedure in addition to the RMSE 
procedure in his ex post evaluation of the FRB-MIT-PENN (FMP) model. 
For each of a number of endogenous variables he obtained a series of static 
predictions using both the FMP model and an ARIMA model. He then 
regressed the actual value of each variable on the two predicted values over 
the period for which the predictions were made. Ifone ignores the fact that the 
FMP mcdel is nonlinear, the predictions from the model are conditional 
expectations based on a given information set. If the FMP model makes 
efficient use of this information, then no further information should be 
contained in the ARIMA predictions. The ARIMA model for each variable 
uses only a subset of the information, namely, that contained in the past 
history ofthe variable. Therefore, if the FMP model has made efficient use of 
the information, the coefficient for the ARIMA predicted values should be 
zero. Nelson found that in general the estimates of this coefficient were 
significantly different from zero. 

This test, although of some interest, cannot be used to compare models that 
differ in the number and types of variables that are taken to be exogenous. In 
order to test the hypothesis of efficient information use, the information set 
used by one model must be contained in the set used by the other model, and 
this is in general not true for models that differ in their exogenous variables. 

8.4 A Method for Evaluating Predictive Accuracy 

My method for evaluating predictive accuracy, in contrast to previous proce- 
dures, takes account of exogenous-variable uncertainty and of the fact that 
forecast error variances vary across time. It also deals in a systematic way with 
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the question of the possible misspecification of the model. It accounts for the 
four main sources of uncertainty of a forecast: uncertainty due to ( 1) the error 
terms, (2) the coefficient estimates, (3) the exogenous-variable forecasts, and 
(4) the possible misspecification of the model. The method relies heavily on 
the use of stochastic simulation. 

8.4.1 Uncertainty from the Error Terms and Coefficient Estimates 

Estimating the uncertainty from the error terms and coefficient estimates is 
simply a matter of computing & in (7.8). & is a stochastic-simulation 
estimate of &, the variance ofthe forecast error for a k-period-ahead forecast 
of variable i from a simulation beginning in period t. It is based on draws from 
both the distribution of the error terms and the distribution of the coefficient 
estimates. If an estimate of the uncertainty from the error terms only is 
desired, the draws should be only from the distribution of the error terms, 
with the coefficient estimates fixed at some set of values. 

8.4.2 Uncertainty from the Exogenous Variables 

There are two polar assumptions that can be made about the uncertainty of 
the exogenous variables: one is that there is no uncertainty; the other is that 
the exogenous-variable forecasts are in some way as uncertain as the endoge- 
now-variable forecasts. Under this second assumption one could, for exam- 
ple, estimate an autoregressive equation for each exogenous variable and add 
these equations to the model. This expanded model, which would have no 
exogenous variables, could then be used for the stochastic-simulation esti- 
mates of the variances. While the first assumption is clearly likely to underes- 
timate exogenous-variable uncertainty in most applications, the second as- 
sumption is likely to overestimate it. This is particularly true for fiscal policy 
variables in macroeconometric models, where government budget data are 
usually quite useful for purposes of forecasting up to at least about eight 
quarters ahead. The best approximation is thus likely to lie somewhere in 
between these two assumptions. 

The basic assumption that I have used in my work so far is in between the 
two polar assumptions. The procedure that I have followed is to estimate an 
eighth-order autoregressive equation for each exogenous variable (with a 
constant term and time trend included in the equation) and then to take the 
estimated standard error from this regression as the estimate of the degree of 
uncertainty attached to forecasting the variable for each period. This proce- 
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dure ignorwthe uncertainty ofthe coeficient estimates in the autoregressive 
equations, which is one of the reasons it is not as extreme as the second polar 
assumption. 

A procedure similar to the second polar assumption was used in an earlier 
stochastic simulation study of Haitovsky and Wallace (1972), where third- 
order autoregressive equations were estimated for the exogenous variables 
and then these equations were added to the model. This procedure is consist- 
ent with the second polar assumption except that for purposes ofthe stochas- 
tic simulations, Haitovsky and Wallace took the variances ofthe error terms 
to be one-half of the estimated variances. They defend this procedure (pp. 
267-268) on the grounds that the uncertainty from the exogenous-variable 
forecasts is likely to be less than is reflected in the autoregressive equations. 

Another possible procedure that could be used for the exogenous variables 
would be to gather from various forecasting services data on their ex ante 
forecasting errors of the exogenous variables (exogenous to the investigator, 
not necessarily to the forecasting service). From these errors for various 
periods one could estimate a standard error for each exogenous variable and 
then use these errors for the stochastic-simulation draws. 

For purposes of describing the present method, all that needs to be assumed 
is that some procedure is available for estimating exogenous-variable uncer- 
tainty. If equations for the exogenous variables are not added to the model but 
instead some in-between procedure is followed, then each stochastic-simula- 
tion trial consists of draws of error terms, coefficients, and exogenous-variable 
errors. If equations are added, then each trial consists ofdraws of error terms 
and coefficients from both the structural equations and the exogenous-vari- 
able equations. In either case, let & denote the stochastic-simulation esti- 
mate of the variance of the forecast error that takes into account exogenous- 
variable uncertainty. ?& differs from & in (7.8) in that the trials for ?& 
include draws of exogenous-variable errors. 

The procedure that I have used to estimate exogenous-variable uncertainty 
is implemented as follows. Let .i, denote the estimated standard error from the 
eighth-order autoregressive equation for exogenous variable i. Let vir be a 
normally distributed random variable with mean zero and variance $2: 
IJ;! - N(0, $2) for all 1. Let &, be the “base” value of exogenous variable i for 
period t. The base values can either be the actual values, if the period in 
question is within the period for which data exist, or guessed values othenvise. 
If the values are guessed, they need not be the predictions from the autore- 
gressive equations; the latter are used merely to get the values for $. Let x$ be 
the value of variable i used on a given trial. Then for a given trial x: is taken to 
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be Pi,, + vu, where vi< is drawn from the above distribution. If, say, the 
simulation period were 8 quarters in length and there were 100 exogenous 
variables, 800 draws would be taken, one for each of the 100 i’s and one for 
each of the 8 t’s, There would be 100 autoregressive equations estimated. 

For some of my work I have taken the estimated standard error from the 
autoregressive equation for each variable to be an estimate of the degree of 
uncertainty attached to forecasting the change in the variable for each period. 
Given the way that many exogenous variables are forecast, by extrapolating 
past trends or taking variables to be unchanged from their last observed 
values, it may be that anyerror in forecasting the level ofa variable in, say, the 
first period will persist throughout the forecast period. If this is true, the 
assumption that the errors pertain to the changes in the variables may be 
better than the assumption that they pertain to the levels. This procedure is 
implemented as follows. Let quarter 1 be the first quarter of the prediction 
period, and assume that the prediction period is of length T. The values ofx$ 
(t = 1, , T) for a given trial are taken to be 

x$ = zir + zl;, + vi2 + + Q, 

where each vi, (t= 1, , T) is drawn from the N(0, ff’) distribution. 
Because of the assumption that the errors pertain to changes, the error term vi, 
is carried along from quarter 1 on. Similarly, viz is carried along from quarter 
2 on, and so forth. 

8.4.3 Uncertainty from the Possible Misspecification of the Model 

The most difficult and costly part of the method is estimating the uncertainty 
from the possible misspecification of the model, which requires successive 
reestimation and stochastic simulation ofthe model. It is based on a compari- 
son of estimated variances computed by means of stochastic simulation with 
estimated variances computed from outside-sample forecast errors. As will be 
seen, the expected value ofthe difference between the two estimated variances 
for a given variable and period is zero for a correctly specified model. The 
expected value is not in general zero for a misspecified model, and this fact 
can be used to try to account for misspecification effects. 



Evaluating Predictive Accuracy 269 

All of the stochastic simulations that are referred to in this section are with 
respect to error terms and coefficients only. In other words, there is assumed 
to be no exogenous-variable uncertainty. Section 8.4.4 discusses the way in 
which the estimates of exogenous-variable uncertainty that were discussed in 
Section 8.4.2 are combined with the estimates of misspecification effects. 

Assume that the prediction period begins one period after the end of the 
estimation period, and call this period 1. From stochastic simulation one 
obtains an estimate of the variance of the forecast error, &in (7.8). One also 
obtains an estimate of the expected value of the k-period-ahead forecast of 
variable i, Gi,:,, in (7.7). The difference between this estimate and the actual 
value, y,+,_, , is the mean forecast error: 

(8.5) 
1 

G,* = Y;,+k- I - Yi,k, 

If it is assumed that pi,k exactly equals the true expected value, j&, then 2, 
in (8.5) is a sample draw from a distribution with a known mean of zero and 
variance o&. The square of this error, & is thus under this assumption an 
unbiased estimate of & One therefore has two estimates of G&, one 
computed from the mean forecast error and one computed by stochastic 
simulation. Let dilk denote the difference between these two estimates: 

(8.6) ditr = i,:, - 3 Sk 

If it is further assumed that &exactly equals the true value, then di,k is the 
difference between the estimated variance based on the mean forecast error 
and the true variance. Therefore, under the two assumptions of no error in the 
stochastic-simulation estimates, the expected value of difk is zero. 

The assumption of no stochastic-simulation error, that is, Fi,, = & and 
& = o$, is obviously only approximately correct at best. As noted in Section 
7.3. I, even with an infinite number of draws the assumption would not be 
correct because the draws are from estimated rather than known distribu- 
tions. It does seem, however, that the error introduced by this assumption is 
likely to be small relative to the error introduced by the fact that some 
assumption must be made about the mean ofthe distribution of&. For this 
reason, nothing more will be said about stochastic-simulation error. The 
emphasis instead will be on possible assumptions about the mean of the 
distribution of d,,,, given the assumption of no stochastic-simulation error. 

If the model is misspecified, it is not in general true that the expected value 
of di,k is zero. Misspecification has two effects on di,k. First, if the model is 
misspecified, the estimated covariance matrices that are used for the stochas- 
tic simulation will not in general be unbiased estimates ofthe true covariance 
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matrices. The estimated variances computed by means of stochastic simula- 
tion will thus in general be biased. Second, the estimated variances computed 
from the forecast errors will in general be biased estimates of the true 
variances. Since misspecification affects both estimates, the effect on diik is 

ambiguous. It is possible for misspecification to affect the two estimates in the 
same way and thus leave the expected value of the difference between them 
equal to zero. In general, however. this does not seem likely, and so in general 
one would not expect the expected value of di,, to be zero for a misspecified 
model. 

Because of the common practice in macroeconometric work of searching 
for equations that fit the data well, it seems likely that the estimated means of 
d,, will be positive in practice for a misspecilied model. If the model fits the 
data well within sample, the stochastic-simulation estimates of the forecast 
error variances will be small. This is because they are based on draws from 
estimated distributions of the error terms and coefficient estimates that have 
small (in a matrix sense) covariance matrices. if the model, although fitting 
the data well? is in fact misspecified, this should result in large outside-sample 
forecast errors. The estimated mean of d,tk is thus likely to be positive: C:* is 
small because of small estimated covariance matrices, and ;$ is large because 
of large outside-sample forecast errors. 

The procedure described so far uses one estimation period and one predic- 
tion period. It results in one value of ditk for each variable i and length ahead k. 
Since one observation is obviously not adequate for estimating the mean of 
didi, more observations must be generated. This can be done by using 
successively new estimation periods and new prediction periods. Assume, for 
example, that one has data from period 1 through period 100. The model can 
be estimated through, say, period 70, with the prediction period beginning 
with period 7 I. Stochastic simulation for the prediction period will yield for 
each i and k a value of di,,k in (8.6). The model can then be reestimated 
through period 71, with the prediction period now beginning with period 72. 
Stochastic simulation for this prediction period will yield for each i and k a 
value of d,,, in (8.6). This process can be repeated through the estimation 
period ending with period 99. For the one-period-ahead forecast (k = 1) the 
procedure will yield for each variable i 30 values of di,, (t = 7 I, , 100): 
for the two-period-ahead forecast (k = 2) it will yield 29 values of di,, 
(I = 7 I, , 99); and so on. If the assumption of no stochastic-simulation 
error holds for all I, then the expected value ofdi,k is zero for all t for a correctly 
specified model. 

The final step in the process is to make an assumption about the mean of 
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cI’~,~ that allows the computed values of d,,, to be used to estimate the mean. A 
variety of assumptions are possible. One is simply that the mean is constant 
across time. In other words, misspecification is assumed to affect the mean in 
the same way for all t. If this assumption is made, the mean can be estimated 
by merely averaging the computed values of diii for each i and k. Another 
possible assumption is that the mean is a function of other variables, where 
the other variables are specified. (A simple example ofthis is the assumption 
that the mean follows a linear time trend.) Given this assumption, the mean 
can be estimated from a regression of ditk on the specified variables. (In the 
linear trend case, the explanatory variables would be a constant and a time 
trend.) The predicted value from this regression for period f, denoted &, is 
the estimated mean for period t. In this case the estimated mean obviously 
varies over time if the explanatory variables vary. This second assumption 
would be used if it were felt that the degree of misspecification of the model 
varies in a systematic way with other variables. 

1 A version of the first assumption is that the mean of di,,, is proportional to 
y&, which implies that the mean of di,/& is constant across time. dirk is in 
units of the variable squared, and this assumption is equivalent to the 
constant mean assumption in percentage terms. For variables with trends it 
may be more reasonable to couch the assumption in percentage terms, since 
the mean may vary as a function of the size of the variable. 

8.4.4 Total Uncertainty 

Given &, the estimate ofthe mean ofdzrx for period t, it is possible to estimate 
the total variance of the forecast error, denoted i?$. This is the sum of?,:,,, the 
stochastic-simulation estimate ofthe variance due to the error terms, coeffi- 
cient estimates, and exogenous variables, and &,: 

(8.7) & = a:& + d. ,ik 

The use of %& instead of & in (8.7) is where the estimate of exogenous 
variable uncertainty is brought into the analysis. 

Since the procedure in arriving at & takes into account the four main 
sources of uncertainty of a forecast, the values of zCk can be compared across 
models for a given i, k, and 2. If. for example, one model has consistently 
smaller values of & than another, this would be fairly strong evidence for 
concluding that it is a more accurate model. that is. a better approximation to 
the true structure. 

It may be useful at this stage to review the steps that are involved in arriving 
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at st,t in (8.7). Consider the example used in Section 8.4.3, where data are 
available for periods 1 through 100. Assume that one is interested in estimat- 
ing the uncertainty ofan eight-period-ahead forecast that begins in period 90. 
In other words, one is interested in computing $,:rk for I = 90 and 
k = 1, ,8. Assume that the main set ofcoefficient estimates ofthe model 
is based on an estimation period through period 100. Given (1) these esti- 
mates and the associated estimates ofthe distributions of the error terms and 
coefficient estimates, (2) the actual values of the exogenous variables for 
periods 90-97, and (3) some assumption about exogenous-variable uncer- 
tainty, a:,:,, can be computed using stochastic simulation for t = 90 and 
k = 1, _ 8. Each trial consists of one eight-period dynamic simulation 
beginning in period 90. It requires draws ofthe error terms, coefficients, and 
(possibly) exogenous-variable errors. If, say, 250 trials are taken, the model 
must be solved 250 times for the eight quarters. 

Since computing & requires only one stochastic simulation, this is the 
relatively inexpensive part of the method. The expensive part consists of the 
successive reestimation and stochastic simulation that are needed in comput- 
ing the di,k values. In the example in Section 8.4.3, the model would be 
estimated 30 times and stochastically simulated 30 times in computing the 
di,k values. If 250 trials for each stochastic simulation were used, the model 
would be solved 250 X 30 = 7,500 times, where each solution is a dynamic 
eight-period simulation. After the di,, values are computed for, say, periods 70 
through 99, &* can be computed for 1= 90 and k = 1, , 8 using 
whatever assumption has been made about the distribution of dirk. This 
procedure then allows ?& in (8.7) to be computed for I = 90 and 
k= I....,% 

8.4.5 General Remarks about the Method 

In the successive reestimation of the model, the first period of the estimation 
period may or may not be increased by one each time. The criterion that one 
should use in deciding this is to pick the procedure that seems likely to 
correspond to the chosen assumption about the distribution of dftk being the 
best approximation to the truth. It is also possible to take the distance between 
the last period of the estimation period and the first period of the forecast 
period to be other than one. 

Any assumption that one makes about the mean of di,,, is at best likely to be 
only a rough approximation to the truth. It is unlikely that the effects of 
misspecification on the two estimated variances are so systematic as to lead to 



Evaluating Predictive Accuracy 273 

any assumption that one might make about the mean of the difference 
between the two being exactly right. One useful thing that can be done is 
simply to plot the dirk values over time for a given i and k and see if there are 
systematic tendencies. One might observe trend or cyclical movements in 
these plots, which could be useful either in deciding what to assume about the 
mean of dilk or in deciding how to change the model to try to eliminate the 
misspecification. If the latter is done, one is using the d,,k values to reveal 
weaknesses in the model that might be corrected rather than to adjust the 
stochastic-simulation estimates of the variances for misspecification. The 
individual dirk values may thus be of interest in their own right aside from 
their possible use in estimating total predictive uncertainty. If the values are 
used solely to reveal weaknesses of the model, no assumption about the mean 
of di,, is needed. 

Although I have been interpreting the ditk values as measuring the mis- 
specification of the model, this is not exactly right. Since misspecification 
affects both &and i$ in (8.6), it may be for a particular model that both are 
affected about the same. In this case the expected value of di,k would be close 
to zero and yet the model could be seriously misspecihed. In other words, 
misspecification can make both @tk and <,$ larger and leave the difference 
between the two about the same. The more common case, as discussed in 
Section 8.4.3. seems likely to be one in which extensive searching for equa- 
tions that fit the data well has resulted in an estimate of I&that is too small. In 
this case the &+ values are likely to be on average large. Whatever the case, 
one should be aware that interpreting the &values as measures of misspeci- 
Iication is using the word “misspecification” in a very special way. A better 
but more awkward way of stating what the di,* values are is that they are a 
measure of the misspecification of the model that is not already reilected in 
the stochastic-simulation estimate of the forecast error variance. 

It is important to note that the interpretation of the di,,k values does not 
affect the interpretation of 8& in (8.7) as an estimate of the total variance of 
the forecast error. If misspecification affects the stochastic-simulation esti- 
mate of the variance about as much as it affects the estimate based on the 
outside-sample forecast error (so that a,, is close to zero), misspecification 
effects will be reflected in bfti in (8.7) rather than in & The term (i,,, is merely 
the adjustment for the misspecification effects that are not captured by &. 

The estimates of the mean of di,k that have been proposed in Section 8.4.3 
are not in general efficient because the error term in the d,,k regression is in 
general heteroscedastic. Even under the null hypothesis of no misspecifica- 
lion, the variance of d,,, is not constant across time. It is true, however, that 
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i,,/m has unit variance for all f under the null hypothesis, and 
therefore it is reasonable to assume that ;f,/(& + &J has a constant var- 
iance for all t. This then suggests the following iterative procedure. (I) For 
each i and k, calculate & from the dlzk regression, as discussed earlier; (2) 
divide each observation in the difk regression by & + a,,,, run another 
regression, and calculate &,, from this regression; (3) repeat step 2 until the 
successive estimates of &,, are within some prescribed tolerance level. Litter- 
man ( 1980) has carried out this procedure for a number of models for the case 
in which the only explanatory variable in the d,, regression is the constant 
term (that is, for the case in which it is assumed that the mean of the d,,k 
distribution is constant across time). 

If one is willing to assume that i, is normally distributed, which may or 
may not be a good approximation, Litterman (1979) has shown that the 
iterative procedure just described produces maximum likelihood estimates. 
He has used this assumption in Litterman (1980) to test the hypothesis (using 
a likelihood ratio test) that the mean ofdj,, is the same in the first and second 
halves of the sample period. The hypothesis was rejected at the Spercent level 
in only 3 of 24 tests. These results thus suggest that the assumption of a 
constant mean of &,,,, may not be a bad approximation in many cases. The 
results for the US model, which are reported in Section 8.5, also suggest that 
the assumption may be a reasonable approximation. 

Another interpretation of the mean of dirk is that it is a measure of the 
average unexplained forecast error variance (that is, that part not explained 
by &). Using this interpretation, Litterman (1980) has examined the ques- 
tion of whether the use of the estimated mean of di,,+ leads to more accurate 
estimates of the forecast error variance. The results of his tests, which are 
based on the normality assumption, show that substantially more accurate 
estimates are obtained using the estimated means. 

It should finally be noted that although the method is designed to catch a 
model that fits the data well within sample but is in fact poorly specified. there 
is a subtle form ofdata mining that the method does not account for. If. say, a 
model is specified in period 100, estimated through period 90, and tested with 
respect to its outside-sample forecasting accuracy for periods 9l- lot), it is 
clear that this is not a strict outside-sample test. Information on what 
happened between periods 91 and 100 may have been used in the specifica- 
tion of the model, and thus one cannot be sure that the model’s “outside-sam- 
ple” accuracy that is estimated for periods 9 1 - 100 will hold for, say. periods 
lOI- 110. Within the context of the present method, this means that the 
computed values of dilk for periods 9l- 100 are too low, which will result in 
values of difk that are too low and thus values of 6$_ that are too low. 
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8.5 A Comparison of the US, ARUS, VARIUS, VAR2US, 
and LINUS Models 

In this section five econometric models of the United States are compared 
using the method in Section 8.4. The main concern is to see how the US 
model compares to the autoregressive model (ARUS), the two vector autore- 
gressive models (VARIUS and VAR2US), and a simple linear model 
(LINUS). The US model is discussed in Chapter 4, and the other models are 
discussed in Chapter 5. 

8.5.1 Computing the d, Values 

The primary cost of the method is computing the ditk values. In computing 
these values, each of the five models was estimated 51 times. The first 
estimation period ended in 1969111, the second estimation period ended in 
1969IV, and so on through 19821. A stochastic simulation was then run for 
each of the 51 sets of estimates. where the prediction period began two 
quarters after the end of the estimation period. The reason for beginning the 
prediction period two quarters rather than only one quarter after the end of 
the estimation period is that in practice most of the data for the most recent 
quarter are preliminary. In my work I use the preliminary data as initial 
conditions for a forecast but not as observations for estimation. This means 
that there is always a two-quarter gap between the end of the estimation 
period and the beginning ofthe prediction period, and the present procedure 
is consistent with this practice. 

The computations for the US model were as follows. The first of the 5 I 
estimation periods was 19541- 1969111 (63 observations). The coefficients 
were estimated by 2SLS, and.the covariance matrix of the coefficient esti- 
mates was computed. Let r& denote the coefficient estimates, and let p1 
denote the estimated covariance matrix. The correct formula for the covar- 
iance matrix is (6.20) in Chapter 6, where the off-diagonal blocks ofthe matrix 
are not zero. Computing this matrix is fairly expensive in that it requires more 
time than is required to compute the coefficient estimates. (The times re- 
ported in Section 6.5.1 for the IBM 4341 are 3.0 minutes for the coefficient 
estimates and 5.5 minutes for the covariance matrix.) If the off-diagonal 
blocks are taken to be zero, there is no extra cost in computing the covariance 
matrix because the diagonal blocks are available from the estimates of the 
individual equations. For the work here, the off-diagonal blocks were taken to 
be zero for all 5 I sets of estimates. 

Given the coefficient estimates, the covariance matrix ofthe error terms (3) 
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was estimated as (l/63)00’, where 0 is the 30 X 63 matrix of values of the 
estimated error terms. Using N(0, 3) as the distribution of the error terms and 
N(&,, VJ as the distribution ofthe coefficient estimates, a stochastic simula- 
tion was then run for the 197OI- 19711V period, where both error terms and 
coefficients were drawn. The number of trials was 50. The results from this 
simulation allowed values of&to be computed for all i, fork = 1, ,8, 
and for (equal to 19701. The simulation produces values of&and>i,k. Given 
Tizk and given the actual data on the endogenous variables, i, can be 
computed. di,k is then merely ;& - &. 

The results for one variable in the model (real GNP) from this simulation 
are presented in the first row of Table 8- 1. The first eight values, 100(~i,J~~,,J, 
are the stochastic simulation estimates of the standard errors of the forecast, 
expressed as a percentage of the forecast mean. The second eight values, 
100( I;i,,l/>i,k), are the estimates of the standard errors ofthe forecast based on 
the actual outside-sample forecast errors, again expressed as a percentage of 
the forecast mean. 

There are a few dummy variables in the model that are not relevant for the 
early estimation periods, which means that there are slightly fewer than 169 
coefficients to estimate for the early periods. For the first period, for example, 
there are 165 coefficients to estimate. 

The second estimation period was 1954I- 19691V (64 observations), which 
differs from the first period by the addition of one quarter at the end. The first 
quarter of the period was left unchanged. The coefficients were estimated by 
2SLS for this period, and new estimates of i; and $were obtained. Stochastic 
simulation was then performed for the 197011- 19721 period, which allowed 
values of d,, to be computed for all i, for k = I, , 8, and for I equal to 
197011. The results for real GNP from this simulation are presented in the 
second row ofTable 8-l. A total of 50 trials were also used for this simulation. 

This process was repeated for the remaining 49 estimation periods. Since 
only data through 1982111 exist, the length of the prediction periods for the 
last seven sets ofestimates was less than eight, as can be seen in Table S- 1, The 
last estimation period was 1954I- 19821(113 observations), and for this set of 
estimates the prediction period was merely one quarter, 1982111. 

The total time needed to estimate the model 5 I times was about 2. I hours 
on the IBM 4341. The total time for the 5 1 stochastic simulations, which 
consisted of 50 trials each, was about 2.2 hours. The stochastic-simulation 
work consisted of 50 X 5 1 = 2,550 solutions of the model. For none of the 
draws did the Gauss-Seidel technique fail to solve the model. For the earlier 
work on the VAX, the model was estimated and stochastically simulated 44 
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times. The total time for the estimation was abut 4.8 hours, and the total 
time for the stochastic simulation (50 trials each) was about 10.7 hours. 

The same calculations were performed for the other models, the only 
difference being that 100 rather than 50 trials were used for each stochastic 
simulation for the ARUS, VARIUS, and VAR2US models. (50 trials were 
used for the LINUS model.) The first quarter of the estimation period was 
19541 for all the models except ARUS, where it was 195411. The estimation 
times for ARUS, VAR IUS, VAR2US, and LINUS were, respectively, 3,9,3, 
and 36 minutes on the IBM 4341 and 5, 16,5, and 19 minutes on the VAX. 
The stochastic-simulation times were 15,28, 13, and 14 minutes on the IBM 
4341 and 38, 71,31, and 35 minutes on the VAX. 

8.5.2 Discussion of the dm Values for the US Model 

Since the individual d,,, values may be of interest in their own right, they will 
be examined before proceeding to the estimates of the total variar.:e of the 
forecast error. Consider the results for real GNP in Table 8-I. If one looks 
down one of the first eight columns, it can be seen that the standard errors 
vary considerably across prediction periods (except for perhaps the one- 
quarter-ahead results in the first column). For the eight-quarter-ahead results, 
for example, the estimated standard errors vary from 1.43 percent in row 35 
to 3.41 percent in row 17. Experimenting with more trials indicated that 
sampling error contributes very little to this variability. It thus appears that 
there is considerable variability of forecast-error variances across time (for a 
fixed k), at least for the US model. This variability is due to different estimated 
covariance matrices, different initial conditions (that is, different lagged 
values ofthe endogenous and exogenous variables), and different values ofthe 
exogenous variables. It is interesting to note that some ofthe largest standard 
errors occur in the mid-1970s, which was characterized at times by extreme 
initial conditions and exogenous variable values. In particular, the price of 
imports (PIM), which is an exogenous variable, took on extreme values 
during much of this period. It may be that these extreme values help contrib- 
ute to the larger stochastic-simulation estimates of the standard errors for the 
mid- 1970s. 

The values in the last eight columns in Table 8-1 are the absolute values of 
the outside-sample forecast errors in percentage terms. These values, unlike 
the values in the first eight columns, use the actual values of the endogenous 
variables for the prediction period in their calculation, which is the reason 
they are more erratic. In some cases the forecasts are nearly perfect, and in 
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others the errors are quite large. The largest error is for the eight-quarter- 
ahead forecast in row 14, which is 7.73 percent. The results in row 14 are for 
the prediction period beginning in 197311, and therefore the eight-quarter- 
ahead forecast is for 19751. 

The square of an element in the right half of Table 8-1 minus the square of 
the corresponding element in the left half is equal to L&J&, which is simply 
ditk in percentage terms. The key question is whether these values have any 
systematic tendencies. To examine this question, d,,,/G,fk is plotted in Figure 
8- 1 for i equal to real GNP and kequal to I, The main conclusion from Figure 
8-l is that no systematic tendencies are apparent. The value for 198011 is very 
large relative to others, but aside from this, the values are not obviously larger 
for one subperiod than for another, and there is no obvious trend. Plots for 
many other variables were examined, and the same conclusion was reached. 

The only systematic tendency that was apparent was that some of the plots 
showed evidence of serial correlation for values of kgreater than about four or 
five. This can be explained as follows. If, say, quarter 85 is a difficult quarter to 
predict, perhaps because of a large unexplained shock in the quarter, then a 
dynamic simulation that runs through this quarter may also do poorly in 
predicting quarters 86 and beyond. In other words, the simulation may get 
thrown off by the bad prediction in quarter 85. This means, for example, that 
five-quarter-ahead forecasts for quarters 85,86,87,88, and 89 may all be on 
average poor, thus implying large values for& (k = 5 and t = 81, . ,85). 
The shock in quarter 85 will have no effect on the stochastic-simulation 
estimates of the variances, since these are not based on the actual data for the 
endogenous variables for this quarter, and therefore the large values of the 
outside-sample errors imply large values ofdi,k. In this way, serial correlation 
may be introduced into the d,, series for values of k greater than one. 

The general impression one gets from examining the plots is thus that the 
misspecification of the model does not appear to have changed over time or to 
have been different in any subperiods. One could attempt to examine this 
question in a less casual way by, say, regressing the dilk values (for a given i and 
k) on variables that one thinks may be related to the misspecification of the 
model. Although this might be worth doing in future work, it seems unlikely 
to me, from having examined the plots, that much would come of it. 

The fact that the misspecification of the model does not appear to have 
changed over time is not in itself encouraging regarding the accuracy of the 
model. The misspeciiication may in fact be quite large, even though un- 
changing, and may have a large effect on total forecasting uncertainty. What is 
encouraging about the results is that the assumption of a constant mean for 
di,, or dJT,& (for a given i and k) seems to be a reasonable approximation. 
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Figure 8-I Plot of di,J2,x for the US model for i = real GNP, k = I, 
t= 197OIL1982111 

8.5.3 Computing the Total Variance of the Forecast Error 

The total variance ofthe forecast error is&in (8.7). The computation of 6$k 
for the five models is discussed in this section. It is easiest to describe these 
computations by referring to the results in Table 8-2. The prediction period is 
19781- 1979IV. Consider tirst the results for real GNP for the US model. The 
values in the a and b rows are from the same two stochastic simulations that 
were used for the results in Table 7-l. For the a-row results only draws ofthe 
error terms were made, whereas for the b-row results draws of both the error 
terms and coefficients were made. The number of trials for each simulation 
was 250. The coefficient estimates that were used for these results are the 2SLS 
estimates for the 19541- 1982111 period (115 observations). These are the 
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estimates presented in Chapter 4; they are the basic 2SLS estimates of the 
model. 

The values in Table 8-2 are either estimated standard errors in units of the 
variable or estimated standard errors in percentage points. For real GNP the 
errors are in percentage points. The numbers in the b row. for example, are 
5i,,,/;i,k, where Ti,k is the stochastic-simulation estimate ofthe forecast mean 
(Eq. 7.7) and aickis the square root ofthe stochastic-simulation estimate ofthe 
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variance of the forecast error (Eq. 7.8). The numbers in the a row are the same 
except that the estimates are based on draws of the error terms only. 

The results in the a and b rows are not needed for the computations ofthe 
total variance of the forecast error; they are presented merely to show how 
much ofthe total variance can be attributed to the uncertainty from the error 
terms and coefficient estimates. The results that are needed are those from a 
stochastic simulation with respect to the error terms, coefficients, and exoge- 
nous variables. These results are presented in the c rows in Table 8-2. The 
procedure that was used for this stochastic simulation for the US model is as 
follows. 

An eighth-order autoregressive equation (with a constant and time trend 
included) was estimated for each exogenous variable in Table A-4 (Appendix 
A) except for the dummy variables, the time trend, and variables whose value 
never changes or changes only once during the sample period. (These vari- 
ables are 0593 through 00793, H,,,, f, SD, &,, SK, y,, and y,.) The sample 
period for each regression was 195411- 1982111. A total of 88 equations were 
estimated. The estimated standard error from each of these regressions was 
taken to be the error associated with forecasts of the variable. The procedure 
discussed in Section 8.4.2 was used for the draws of the exogenous-variable 
values for the stochastic simulation. The base values of the exogenous 
variables were taken to be the actual values. Each trial of the stochastic 
simulation for the c rows consisted of eight draws of 30 values each from the 
distribution ofthe error terms, one draw of 169 values from the distribution of 
the coefficient estimates, and eight draws from each of the 88 distributions of 
the exogenous-variable errors, A total of250 trials were taken. For none ofthe 
draws did the Gauss-Seidel technique fail to find a solution. The total time 
taken for this simulation was about the same as the time taken for the a-row 
and b-row simulations, namely about 6.7 minutes on the IBM 4341 and 
about 49 minutes on the VAX. (See the note to Table 7-I.) 

A stochastic simulation of 250 trials was also performed under the assump- 
tion that the exogenous-variable errors pertain to changes in the variables 
rather than to levels. This procedure is also discussed in Section 8.4.2. The 
estimated standard errors from this simulation were in general larger than 
those from the first simulation, but the results were fairly close These results 
are not reported in Table 8-2. 

The c-row values in Table 8-2 are either &,,, or &,,/$itk, where %i,k is the 
square root of &.The final step is to add to & the estimated mean of di,k. 
The discussion in Section 8.5.2 indicates that the assumption that the mean of 
d,,, is constant across time may be a reasonable approximation. This assump- 
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tion was used for variables without trends. For variables with trends it was 
assumed that the mean of ditk/& is constant across time. Given the first 
assumption, the estimated mean of di,, is the average of the di,k values (for a 
fixed i and k); and given the second assumption, the estimated mean of 
&ii,/$& is the average ofthe d&;,& values. There are 5 1 observations for the 
one-quarter-ahead forecasts (k = I), 50 observations for the two-quarter- 
ahead forecasts (k = 2), and so on. Let &denote the estimated mean of di,k, 
and let & denote the estimated mean of d&&. The I subscript has been 
dropped from & and c?A because the estimated means are assumed to be 
constant across time. 

For variables without trends the estimate of the total variance of the 
forecast error, &, is & + &. For variables with trends the estimate is 
?& + & . 2,:,,. For variables without trends the values in the d rows in Table 
8-2 are the square roots of &, and for variables with trends the values are the 
square roots of&/&. The differences between the d-row and c-row values 
in the table are measures of the effects of misspecification on predictive 
accuracy, although this is subject to the qualification discussed in Section 
8.4.5 about the interpretation of the word “misspecification.” 

The same procedure was followed for the other models. There are no 
exogenous variables in the ARUS. VAR I US, and VARZUS models, and thus 
there are no c-row values. For the LINUS model there are three exogenous 
variables for which autoregressive equations were estimated: Q, , Q2, and J/l. 

8.5.4 Comparison of the Results for the Five Models 

The US Model versus the Others 

The models can be compared according to the size of the d-row values. In 
examining the d-row values 1 usually give more weight to the results the 
further out the forecast is. In other words, 1 usually give more weight to the 
four-quarter-ahead results than to the one-quarter-ahead results, more to the 
eight-quarter-ahead results than to the four-quarter-ahead results, and so on. 
The further out a forecast is, the more this is a test of the accuracy of the 
dynamic properties of the model. 

For real GNP it is clear that the US model is substantially better than the 
other four models. The eight-quarter-ahead standard error is 3.43 percent, 
which compares to values of 4.05, 7.15,4.93, and 5.13 percent for the other 
four models. The US model is also best for the unemployment rate and the 
bill rate. It is not as good as VARI US and VAR2US for the GNP deflator. It is 
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substantially worse for the money supply, where the eight-quarter-ahead 
standard error is 5.33 percent, which compares to values of 3.47? 2.02, and 
2.7 I for ARUS. VARIUS, and VAR2US respectively. 

The poorer results for the money supply mean that the demand-for-money 
equations in the US model are not as accurate as autoregressive specifications. 
This is something that I have known for a long time, but it is not easy to 
remedy. I have so far been unable to find demand-for-money equations that 
lead to more accurate predictions within the context of the overall model. 
Fortunately, errors in predicting the money supply have fairly minor conse- 
quences for the other variables. Given the use of the interest rate reaction 
function, the only important way in which errors in predicting the money 
supply affect the other variables in the model is through their effect on the bill 
rate predictions. The lagged growth of the money supply is one of the 
explanatory variables in the bill rate equation, and therefore errors in predict- 
ing the money supply affect the bill rate predictions. Although errors in 
predicting the bill rate have important effects on many other variables in the 
model, the effect of the money supply on the bill rate is only moderate. The 
indirect effect of money supply errors on the other variables in the model 
(through the direct effect of the money supply on the bill rate) is thus fairly 
minor. 

Given that the US model is more accurate for three ofthe key variables (real 
GNP, the unemployment rate, and the bill rate), the results seem encouraging 
for the model. More tests are needed, of course. especially against other 
structural models, before any strong conclusions can be drawn. 

For the remaining five variables in Table 8-2, the comparisons are only 
between the US and ARUS models. Four of these variables-the level of 
profits, the savings rate, the savings ofthe federal government, and the savings 
of the foreign sector-are “residual” variables. These types of variables are 
generally hard to predict in structural models, and it is interesting to see how 
the US model does relative to an autoregressive equation for each variable. 
The results for the first variable, the wage rate, are about the same for the two 
models for the first four quarters; after that the ARUS model does somewhat 
better. For the savings rate of the household sector, the two models are almost 
the same for the first three quarters. and the ARUS model is substantially 
better thereafter. The US model is substantially better for profits and the 
savings of the federal government, and the ARUS model is substantially 
better for the savings of the foreign sector. The overall results for these five 
variables are thus mixed. It is encouraging that the US model is better with 
respect to profits and the savings of the federal government, but it is clear that 
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the model could stand some improvement with respect to the savings rate of 
the household sector and the savings of the foreign sector. 

Comparison cf the Other Four Models 

Consider first the LINUS model. The main variable that it is designed to 
explain is real GNP. For this variable it is less accurate than the US model and 
more accurate than the VARl US and VAR2US models. It is more accurate 
than the ARUS model for the first four quarters ahead and less accurate after 
that. The results are thus mixed, although the fact that the model is not nearly 
as accurate as the US model is not encouraging in regard to the ability to 
collapse a large model into a relatively small one without a substantial loss of 
predictive accuracy. 

In the comparison of VAR 1 US versus VARZUS, VAR2US seems some- 
what better: it is more accurate for real GNP, the GNP deflator, and the 
unemployment rate. It is less accurate for the bill rate and the money supply. 
In the comparison of ARUS versus VARZUS, ARUS is more accurate for real 
GNP and the unemployment rate but less accurate for the GNP deflator and 
the bill rate. The results are mixed for the money supply. There is thus no 
obvious winner between ARUS and VAR2US. 

There is one feature ofthe money supply results for VARIUS that should 
be noted. For the four- through seven-quarter-ahead predictions, the d-row 
values are less than the corresponding b-row values, which means that the 
estimated means of the d&& values were negative. For the six-quarter- 
ahead prediction, the estimated mean was almost negative enough to make 
the d-row value zero. These results are due to the fact that the stochastic-simu- 
lation estimates of the variances are large relative to the estimates based on the 
outside-sample forecast errors. For models like VARIUS, which have a large 
number of coefficients to estimate relative to the number of observations and 
thus in general have very imprecise estimates, it sometimes happens that the 
stochastic-simulation estimates of the variances are very large. It is not clear 
in these cases whether much confidence should be put in the results; there are 
just too few observations for much to be said. 

Comparison Using Root Mean Squared Errors 

Root mean squared errors (RMSEs) for the five models for the 19701- 1982111 
period are presented in Table 8-3. These errors were computed as follows. 
Outside-sample forecast errors are available from the 5 I stochastic simula- 
tions that were involved in computing the di,k values. These errors are the 
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differences between the mean values (the&J and the actual values. They are 
based on 5 1 sets of estimates of each model, where each prediction period 
begins two quarters after the end of the estimation period. From these errors 
one can compute RMSEs by merely adding the squared errors, dividing by 
the number of observations, and taking the squared root. For the one- 
quarter-ahead predictions there are 51 observations, for the two-quarter- 
ahead predictions there are 50 observations, and so on. 

It is ofinterest to compare the RMSEs in Table 8-3 with the d-row values in 
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Table 8-2. In some loose sense the RMSEs handle the effects of misspecilica- 
tion because they are based on outside-sample errors only, and thus the main 
differences between the RMSEs and the d-row values are that the RMSEs do 
not handle exogenous variable uncertainty and do not account for the fact 
that forecast error variances vary across time. The RMSEs and the d-row 
values differ, in some cases by substantial amounts, but the rankings of the 
models are roughly (but not exactly) the same. One would probably draw 
similar conclusions as those given above if one looked only at the RMSE 
results. 

The main reason for the similar rankings is that exogenous-variable “ncer- 
tainty is not much of a problem in any model. For three of the models there 
are no exogenous variables, and for the US and LINUS models, which have 
exogenous variables, the differences between the c-row and b-row values in 
Table 8-2 are not in general very large. The US model in particular does not 
appear to be heavily tied to hard-to-forecast exogenous variables. For models 
that are heavily tied and that differ considerably in the number and types of 
variables that are taken to be exogenous, the difference between the rankings 
using the RMSEs and those using the d-row values could be substantial. 

With respect to the cost ofthe calculations, the RMSE results are essentially 
as costly as the d-row results because both are based on 5 1 sets of estimates 
and 5 1 stochastic simulations. The RMSE results could, however, be made 
less costly by using deterministic simulations to compute the predicted 
values. As discussed in Section 7.3, predicted values from deterministic 
simulations are generally close to expected values from stochastic simula- 
tions, so little is likely to be lost by using deterministic simulations. In the 
present case this would save about halfthe cost, since about halfthe time was 
spent computing the estimates and about half in performing the stochastic 
simulations. 

8.55 Other Results for the US Model 

Comparison acran Rows 

It should be clear from examining the a and b rows in Table 8-2 that more of 
the forecasting uncertainty is due to the error terms than to the coefficient 
estimates: the differences between the b and a rows arc small relative to the 
size of the a-row values. It should also be clear, as noted earlier, that 
exogenous-variable uncertainty does not contribute very much to total “n- 
certainty: the differences between the c and b rows are small. The variable 
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most affected by exogenous-variable uncertainty in Table 8-2 is the sayings of 
the federal government. This is_ of course, as expected. since many ofthe key 
exogenous variables in the model are federal government variables. 

It should be noted that there is no requirement that each c-row value be 
greater than its corresponding b-row value. Although this is rare, an increase 
in the variability of one endogenous variable may be associated with a 
decrease in the variability of another. In the results for the US model in Table 
8-2, one of the c-row values is less than the corresponding b-row value for the 
GNP deflator, three are less for the unemployment rate, three are less for the 
bill rate, five are less for the money supply, and one is less for the wage rate. 

The d-row values are sometimes more than twice as large as the corre- 
sponding c-row values, which means that misspecification contributes sub- 
stantially to overall uncertainty. For real GNP the d-row value for the 
eight-quarter-ahead prediction is 3.43 percent, which compares to the c-row 
value of I .60 percent. For the GNP deflator the numbers are 4.3 1 and I. I3 
percent. Only one d-row value is less than the corresponding c-row value for 
the US model, which is for the one-quarter-ahead prediction ofthe wage rate. 
When this happens, as noted earlier, it means that the estimated mean of dizk 
or dilk/y$ is negative. It is argued in Section 8.4.3 that the estimated means 
are in general likely to be positive, and the results in Table 8-2 certainly 
confirm this. 

An Alfcrnative Measure of Dispmion 

In order to see whether the possible nonexistence of moments is a problem, an 
alternative measure of dispersion from the variance was computed for some 
of the variables. This measure, &, is discussed in Section 7.3.2. It is equal to 
(j& - J7&)/2. where & it the value for which 34.135 percent of the trial 
values lie above it and below the median and &$k is the value for which 34.135 
percent of the trial values lie below it and above the median. If the nonexis- 
tence-of moments is a problem, one might expect C,,,x to be much larger 
than S,,, 

The results for one stochastic simulation for the US model are presented in 
Table 8-4. This is the same simulation that was used for the b-row results in 
Table 8-2. The draws are with respect to the error terms and coefficients. The 
number of trials was 250. None of the draws resulted in a failure of the 
Gauss-Seidel technique to find a solution, and therefore no “extreme” draws 
had to be discarded. The values in the a rows in Table 8-4 are either estimated 
standard errors, eiik, or estimated standard errors as a percentage of the 
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forecast mean, C?&&. The values in the b rows are either & or & as a 
percentage of the forecast median, &,,/pz. 

It is clear from Table 8-4 that the results are very close. The measures are 
almost indistinguishable, and any conclusions drawn from using one measure 
would also be drawn from using the other. It thus does not appear that the 
possible nonexistence of moments is a practical problem for models like the 
US model, and therefore the common practice of ignoring this problem may 
be justified. It is true, however, that the cost of computing alternative 
measures is fairly low, and as a check on the results these measures should 
probably be computed from time to time. 

Comparison qf the Predictive Accuracy of Eight Sets of Estimates 

In Section 6.6 the eight sets of estimates of the US model were compared in 
various ways. Another way to do this is to see how they compare in terms of 
predictive accuracy of the overall model. One procedure that could be used 
would be to compute d-row values like those in Table 8-2 for each estimator, 
which would require estimating the model 5 1 times for each estimator and 
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performing 5 1 stochastic simulations for each estimator. This procedure is 
too expensive for present purposes, especially given the cost of estimating the 
model just one time by FIML and 3SLS. One also runs into the problem that 
the numben ofobservations for the early estimation periods are not sufficient 
to estimate all 107 coefficients that were estimated for the basic period by 
FIML. 

An easier procedure is simply to compute root mean squared errors for 
each set of estimates for some prediction period, and this is what was done. 
The prediction period that was used is 19701- 1982111, which is within the 
estimation period that was used for each set of estimates, 19541- 1982111. 
Although this procedure is a poor one for comparing alternative models 
because of possible differences in exogenous variables and the possible mis- 
specification ofthe models, it is not as bad for comparing alternative estimates 
of the same model. The exogenous variables are the same for each set of 
estimates, and the misspecification of the model may not vary too much 
across the different sets. In future work, however, it would be better to try to 
use the more expensive procedure to compare the estimates. 

The results are presented in Table 8-5. Remember that the main conclu- 
sion from the comparisons in Section 6.6 is that all the estimates are fairly 
close to each other except for the FIML estimates. One of the key questions 
here, therefore, is how the FIML estimates compare to the others in terms of 
predictive accuracy. 

The main conclusion that one can draw from the results in Table 8-5 is that 
they are not conclusive. The ranking of the estimates varies across variables 
and across the length of the prediction period. The biggest difference in the 
results concerns the one- through four-quarter-ahead results for FIML for real 
GNP. The one- and two-quarter-ahead FIML errors are much larger than the 
others, and the three- and four-quarter-ahead FIML errors are smaller. Part of 
this difference is probably due to the fact, as discussed in Section 6.6, that the 
FIML estimates of the coefficients of the lagged dependent variables are 
generally smaller than the other estimates. (See, for example, the results in 
Table 6.5.) In other words, the FIML resultsare less dependent on the values 
of the lagged endogenous variables, which may hurt for the first few quarters 
ahead and help thereafter. 

It is possible that the four LAD estimators (LAD and the three ZSLAD 
estimators) are hurt by the use ofthe root mean squared error measure rather 
than the mean absolute error (MAE) measure. In order to determine this, 
MAEs were also computed for the eight sets of estimates. The results for real 
GNP and the GNP deflator are presented in Table 8-6. It is clear from this 
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table that the main conclusion is not changed by the use ofthe MAE measure: 
the same inconclusive results are obtained for both measures. 

One way of looking at these results is the following. It is clear from the 
results in Table 8-2 that the US model is misspecified when estimated by 
2SLS. Table 8-2 provides quantitative estimates of this misspecification, and 
for some variables the estimates are fairly large. One might expect that 
estimating the model by other techniques would change the degree of mis- 
specification, either positively or negatively. The results in Tables 8-5 and 8-6. 
however, suggest that this is not the case. However the model is misspecified, 
the size of the misspecification is not sensitive to the use of alternative 
estimators. An interesting question for future research is whether this conclu- 
sion holds for other models and for later versions of the US model. 

8.6 A Comparison of the MC and ARMC Models 

The cost of solving the MC model is too large for it to be feasible to use the 
method in Section 8.4 to analyze it. As discussed in Section 7.5.2, the time 
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taken to solve the model for one quarter varies between about 20 and 40 
seconds on the IBM 4341, which compares to about .2 seconds for the US 
model. The MC model is thus between about 100 and 200 times more 
expensive to solve than the US model, which for present purposes rules out 
for the MC model many of the experiments that could be performed for the 
US model. Aside from the cost, the number ofobservations available for the 
flexible exchange rate period is also not large enough to allow the method in 
Section 8.4 to be used. The method requires that a model be successively 
reestimated over a number of periods, and in the MC case there are barely 
enough observations to estimate the equations that pertain to the flexible 
exchange rate period once. 

Because the method in Section 8.4 could not be used, the present compari- 
son of the MC and ARMC models is very crude, and not much weight should 
be placed on the results. What was done is the following. Three eight-quarter 
periods were chosen: a fixed exchange rate period, 197011- 19721, and two 
flexible rate periods, 1974I- 1975fV and 19761- 19771V. For each of these 
periods both static and dynamic predictions were generated using determin- 
istic simulation, where the error terms were set equal to zero. The actual 
values of the exogenous variables were used for the MC model; the ARMC 
model has no exogenous variables. The MC model was solved both for the 
case in which trade shares are exogenous and for the case in which they are 
determined by the trade share equations. This allows one to examine how 
much accuracy is lost by having to predict trade shares rather than knowing 
them exactly. Given these predictions, RMSEs were computed for each run. 

The results are presented in Tables 8-7, 8-8, and 8-9. For the results in 
Table 8-7 a weighted average of the RMSEs across all countries except the 
United States was taken for each variable. The RMSEs were weighted by the 
ratio of the country’s real GNP (in 75$) in the last (that is, eighth) quarter of 
the prediction period to the total real GNP of all the countries. This provides a 
summary measure of the overall tit of the MC model with respect to each 
variable. The RMSEs for the individual countries are presented in Table 8-8 
for one run, the dynamic simulation for the period 19741- 19751V. This is the 
period of the large increase in the price of oil by OPEC, and it is not a 
particularly easy period to explain. The RMSEs for the United States are 
presented in Table 8-9. 

As mentioned in Section 5.1.2, the ARMC model does not contain esti- 
mated equations for variables that are determined by identities in the MC 
model. Four of the variables listed in Tables 8-7 and 8-8 are determined by 
identities, Y. PM X75$, and PW$, and therefore no ARMC results are 
presented for these variables. 
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The following general conclusions can be drawn from Table 8-7. (1) MC is 
generally slightly less accurate than ARMC for consumption and investment. 
It is generally the same as ARMC or more accurate for other variables: the 
GNP deflator, the two interest rates, the exchange rate, the money supply, 
imports, and the price of exports. (2) The best period for the accuracy of MC 
relative to that of ARMC is probably 19741- 1975IV, the period of the large 
OPEC price increase, although the relative results across periods are close. (3) 
The use of the trade share equations increases the RMSEs for the export 
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variable, X75$, by a factor of between about two and four. For the dynamic 
prediction for 197% 19771V, for example, the RMSE increased from 2.83 
percent to 9.38 percent. The variable next most affected by the trade share 
equations is GNP, which is as expected since exports are part ofGNP. (4) The 
largest RMSE for the exchange rate for the MC model is only 5.30 percent 
(dynamic simulation for the 1974I- 19751V period), which seems fairly good. 
The largest RMSE for the short-term interest rate is 1.79 percentage points. 

The RMSEs in Table 8-8 for the individual countries are generally larger 
for the smaller countries. This is as expected, given the poor quality of much 
of the data for the smaller countries and the likelihood that the model 
approximates less well the structure of these economies. For the first 18 
countries in the table (Canada through Spain), the real GNP RMSEs range 
from 1.7 percent for Austria to 8.0 percent for Switzerland. The range for the 
GNP deflator is from 1.5 percent for the Netherlands to 6.9 percent for 
Finland, and the range for the exchange rate is from 2.5 percent for Canada to 
10.5 percent for Switzerland. 

With respect to the results in Table 8-9 for the United States, the fit ofthe 
US model for most variables worsens when it is embedded in the MC model. 
In the full MC model the two variables that are exogenous in the US model 
alone, the price of imports (PM) and exports (X75$), are endogenous and 
thus predicted with error. The RMSEs for PA4 for the MC model with trade 
shares endogenous (the c columns) range from I. 16 percent to 7.12 percent, 
and the RMSEs forX75$ range from 2.98 percent to 9.04 percent. These two 
additional sources of error generally lead to larger errors for the other 
variables in the US model, although in some cases the error cancellation is 
such that the RMSEs are smaller in the full MC model. The largest increase in 
the RMSE for real GNP occurred for the dynamic simulation for the 19741- 
1975IV period, which was from 1.45 percent to 2.35 percent. 

As stressed at the beginning of this section, it is not possible to draw any 
definitive conclusions from the present comparison. In general the MC model 
seems to do fairly well compared to the ARMC model, and thus the results are 
at least encouraging. In particular, the exchange rate RMSEs seem small 
enough for the MC model to warrant at least a small amount of optimism that 
the exchange rate equations are reasonable approximations. 



9 Evaluating Static and Dynamic Properties 

9.1 Introduction 

A useful way of examining the properties of a model is to consider how the 
predicted values of the endogenous variables change when one or more 
exogenous variables are changed. This exercise is usually called multiplier 
analysis, although the use of the word “multiplier” is somewhat misleading. 
The output that one looks at from this exercise does not have to be the change 
in the endogenous variable divided by the change in the exogenous variable; it 
can merely be, for example, the change or percentage change in the endoge- 
now variable itself. Indeed, if more than one exogenous variable has been 
changed, there is no obvious thing to divide the change in the endogenous 
variable by. The form ofthe output that is examined depends on the nature of 
the problem, and thus the word “multiplier” should be interpreted in a very 
general way. 

The procedure that is usually used to compute multipliers is discussed in 
Section 9.2. It is based on the use ofdeterministic simulations. An alternative 
procedure, which is based on the use of stochastic simulations, is discussed in 
Section 9.3. The main advantage of using stochastic simulations is that it also 
allows standard errors of the multipliers to be estimated. Given the obvious 
importance ofknowing how much confidence to place in the results from any 
given policy experiment in a model, the ability to estimate standard errors is a 
significant advantage. Results for the US model are discussed in Section 9.4, 
and results for the MC model are discussed in Section 9.5. 

9.2 Use of Deterministic Simulations 

Let xg denote a “base” set of exogenous variable values for period 1, and let 
xf denote an alternative set. In most applications the base values are the 
actual values, although this is not always true. If, for example, the prediction 
period is beyond the end of the data, the base values must be guessed values. 
Assume that the prediction period begins in period I and is of length T. Given 
(1) the initial conditions as of the beginning of period t, (2) the coefficient 
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estimates, (3) a set of exogenous variable values for the entire period, and (4) 
values of the error terms for the entire period (usually zero), the predicted 
values of the endogenous variables can be computed using the Gauss-Seidel 
technique. Let g&denote the k-period-ahead predicted value of endogenous 
variable i from the simulation that uses A$+:,_, (k = 1, 2, , T) for the 
exogenous variable values, and let j,& denote the predicted value from the 
simulation that usesx~+,_, (k 7 I, 2, , T). The difference between the 
two predicted values. denoted S,,, is an estimate of the effect on the endoge- 
nous variable of changing the exogenous variables: 

If only one exogenous variable is changed, then &, is sometimes divided by 
this change when results are presented. If, say, the exogenous variable is a 
government spending variable and the change is 5 billion dollars, &would be 
divided by 5. This procedure is generally followed only if the particular 
endogenous variable is in the same units as the exogenous variable. For 
example, if the endogenous variable is GNP in billions of dollars and the 
exogenous variable is government spending in billions of dollars. then & 
divided by the change in government spending is an estimate of how much 
GNP changes for a one-billion-dollar change in government spending 

S,, is sometimes simply divided by &, which converts the change into a 
percentage change. This percentage change may then be divided by some- 
thing else. where the something else is problem-specific. Examples of this 
procedure are presented in Sections 9.4 and 9.5. 

The error terms are generally set equal to their expected values for the 
simulations, where the expected values are almost always zero. For linear 
models it makes no difference what values are used as long as the same values 
are used for both simulations. For nonlinear models the choice does make a 
difference, and in this case the choice of zero values has some problems 
associated with it. Consider, for example, a model in which inflation responds 
in a very nonlinearway to the difference between actual output and some high 
activity level of output: inflation accelerates as output approaches the high 
activity level. Consider now a period in which output is close to the high 
activity level, and consider an experiment in which government spending is 
increased. This experiment should be quite inflationary, but this will not 
necessarily be the case if the model is predicting a much lower level of output 
than actually existed. In other words, if the model is predicting that output is 
not close to the high activity level when in fact it is. the inflationary conse- 
quences of the policy change will not be predicted very well. 
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There is an easy answer to this problem if the simulation period is within 
the period for which data exist, which is simply to use the actual (historical) 
values of the error terms rather than the zero values. By “actual” in this case is 
meant the values of the estimated residuals that result from the estimation of 
the equations. If these values are used and if the actual values of the exoge- 
nous variables are used, the simulation will result in a perfect fit. As the 
Gauss-Seidel technique passes through the model, each stochastic equation 
results in a perfect fit. The identities also fit perfectly, and therefore one pass 
through the equations will simply give back the actual values. (This assumes 
that the actual values are used as starting values. If this is not the case, the 
technique will require more iterations to converge to the actual values.) This 
solution will be called the “perfect tracking” solution. Once the residuals are 
added to the equations, they are never changed. The same set ofvalues is used 
for all experiments. 

If the actual values of the error terms are used, the problem regarding the 
response of inflation to output does not exist. The model predicts the actual 
data before any policy change is made. Note that this procedure is also not 
inconsistent with the statistical assumptions of the model, since the error 
terms are assumed to be uncorrelated with the exogenous and lagged endoge- 
nous variables. This procedure cannot be followed if the simulation period is 
beyond the end of the data. In this case no historical residuals are available, 
and therefore other values, such as zero, must be used. 

The use of the actual values ofthe error terms has the advantage that only 
one simulation needs to be performed per policy experiment. 9~~ is simply the 
actual value of the variable, and thus a simulation is only needed to get P& 

9.3 Use of Stochastic Simulations 

For nonlinear models c$,, in (9.1) is not an unbiased estimate of the change 
because the predicted values are not equal to the expected values. This does 
not, however, seem to be an important problem in practice (see Section 7.3), 
and so if one were only interested in estimates of the changes, it seems 
unlikely that stochastic simulation would be needed. The m?in reason for 
using stochastic simulation is to compute standard errors of a,,,, that is, to 
estimate the uncertainty attached to the policy effects. The following is a 
discussion of a procedure that can be used to estimate standard errors of 
multipliers. 

Since multipliers for nonlinear models are a function ofthe error terms, the 
treatment of the error terms must be considered. From the discussion in 
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Section 9.2, the best possibility seems to be to use the actual values ofthe error 
terms for all the simulations, where the base run is then simply the perfect 
tracking solution. The other main possibility is to use zero values for the error 
terms. Both possibilities will be considered in the description of the proce- 
dure. 

There are two sources of uncertainty ofpolicy effects in models: one is from 
the coeficient estimates, and the other is from the possible misspecification of 
the model. Unlike the procedure in Chapter 8, the present procedure does not 
account for the possible misspecification of the model. The estimated stan- 
dard errors are based on the assumption that the model is correctly specified. 
This is a serious limitation, but the question of how to handle misspecifica- 
tion effects is still open. 

The uncertainty from the coefficient estimates is estimated by drawing 
alternative sets of coefficients from an estimated distribution. As in Chapter 7. 
let N(&, P) be the distribution of the coefficient estimates, and let 01* be a 
draw from this distribution. The steps of the procedure for the case in which 
the actual values of the error terms are used are the following. 

1. Draw OI*, and for this draw compute the values of the error terms in the 
stochastic equations over the prediction period. Let u* denote these 
values. 

2. Given 01*, u*, and the base set of exogenous variable values (x$-~, 
k = 1, 2, , T), solve the model. Let p$ denote the k-period-ahead 
predicted value of variable i from this solution. If the exogenous variable 
values are the actual values, this solution does not have to be performed 
because it is merely the perfect tracking solution. 

3. Given oL*, u*, and the alternative set of exogenous variable values 
(.~,h,~_, , k = I, 2, , T), solve the model. Let .$ be the k-period- 
ahead predicted value of variable i from this solution. 

4. Compute 

(9.2) & = Y$ - J$$. 

5. Repeat steps 1 through 4 Jtimes, whereJis thedesired$umheroftrials. 
6. Given the values from the J trials, compute the mean ( 6,,,) and variance 

(&:x) of &: 



Evaluating Static and Dynamic Propenies 305 

If zero values of the error terms are used instead of the actual values, step I 
merely consists of drawing (Y*. In this case the solution in step 2 must always 
be performed because there is no perfect tracking solution. Otherwise the 
steps are the same. 

It is important to understand the computation ofu* in step 1. These erron 
are computed using the actual values of all the variables in the stochastic 
equations. For &, the actual vector of coefficient estimates, these errors are 
simply the residuals from the estimated equations (assuming that the predic- 
tion period is within the estimation period). For o? they are the residuals that 
would exist if the coefficient estimates had been a* rather than &. It is 
necessary to compute new values of the error terms for each draw to have each 
base run be the perfect tracking solution. 

One final point should be made about this procedure. Consider first the 
case in which zero values of the error terms are used, where the zero values are 
the expected values. In this case, for linear models&in (9.2) is the difference 
between two expected values. For nonlinear models there is the usual prob- 
lem that the predicted values of the endogenous variables are not the expected 
values. The bias in the nonlinear case could be corrected by computing both 
J,$ and g8$ using stochastic simulation. In other words, two stochastic 
simulations could be performed for each pass through steps I -4, one in step 2 
and one in step 3. This procedure is expensive, because it means that two 
stochastic simulations are being performed within the overall stochastic 
simulation represented by steps l-4. Given that the bias in the nonlinear case 
seems small, these simulations are not likely to be necessary in most applica- 
tions. 

In the case in which u* is used, stochastic simulation in steps 2 and 3 could 
also be performed. The errors in u* would be treated as exogenous variables, 
and the errors that are drawn for the stochastic simulation would simply be 
added to the stochastic equations inclusive of the errors in u*. The predicted 
values computed by the stochastic simulation would be expected values 
conditional on u*. In step 2 the predicted values would not be equal to the 
actual values even if the actual values of the exogenous variables were used. 
and therefore the solution in step 2 would always have to be performed. 
Again, however, these stochastic simulations are not likely to be needed. 

9.4 Properties of the US Model 

The rest of this chapter consists of a discussion of the properties ofthe US and 
MC models. The US model is discussed in this section. and the MC model is 
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discussed in Section 9.5. This material provides both an example of the 
application of the deterministic and stochastic simulation techniques that 
were discussed in Sections 9.2 and 9.3 and a detailed description of the 
properties of the models. For purposes of understanding the US and MC 
models, this section and the next are the most important in the book. 

9.4.1 General Remarks about the Properties 

Because the theoretical model was used to guide the specification of the 
econometric model, the qualitative properties of the two models are similar. 
The properties of the theoretical model were examined by changing various 
variables from a position of equilibrium. Although this is an artificial starting 
point in the sense that the model never returns to equilibrium once it is 
shocked, it is useful for learning about the properties of the model. In 
particular, it is easy to see how disequilibrium can occur as a result of 
expectation erron and how multiplier reactions can take place. This artificial 
environment cannot be set up for the econometric model, and the experi- 
ments must be performed over an actual sample period. 

The first quarter of the prediction period that is used for the results below, 
19771, was not a high activity quarter. The unemployment rate was 7.5 
percent; the labor constraint variable Z was considerably below 0; and the 
demand pressure variable ZZ was considerably above 0. (Remember that 
slack times correspond to negative values of Z and positive values of ZZ: see 
Eqs. 97 and 98 in Table A-5.) This means that an expansionary policy action 
beginning in this quarter is likely to increase real output and employment. 
The main way in which this comes about is as follows (all equation numbers 
refer to Table A-5 in Appendix A). 

I, The level of sales of the firm sector (X) is increased, say by an increase in 
government purchases of goods. 

2. The firm sector responds by increasing production (u: Eq. Il. 
3. The increase in Y leads to an increase in plant and equipment investment 

(IK,), jobs (J,), and hours per job (H,): Eqs. 12, 13, and 14. 
4. The increase in J,and H/leads to an increase in JJand JJ* and then to an 

increase in the labor constraint variable Z: Eqs. 95, 96. and 97. 
5. The increase in Z leads to an increase in consumption: Eqs. 1,2. and 3. 
6. The increase in plant and equipment investment and consumption in- 

creases sales (Eq. 60). which leads to a further increase in production, and 
so on. 
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If the labor constraint variable is close to 0 and thus not very binding, the 
expansionary effects in step 5 do not take place since Z will be changed very 
little. Also, considerable inflation will result from any attempt at expansion 
because the demand pressure variable will be small. (Values of the labor 
constraint variable close to zero almost always correspond to small values of 
the demand pressure variable.) In this situation the price level responds faster 
initially than does the wage rate, and thus the real wage falls. The fall in the 
real wage then has a negative effect on consumption and housing investment. 

One of the key variables in the econometric model, as in the theoretical 
model, is the short-term interest rate. The interest rate has important effects 
on consumption and housing investment, which in turn have important 
effects on production, plant and equipment investment, and employment as 
outlined in the steps above. Ifthe interest rate reaction function is part ofthe 
model, the interest rate will rise as an expansion takes place (the Fed “leans 
against the wind”), which means that the expansion will not be as strong as it 
would be if, say, the interest rate remained unchanged. 

Four ofthe most important equations in the model are the three consump- 
tion equations and the housing investment equation. If these are affected by a 
policy change, this will affect sales, which then affects the economy in the 
manner outlined above. The explanatory variables in these four equations 
have been discussed extensively in Chapter 4: they include the price level, the 
after-tax wage rate, the after-tax interest rate (either short-term or long-term), 
nonlabor income, the initial value of wealth, and the labor constraint vari- 
&le:~Smlabor income and the initial value of wealth are the variables 
through which transfer payments and dividends affect the economy. If, say, 
transfer payments are increased, this increases nonlabor income, which 
increases demand. An increase in nonlabor income also increases wealth to 
the extent that not all of the income is spent in the current quarter. The 
increase in wealth then has a positive effect on demand in the next quarter. 

The link between output and the unemployment rate is not very tight in the 
model. When output increases by a certain percentage, the number of jobs 
increases by less than this percentage (Eq. 13). How much the number ofjobs 
increases depends in part on the amount of excess labor on hand, which varies 
considerably over time. When the number ofjobs increases, the number of 
people holding two jobs increases (Eq. 8), which means that the number of 
new people employed increases by less than the number of new jobs (E!q. 85). 
How much the number of people holding two jobs increases depends in part 
on the value of the labor constraint variable, which also varies considerably 
over time. Finally, when the number ofjobs increases, the number of people 
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in the labor force increases (Eqs. 6 and 7), which means that the unemploy- 
ment rate falls less than it otherwise would for the given increase in the 
number of new people employed (Eqs. 86 and 87). How much the number of 
people in the labor force increases also depends on the value of the labor 
constraint variable. Because of these three leakages, the unemployment rate 
will drop less than the percentage change in output. Because the various 
responses vary depending on factors such as the amount of excess labor on 
hand and the value of the labor constraint variable, it seems quite unlikely 
that the relationship between output and the unemployment rate will be 
stable over time. The model thus does not obey Okun’s law. 

There are a number of variables other than the demand pressure variable 
that affect the price level (Eq. IO), and thus one would also not expect a stable 
relationship between, say, the rate of inflation and the demand pressure 
variable when they are simply plotted together on a graph. A stable relation- 
ship is even less likely to exist between the rate of inflation and the unemploy- 
ment rate because of the many factors that affect the labor force variables and 
thus the unemployment rate. An important variable in the price equation is 
the price of imports, which has a positive effect on prices. 

Productivity defined as output per paid-for worker hour (Y/J,H,) is procy- 
clical. When Y changes by a certain percentage, J,H, changes by less than 
this percentage in the immediate quarter. The buffer for this is the amount of 
excess labor held: as output falls, excess labor builds up, and vice versa. Other 
things being equal, excess labor is gradually eliminated because it has a 
negative effect on the demand for employment and hours. Similar considera- 
tions apply to the amount of excess capital held. Excess capital is gradually 
eliminated because it has a negative effect on investment. 

9.4.2 Estimated Effects for Eight Policy Actions 

Conslruaion of Tables 9-1 and 9-2 

The procedure in Section 9.3 was used to estimate the uncertainty of eight 
policy actions for the US model. The 2SLS estimates were used for these 
results. The period for the policy actions was 19771- 198OIV (16 quarters). 
The eight policy variables that were changed (one at a time) are (1) C,, 
government purchases ofgoods, (2) d,,, the personal income tax rate, (3) da, 
the profit tax rate, (4) d,,, the indirect business tax rate, (5) d4,, the employee 
social security tax rate, (6) d5_ the employer social security tax rate, (7) J,, the 
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employment ofthe government, and (8) TR,,, the level oftransferpayments 
from the government to the household sector. All these variables are federal 
government variables. 

The change in C, from its actual value for each quarter was taken to be .25 
percent of real GNP, GNPR. (GNPR is at an annual rate, whereas C, is at a 
quarterly rate, and therefore the amount by which C, was changed each 
period is .000625 Gh’PR.) C’ was changed for each of the 16 quarters, not 
just the first, and the amount by which it was changed varied because GNPR 
varied. Remember that the change is from the actual value for the quarter; it is 
not the change from quarter to quarter. The results for this experiment are 
presented first in Table 9-1 for each endogenous variable. The effects on five 
endogenous variables are presented in the table: real GNP, the GNP deflator, 
the unemployment rate, the bill rate, and the money supply. The values in the 
0 rows are the estimated effects from a deterministic simulation; the values in 
the a rows are the estimated effects from a stochastic simulation; and the 
values in the b rows are the estimated standard errors computed from the 
stochastic simulation. The actual values ofthe error terms were used for both 
simulations, and therefore the base run For both simulations was the perfect 
tracking solution. The number of trials for each experiment was 50. 

The units of the results in Table 9- 1 are as follows. For real GNP, the GYP 
deflator, and the money_supply, the numbers in the 0 rows are (1/.0025)(S,,J 
j$), where from (9. I) S,, = & - j&. The j& values are the actual values 
because the base run is the perfect tracking solution. These numbers are the 
percentage changes in the variables divided by .0025. Since C,was changed by 
.25 percent of real GNP, each number can be interpreted as the percentage 
change in the variable (in percentage points) that results from an exogenous 
change in real GNP of 1 .O percent. For the bill rate, which is in units of 
percentage points (1 .O percent = 1 .O), the numbers in the 0 rows are simply 
6,,. For the unemployment rate, which is in units of percent (1.0 per- 
cent = .Ol), the numbers are 100 . S,,,. 

The numbers in the a rows are (1/.0$25)(&,+~J for real GNP, the GNP 
deflator. and the money supply, where S,, is defined in (9.3) a,“d the .I$~ values 
are the actual values. For the bill rate theznumbers are S,,, and for the 
unemployment rate the numbers are 100 6,. The numbers in the b rows 
are ?;,& for the bill rate, where .YitTilk is the square root of .?&, which is defined in 
(9.4). For the unemployment rate the numbers are 100 . &. For real GNP. 
the GNP deflator, and the money supply, the b-row numbers are the esti- 
mated standard errors of the a-row numbers. In other words. the b-row 
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-.I, -24 -.32 -.38 
.33 .38 .43 .a* 

-21 -.24 -.*1 -.23 
-.*4 -.a -.21 -.ZJ 

.22 ,zz .*3 .24 

-.64 -.66 -.68 -.,I 
-.66 -.68 -.70 -.73 

.32 .33 .35 .37 

-.z9 -.30 -.32 -.34 
-.29 -21 -23 -..35 

.I0 .I” .11 .I2 

numbers are estimated standard errors of&/j$, where&is defined in (9.2) 
and the p$$ values are the actual values. The formulas are 

The b-row numbers are the square roots of F$. Because of the nonlinearities 
involved, F$ does not equal .Fi~ik/.&$r and thus the latter would not be 
appropriate to use for the b-row values. 

The changes for the other policy variables in Table 9-I were made to be 
comparable to the change in C, with respect to the initial injection of funds 
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into the system. Consider, for example. the change in d,,. The aim is to 
changed,, so that the change in personal income taxes in real terms is equal to 
the change in C,. From Eq. 47 in Table A-5, the variable for personal income 
taxes, Thg, is equal to [d,, + (y,YT)/POPJYT, where YT is taxable income. 
Let AC, denote the change in C, for a given quarter. The aim is to change d,, 
in such a way that the change in Thp is equal to PpAC,, where P, is the price 
deflator for C,. The change in d,, for the given quarter is thus (P,AC,)IYT. 
The values that were used for P, and YTfor these calculations are the actual 
values. not the predicted values. The predicted values are, of course. affected 
by the change in d,,. All this procedure does is to change d,, by an amount 
that would lead personal income taxes to change by PpAC, if nothing else 
happened. 

The changes in the other policy variables are similarly done. For da the 
relevant tax variable is Ti,, corporate profit taxes, and the relevant equation in 
Table A-5 is 49. The other matchings are as follows: d3# to IBT,and Eq. 5 1, d4, 
to SI,and Eq. 53, dsato Sl,,and Eq. 55, J,to WA*H,(no separate equation), 
and Tzh to itself (no separate equation). 

In order to understand some of the properties ofthe model, it is necessary to 
present results for other than just the five endogenous variables in Table 9-l. 
Results for eighteen other variables for the C, experiment are presented in 
Table 9-2. The results are in percentage terms (like the results for real GNP in 
Table 9-l) except for RB, S,, and S,. The units for .S, and S, are billions of 
current dollars. The units for RB are the same as those for RS in Table 9-I. 

The results in Table 9-l are based on 6,400 solutions of the model 
(6,400 = 50 trials X 8 experiments X 16 quarters). As discussed in Section 
7.5.1, each solution ofthe model takesabout .2 seconds on the IBM4341 and 
about 1.5 seconds on the VAX. The total time for the 6,400 solutions was thus 
about 2 1 minutes on the IBM 434 1 and 2.7 hours on the VAX. 

The rest of this section consists of a discussion of the results in Tables 9- 1 
and 9-2. Each experiment will be discussed first without regard to the 
estimated standard errors, and then the standard errors will be discussed. 

The C, Experiment 

The increase in government purchases of goods led to an increase in real 
GNP, the GNP deflator, and the bill rate and to a decrease in the unemploy- 
ment rate and the money supply (Table 9-l). The reasons for the increase in 
output were discussed in Section 9.4. I, and they will not be repeated here. The 
GNP deflator rose because of the effects of the increase in real GNP on the 
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demand pressure variable. The Fed responded (through Eq. 30, the interest 
rate reaction function) to the output and inflation increase by raising the bill 
rate, and this is the reason for the higher values of the bill rate. The money 
supply fell because of the rise in the interest rate. An increase in output and 
prices has a positive effect on the demand for money, but this positive effect 
was outweighed by the negative interest rate effect. In general, the changes in 
the money supply were quite small. 

More detailed results from this experiment are presented in Table 9-2. 
Either immediately or after a few quarters, two of the three consumption 
variables and housing investment become lower. This change is due to the 
increase in the interest rates: the negative effects from the interest rates are 
larger than the positive effects from the labor constraint variable. The de- 
crease in consumption and housing investment is the main reason that real 
GNP rose by less than the change in C, after 8 quarters (Table 9- 1). 

The wage rate cl+>) rose less than the GNP deflator, and a decrease in the 
real wage has a negative effect on consumption and housing investment. It 
also has a negative effect on the two labor force variables L2 and L3. This 
negative effect on L2 and L 3 was, however, more than offset by the positive 
effect from the labor constraint variable: L2 and L3 both rose. 

Plant and equipment investment was higher because of the higher output, 
as was the number ofjobs. The percentage increase in the number ofjobs was 
less than the percentage increase in real output, as expected from the discus- 
sion in Section 9.4. I. The demand for money of the firm sector fell as a result 
of the bill rate increase. The demand for money ofthe household sector fell for 
the first three quarters and rose thereafter. The bond rate (RE) rose; this 
occurred because of the bill rate increase. This is the term structure equation 
23 in operation. Although it is not shown in Table 9-2, the mortgage rate 
(RM) also rose, for similar reasons. The demand for imports rose because of 
the increase in output and because of the increase in the domestic price level 
relative to the price of imports. 

The last four variables in Table 9-2 are determined by identities. They are 
interesting summary variables to consider. The level ofprofits rose because of 
the expansion and because of the fall in the real wage. The savings of the 
foreign sector (SJ, which is the negative ofthe balance of payments on current 
account, rose because of the increase in the demand for imports. By the end of 
the period. however, the change in S, was essentially zero. S, is negatively 
affected by the increase in the price ofexports that results from the expansion, 
and by the end of the period this negative effect roughly offset the positive 
effect from the increase in imports. The level of savings of the federal 
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government fell, primarily as a result of the increase in C,. The deficits are 
smaller than they otherwise would be because taxes increased as a result of the 
expansion. The savings rate was higher in all quarters. The increase in the 
interest rate is the primary reason for the higher savings rate. 

The Other Experiments 

Given an understanding ofthe C,experiment, the other experiments in Table 
9- 1 are fairly easy to follow. A useful way of comparing the expansionary 
effects across experiments is to compute the sums of the real GNP changes 
over the 16 quarters of the prediction period. This has been done in the last 
column in Table 9-I. The sums are in billions of 1972 dollars rather than in 
percentage terms. 

All the experiments led to an increase in real GNP. The main channels are 
the following. 

1. The decrease in d,,, the personal income tax parameter, increases 
after-tax nonlabor income (Eq. 88). It also decreases the marginal personal 
income tax rate (Eq. 90), which in turn increases the after-tax wage rate (Eq. 
126) and the after-tax interest rates (Eqs. 127 and 128). The increase in 
after-tax nonlabor income and the after-tax wage rate has a positive effect on 
consumption and housing investment, and the increase in the after-tax 
interest rates has a negative effect. The net effect is positive, and therefore the 
experiment is expansionary. It is initially less expansionary than the C, 
experiment, but by the end ofthe period it becomes more so. The unemploy- 
ment rate is higher for this experiment even though output is higher. The 
decrease in d,, raises the after-tax wage rate (WA), which has a positive effect 
on the labor force variables L2 and L 3 and thus on the unemployment rate. 
This effect was large enough to offset the negative effect on the unemployment 
rate from the increase in employment. 

2. The decrease in dz,, the profit tax rate, increases after-tax profits, which 
increases dividends, which increases nonlabor income of the household 
sector, which in turn increases consumption and housing investment. 

3. The decrease in d3,, the indirect business tax rate, decreases the price 
deflators for consumption (Eqs. 35,36, and 37), which has a positive effect on 
consumption. The GNP deflator is lower in this case because indirect business 
tax rates are included in it. The unemployment rate is essentially unchanged 
even though output is higher because there was a positive labor force response 
to the increase in the real wage. 

4. The decrease in d+, the employee social security tax rate, is similar to the 
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decrease in d,, in that it increases after-tax nonlabor income, the after-tax 
wage rate. and the after-tax interest rates. The unemployment rate also is 
higher in this case because of the increase in the after-tax wage rate. 

5. The decrease in d,,, the employer social security tax rate, lowers the cost 
of labor in the firtn sector, which has a negative effect on the price level (Eq. 
10). This leads to a rise in the real wage, which stimulates consumption and 
housing investment. Also, the lower tax rate means that profits are higher (Eq. 
67) which leads to an increase in dividends and thus in nonlabor income of 
the household sector, which stimulates consumption and housing invest- 
ment. 

6. The increase in Jgr the number of jobs of the government, lessens the 
labor constraint on the household sector and thus leads to an increase in 
consumption. 

7. The increase in TR,,, the level of transfer payments to the household 
sector, increases nonlabor income, which stimulates consumption and hous- 
ing investment. The increase in TR,, has a negative effect on the labor force 
variable L 1 and thus on the unemployment rate. The unemployment rate 
thus fell more than it otherwise would have as a result of the increase in 
transfer payments. This is contrary to the case ofthe decrease in d,,, where the 
unemployment rate actually rose. 

To summarize the results for the eight experiments, although all are 
expansionary with respect to real output changes, they differ regarding the 
effects on variables like the GNP deflator and the unemployment rate. The 
GNP deflator is lower for the d,, and d,,experiments, and the unemployment 
rate is higher for the d,, and da, experiments. There is essentially no change in 
the unemployment rate for the d,,experiment, where the various effects on it 
roughly cancel each other out. These results thus reinforce the conclusion 
stated earlier that the relationships between real output and the unemploy- 
ment rate and between real output and the inflation rate are not likely to be 
stable. 

The Estimated Standard Errors 

The estimated standard errors in Tables 9-1 and 9-2 in general stem fairly 
small. This conclusion is consistent with the results in Table 8-2, which show 
that the contribution ofthe uncertainty ofthe coefficient estimates to the total 
uncertainty of the forecast is in general relatively small. If the only concern is 
with uncertainty from the coefficient estimates, which is true for the standard 
errors of the multipliers, a fairly high degree of confidence can be placed on 
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the results. Consider, for example, the eight-quarter-ahead prediction of the 
five variables in Table 9-1 for the C, experiment. The estimated means and 
standard errors for the five variables are as follows: .93 and .13 for real GNP, 
.54 and I 1 for the GNP deflator, - .09 and .Ol for the unemployment rate, 
.14 and .03 for the bill rate, and - .Ol and .26 for the money supply. Only for 
the money supply are the results not precise. In the more detailed results in 
Table 9-2, the only main imprecise results are for the two demand-for-money 
variables (M, and Mj. The results for the last four summary variables in the 
table are even fairly good. 

The results are thus encouraging regarding the accuracy ofthe properties of 
the model, provided the model is correctly specified. The assumption of 
correct specification is the key restriction in the present exercise. It was seen in 
Section 8.5, for example, that m&specification contributes substantially to the 
total variance of the forecast error for the US model, and therefore it should 
be taken into account in the estimation ofthe standard errors ofmultipliers. It 
is an open question as to how this can be done, and until it is done, the present 
estimates of the standard errors must be interpreted as merely lower bounds. 

9.4.3 Estimated Effects of a Change in Import Prices 

One of the significant economic events of the 1970s was the large change in 
import prices that occurred for most countries. It is thus of interest to 
examine the effects of import prices on the endogenous variables. The 
relevant exogenous variable in the model is PIM, the price deflator for 
imports. For the results in Table 9-3, PIMwas increased by 10 percent in the 
first quarter of the period (19771). For the other quarters of the prediction 
period it was not changed from its historical values. The same stochastic 
simulation procedure was followed here as was followed for the results in 
Table 9-l. The number of trials was 50. 

The results in Table 9-3 show that the increase in import prices iscontrac- 
tionary with respect to real output and inflationary with respect to the GNP 
deflator. PIit4 is an explanatory variable in the price equation, and this is the 
reason for the increase in domestic prices. The real wage fell as a result ofthe 
increase in prices, and this led to a fall in consumption and housing invest- 
ment. The fall in the real wage also had a negative effect on the labor force, 
and this is the main reason the unemployment rate fell in the first quarter and 
rose very little in the other quarters even though output fell. The Fed 
responded to the initial change in prices by increasing the bill rate, which is 
another reason for the fall in consumption and housing investment. After 
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three quarters, however, the bill rate was lower. The lower values are due 
primarily to the lower values of real output. (The change in real output is an 
explanatory variable in the interest rate reaction function.) 

This experiment is the best example in the model of a situation in which 
real GNP and the rate of inflation are negatively correlated. The estimated 
standard errors are again fairly small except for those for the money supply. 

9.4.4 Sensitivity of Fiscal Policy Effects to Assumptions 
about Monetary Policy 

The various assumptions that one can make about monetary policy have 
been discussed in Section 4. I. IO, and the reader should review this material 
before reading this section. The results in Table 9-4 are for the C,experiment 
in Table 9-l under live assumptions about monetary policy. The row I 
experiment is the same as that in Table 9- 1. In this case the Fed is assumed to 
behave according to the interest rate reaction function. Note that the values of 
--A,are positive in row I in Table 9-4: the Fed issued securities in response to 
the increase in purchases of goods of the government. (-A8 will be called the 
“amount of government securities outstanding.“) 
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In examining the results in Table 9-4 it will be useful to keep in mind the 
government budget constraint, Eq. 77 in Table A-5: 

77. 0 = S, - AA, - AM8 + ACUR + A(BR - BO) - AQ - DIS,. 

This equation states that any decrease in .S, that results from the increase in C, 
must result in a change in at least one ofthe other RHS variables. Since M,, Q, 
and D/S, are exogenous, the other variables are A,, currency (CUR), and 
nonborrowed reserves (BR - BOj. Subject to rounding error, the values 
presented in Table 9-4 meet this identity. For example, the first-quarter values 
for the row I experiment are - .88 for S,, .9 1 for -AA*, .OO for ACCJR, and 
- .03 for A(BR - BO), which sum to zero. The second-quarter values are 
-.85 for S,, 1.74- .91 = .83 for -AA=, .02 - .OO = .02 for ACUR, and 
- .03 - (.03) = .OO for A(BR - BU), which also sum to zero. 

For the other four experiments in Table 9-4 the interest rate reaction 
function was dropped. For the row 2 experiment the bill rate was kept 
unchanged from its historical values. This experiment is considerably more 
expansionary than the first, since the bill rate does not rise to choke off some 
of the increase in demand. The increase in the GNP deflator is larger because 
of the larger increase in output. The sum of the GNP changes across the 16 
quarters is 2 1.1 in this case versus 13.4 in the first case. The money supply rose 
rather than fell because there was no negative effect from a higher interest 
rate. The increase in the amount of government securities outstanding was 
less, since less was needed to meet the lower bill rate target. 

There is an unusual, but not important, feature ofthe results for the second 
experiment that needs to be explained before going further. The question is 
why the money supply falls in the first quarter for the second experiment (the 
change in M 1 is - .03). In the first quarter real GNP and the GNP deflator are 
higher and the bill rate is unchanged, so there appears to be no reason for the 
money supply to fall. The reason is that the price deflator Ph that is used in the 
demand-for-money equation of the household sector (Eq. 9) actually falls in 
the first quarter, which then results in a fall in the demand for money. Ph is a 
weighted price deflator, and it falls because of a change in weights caused by 
the change in C,. It can be seen from Eq. 34 in Table A-5 that Ph is a function 
ofanother deflator (PD] and the average indirect business tax rate. When C, 
increases, the average tax rate falls, and this is the reason for the initial fall in 
Ph. This feature of the results is not of any quantitative importance. 

For the row 3 experiment the money supply, M 1, was kept unchanged 
from its historical values. This experiment is slightly more expansionary than 
the first experiment because in that experiment the money supply fell. The 
money supply fell in the first experiment because the bill rate rose (the rise in 
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RS in the first quarter was .08). In the third experiment the bill rate needs to 
rise less because the money supply is unchanged. The bill rate actually fell in 
the first quarter for the third experiment (the change in RSwas - .02), which 
is due to the feature of the results discussed in the previous paragraph: with 
the bill rate unchanged the money supply initially falls, and thus the bill rate 
must fall to prevent the fall in the money supply. Were it not for this feature, 
the bill rate would have increased in the first quarter for the third experiment, 
but by less than the increase for the first experiment. The third experiment is 
not as expansionary as the second experiment, where the bill rate did not 
change. because some increase in the bill rate (after the first quarter) was 
needed to choke off the increase in the demand for money that would 
otherwise have occurred as a result of the increase in income and prices. 

For the row 4 experiment the level ofnonborrowed reserves, BR - BO. was 
kept unchanged from its historical values. This experiment is more expan- 
sionary than the first experiment. In the first experiment nonborrowed 
reserves decreased, which was caused by both an increase in borrowing 
(because of the higher bill rate) and a decrease in reserves (because of a lower 
level of demand deposits). The increase in the bill rate thus choked off all of 
the increase in nonborrowed reserves that would otherwise have taken place 
as a result of the expansion and then some. For the fourth experiment, where 
the increase in nonborrowed reserves is constrained to be zero, the “and then 
some” does not take place. The increase in the bill rate is thus smaller in the 
fourth experiment because less is choked off. The fourth experiment is, on the 
other hand. less expansionary than the second experiment, because some 
increase in the bill rate was needed. The fourth experiment is more expan- 
sionary than the third experiment because less of an increase in the bill rate 
was needed to choke off nonborrowed reserves than was needed to choke off 
the money supply. The increase in the bill rate in the fourth experiment has 
two effects, one in decreasing the demand for money and thus bank reserves 
and the other in increasing borrowing. Both of these result in a drop in 
nonborrowed reserves. The effect on bank borrowing is not relevant for the 
third experiment, and therefore the interest rate increase in the third experi- 
ment must be larger. 

In the row 5 experiment the amount ofgovernment securities outstanding. 
-A,, was kept unchanged from its historical values. This means that the 
entire deficit of the government is financed by changes in currency and 
nonborrowed reserves. This requires a large change in the money supply, 
which requires a large initial fall in the bill rate. This experiment is thus quite 
expansionary, since it corresponds to both an increase in government pur- 
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chases of goods and an initial decrease in the bill rate. The change in real GNP 
over the 16 quarters was 37.4, which is almost double the next largest change. 
The change in the GNP deflator by the end of the period is also almost double 
the next largest change. After the first quarter the government deficit C-S& is 
small, which is primarily a result of the increased tax collections caused by the 
more expansionary economy. 

It is clear from the results in Table 9-4 that fiscal policy effects are quite 
sensitive to what is assumed about monetary policy. Monetary policy, in 
other words, is very important. To give one more example of this, an 
experiment was run in which the bill rate was raised by one percentage point 
for all quarters. (The interest rate reaction function is dropped for this 
experiment.) The results are presented in Table 9-5. This sustained rise in the 
bill rate of one percentage point led by the end of the period to a decrease in 
real GNP of I.5 1 percent and an increase in the unemployment rate of .5 I 
percentage points. The money supply was 3.26 percent lower, and the GNP 
deflator was .92 percent lower. This experiment clearly shows the importance 
of the bill rate in the model. 

One last feature of the results in this section that should be emphasized is 
that the policy of keeping the money supply unchanged is almost the same as 
the policy implied by the use of the interest rate reaction function. In other 
words, for all practical purposes the first and third experiments in Table 9-4 
arc identical. 
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9.4.5 Sensitivity of Policy Effects to Alternative Sets 
of Coefficient Estimates 

The last issue examined in this chapter regarding the US model is the 
sensitivity ofpolicy effects to the different sets ofcoefficient estimates. The C, 
experiment was run for five sets ofestimates; the results are presented in Table 
9-6. The five estimators are 2SLS, 3SLS, FIML, 2SLAD for q = 0.5, and OLS. 
The 2SL.S results are the same as those in Table 9- 1. The procedure followed 
for the results for the other estimators is the same as that followed for the 2SLS 
results. 

The main difference in the results in Table 9-6 concerns the FIML estima- 
tor: the initial increases in real GNP and the GNP deflator are larger for FIML 
than they are for the other estimators. This is again due to the fact that the 
FIML estimates of the lagged dependent variable coefficients are in general 
smaller than the estimates for the other estimators. In other words, the lagged 
adjustment behavior of the model that is due to the presence of the lagged 
endogenous variables is less pronounced for the FIML estimates because the 
coefficients of the lagged endogenous variables are generally smaller. 

Aside from this difference for the FIML estimator, the results in Table 9-6 
are very close to each other. The properties of the model are clearly not very 
sensitive to the choice of estimator, including the OLS estimator. This 
conclusion complements the conclusion in Section 8.5.5 that the overall fit of 
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the model is not very sensitive to the choice of estimator. It is of interest for 
future research to see if this conclusion holds for other models and for later 
versions of the US model. 

9.5 Properties of the MC Model 

9.5.1 General Remarks 

As was the case for the US model, it is possible to get some idea of the 
properties of the MC model without performing simulation experiments. In 
the following discussion, a variable is said to have a “direct” effect on another 
variable if it appears on the RHS of the equation (either a stochastic equation 
or a definition) explaining the other variable. Most endogenous variables have 
at least an indirect effect on the other endogenous variables-either contem- 
poraneously or with a lag of one quarter. As a result, it is difficult to explain 
the properties of the model in a very systematic way. This discussion is 
designed to try to give a general idea of the properties without going into every 
possible indirect effect. It should also be kept in mind that not all ofthe effects 
operate for all countries. All interest rates referred to are short-term rates 
unless otherwise noted. 

S~~mmary of the Stochastic Equations of the Model 

For reference purposes it will be useful to provide a summary ofthe stochastic 
equations per country. The signs in parentheses in the following list are the 
expected signs of the coefficient estimates. 

Equation Dejwndent 
number variable 

I Merchandise 
imports 

2 CoaWlIpti0lI 

3 Change in 
investment 

4 Real GNP 

5 GNP deflator 

Short-term or long-term interest rate (-). GNP defla- 
tar (+), import price index (-), real GNP (+), lagged 
net foreign assets (+), lagged dependent variable (+) 

Short-term or long-term interest rate (-), real GNP 
(+). lagged net foreign assets (+), lagged dependent 
variable (+) 

Changes in real GNP-current. lagged once, lagged 
twice, lagged three times-_(+), lagged level of in- 
Yestment (-) 

Final sales (+). lagged stock of inventories (-), lagged 
dependent variable (+) 

Import price index (+), demand pressure variable (-), 
lagged dependent variable (+) 
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6 Nominal money Short-term interest rate (-), nominal GNP (+), lagged 
SUPPlY dependent variable (+) 

la,lb Shon-term Lagged rate of inflation (+), lagged rate ofgrowth ofthe 
interest money supply (+), demand pressure variable (-), 
rate change in net foreign assets (-), lagged rate ofchange 

in the import price index-four countries only- 
(+), exchange rate-three countries only-(+), 
lagged dependent variable (+) 

8 Long-term Short-term interest rates-current, lagged once, 
interest lagged twice-(+ or -), lagged dependent variable 
rate (+) 

9b Exchange rate GNP deflator (+), short-term interest rate (-), demand 
pressure variable (-), lagged change in net foreign 
assets (-)--all relative to the respective U.S. vari- 
able+lagged dependent variable (+) 

lob Forward rate Exchange rate (+), short-term interest rate relative to 
the U.S. short-term interest rate (+) 

11 Export price GNP deflator (+), world price index (+), exchange rate 
index (-t) 

There is a standard trade multiplier effect in the model. An autonomous 
increase in GNP in country i increases the demand for imports, which 
increases the exports of other countries and thus their GNP and demand for 
imports, which then increases the exports of country i and thus its GNP. In 
short, exports affect imports and vice versa. 

Price Effects among Countries 

There is also a price multiplier effect in the model. An autonomous increase 
in country i’s domestic price level increases its export prices, which increases 
the import prices of other countries, which increases their domestic prices, 
including their export prices, which then increases country i’s import prices 
and thus its domestic and export prices. In short, export prices affect import 
prices and vice versa. 

Direct Interest Rate Effects nmong Countries 

The U.S. short-term interest rate appears as an explanatory variable in the 
interest rate reaction functions of a number of countries. The U.S. rate is 
more important in the fixed exchange rate period than it is in the flexible rate 
period, but even in the flexible rate period it has an effect on some countries. 
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This means that an increase in the U.S. interest rate directly increases other 
countries’ rates. The German interest rate appears as an explanatory variable 
in the interest rate reaction functions of a few other European countries, and 
thus an increase in the German interest rate also directly increases other 
countries’ rates, 

Dim? Exchange Rate Effects among Countries 

The German exchange rate appears as an explanatory variable in the ex- 
change rate equations of the other European countries. The German ex- 
change rate thus directly affects other exchange rates. All exchange rates are 
relative to the U.S. dollar, and therefore each explanatory variable in the 
exchange rate equations (other than the lagged dependent variable and the 
German exchange rate) is the particular variable of the country relative to the 
same variable for the United States. This means that the following U.S. 
variables appear as explanatory variables in the exchange rate equations: the 
GNP deflator, the short-term interest rate, the demand pressure variable, and 
the change in net foreign assets. 

Direct Effkcts within a Country 

The short-term interest rate directly affects the long-term rate in the term 
structure equation (Eq. 8). The shon-term or long-term rate has a direct 
negative effect on imports and consumption (Eqs. 1 and 2). The short-term 
rate has a direct negative effect on the demand for money and the exchange 
rate (Eqs. 6 and 9b). (The reader should remember that an increase in the 
exchange rate is a depreciation of the country’s currency.) 

The asset variable. which is the sum of past values of the balance of 
payments and a measure of the net asset position of the country vis&vis the 
rest of the world, has a direct positive effect on imports and consumption 
(Eqs. 1 and 2) and a direct negative effect on the short-term interest rate and 
the exchange rate (Eqs. 7b and 9b). 

The exchange rate has a direct positive effect on the local currency price of 
exports (Eq. I I) and on the local currency price of imports (the equations in 
Table B-4 involved in linking export and import prices). It also has a direct 
negative effect on the dollar price ofexports (because the coefficient estimate 
of the exchange rate in Eq. I 1, which is in log form, is less than one). It has a 
direct positive effect on the short-term interest rate for nine countries (Eq. 
7b). 

The price of imports has a direct negative effect on imports (Eq. l), a direct 
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positive effect on the GNP deflator (Eq. S), a direct negative effect on the asset 
variable (Eqs. 17 and IQ, and a direct positive effect on the short-term interest 
rate (Eq. 7b). The price of exports has a direct positive effect on the asset 
variable (Eqs. 17 and 18). The GNP deflator has direct positive effects on 
imports, the demand for money, the short-term interest rate, the exchange 
rate, and the price of exports (Eqs. I, 6, 7a, 7b, 9b, and 11). 

The level of imports has a direct negative effect on final sales and the asset 
variable, and the level of exports has a direct positive effect on these two 
variables (Eqs. 16, 17, and 18). The level of final sales has a direct positive 
effect on GNP (Eq. 4). Any deviation of GNP from final sales in a period is 
absorbed by a change in inventories (Eq. 12). The stock of inventories has a 
direct negative effect on GNP (Eq. 4). GNP has a direct positive effect on 
imports, consumption, investment, the GNP deflator, the demand for 
money, the short-term interest rate, and the exchange rate. 

The money variable M 1: does not play a very important role in the model. 
It is only a potential explanatory variable in the two interest rate reaction 
functions, Eqs. 7a and 7b. It appears in 3 ofthe 23 estimates of Eq. 7a (Table 
4-7) and in 4 of the 20 estimates of Eq. 7b (Table 4-8). This means that other 
than in these few cases, the equation that determines M 1X Eq. 6, plays no 
role in the model. The properties of the model would not be affected if Eq. 6 
were dropped for all countries for which M 17 is omitted from Eqs. 7a and 7b. 

Some Indirect Efects within a Country 

It should be clear that there are very few unambiguous indirect effects in the 
model with respect to sign. The signs depend on the relative sizes of the 
coefficient estimates. It is useful, however, to consider the likely signs of some 
indirect effects, even though these signs are not necessarily logical conse- 
quences of the model. 

Consider first the indirect effect of the exchange rate on GNP. The main 
direct effect of the exchange rate is on the price of imports, at least in the short 
run. The price ofimports has a direct negative effect on imports, and the level 
of imports has a direct positive effect on GNP. In other words, an increase in 
the price of imports causes substitution from imports to domestically pro- 
duced goods, which raises GNP. The exchange rate thus has an indirect 
positive effect on GNP through this channel (that is, depreciation increases 
GNP). 

Depreciation also lowers the dollar price of the country’s exports, which 
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through the trade-share equations has a positive effect on the other countries’ 
demand for the given country’s exports. Therefore, depreciation also in- 
creases GNP through this channel. 

For some countries the exchange rate is an explanatory variable in the 
interest rate reaction function, which means that for these countries depre- 
ciation leads to an increase in the short-term interest rate. The short-term rate 
has a negative effect on GNP, and therefore depreciation has a negative effect 
on GNP through this channel. 

Depreciation is likely to have a negative indirect effect on GNP through a 
fourth channel. The likely initial effect of a depreciation on the balance of 
payments is negative. Depreciation raises the local currency price of imports 
more than it does the local currency price of exports, which, other things 
being equal, has a negative effect on the balance of payments. Depreciation 
also lowers imports and raises exports, which has a positive effect on the 
balance of payments. This latter effect is, however, likely to be smaller 
initially than the price effect, and thus the initial net effect is likely to be 
negative. (This is the “J-curve” effect.) A decrease in the balance ofpayments 
decreases net foreign assets, which directly decreases imports and consump- 
tion and directly increases the short-term interest rate. Although the decrease 
in imports raises GNP, the decrease in consumption and the increase in the 
interest rate lowers GNP, and the net effect is likely to be negative. Deprecia- 
tion is thus likely to have an initial indirect negative effect on GNP through 
this asset effect channel. 

Depreciation has two main indirect effects on the GNP deflator, one 
positive and one ambiguous. The positive effect is through the price of 
imports, which has a direct positive effect on the GNP deflator. The second 
effect is through GNP. If the net effect of depreciation on GNP is positive, this 
will have a positive effect on the GNP deflator through the direct positive 
effect of demand pressure on the GNP deflator. Ifthe net effect ofdepreciation 
on GNP is negative, the indirect effect on the GNP deflator is negative. 

There are three main effects of the short-term interest rate on GNP, one 
negative, one ambiguous, and one positive. The negative effect is through 
consumption: an increase in the short-term rate increases the long-term rate; 
an increase in the short-term rate or the long-term rate decreases consump- 
tion, which lowers GNP. The ambiguous effect is through the exchange rate: 
an increase in the short-term rate has a negative effect on the exchange rate 
(an appreciation), which has an ambiguous effect on GNP. The positive effect 
is through imports: an increase in the short-term or the long-term rate lowers 
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imports, which, other things being equal, raises GNP. The consumption 
effect is likely to be the dominant one, and thus the net effect ofthe short-term 
rate on GNP is likely to be negative. 

An increase in the short-term interest rate has two main effects on the GNP 
deflator, both negative. The first is the likely negative indirect effect of the 
short-term rate on GNP and thus on demand. The second is the effect on the 
exchange rate: the exchange rate appreciates, which lowers the price of 
imports, which lowers the GNP deflator. 

9.5.2 Results for Eleven Experiments: The Construction of Tables 9-7 
through 9-17 

The results of eleven experiments are reported in this section. The first 
experiment is for the fixed exchange rate period 197011- 19721, and the others 
are for the flexible rate period 1976l- 19771V. Theexperimentsare as follows. 

1. An increase in U.S. government spending (fixed exchange rate period) 
2. An increase in U.S. government spending (flexible exchange rate period) 
3. An increase in the U.S. short-term interest rate 
4. An increase in German government spending 
5. An increase in the German interest rate 
6. A depreciation of the German exchange rate 
7. An increase in U.K. government spending 
8. A depreciation of the U.K. exchange rate 
9. An increase in Japanese government spending 

10. A depreciation of the Japanese exchange rate 
1 I. An increase in the price of exports of the oil-exporting countries 

The results are presented in Tables 9-7 through 9-17. Stochastic simulation 
is too expensive to perform for the MC model, and thus all of the results in 
these tables are from deterministic simulations. For all the simulations the 
estimated residuals were added to the stochastic equations and treated as 
exogenous. The base path for the experiments is thus the perfect tracking 
solution. The complete MC model was used for all the experiments except 11, 
where trade shares were taken to be exogenous. The special treatment for 
experiment I 1 is discussed later in this section. 

Results for 15 countries and 13 variables per country are presented in the 
tables for the two-quarter-ahead and six-quarter-ahead predictions. Except 
for the numbers for the balance of payments and the two interest rates, each 
number in the tables is the percentage change in the variable (in percentage 
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Note: a. Change i5 abioluie change, not percentage change, in units Of local currency. 

points) divided by something. For the spending increases (Tables 9-7, 9-8, 
9-10,9-13, and 9-15), the divisor is the change in government spending as a 
percentage of GNP (in percentage points). In other words, each number is 
[li; - yj,)/~j,]/(AGi,/YiJ, where jj, is the two- or sixquarter-ahead predicted 
value of y,, after the change, AG, is the change in government spending in 
quarter t, and Y, is the actual value of GNP in quarter t. (Remember that all 
changes are changes from the actual values, not changes from quarter to 
quarter.) Each number is thus the percentage change in the variable induced 
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by a one-percent autonomous increase in GNP of the country in which the 
policy change was made. 

For the interest rate increases (Tables 9-9 and 9-1 l), the divisor is the 
change in the interest rate (in percentage points). The actual change in the 
interest rate for the experiments was 2.0 percentage points, so the divisor was 
2.0. Each number in these tables is thus the percentage change in the variable 
induced by a 1.0 percentage point increase in the interest rate. For the 
exchange rate increases (Tables 9-12,9-14, and 9-16), the percentage change 
in the exchange rate was 10.0 percent and the divisor was 1 .O. Each number in 
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lime: a 

these tables is thus the percentage change in the variable induced by a 10.0 
percent increase in the exchange rate. Finally, for the increase in the export 
prices (Table 9- 17), the percentage change in the prices was 50.0 percent and 
the divisor was 1 .O. Each number in this table is thus the percentage change in 
the variable induced by a 50.0 percent increase in the export prices. 

The numbers for the balance of payments are not in percentage terms and 
have not been divided by anything; they are merely the actual changes in the 
balance of payments corresponding to whatever policy change was made. The 
balance-of-payments variables are in units of nominal local currency, and 
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thus it is not readily apparent from the tables how one country’s balance of 
payments changed relative to another’s, For the most part it is unnecessary to 
know this to understand the rest of the results; when it is necessary, the 
relative change will be mentioned in the text. The main interest in the 
balance-of-payments results for a country is the sign of the changes. 

For the two interest rates, the changes are absolute changes (in percentage 
points) rather than percentage changes. The divisors are the same as they are 
for the other variables. 

The exchange rate experiments, 6,8, and 10, require that the exchange rate 
reaction function be dropped for the particular country in question. The 
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exchange rate is instead taken to be exogenous and then changed by the 
specified amount. This procedure is somewhat artificial in that the interest 
rate reaction function for the particular country is not also changed. Presum- 
ably exchange rate and interest rate decisions are coordinated, so changing 
one but not the other is not necessarily realistic. These experiments, however, 
were performed solely with the aim of trying to understand the properties of 
the model; they are not meant to be realistic descriptions of actual policy- 
making decisions. Similar considerations apply to the German interest rate 
experiment, experiment 5. 

The following discussion of the results is somewhat loose. Reference is 
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Nate: a. alange is absoiurc change, not percentage change, in units Of iocai currency. 

sometimes made to a change in one endogenous variable “leading to” or 
“resulting in” a change in another endogenous variable. This is not, strictly 
speaking, correct because the model is simultaneous, but it does help to give a 
general idea of the model’s properties. Not all results in the tables are 
explained, and not every possible indirect effect is noted. Emphasis is placed 
on the main results and effects and, as the discussion progresses, on the results 
in a table that are different from the results in previous tables. In what follows, 
the terms “GNP” and “income” are used interchangeably, interest rates are 
always short-term rates unless otherwise noted, and import and export prices 
are local currency prices unless otherwise noted. 
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United States Spending Increase: Fixed Exchange Rate Period (Table 9-7) 

The increase in U.S. government spending increased U.S. income, which in 
turn increased U.S. imports. This increased other countries’ exports, which in 
turn increased their income and imports. This is the trade multiplier effect. 
The increase in U.S. income also led to an increase in the U.S. price level, 
which increased other countries’ import prices. This led to an increase in 
other countries’ export prices, which resulted in further increases in other 
countries’ import prices. This is the price multiplier effect. 

The other important effect in this case is the interest rate effect. The 
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increase in U.S. income and prices led to an increase in the U.S. interest rate 
through the reaction function of the Federal Reserve. This offset some of the 
increase in U.S. income that would otherwise have occurred and also led to an 
increase in other countries’ interest rates. The interest rates for all countries 
except Japan were higher after two quarters. This worldwide increase in 
interest rates offset some ofthe increase in world income that would otherwise 
have occurred. For a number of countries the interest rate effect was large 
enough to lead to a net negative effect on GNP by the sixth quarter. In other 
words, the U.S. expansion caused GNP for some countries to fall because of 
the interest rate increase that resulted from the expansion. 
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The U.S. increase had a negative effect on the U.S. balance ofpayments and 
a positive effect on the other countries’ balance ofpayments. Imports declined 
for some countries even though GNP rose; this is due in part to the effects of 
higher interest rates and in part to the fact that import prices increased more 
initially than did domestic prices. An increase in import prices relative to 
domestic prices leads to a substitution away from imported goods. Note 
finally that the money supply decreased for many countries. Although in- 
come was higher, interest rates were also higher, and in many cases the 
negative interest rate effect dominated. 

This completes the discussion of the first experiment. An interesting 
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question is how the properties of the model compare to those of other models. 
It is difficult to make these comparisons because experiments across models 
generally differ, but some multiplier results for other multicountry economet- 
ric models are presented in Fair (1979b, tables I and 2) that provide a rough 
basis of comparison for the results in Table 9-7. In general, the present 
income multipliers are smaller and the price multipliers are larger than those 
of the other models. This result is as expected, because the other models are 
primarily trade multiplier models and thus have weak or nonexistent price 
multiplier and interest rate effects. 
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United States Spending Increase: Flexible Exchange Rate Period (Table 9-8) 

The results in Table 9-8 are for the flexible exchange rate period. One key 
difference between the fixed and flexible rate periods is that in the latter the 
U.S. interest rate has smaller direct effects on other countries’ interest rates. 
The changes in the other countries’ interest rates after two quarters are 
generally smaller in Table 9-8 than in Table 9-7. This means that there is less 
initial offset to the trade multiplier effect from higher interest rates in the 
flexible rate period. 
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There are four main effects of the U.S. spending increase on the exchange 
rates, three negative and one positive. The spending increase raised U.S. 
output and prices relative to those ofthe other countries, both ofwhich have a 
negative effect on other countries’ exchange rates (an appreciation). The U.S. 
balance of payments fell relative to those ofthe other countries (the balance of 
payments of other countries generally rose), and this also has a negative effect 
on exchange rates. The positive effect is the interest rate effect. The U.S. 
short-term interest rate rose relative to other countries’ rates, and this has a 
positive effect on exchange rates (a depreciation). As can be seen in Table 9-8, 
the net effect is usually negative. Only for the two-quarter-ahead results for 
Canada and Sweden is the net effect positive (the interest rate effect dominat- 
ing). 

The price ofexports ofmost countries increased. This is the price multiplier 
effect from the initial increase in LJS. prices. Exports for some countries 
increased and for other countries decreased. Whether exports for a particular 
country increase or decrease depends on the relative change in the country’s 
export price (the trade share equations). The balance of payments for a 
number of counties fell. This may at first glance seem puzzling, since the 
J-curve effect that was discussed earlier implies that an appreciation should 
initially increase the balance of payments. What should be remembered, 
however, is that although almost all currencies appreciated relative to the 
dollar, they obviously did not all appreciate relative to each other. If a 
country’s currency appreciated relative to the dollar but depreciated relative 
to most of its other trading partners, then its currency has effectively depre- 
ciated rather than appreciated, which will have an initial negative effect on the 
balance of payments. 

The price of imports of most countries increased because of the general 
increase in export prices. For two countries, however, France and the United 
Kingdom, the change in import prices was negative after six quarters. After 
six quarters, the United Kingdom’s currency had appreciated relative to all 
others and France’s currency had appreciated relative to all others except the 
United Kingdom’s Appreciation has, other things being equal. a negative 
effect on the price of imports, and in these two cases it was large enough to 
dominate the positive effect from the general increase in export prices. 

GNP for some countries was lower after two and/or six quarters. The three 
main things that can cause this are (1) an increase in the interest rates RSand 
RB in the country, (2) a decrease in exports, and (3) a decrease in the balance 
of payments. (A decrease in the balance ofpayments has a negative effect on 
GNP through the wealth effects.) One or more of these effects are operating 
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for countries that experienced a fall in GNP. With respect to the GNP 
deflator, there are two main effects operating on it, one through the price of 
imports and one through GNP. Given that the effects on these last two 
variables are not the same across countries, one would not expect the effect on 
the GNP deflator to be the same across countries, and it is in fact not: for some 
countries the GNP dektor is higher and for some it is lower. 

The results at the bottom ofTable 9-8 are for the US model alone. In this 
case the rest of the world is exogenous-in particular. exports and the price of 
imports are exogenous. One of the main differences in the results is that the 
increase in the GNP deflator is less for the US model alone. In the complete 
model the U.S. price of imports rose because of the depreciation of the dollar 
and the general increase in export prices, which had a positive effect on the 
GNP deflator. This effect is absent for the US model alone. Another main 
difference is that the fall in the balance of payments after six quarters is less for 
the US model alone. This is again due primarily to the fact that the price of 
imports rose in the complete model. The properties of the US model regard- 
ing the change in GNP are not sensitive to the treatment of the rest of the 
world: the GNP changes are almost identical in the two cases. 

United States Interest Rate Increase (Table 9-9) 

For this experiment, the U.S. interest rate reaction function is dropped and 
the U.S. interest rate is t&en to be exogenous. The results of an increase in the 
U.S. interest rate are presented in Table 9-9. This increase lowered U.S. 
income and imports and led to a general contraction in world income and 
exports (trade multiplier effect). 

The interest rate increase also led to a depreciation of the other countries’ 
exchange rates. The depreciation of the German exchange rate after six 
quarters, for example, was 1.93 percent. For some countries, such as Japan 
and Sweden, the depreciation was large enough to lead to an increase in their 
import prices and then to their GNP deflators. The U.S. interest rate increase 
thus led for some countries to an increase in their inflation rates through the 
depreciation of their exchange rates. 

The balance of payments of some countries (other than the United States) 
increased. In these cases the change in export revenue (export price times 
exports) was greater than the change in import costs (import price times 
imports). Exports fell for all countries, and except for the two-quarter-ahead 
results for Austria, export prices also fell. In almost all cases imports fell, and 
in most cases import prices fell. 
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The results at the bottom ofTable 9-9 are for the US model alone. The fall 
in the U.S. GNP deflator is less in this case because there is no negative effect 
from a fall in import prices. The differences in the effects on GNP are again 
quite small. 

German Spending Increase (Table S-IO) 

This experiment corresponds to an increase in German government spending 
on German goods. It led to a worldwide increase in exports and income. The 
increase in German income led to an increase in the German GNP deflator. 
This increase and the increase in income led to a fairly large increase in the 
interest rate through the reaction function (I .65 percentage points after six 
quarters). This increase had a negative effect on the exchange rate. but it was 
more than offset by the positive price, output, and balance of payments 
effects: the German exchange rate depreciated. The German exchange rate 
has a positive effect on the exchange rates of the other European countries, 
and this resulted in a depreciation of the other European rates. 

The Canadian and Japanese exchange rates, which are not tied to the 
German rate, changed very little. This means that these two rates, along with 
the U.S. exchange rate, appreciated relative to the European rates. This led to 
a fall in the import prices of Canada, Japan, and the United States, which led 
to a fall in their GNP deflators. The German expansion thus led to a fall in 
prices for some countries because of the exchange rate effect on prices. 

German Interest Rate Increase (Table 9-11) 

For this experiment, the German interest rate reaction function was dropped 
and the German interest rate was taken to be exogenous. The results of an 
increase in the German rate are presented in Table 9-l 1. This increase 
lowered German income and imports and led to a general contraction in 
world exports and income. 

The relative increase in the German interest rate and balance ofpayments 
led to an appreciation of the mark, which in turn led to an appreciation of the 
other European currencies. The GNP deflator for Germany was lower be- 
cause ofthe appreciation and the fall in income. Contrary to the case for the 
other countries, GNP for Norway rose. The Norwegian currency appreciated 
relative to the dollar but depreciated relative to the most European currencies. 
which resulted in an increase in Norway’s price of imports. This led to a 
substitution away from imported goods that was large enough to lead to a net 
increase in GNP. 
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For this experiment, the German exchange rate reaction function was 
dropped and the German exchange rate was taken to be exogenous. The 
results in Table 9-12 are for an increase in the exchange rate of 10 percent (a 
depreciation). 

It was argued earlier that the initial effect ofa depreciation on the balance of 
payments is likely to be negative, and this is the case for Germany in Table 
9-12. even after six quarters. The depreciation led to a decrease in German 
GNP. As already noted, the effect ofa depreciation on GNP can go either way. 
In this case the negative effects from the increase in the interest rates and the 
fall in the balance of payments more than offset the positive effects from the 
rise in the price of imports and the relative fall in the price ofexports. German 
exports actually decreased slightly in response to the depreciation. which 
seems unusual. There are two main reasons for this. The first is that the 
German depreciation is not large relative to the other European countries 
because the other countries’ exchange rates are fairly closely tied to the 
German rate. This means that the German price of exports does not fall very 
much relative to the others, and in fact for some countries the price of exports 
fell more than it did for Germany. As a result, the German gain in trade shares 
through the trade share equations is not very large. The second reason is the 
general contraction in world exports that resulted from the German deprecia- 
tion. Even though Germany gained some trade share, the total size of the 
export base was less. The increase in share was small enough and the decrease 
in the export base large enough to lead to a slight fall in German exports. 

The depreciation ofthe German exchange rate led to a decrease in the U.S. 
GNP deflator. This is due to the fall in the U.S. price of imports, which in turn 
is due to the general appreciation of the dollar. The Canadian and Japanese 
GNP deflators fell for similar reasons. This experiment also resulted in an 
increase in GNP for the United States, Canada, and Japan, primarily because 
of the decreases in the short-term interest rates in the three countries. For the 
United States the main reason for the decrease in the interest rate was the 
decrease in the GNP deflator. For Canada and Japan the main reason was 
the increase in the balance of payments. The main reason for the increase 
in the balance of payments of the two countries (as well as of the United 
States) was the fall in the price of imports that resulted from the general 
appreciation of the currencies. The exports of the three countries increased, 
primarily as a result of the fact that all three countries expanded and all three 
trade considerably with each other. 
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United Kingdom Spending Increase (Table 9-131 

This experiment corresponds to an increase in U.K. government spending on 
U.K. goods. As in the German case in Table 9-10, the increase in spending in 
Table 9-13 led to a worldwide increase in exports and income. The U.K. 
exchange rate depreciated, as did the German exchange rate in Table 9-10. 
The other European exchange rates appreciated relative to the dollar, al- 
though only slightly: this is due primarily to the balance-of-payments effect 
on the exchange rate. The European countries benefited more from the U.K. 
expansion than did the United States with respect to the increase in exports, 
and thus their balance of payments improved more. The increase in U.K. 
income led to an increase in U.K. imports, and the depreciation of the U.K. 
exchange rate led to an increase in the U.K. price of imports. Both of these 
factors contributed to the decrease in the U.K. balance of payments. 

United Kingdom Exchange Rate Increase (Table 9-14) 

For this experiment, the U.K. exchange rate reaction function was dropped 
and the U.K. exchange rate was taken to be exogenous. The results in Table 
9-14 are for an increase in the exchange rate of 10 percent (a depreciation). 

As in the German case in Table 9- 12, the depreciation led to a decrease in 
the balance of payments and a decrease in GNP. In contrast to the German 
case, the effects on the other European exchange rates were slight. The 
depreciation led, as in the German case, to a decrease in the GNP deflator and 
an increase in GNP for the United States, Canada, and Japan, although the 
effects in the U.K. case are smaller. 

Japanese Spending Increase (Table 9-15) 

This experiment corresponds to an increase in Japanese government spend- 
ing on Japanese goods. As in the German and U.K. cases, the exchange rate 
depreciated in response to the expansion and the balance of payments 
decreased. The increase in imports of Japan in Table 9-15 is less than the 
increase in imports of Germany in Table 9-10 and ofthe United Kingdom in 
Table 9- 13, which resulted in smaller effects on the rest of the world in Table 
9-15. 

Japanese Exchange Rate Increase (Table 9-16) 

For this experiment, the Japanese exchange rate reaction function was 
dropped and the Japanese exchange rate was taken to be exogenous. The 
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results in Table 9-16 are for an increase in the exchange rate of 10 percent (a 
depreciation). 

In this case, as in the German and U.K. cases, the depreciation led to a 
decrease in the balance of payments and a decrease in GNP. The European 
exchange rates depreciated relative to the dollar, primarily because the U.S. 
balance ofpayments benefited more from the Japanese depreciation than did 
the European balance of payments. The United States benefited more be- 
cause the price of imports fell more; the price of imports fell more because the 
United States is a larger trading partner of Japan. U.S. GNP was higher and 
the U.S. GNP deflator was lower as a result of the Japanese depreciation. 

Increase in the Price ofExports of the Oil-Exporting Countries (Table 9-l 7) 

The oil-exporting countries in the model are Algeria, Indonesia, Iran, Iraq, 
Kuwait, Libya, Nigeria, Saudi Arabia, United Arab Emirates, and Venezuela. 
The price of exports is exogenous for these countries. The experiment corre- 
sponded to a 50-percent increase in the price of exports of all these countries. 

This experiment approaches, if not exceeds, the aggregation limits of the 
model. There is no specific treatment of oil in the model other than the fact 
that almost all ofthe exports of the oil-exporting countries arc oil. Ifthe ability 
ofcountries to substitute away from oil is less than it is for the other goods, the 
model has not adequately captured the effects of oil price changes. In particu- 
lar, the degree of substitution implicit in the trade-share equations may be too 
high for oil. The trade share equations were thus not used for this experiment, 
and the shares were taken to be exogenous. This may underestimate the 
degree ofsubstitution possible, but it is probably closer to the truth than is the 
other case. At any rate, because of this problem, the results ofthis experiment 
should be interpreted with considerable caution. 

Different countries were affected quite differently in this experiment. The 
exchange rates of all countries appreciated relative to the dollar. This is due in 
large part to the generally larger decrease in the U.S. balance of payments 
relative to the decreases for the other countries. The price of imports rose for 
most countries, as expected, although part of the increase that would other- 
wise have occurred was offset by the appreciation of the exchange rates. The 
increase in import prices led to an increase in the GNP deflators, and thus 
there was a general worldwide increase in inflation. 

GNP fell for many countries. This is due in part to the increase in the 
interest rate in many countries (because of the increase in inflation and the 
decrease in the balance of payments) and in part to the decrease in net foreign 
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assets (because of the decrease in the balance of payments). There was, in 
other words, both a negative interest rate effect and a negative asset effect on 
GNP. Imports fell for all countries because of the increase in the price of 
imports relative to the GNP deflator. For some countries this substitution 
effect was large enough to lead to an increase in GNP. 

Although this is not shown in the table, the balance of payments of the 
oil-exporting countries rose substantially. as expected. This increase in net 
foreign assets then led to an increase in imports of the countries for which 
there are import equations (Libya, Nigeria, Saudi Arabia, and Venezuela). In 
some cases these increases were quite large. The six-quarter-ahead increases 
for Nigeria and Saudi Arabia, for example, were 20.6 and 57.2 percent, 
respectively. These increases were not, of course, large enough to offset 
completely the increases in the balance of payments of these countries (and 
thus the decreases in the balance of payments of the oil-importing countries). 

9.5.3 Estimates olthe Exchange Rare E&t on Injation (Table Y-18) 

The MC model can be used to estimate what will be called the “exchange rate 
effect” on inflation. One of the ways in which monetary and fiscal policies 
may affect a country’s inflation rate is by first influencing its exchange rate, 
which in turn influences import prices, which in turn influence domestic 
prices. This is what is called the exchange rate effect on inflation. In order to 
estimate the size of this effect, one needs a model linking monetary and fiscal 
policies to exchange rates, exchange rates to import prices, and import prices 
to domestic prices; the MC model provides these links. 

Exchange rates have an effect on domestic inflation in the model through 
their effects on import prices. The 10.0 percent depreciation of the mark in 
Table 9- 12 resulted in an increase in the German GNP deflator of 12 percent 
after six quarters. For the U.K. results in Table 9-14 the increase was 2.98 
percent, and for the Japanese results in Table 9-16 the increase was 1.28 
percent. 

The question considered in this section is how much of the change in 
inflation that results from a monetary or fiscal policy change can be attributed 
to the change in the exchange rate that results from the policy change. 
Estimates ofthis exchange rate effect on inflation are presented in Table 9-18. 
The results in the a rows are from the experiments discussed in Section 9.5.2. 
For the results in the b rows, the same experiments were performed except 
that all exchange rates were taken to be exogenous. Exchange rates, in other 
words, were assumed to be fixed. The difference in the two rows for a given 
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quarter for the GNP deflator is an estimate of the exchange rate effect on 
inflation for the quarter. These differences as a percentage of the a row values 
are presented in the c row. 

The estimates in Table 9-18 vary considerably across countries and type of 
experiment. Consider the c-row values for the six-quarter-ahead predictions 
for the spending experiments. For the United States, 23 percent of the 
increase in the GNP deflator that resulted from the U.S. spending increase is 
attributed to the exchange rate effect. With the exchange rates endogenous the 
increase in the GNP deflator is .64 percent, and with the exchange rates 
exogenous the increase is .49 percent. For Germany. only 3 percent of the 
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increase in the GNP deflator is attributed to the exchange rate. This small 
number is due to the fact that the other European exchange rates are closely 
tied to the German rate, and therefore a depreciation ofthe German exchange 
rate of, say. 10 percent is not much of a depreciation. For the United 
Kingdom, all of the increase in the GNP deflator is attributed to the exchange 
rate. The price equation for the United Kingdom (Eq. 5, Table 4-5) does not 
include the demand pressure variable (it was of the wrong sign), so the U.K. 
GNP deflator is not directly affected by GNP changes. Therefore, the only 
inflation that results from the U.K. spending increase is from the exchange 
rate effect. Japan is similar to the United States: 18 percent of the increase in 
the GNP deflator is attributed to the exchange rate effect. 

With respect to the interest rate experiments, the estimates after six 
quarters are 45 percent for the United States and 67 percent for Germany. 
These estimates are higher than the corresponding estimates for the spending 
experiments. This is as expected, since interest rate changes in general have 
large effects on exchange rates. 

9.5.4 Summary 

It is difficult to summarize the MC results because they vary considerably 
across countries. Theoretically there are few unambiguous effects, and the 
empirical results show that there are few unambiguous empirical effects 
either. Regarding the effects on other countries from a policy change in one 
country, they depend considerably on relative positions, and thus it is com- 
mon to find some countries affected one way and other countries affected the 
other way for a given policy experiment. 

A few of the unambiguous empirical effects are the following. ( 1) Spending 
increases in a given country lead to a depreciation ofthe country’s exchange 
rate. The interest rate effect, which works in favor of an appreciation, is 
dominated by the other effects discussed above. (2) Spending increases in a 
given country also lead to a decrease in its balance of payments. (3) Deprecia- 
tion in a given country leads to an initial fall in its balance of payments and to 
a fall in its GNP. (4) An increase in a country’s interest rate leads to an 
appreciation of its currency and to a decrease in its GNP. 

One obvious feature of the results is that price, interest rate, and exchange 
rate linkages are quantitatively quite important. There are many channels; a 
key one is exchange rates affecting import prices, import prices affecting 
domestic prices and thus export prices, and export prices affecting other 
countries’ import prices. Interest rates affect exchange rates directly, and they 
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are in turn affected by many other variables. Another important effect in the 
model is the wealth effect from changes in the balance of payments. 

Another way of looking at the overall results is the observation that if the 
MC model is at all a good approximation of the economic linkages among 
countries, attempts to use very simple models (with unambiguous effects) for 
policy purposes are not likely to be very successful. Trade multiplier models, 
for example, seem likely to be quite misleading in this regard. In short, the 
world economy seems complicated, and insights gained from simple models 
may be misleading. 



10 Optimal Control Analysis 

10.1 Introduction 

Optimal control techniques have a number of potentially important uses in 
macroeconometrics. Solving optimal control problems for a particular model 
may yield insights about the model that one would not pick up from 
multiplier calculations. Depending on the objective function, the solutions of 
optimal control problems are sometimes extreme in that they result in the 
predicted values being considerably away from the historical values, and this 
sometimes conveys new information about the properties of the model. 
Optimal control techniques can also be used to evaluate past policies in the 
light of particular objective functions. The techniques may also be useful in 
the long run in helping to make actual policy decisions, depending on how 
good an approximation to the structure of the economy models eventually 
become. 

10.2 A Method for Solving Optimal Control Problems 

10.2.1 The Method 

Optimal control problems have historically been formulated in continuous 
time and have been looked upon as problems in choosingfiuxtions oftime to 
maximize an objective function. This is particularly true in the engineering 
literature. Fairly advanced mathematical techniques are required to solve 
these problems. For discrete time models, however, which include virtually 
all macroeconometric models, optimal control problems can also be looked 
upon as problems in choosing variables to maximize an objective function. 
The number of variables to be determined is equal to the number of control 
variables times the number oftime periods chosen for the problem. From this 
perspective. optimal control problems are straightforward maximization 
problems, and one can attempt to solve them using algorithms like the DFP 
algorithm discussed in Section 2.4. 

Let the model be represented by (6. I), which is repeated here: 

(6.1) KY,> x,5 ai) = K,, i=l , ,n. 
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The variables in the -\; vector include both exogenous and lagged endogenous 
variables. Among the exogenous variables are variables that are under the 
control of the government and variables that are not. It will be useful to 
redefine x, to include only noncontrolled exogenous variables. Let z, denote 
the vector of control variables, and let q,_, denote the vector of all lagged 
endogenous variables in the model, even variables lagged more than one 
period. Rewrite (6. I) to include these changes: 

(10.1) f;(~,,4~-I,.~,,~,,or,)=~~,, i=l,. ,n. 

In the following discussion the coefficients q are assumed to be known with 
certainty. 

The first step in setting up an optimal control problem is to postulate an 
objective function. Assume that the period of interest is t = 1, , T. A 
general specification of the objective function is 

(10.2) w= h(y,, ~ y,, x,, , $3 z,, , ZT). 

where lW7, a scalar, is the value of the objective function corresponding Io 
values of I;, x,, and z, (t = 1. , T). I n most applications the objective 
function is assumed to be additive across time, which means that ( 10.2) can be 
written 

(10.3) M’= i h,(Y,, x,, &)> 
*=I 

where h&:,, x,, z,) is the value of the objective function for period 1. The 
function h has a f subscript to note the fact that it may vary over time. This 
will be true, for example, if future periods are discounted. 

The optimal control problem is to choose values of z, , , iT so as to 
maximize the expected value of U’ in (10.2) subject to the model (10.1). 
Consider first the deterministic case where the error terms in (10.1) are all 
zero. Assume that z, is of dimension k, so that there are krcontrol values to 
determine, and let z be the kr-component vector denoting these values: 
z=(z,, , zT). For each value of z one can compute a value of Wby first 
solving the model (IO. I) for J+ , , yr and then using these values along 
with the values for x,, ~ x1. and z to compute Win (10.2). Stated this 
way, the optimal control problem is a problem in choosing variables (the 
elements of z) to maximize a” uncon.smin~d nonlinear function. By substi- 
tution, the constrained maximization problem is transformed into the prob- 
lem of maximizing an unconstrained function of the control variables: 

(10.4) M’= I$($. 
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where (b stands for the mapping z - z, )j,, , yr, xl, , xT - W. For 
nonlinear models it is generally not possible to express y, explicitly in terms of 
z, and x,, which means that it is generally not possible to write Win (10.2) 
explicitly as a function of z and x,, , xT. Nevertheless, given values for 
x, , , xT, values of W can be obtained numerically for different values 
of z. 

Given thissetup, the problem can be turned over to a nonlinear maximiza- 
tion algorithm like DFP. For each iteration, the derivatives of+ with respect 
to the elements of z, which are needed by the algorithm, can be computed 
numerically. Each iteration will thus require kTfunction evaluations for the 
derivatives plus a few more for the line search. Each function evaluation 
requires one solution (dynamic simulation) of the model for Tperiods plus 
the computation of R’in (10.2) after yl, , yr are determined. 

There is one important cost-saving feature regarding the method that 
should be noted. Assume that there are two control variables and that the 
length of the period is 30. The number of unknowns is thus 60. and therefore 
60 function evaluations will have to be done per iteration to get the numerical 
first derivatives. In perturbing the control values to get the derivatives, one 
should start from the end of the control period and work backward. When the 
control values for period 30 are perturbed, the solution of the model for 
periods 1 through 29 remains unchanged from the base solution, so these 
calculations can be skipped. The model only needs to be resolved for period 
30. Similarly, when the control values for period 29 are perturbed, the model 
only needs to be resolved for periods 29 and 30, and so on. This cuts the cost of 
computing the derivatives roughly in half. 

10.2.2 Stochastic Simulation Option 

Consider now the stochastic case where the error terms in (IO. 1) are not zero. 
It is possible to convert this case into the deterministic case by simply setting 
the error terms to their expected values (usually zero). The problem can then 
be solved as above. In the nonlinear case this does not lead to the exact answer 
because the values of W that are computed numerically in the process of 
solving the problem are not the expected values. In order to compute the 
expected values correctly, stochastic simulation would have to be done. In 
this case each function evaluation (that is, each evaluation of the expected 
value of W for a given value of z) would consist of the following. 

1. A set of values of the U, error terms in (IO. I) would be drawn from an 
estimated distribution. 
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2. Given the values of the error terms, the model would be solved for 
y,, , y7and the vaIues of Wcorresponding to this solution would be 
computed from (10.2). Let l&v denote this value. 

3. Steps I and 2 would be repeated J times, where J is the number of trials. 
4. Given the J values of l@ (j = 1, , J), the expected value of Wwould 

be taken to be the mean of these values. 

(10.4) 6= +,! &. 

This procedure increases the cost ofsolving the control problem by roughly 
a factor of J, since the maximization algorithm spends most of its time doing 
function evaluations. It is probably not worth the extra cost for most applica- 
tions. It was seen in Chapter 7 that the bias in predicting the endogenous 
variables that results from using deterministic rather than stochastic simula- 
tion seems to be small for most models, and thus the bias in computing the 
expected value of JV is also likely to be small. At any rate, the stochastic 
simulation option is always open if computer time is no constraint. 

102.3 Comparison of the Method to Other Procedures 

There are two main advantages ofthe method just described. One is that it can 
handle very general objective functions; the objective function need not be 
quadratic and need not even be additive across time. The second is that the 
method is extremely easy to use. Assuming that a program is available for 
solving the model, which is almost always the case, all that needs to be 
supplied is a subroutine that computes Win (10.2) for a given set of RHS 
values. In a program that is structured like the Fair-Parke program in 
Appendix C1 which allows one to move automatically from estimation to 
solution. this is an important advantage. Given a subroutine that computes 
W, one can mow automatically from estimation to solving control problems. 
There are thus virtually no extra setup costs involved in using the method. 

The method described above is “open-loop.” The alternative type of 
method is “closed-loop,” where closed-loop feedback control equations are 
derived. A feedback control equation is one that relates the current value ofa 
control variable to the lagged values of the endogenous variables. In the case 
of a linear model and a quadratic objective function, it is relatively easy to 
compute the feedback equations. (Chow 1975 is a good reference for this.) 
One of the advantages of obtaining feedback equations is that they can be 
used to compute the optimal control values for all future periods without 
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having to solve any further problems. Given the realizations of the endoge- 
nous variables for a given period, the optimal control values for the next 
period can simply be computed from the feedback equations. For open-loop 
methods, on the other hand, a new optimization problem has to be solved 
after each period’s realization. Consider, for example, the problem presented 
above, where optimal values for periods I through Twere computed. If this 
solution were used in practice, the optimal values for period I would be used, 
but the values for periods 2 through Twould not. The latter values are needed 
only to compute the period 1 values, After the realization in period I, where in 
general the endogenous variable values will not equal the values that were 
expected at the time the control problem was solved, a new control problem 
would have to be solved to get the optimal values for period 2. 

In the linear-quadratic case, open-loop methods with reoptimization after 
each realization and closed-loop methods lead to the same control values 
being used each period. This is the certainty equivalence theorem. In the 
general nonlinear case, analytic expressions for the feedback equations are 
not available. so there is no known closed-loop solution. An interesting 
question is whether the current open-loop method with stochastic simulation 
to eliminate the bias in computing the expected value of W and with 
reoptimization after each realization leads to the correct answer aside from 
errors introduced by the stochastic simulation procedure. The answer is no. 
Maximizing the expected value of IV simultaneously with respect to 
a1 , , zrfails to account for the fact that the optimal strategy is sequential 
rather than simultaneous. (See Chow 1975, pp. 295-296, for a discussion of 
this.) This is a subtle point, and it is an open question whether it is important 
quantitatively. 

Chow (1975. chap. 9) has proposed an alternative method for solving 
optimal control problems in the nonlinear case. He suggests obtaining a linear 
approximation to the model and a quadratic approximation to the objective 
function and then solving the resulting linear-quadratic problem by standard 
methods. One then iterates on the approximations. This method also does not 
lead to the correct answer, although for a different reason than in the case of 
the open-loop method. The linearization of the model must be around the 
solution path of the deterministic control problem (since the future values of 
the error terms are not known). and therefore the linearization is not quite 
right. The computed optimal values are thus not truly optimal. The method 
has the advantage that feedback equationsare obtained, although this is not as 
much of an advantage as it might at first appear. Even given the feedback 
equations, one may want to reoptimize after the realization for a given period 
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because the linearization will change. One will not get the same optimal 
values for the period using the old feedback equations as one would get by 
reoptimizing based on an updated linearization. 

From a computational point of view, Chow’s method is somewhat messy 
because of the linear approximations. These approximations require consid- 
erable storage space for the matrices, and it is not as easy to adjust for changes 
in the model because for each adjustment the linearization must also be 
adjusted. In addition, ifthe model is large, a large matrix must be inverted in 
calculating the optimal values. An advantage of the method over the open- 
loop method is that the computational costs only increase linearly in T, the 
length of the control period, whereas they increase roughly as the square of T 
for the open-loop method. (The cost for the open-loop method increases as 
the square of 7because an increase in Tincreases both the number ofcontrol 
values to determine and the cost of solving the model for a given function 
evaluation.) There are thus likely to be some applications for which Chow’s 
method is better and some for which the open-loop method is better. Whether 
one will end up dominating for most applications remains to be seen. 

The discussion so far has been based on the assumption that the coefficients 
are known with certainty. The question of how to handle coefficient uncer- 
tainty in the nonlinear case is difficult, and no exact solutions are available. 
This issue will be not be explored here; the interested reader is referred to 
Chow (1976), who presents an approximate solution. 

The discussion so far has also been based on the assumption that the model 
is not a rational expectations model. The solution of optimal control prob- 
lems for rational expectations models is discussed in Section 11.5. 

10.2.4 Steps that a Policymaker Would Follow 

For purposes of the discussion in the next section, it will be useful to review 
the steps that a policymaker would follow if he or she were setting policies by 
solving control problems. Assume that a policy decision is to be made at the 
beginning of period 1 and that at this time data for period 0 and all prior 
periods are available. Given the model (10. I) and, say, a horizon of length T, 
the steps that could be followed are: 

1. Estimate the coefficients of the model over the sample period ending in 0. 
2. Form expectations of the exogenous variables (other than the control 

variables) for periods I through T. 
3. Form expectations of the values of the error terms for periods 1 through T. 
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4. Decide on the objective function (10.2) to be maximized. 
5. Using some maximization algorithm (like DFF’), maximize (10.2) with 

respect to zl, z2, , zT. Let z:, z:, , z: denote the optimum 
values. 

6. Use z: as the vector of policy values for period 1. 

After the values for period 1 have been realized, steps l-6 can be repeated 
for period 2. As noted in Section 10.2.3, the optimal value of z, that is 
computed at this time is not in general equal to z: in step 5. The actual values 
of the endogenous variables for period 1 are in general different from what 
they were predicted to be, and therefore the initial conditions for the problem 
beginning in period 2 are different from what the solution at the beginning of 
period 1 implied that they would be. Also, the coefficient estimates will have 
changed because of the reestimation through period 1. The actual values of 
the exogenous variables for period 1 will in general be different from what 
they were expected to be, and the expectations for periods 2 and beyond are 
likely to have changed. 

If stochastic simulation is used. step 3 is replaced by a step in which the 
distribution of the error terms is chosen. This distribution is then used in step 
5 in the manner discussed in Section 10.2.2. 

If Chow’s procedure is used to solve the control problem, step 5 is replaced 
with this procedure. It is still necessary in this case to form expectations of the 
error terms for periods 1 through T (step 3)_ because this is needed for the 
linearization. Also, as noted in Section 10.2.3, steps 1 through 6 would be 
performed again after the values for period 1 have taken place because these 
values affect the linearization and thus the feedback equations. The different 
coefficient estimates and exogenous variable values will also affect the lineari- 
zation. 

The reestimation ofthe model in step 1 means that the coefficient estimates 
are always based on the latest available data. This does not mean, however, 
that by doing this one has accounted for coefficient uncertainty in solving the 
optimal control problem. Nothing in this procedure informs the method in 
step 5 that the coefficient estimates are to be reestimated in the future, and so 
this information is not taken into account. 

10.3 Use of Optimal Control Analysis to Measure the Performance 
of Policymakers 

It is common practice in political discussions to hold policymakers account- 
able for the state of the economy that existed during their time in power. 
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Policymakers are generally blamed for high unemployment, low real growth, 
and high inflation rates during their time in power and praised for the 
opposite. Although at first glance this may seem to be a reasonable way of 
evaluating the economic performances of policymakers, there are at least two 
serious problems with it. The first is that this kind ofevaluation does not take 
into account possible differences in the degree of difficulty of controlling the 
economy in different periods. The economy may be more difficult to control 
at one time than another either because of more unfavorable values of the 
uncontrolled exogenous variables or because of a more unfavorable initial 
state of the economy (or both). The second problem with the evaluation is 
that it ignores the effects of a policymaker’s actions on the state of the 
economy beyond its time in power. If, for example, a policymaker strongly 
stimulates the economy in the year of an election, in, say, the belief that this 
might improve its chances of staying in power, most of the inflationary effects 
of this policy might not be felt until after the election. Any evaluation of 
performance that was concerned only with the time before the election would 
not, of course, pick up these effects. 

A measure of performance is proposed in this section that takes account of 
these problems. It is based on the solutions of optimal control problems. This 
performance measure requires that a welfare function be postulated and that 
the economy be represented by an econometric model. The welfare function 
must be additive across time. It will be convenient to take the objective 
function to be a loss function to be minimized rather than a welfare function 
to be maximized. 

Let P denote either the entire period that policymakerp is in power or some 
subset of this period. The measure, denoted M, is as follows (low values of M 
are good): 

(10.5) M = expected loss in P given p’s actual behavior 
- expected loss in P ifa had behaved optimally 
+ expected loss beyond P given p’s actual behavior and 

given optimal behavior of future policymakers 
- expected loss beyond P if p had behaved optimally and 

given optimal behavior of future policymakers 
=a-b+c-d. 

The term a - b is the expected loss that could have been avoided during Pifp 
had behaved optimally. The term c - d is the potential expected loss to future 
policymakers from the fact that p did not behave optimally. If P is a subset of 
the entire period that D is in power, then “future policymakers” in the 
definition above may include p. 
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M takes account ofthe two problems mentioned earlier. lfthe economy is 
difficult to control for p, then b will be large, which will offset more than 
otherwise a large value ofa. The term c - d measures the effects ofa’s policies 
on the economy beyond period P, where these effects are measured under the 
assumption that future policymakers behave optimally. 

Ifa policymaker follows steps l-6 in Section 10.2.4, he or she will be said to 
behave optimally. Remember, however, that the policy choice z: in step 6 is 
not truly optimal because (I) the solution method is open-loop. (2) coefficient 
uncertainty has not been taken into account. and (3) deterministic rather than 
stochastic simulation has been used to compute the expected value of the 
objective function. As in (10.3), let h,&, x,, z,) denote the objective function 
for period t, but now assume that it is a loss function rather than a welfare 
function. The loss function for the control problem is thus XL, /Z,(J),, x,, 2,). 

In order to compute M, the period beyond P must be specilied. Let 1 be the 
first period of P, and let P’ be the length of P. The period beyond P will be 
assumed to run from P’ + 1 to T’. The symbol Twill continue to be used to 
denote the length of the horizon for the control problem. T is assumed to be 
larger than T’. It should be a number that is large enough so that further 
increases in Thave a negligible effect on the optimal values for the first period 
of the horizon. Since only the values for the first period ever get used, the only 
criterion that needs to be used in deciding on the length ofthe horizon is the 
effect of this choice on the first-period values. 

The procedure for computing M is as follows. (Steps 1 - 6 always refer to the 
steps in Section 10.2.4) 

(i) Perform steps I-6 for period I. This requires choosing values for the 
expectations of the exogenous variables and error terms for periods I through 
T. These values should be estimates ofwhat the policymaker actually knew at 
the beginning ofperiod 1. The optimal values z:. z* z, , z: minimize the 
expected value of XL, h,(y,, x,, z,), where the expected value is computed by 
means ofdeterministic simulation. Let 6: denote the first term in the optimal 
sum, let x7 denote the values chosen for the expectations of the exogenous 
variables for period 1, and let u; denote the values chosen for the expectations 
ofthe errorterms for period 1. hy iscomputed by solving the model forperiod 
I using z:, x;, u:, and CJ, and then using these solution values (denoted 9:) 
plus x; and z: to compute /I:. The vector q, is the vector ofinitial conditions. 
/;f is h, evaluatedat $:,x;, and 2:. It isthe part ofbin( 10.5) that corresponds 
to period I. 
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(ii) Let z, denote the actual value of the control vector for period I, Given 
z,, x7, u;. and %, solve the model for period 1 and then use these solution 
values (denoted?,) plusx; and z, to compute the value ofthe loss function for 
period 1 (denoted h^,). /;, is h, evaluted at j$ , s;, and 2,. It is the part of a in 
(10.5) that corresponds to period 1. 

(iii) Let u, denote the actual values ofthe error terms for period I, and let x, 
denote the actual values ofthe exogenous variables for period I. Given z:, x, , 
ul, and Q,, solve the model for period 1. These solution values (denoted y:) 
are estimates of what would have been observed in period 1 had the policy- 
maker behaved optimally. Let q: denote the vector that includes y:. (Ifthere 
are lagged control variables in the model, then these variables should also be 
in qr-, in Eq. 10.1. In this case z: is in qf.) 

(iv) Perform steps 1-6 for period 2 using q: as the vector of initial 
conditions. This will in general require choosing new values for the expecta- 
tions of the exogenous variables. Given if, x5, Ir; , and q:, solve the model for 
.if and then compute 6:. 6: is the part of b in (10.5) that corresponds to 
period 2. 

(v) Given zz, xi, g, and ql, solve the model for period 2 and then compute 
t$ q1 is the vector of actual values ofthe initial conditions. r$ is the part ofa in 
(10.5) that corresponds to period 2. 

(vi) Repeat steps (iii), (iv), and (v) for periods 3 thrugh P’. 
(vii) a in (10.5) is equal to XL,&, and b is equal to ZfL,li:. 
(viii) Given the optimal values for period P’ from step (vi), z& and given 

xp,, u,. ~ and q$- , , solve the model for period P’. Denote the solution values 
y$., and let qp*: denote the vector that includes y$. 

(ix) Perform steps I-6 for period P’ + 1 using qp*; as the vector of initial 
conditions. Given z$+, , x5.+, , tppp+, , and q$, solve the model for j$+, and 
then compute Fi* p,+, I@,+~ is the part ofdin (10.5) that corresponds to period 
P’ + I. This step is the same as step (iv) except for a different period. 

(x) Repeat step (viii) for period P’ + 1, and then repeat step (ix) for period 
P’ + 2. Keep repeating through period T’. din (10.5) is equal to Z&+I h:. 

(xi) Perform steps 1 - 6 for period P’ + 1 using the actual value of qp as the 
vector of initial conditions. To distinguish these optimal values from the 
optimal values computed in step (ix), let z,ZcI rather than z,%+ I denote them. 
Given z,Z$,, x&+,. u$+~, and qpr, solve the model for $5, and then 
compute /3** pS+, /?,Zt, is the part of c in (10.5) that corresponds to period 
P’i 1. 

(xii) Given zFt*+ I, ++, , up+, , and + , solve the model for period P’ + I. 
** Denote the solution values J)$:, , and let qpl+, denote the vector that includes 

J$:, 
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(xiii) Perform steps I - 6 for period P’ + 2 using qp*;*t I as the vector of initial 
conditions. Given z$~, x&+>, zP,.+,, and qp*;:,, solve the model for 9$.Tz 
and then compute I$!+,. 

(xiv) Repeat step (xii) for period P’ + 2, where qp*;:, is used as the vector of 
initial conditions, and then repeat (xiii) for period P’ + 3. Keep repeating 
through period T’. c in (10.5) is equal to Zgp,+, I;:*. 

This completes the computational steps. M is equal to a-b+ c- d, 
where a and bare defined in step (vii), c is defined in step (xiv), and dis defined 
in step (x), The only difference between the steps involved in computing c and 
those involved in computing d is that for d the series of control problems 
begins from the initial conditions that would have prevailed had optimal 
policies been followed during P, whereas for c the series of control problems 
begins from the initial conditions that actually prevailed. 

It is clear that the work involved in computing M is substantial. Assume, 
for example, that one is interested in measuring the performance of a 
presidential administration in the United States during its four-year period in 
office. If the model is quarterly, then 16 control problems need to be solved to 
compute b in (10.5). If the period beyond P is taken to be, say, 24 quarters, 
then 24 control problems need to be solved to compute c and 24 need to be 
solved to compute d. Computing .&f thus involves solving 16 + 24 + 24 = 64 
control problems, each oflength T, where Tshould probably be some number 
like 40 (a 1 O-year horizon). Each of the 16 problems and each pair of the 24 
problems require choosing values of the expectations of the exogenous 
variables. Even though this is a substantial amount of work, it is not com- 
pletely out ofthe question. It might not be unreasonable to use autoregressive 
equations to generate the expectations of at least some of the exogenous 
variables, which would mechanize this part of the problem. The cost then 
would merely be the computer time to solve the 64 control problems. 
Although it is not feasible to do this for the results in this book. it should be 
possible in the future with faster and cheaper computers. 

Since the first step of steps 1 - 6 is to estimate the coefficients over the latest 
available data, computing JW also requires that the model be estimated a 
number of times. The model was estimated a number of times for the results 
in Chapter 8, and this is not that expensive. Note with respect to steps (iv), 
(ix)? (xi), and (xiii) that the estimation must be over the actual data, not the 
data that would have existed had the policymaker behaved optimally. This is 
one unavoidable difference between what a policymaker could do in practice 
and what can be done after the fact in measuring performance. Note also that 
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reestimation can occur right before steps (iii), (viii), (x), and (xii) rather than 
right after them. In other words, the model can be reestimated before the 
“actual” values of the error terms are computed. If this were done, 11~ in step 
(iii) would be based on the model estimated through period 1 rather than 
through period 0. 

The problem of data revisions that was discussed in Section 8.2 regarding 
the evaluation ofex ante forecasts is also a problem here. A policymaker must 
make decisions on the basis of preliminary data. not the latest revised data 
that are generally used in econometric work. One possible solution to this 
would be to construct separate data sets for each starting point (that is, for the 
solution of each control problem), where each data set contains the prelimi- 
nary data that were used as initial conditions and estimated data for the future 
periods that are consistent with the preliminary data. This is, however, a very 
tedious task, and it is unlikely to be done very often in practice. Most often it 
will merely be assumed that the latest revised data are good approximations to 
the data that the policymakers actually used. 

Chow (1978) has proposed a measure of performance that is almost identical 
to M if the model is linear and P consists of only one period. If the length of P 
is greater than one period, the two measures differ more. For P length 2, 
Chow’s measure in words is as follows. 

(10.6) M’ = expected loss in period 1 given p’s actual behavior in period 1 
- expected loss in period I if p had behaved optimally in 

period 1 
+ expected loss in periods 2 and beyond given p’s actual 

behavior in period 1 and given optimal behavior in pe- 
riods 2 and beyond 

- expected loss in periods 2 and beyond if p had behaved 
optimally in period I and given optimal behavior in pe- 
riods 2 and beyond 

+ expected loss in period 2 given p’s actual behavior in 
periods 1 and 2 

- expected loss in period 2 if p had behaved optimally in 
period 2 but not in period I 

+ expected loss in periods 3 and beyond given p’s actual 
behavior in periods I and 2 and given optimal behavior in 
periods 3 and beyond 
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- expected loss in periods 3 and beyond if a had behaved 
optimally in period 2 but not in period I and given optimal 
behavior in periods 3 and beyond. 

The first four terms in (10.6) are the sameasthose in (10.5) ifPis oflength 1, 
and therefore in this case M and M’ are identical if the expected losses are 
computed in the same way. In fact, however, Chow bases his computations of 
expected loss on the closed-loop approach, whereas the computations for M 
are based on the open-loop approach with reoptimization. This means that 
the expected losses are computed slightly differently even in the linear-qua- 
dratic case. This difference is fairly subtle, and it is not likely to be of much 
practical importance. 

For P length of 2 it is clear that M and M’ differ more than merely in how 
the expected losses are computed. Although there is no right or wrong answer 
regarding which measure is better, the question that M’ answers does not 
seem to be as relevant for policy evaluation as the question that .W answers. 
Consider a presidential administration and a lhquarter period. nlcompares 
the administration’s actual behavior over the 16 quarters to the behavior that 
it would have followed had it optimized over the 16 quarters. M’ compares 
first the administration’s actual behavior in quarter I to the behavior that it 
would have followed in quarter I had it optimized, then its actual behavior in 
quarter 2 to the behavior that it would have followed had it started optimizing 
in quarter 2, then its actual behavior in quarter 3 to the behavior that it would 
have followed had it started optimizing in quarter 3, and so on through 
quarter 16. M seems more relevant for policy evaluation since it simply 
compares how well an administration did to how well it could have done had 
it optimized from the beginning. The question that M’ answers is more 
complicated and also seems to resemble less the kinds of questions that are 
asked in practice about an administration’s performance. 

10.4 Solution of an Optimal Control Problem for the US Model 

This section contains an example of solving an optimal control problem for 
the US model. The example is not realistic in the sense that the postulated loss 
function is too simple to approximate well the preferences of policymakers. 
The example is primarily meant to illustrate the properties of the model 
regarding the trade-off between real output and inflation. 
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10.4.1 The Loss Function and the Experiments 

The period considered is 19731- 1977IV, and the loss function is 

This loss function is additive across periods and is quadratic. The first term is 
the square of the percentage deviation of real GNP from the high-activity- 
level GIVPR *, and the second term is the square of the percentage change in 
the GNP deflator at an annual rate. GNPR* is defined in Table A-4 in 
Appendix A. The parameter I. is the weight attached to inflation in the loss 
function. 

One control variable was used: CR, federal government purchases of goods. 
Monetary policy was assumed to be accommodating in the sense that the bill 
rate was taken to be exogenous and equal to its actual value each quarter. This 
means that the interest rate reaction function is not used. The Fed, for 
example, does not respond to any fiscal policy stimulus by raising short-term 
interest rates. Actual values for rhe exogenous variables and zero values for 
the error terms were used. 

The objective is to choose C, to minimize L subject to the US model. There 
are 20 values of C, to determine, one per quarter. The problem was solved 
using the DFP algorithm. Actual values of C, were used as starting values. 
Two problems were solved, one for J, = 1 and one for A = 2. The results are 
presented in Table IO- 1. 

10.4.2 The Results 

The first column in Table IO-1 presents the actual values of C,, and the next 
two columns present the predicted values of the output gap and the rate of 
inflation that are based on the use of the actual C, values. The predicted 
values are not equal to the actual values because zero error terms have been 
used. The l974- 1975 period was one of low output and high inflation, and 
the predicted values in the table are consistent with this. 

The first set of optimal values is for ;i = 1. The value ofthe loss function was 
lowered from .1470 to 141 I. The output part of the loss was lowered from 
.0179 to .0069. and the inflation part was raised from .I291 to .1342. The 
optimal values of the output gap (the numbers in the a columns) are smaller 
than the base values for the 1974- 1976 period, and the optimal inflation 
values arc larger except for 19741 and 1976IV. The optimal values of C,are 



larger for this period except for 1976IV. The overall results thus say that given 
the particular loss function and model, the optimal policy would have been 
for more stimulus in 1974- 1976 than actually existed. 

The optimal C, values in the last two or three quarters are not to be taken 
seriously because they are trading on the fact that there is no tomorrow after 
the end of the horizon. These values have very little effect on the optimal 
value for C, for the first quarter, which is the only quarter that matters for 
carrying out actual policy. 

The optimal C, values show fairly large fluctuations from quarter to 
quarter, and this is one ofthe reasons the example is not realistic. In practice 
there are constraints on the degree to which fiscal policy variables can be 
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changed. The way in which this would be handled in the present context 
would be to add a term like HC, - C,-I)* to the loss function. This would 
penalize large quarter-to-quarter changes in C,. If this were done, other fiscal 
policy variables might also be taken as control variables (with similar penal- 
ties in the loss function) to increase the ability to minimize the loss with 
respect to the basic target variables. With no penalties on the control variables 
in the loss function, little is gained by using more than one control variable. 
The fiscal policy variabies work roughly the same way with respect to their 
effects on output and inflation, and thus the use of one to minimize a loss 
function in output and inflation does about as well as the use of many. In this 
sense the control variables are collinear ifthere are no penalties on them in the 
loss function. 

The second set of optimal values is for A= 2, which is a higher weight on 
inflation in the loss function. The value ofthe loss function was lowered from 
.2761 to.2692. Theoutput partoftheloss wasraisedfrom .0179 to .0244, and 
the inflation part was lowered from .2582 to .2448. On average the optimal 
values ofthe output gap for 1974 and 1975 are not much different from those 
for the base run. The second loss function is thus one for which the optimal 
policy is not for more stimulus than actually existed in these two years. 
Overall. the optimal policy is for less stimulus, since the output part ofthe loss 
increases from the base solution to the optimal solution. The comments made 
above about the fluctuations in C, pertain to both sets ofoptimal values, as do 
the comments about the values at the end of the horizon. 

It should be stressed again that this example is not realistic, not only 
because no penalty on C, fluctuations was imposed, but also because of the 
use of the actual values of the exogenous variables. If one were trying to 
approximate what could have been done during this period, estimated values 
should be used. In addition, the model should be estimated only up to the 
beginning of the control period, and separate control problems should be 
solved at the beginning of each quarter. In other words, this example is not 
what would be done if one were trying to compute the measure of perform- 
ance discussed in Section 10.3. 

10.4.3 Computational Experience 

The program that I wrote for the DFP algorithm. which is discussed in Section 
2.5, was used to solve the optimal control problem. The accuracy of the 
answer depends on the tolerance criteria used for the Gauss-Seidel technique 
in solving the model. The criteria that are discussed in Section 7.5.1 were 
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used. Given this, the DFP algorithm essentially converged after six iterations 
for the i; = I problem. The use of two-sided derivatives resulted in a value of 
the loss function of .141150 after six iterations. Further iterations did not 
lower this value. The use of one-sided derivatives resulted in a value ofthe loss 
function of .141175 after six iterations, and further iterations did not lower 
this value. The use oftwo-sided derivatives thus gave a slightly more accurate 
answer. Each iteration required about 50 function evaluations when two- 
sided derivatives were used, 40 for the derivatives and 10 for the line search. 
The number of function evaluations was 20 less per iteration when one-sided 
derivatives were used. 

The procedure that was discussed at the end of Section 10.2.1 for saving 
computer time was not used for the present results, which means that each 
function evaluation required solving the model for 20 periods. Although the 
cost-saving procedure was not used, the problem was programmed in such a 
way that the starting values for the Gauss-Seidel algorithm were always the 
solution values from the previous function evaluation. These are generally 
very good starting values in the sense of being close to the final answer. 
(When, for example, the derivative with respect to the control value for 
quarter 10 is being computed. with the derivative with respect to the quarter 9 
control value having been computed in the previous function evaluation. the 
number of passes through the model per quarter for the hrst 8 quarters is 
merely one, since the solution for the first 8 quarters is the same for both 
derivatives.) As a result, the Gauss-Seidel technique required on average 
fewer passes through the model to achieve convergence for a given quarter 
than are required for other problems. The average cost per solution per 
quarter for the control problem was about. 1 seconds on the IBM 434 I. which 
compares to about .2 seconds for other problems. The cost per function 
evaiuation was thus about .l seconds X 20 quarters = 2 seconds, and so the 
cost per iteration of the DFP algorithm when two-sided derivatives were used 
was about 2 seconds X 50 function evaluations = 1.67 minutes. 

The BFGS algorithm was also used to solve the control problem, and the 
results were almost identical to those for the DFP algorithm. The BFGS 
algorithm also converged to the allowed accuracy after six iterations. 

The computational experience for the L = 2 problem was almost identical 
to that for the A = I problem. The only notable difference is that seven rather 
than six iterations were needed for convergence. 
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11 .I Introduction 

The model considered in this chapter is one in which expectations of future 
values of endogenous variables appear as explanatory variables in the sto- 
chastic equations and the expectations are assumed to be rational in the Muth 
(I 96 I) sense. This means that given a set of expectations of the exogenous 
variables, the expectations of the endogenous variables are equal to the 
model’s predictions of these variables. The model (6.1) that was used for 
Chapters 6- 10 must be modified for this chapter. The model will be written 

(11.1) L(Y,,Y 1-1, ,~,~~,,,~~I;,,~~Y,+,. , ~Yt+n,.~,,~~ =q<. 
t-1 > 

i=l,. *n, t=1,. .T, 

where y, is an n-dimensional vector of endogenous variables at time t, x, is a 
vector of exogenous variables at time f, E is the conditional expectations 

operator based on the model and on information through period t - I. q is a 
vector of unknown coefficients, and ui, is an error term. Compared to the 
notation in (6.1), x, now includes only exogenous variables rather than both 
exogenous and lagged endogenous variables. As was the case for (6.1), the first 
m equations in (Il. 1) are assumed to be stochastic, with the remaining ui, 
(i = pn + 1, , n) identically zero for all t. 

The key difference between (6.1) and (1 I. I) is the assumption that the 
expectations are rational. Ifthey are not. but are instead, say, a function ofthe 
current and lagged values of a few variables, they can be substituted out of 
(1 I. I) to end up with a model like (6.1). This may introduce restrictions on 
the coefficients, but (6. I) already encompasses such restrictions. An example 
of this type of substitution is presented in Section 2.2.2, (2.1)-(2.3). In this 
case the expectation is only a function of the lagged values ofthe own variable. 
Another example is presented in Section 4.1.3, where expectations of price 
and wage inflation are assumed to be functions of a few lagged values. 

An example of (1 I. I) is Sargent’s model in Section 5.4. where the expecta- 
tions variable E,_,pz appears as an explanatory variable in the first two 
equations. Another example is presented later in this chapter in Section I 1.7, 
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where the US model is modified to incorporate the assumption that there are 
rational expectations in the bond and stock markets. 

The question of how to estimate and solve (I 1.1) is not easy. The next three 
sections are concerned with thisquestion. A numerical method for solving the 
model for a given set of coefficients is discussed in Sections 11.2. I and I 1.2.2. 
A simple example is presented in Section 11.2.3 to motivate the method and 
to relate it to analytic techniques that have been used in previous research for 
solving and estimating rational expectations models. A numerical method for 
obtaining the full information maximum likelihood estimate of the coeffi- 
cients is presented in Section 1 I .3. The possible use of stochastic simulation is 
discussed in Section 11.4, and the solution of optimal control problems for 
rational expectations models is considered in Section I I .5. Examples of using 
the methods are presented in Sections 11.6 - 1 I .8. 

The solution method is an extension of the iterative technique used in Fair 
(1979d). In addition to dealing with serial correlation and multiple viewpoint 
dates, the extension involves an iterative procedure (called type III in the 
following discussion) designed to ensure numerical convergence to the ra- 
tional expectations solution. 

The estimation method is an extension to the nonlinear case of full 
information maximum likelihood techniques designed for linear rational 
expectations models, as described by Wallis ( 1980) and Hansen and Sargent 
(1980, 1981). Applications to particular economic problems are found in 
Sargent (1978) and Taylor (1980). The connection between the estimation 
problem considered in this chapter and the one considered by Hansen and 
Sargent appears in the f; functions in ( 11. l), which for Hansen and Sargent 
would represent first-order conditions for the linear-quadratic optimization 
problem that they consider. Chow (1980) has proposed an alternative ap 
preach that leads to the same functional relationship between the structural 
parameters and the likelihood function as does the Hansen and Sargent 
approach. 

Full information estimation techniques are particularly useful for rational 
expectations models because ofthe importance ofcross-equation restrictions, 
where most of the testable implications of the rational expectations hypoth- 
esis lie. For linear models one can explicitly calculate a reduced form of model 
(I 1.1) in which the expectations variables are eliminated and nonlinear 
restrictions are placed on the coefficients. Under the assumption that the II,, 
are normally distributed, this restricted reduced form can be used to evaluate 
the likelihood function in terms ofthe structural coefficients. The maximum 
of the likelihood function with respect to the structural coefficients is found 
using some maximization algorithm like DFP. 
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For nonlinear models the reduced form cannot be calculated explicitly. but 
it can be calculated numerically. The estimation strategy here is to replace the 
calculation ofthe restricted reduced form in linear models with the numerical 
solution in nonlinear models. This permits one to evaluate the likelihood 
function in terms of the unknown structural coefficients much like in the 
linear case. 

Although the solution and estimation methods described here should 
expand the range ofempirical problems that can be approached using rational 
expectations, there is a limitation that may affect their general applicability. 
Because of computational costs, it is necessary in some applications to 
approximate the conditional expectations that appear in (11. I) by setting the 
future disturbances ui, equal to their conditional means in a deterministic 
simulation of the model. In nonlinear rational expectations models, the 
conditional expectations will involve higher-order moments of the u,, in 
addition to their means. (See Lucas and Prescott 1970. for example.) Al- 
though it is possible, as discussed in Section 11.4, to use stochastic simulation 
to obtain the conditional forecasts, this is computationally expensive. The 
results in Chapter 7 suggest that the bias introduced by using deterministic 
rather than stochastic simulation to solve models is small for typical macro- 
econometric models, and thus for many applications the use of stochastic 
simulation for rational expectations models is not likely to be needed. For 
other applications, however, the deterministic approximation may not be 
accurate, and stochastic simulation will be needed even though it is expen- 
sive. 

With respect to (1 l.l), it should be noted that the model can include 
expectations of nonlinear functions of the endogenous variables. For exam- 
ple, ifya = J$,, then the appearance of E y2, in one ofthe equations indicates 

that agents are concerned with the conditibnally expected variance ofy,, The 
model does not, however, include expectations based on current period (l) 
information. The incorporation of such variables does not cause difficulties 
for the solution of the model (as described below), but it does cause difficulties 
for estimation since the Jacobian of the transformation from the u, to the .v, is 
altered. 

11.2 A Solution Method 

The numerical solution of (I 1.1) for a particular period sand for a given set of 
values of the cu, coefficients is considered in this section. The model without 
serial correlation of the errors is considered first, and then the modifications 
needed for the serial correlation case are discussed. 
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In the following discussion E x,, will be used to denote the expected value 
I-, 

of x,+, based on information through period 1 - 1. Both the actual realiza- 
tions ofx, and the expected values are assumed to be known. lfthere are any 
exogenous variables that are not known but can be described by a known 
stochastic process, these are treated as endogenous and incorporated in the J’, 
vector. In this section, all simulations ofthe model are deterministic and are 
subject to the approximation mentioned in Section 11. I. 

11.2.1 Models without Serial Correlation: The Basic Method 

If one were given numerical values for the expected endogenous variables in 
(1 I, 1) for all periods from s on, then it would be straightforward to solve the 
model for period s using the Gauss-Seidel iterative technique. The numerical 
method described here entails a series of iterations that converge from an 
arbitrary initial path of values for these expectations to a path that is consist- 
ent with the forecasts of the model itself. Let the initial set of values for the 
expected endogenous variables, E J:+,, be represented as g,, r = 0, I, 

s-1 
Since in general the model will have no natural termination date, an infinite 
number of these values need to be specified in principle. In practice, however. 
only a finite number will be used in obtaining a solution with a given finite 
tolerance range. The initial values are required to be bounded: I&:I < A4 for 
every r, where M is not a function of r. 

The solution method can be described in terms of five steps. 
1. Choose an integer k, which is an initial guess at the number of periods 

beyond the horizon h for which expectations need to be computed in order to 
obtain a solution within a prescribed tolerance level 6. Set E &+, equal to K,, 

S-I 
I = 0, I_ , k + 2h. For the purpose ofdescribing the iterations, call these 
initial values e,( 1 ,k), I = 0, I, , k + 2h; the values at later iterations will 
then be called e,(i,k), i > 1. 

2. Obtain a new set of values for E yr+,, I = 0, 1, , k + h, by solving 
1-1 

the model dynamically for J*+?, r = 0, I, , k + h. This is done by set- 
ting the disturbances to their expected values (usually zero), using the 
values Ex;, / E-\-r_,,+& in place of the actual x’s, and using the values 

j-1 i--l 
eAi,k) in place of El;+,. Call these new guesses e,(i + I? k), I = 0. I, . 

I- I 
k + h. If the model is nonlinear, the solution for each period requires a series 
of Gauss-Seidel iterations. Call each of these a type I iteration. 
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3. Compute for each expectations variable and each period the absolute 
value of the difference between the new guess and the previous guess, that is, 
compute the absolute value of the difference between each element of the 
eAi + 1, k) vector and the corresponding element of the e,(i,k) vector for 
r=O,I, , h + k. lfany ofthese differences are not less than a prescribed 
tolerance level (that is_ ifconvergence has not been achieved), increase i by I 
and return to step 2. Ifconvergence has been achieved, go to step 4. Call this 
iteration (performing steps 2 and 3), a type II iteration. (The type II tolerance 
level should be smaller than 6, which is the overall tolerance level. Similarly, 
the type I tolerance level should be smaller than the type II tolerance level.) 
Let e,(k) be the vector of the convergent values of a series of type II iterations 
(r-0. I, >k+h). 

4. Repeat steps I through 3 replacing k by k + I. Compute the absolute 
value of the difference between each element of the eAk + I) vector and the 
corresponding element of the e,(k) vector. r = 0. I, , h. If any of these 
differences are not less than 6, increase k by I and repeat steps I through 4. If 
convergence has been achieved, go to step 5. Call this iteration (performing 
steps I through 4) a type III iteration. Let r, be the vector ofthe convergent 
values of a series of type 111 iterations (I = 0, I, , h). 

5.Usee,for Eys+,,r=O. I,. , h, and the actual values for x, to solve 
S-I 

Ihe model for period s. This gives the desired solution. say Gs,, and concludes 
the solution method. 

To summarize, the method just outlined iterates on future paths of the 
expected endogenous variables. EJJ,+~, Starting from an initial guess at the 

I--1 
path g,, r = 0, I, 2, , k + Zh, the path is extended beyond k + 2h until 
further extensions do not affect the solution by more than 6. 

Note with respect to step 3 that in the process of achieving type I1 
convergence, the initial guesses e,( I ,k), r = k + h + I, , k + 2h, never 
get changed. These guesses are needed to allow the model to be solved through 
period s + /I + k. Also note that when one is repeating steps 1 through 3 for 
k + 1. it may be possible to speed convergence by using some information 
from iteration k. The most obvious thing to do is to use as initial guesses 
e,(l.k + I) = e,(k), I= 0. I_ , k + h. The values 6: would then be used 
for~,(l,k+l),r=k+h+I,. ,k+2h+l. 

Computational costs for the method are determined by the total number of 
passes through the model required for convergence. A pass is simply a single 
evaluation of the LHS endogenous variables in terms of the RHS variables. 
Let X, be the number of type 1 iterations required for convergence. and let Iv; 
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be the number of type II iterations required for convergence. Then the 
number of passes through the model required for one type III iteration is 
given by the product of the number of passes for one type II iteration, 
R’, X (h + k + l), and the number of type II iterations required for conver- 
gence, hi. The total number of passes through the model to obtain type III 
convergence is given by the sum of this expression from k to k + N3 - 1, 
where AJ, is the number of type III iterations required for convergence. In 
other words, the number of passes through the model required by type III 
convergence is approximately 

r-+hj- I 
2 [iv2 x N, x (h + q + l)]. 
gck 

This formula is only approximate because it is based on the assumption ofthe 
same number oftype I iterations for each period and the same numberoftype 
II iterations for each type III iteration. In practice this is usually not the case. 

Two points about the solution method should be noted. First, it can be 
easily modified to handle the case in which the expectations are based on 
information through period s rather than through period s- 1: one just 
replaces E by E everywhere. Second. if the expectations horizon is infinite 

5-1 
(h = m), then it &St be truncated first. For most models the error introduced 
by this truncation for reasonably large values of h is likely to be small. A large 
value of h means, of course: that a large number of calculations are required 
per type 11 iteration, and thus in practice there may be a trade-off between 
truncation error and computational cost. 

For a general nonlinear model there is no guarantee that any of the 
iterations will converge. If convergence is a problem, it is sometimes helpful 
to damp the successive solution values. “Damping” means to take the value 
of a variable at, say, the start of iteration n to be some fraction of the difference 
between the value actually computed on iteration n - 1 and the value used at 
the start of iteration n - I. (See the discussion of damping in Section 7.2.) 

In special cases a problem may have terminal conditions. If. say, the values 
E J:+,, I = k + h + 1, , k + 2h, are known, then the present method 

3-1 
gives the correct answer after type II convergence. No type III convergence 
tests are needed because the values for periods s + k + h + I through 
s + k + 2h are known. Cases with terminal conditions are referred to as 
two-point boundary value problems. They have been used to study rational 
expectations models when one can approximate the terminal conditions with 
steady-state values, which may be derived in certain situations. (See Lipton et 
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al. 1982, who use a “multiple shooting” method to solve the two-point 
boundary value problem.) The approximation that comes from equating the 
terminal conditions with the steady-state values does not arise with the 
present method. Moreover, the method does not require that one compute 
steady-state values beforehand. 

One final point about the solution method should be noted. If the model 
either has no exogenous variables or if the actual values of the exogenous 
variables are used for all periods, the solution values of the expectations- 
E&+,, r = 0, I, , h-are the final predicted values of the model. This 

i- 1 
means that j?$ in step 5 is simply E y,, and therefore step 5 does not have to be 

5-L 
done. It also means that ifa dynamic simulation is to be run for, say, periods s 
through s + 4, the model only needs to be solved once in the above manner 
(for period s) to get all the predicted values if 4 is less than or equal to h. 

For purposes of the following discussion, the method presented in this 
section will be called the “basic method.” 

11.2.2 Models with Serial Correlation 

Forerusting and Policy Applimtions 

The case of first-order serial correlation is considered in this section: 

(11.2) U, = Pi% I + % , i= 1 ,...,n, 

where the pi are serial correlation coefficients. The solution method is first 
modihed for applications in which there are enough data prior to the solution 
period s to permit calculation of the solution values with only a negligible 
effect of the errors prior to period s - 1. This situation is likely to occur in 
forecasting or policy applications, where a large sample prior to the simula- 
tion period is usually available. The method is then modified for estimation 
applications, where sufficient prior data are generally not available. 

First note that (11.1) and (11.2) can be combined to yield 

where the pican be thought of as structural coefficients. For solution purposes 
the important difference between (1 I. 1) and (1 I .3) is the addition in (1 I .3) of 



376 Macroeconometric Models 

an extra viewpoint data (t - 2). This requires an additional type of iteration, 
denoted type IV. 

If one were given values for the expectations with viewpoint date s - 2, 
then (I 1.3) could be solved using the basic solution method in Section 1 I .2.1. 
The expectations with viewpoint dates - 2 could be obtained by solving the 
model one period earlier at time s - 1. but this in turn would require values 
for the expectations with viewpoint data s - 3. and so on. By working 
backward in this way, however, it is possible to ensure that these initial values 
have negligible influence on the current period s. 

The procedure is as follows. 
(a) Choose an integer j, which is an initial guess at the number of periods 

before periods for which the model needs to be solved in order to achieve the 
prescribed tolerance level. Set E ys-j_ I+, , I = 0, I, , h, to an initial set 

E-j-* 
of values, (As with the basic method. the initial guesses are required to be 
bounded.) 

(b) Given the values from (a)_ solve the model for period s-j using the 
basic method. For this solution the viewpoint date for the expectations for 
.x_/ and beyond is s -j - 1. Actual values are used for x~-~~~. The solution 
yields values for E Y$_~+,, I = 0, 1, , h. 

s-j- I 
(c)Given the expectations with viewpoint dates -j - 1 from (b), solve the 

model for period s-j + 1 using the basic method. For this solution the 
viewpoint date for the expectations for x,,,, and beyond is s -j. Actual 
values are used for x1-,-, This solution yields values for EyS:,,+ it,, I = 0, 

s--l 
1, , h. Continue this procedure (using the basic method to solve for the 
next period, given the solved-for expectations from the previous period) 
through period S. The solution for period s yields values for EyS+,, I = O_ 

J-I 
1, ) k. 

(d) Increase j by I and repeat (a) through (c). This yields new values 
for Ey,,,, I= 0, I_ , h. Compare these values to the values obtained 

I-I 
by using the smaller j. If any new value is not within the prescribed tolerance 
level of the old value, increase j by 1 and repeat steps (a) through (c). Keep 
doing this until convergence is reached. Call this iteration (performing steps a 
through c) a type IV iteration. (The tolerance level for the type IV iterations 
should be greater than 6, the tolerance level for the type III iterations.) 

(e) After type IV convergence one has final values of E &+, and E ys- I +,, 
s-1 r-2 

r-0,1, , h. Use these values and the actual values of& and x,_ , to solve 
the model for period S. 
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Each type IV iteration requires solving the model for j + 1 starting points 
(that is, achieving type III convergence j + 1 times). The serial correlation 
case is thus considerably more expensive than the nonserial correlation case 
when one is solving the model for one period. However, no additional type IV 
iterations are required for solving the model for periods later than s, once the 
solution for periods has been obtained. The predictions with viewpoint date 
s - 1 are known after solving for period s, for example, and they can be used 
in solving for period s + 1. 

It should be emphasized that type IV iterations can handle problems that 
are more general than the case of first-order autoregressive errors. In particu- 
lar, the expectations variables with viewpoint dates f - 2 need not arise solely 
from the presence of autoregressive errors. and there can be more than two 
viewpoint dates. If, say, viewpoint date t.- 3 were also included in the model. 
the only change in the procedure would be the addition of initial guesses for 

E values in step (a). One would merely need to keep track ofthree sets of 
r-j-3 
expectations instead of two as the solutions proceeded from period s-j to 
period s. 

Type IV iterations require sufficient data prior to the solution period that the 
initial guesses have a negligible effect on the solution. In most estimation 
problems one would not want to lose as many observations from the begin- 
ning ofthe sample as would be required for type IV convergence. Fortunately, 
there is a way around this problem, which is based on an assumption that is 
usually made when one is estimating multiple equation models with moving 
average residuals. This assumption is that the last presample uncorr&ted 
error is zero: in particular that ei,$-, = 0 in (11.2) when one is solving for 
period s. As before, the case of first-order serial correlation is considered: 
generalization to higher orders is fairly straightforward. The method requires 
data for period s - 1. (Data before period s - 1 will be needed if there are 
lagged endogenous or lagged exogenous variables in the model. It is implicitly 
assumed here that sufficient data for the lagged variables are available for the 
solution for period s - I .) Rather than first transforming (Il. I) into (11.3), 
the method works directly with (I l.l), treating (11.2) as another set of 
equations. 

If u,-~ were known, then (I 1. I) could be solved for period s - 1 and 
all subsequent periods using the basic method and the fact that 
E uhf, = &‘“’ u+~. In other words, in the dynamic simulations that under- 

s--2 
lie the basic method. one would use &+*)u~~_~ on the RHS of (1 I. I). The 
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problem then becomes one of choosing an appropriate value for t~,-~. This is 
where the assumption about eiS_, comes in. The idea is to choose u,-~ in such 
a way that when the model is solved for period s - 1, it generates a value of 
ti,V_I = 0; that is, q-l = p~&~. The rationale for this choice is simply that 0 
is the unconditional mean of E,-, , and thus the actual value is likely to be 
relatively close to this value. 

An iterative procedure for choosing u,_~ so that Ed,_, = 0 can be described 
as follows (note that each calculation is performed for each equation 
i= 1, ,m). 

(i) Guess values for the error terms u~,-~. 
(ii) Given the values from (i), solve the model for period s - 1 using the 

basic method. Note that E u,,, is set to p:“” u,,$_~ in calculating the predicted 
s--z 

values. 
(iii) Given the predicted value of yiJ_, (F+J from step (ii), calculate 

&_ , = yis_ 1 - ji.7_, and fi,_ , = piuiJ_2 + C,_, , where Q_~ is the initial guess. 
If&_. I is not within a prescribed tolerance level of 0, then convergence has not 
been reached, (that is, the solution is not consistent with the assumption that 
l ir- , = 0). 

(iv) Ifconvergence is not reached in (iii), set the new value of uir--2 equal to 
ir,_,/p, and do (ii) and (iii) over for these new values. Repeat this until 
convergence is reached. 

(v) Using the converged iterate I&~, compute u,_, = &u~~-~. Given these 
values, solve for period s using the basic method, where in this case 
,511 = 

1_, S+r 
p!‘“‘r&, is used in calculating the predicted values. This com- 

pletes the solution for period s. 
Once the solution for period s has been obtained, the solutions for periods 

s + 1 and beyond do not require further iterations from those used by the 
basic method. The reason for this is that the forecasts with viewpoint date 
s - 1 are known after solving for period s. 

11.23 A Simple Example 

The conditions under which the solution method just presented will converge 
from an arbitrary set of initial guesses to the rational expectations solution are 
examined for a simple linear model in this section. The aim is to motivate the 
method and relate it to existing analytic techniques. 

A scalar linear version of (1 I. I) with serial correlation is given by 
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(11.4) ~,=aEJ~,+,+~E.X,+U,,, 
,--I ,--I 

(11.5) x; = ,Lx_, + Q,, 

(11.6) % = P&-l + ElZ> 

where (Y, y, A, and p are scalar parameters and (elr, +) is a serially uncorrelated 
vector. It is assumed that IAl < 1 and IpI < 1. Equations (I 1.4) and (11.5) 
correspond to (1 I, 1) when the exogenous variable x, is assumed to follow a 
known stochastic process. and (11.6) corresponds directly to the autoregres- 
six error assumption made in (I I .2). 

The rational expectations solution of (1 I .4) through (I 1.6) in period s is 
given by 

(See Hansen and Sargent 198 1 and Taylor 1980 for discussion of an analytic 
solution method.) Note that the last equality in (11.7) requires that laA^I < 1 
and lapI < I, which will be satisfied ifla/ < 1, The objective is to show that the 
numerical solution method generates the same solution value as that given in 
(I 1.7). For now take u,,_, as given: a procedure for calculating u,,-, is 
described subsequently. Recall that e,(i,k) is the guess of EYE,,, on type 11 

J-I 
iteration i and type III iteration k. Each type III iteration is started with an 
initial set of guesses e,( 1 ,k), I = 0, 1, , k + 2 (h = I in this example). The 
aim is to show that lim q,(i,k) equals the RHS of (11.7). 

i,X-= 
For a fixed k the type II iterations can be described by the set of equations 

(11.8) e,(i+ l,k)=ole,+,(i,k)+ya’x,_, +/Yu,~_,, 

where I= 0. 1, ~ k + 1. By repeated substitution 

k+l 
(11.9) e,(k+ 3, k)=(cU)k+2ck+2(1, k) + yj.~C(d)'Y,,-, 

h-l 

which is the converged iterate of the type II iterations for a fixed k. Equation 
(I I ,9) is not equal to the RHS of (1 I .7). However, if(al < 1, then the limit of 
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r,,(k + 3, k) as k - 0~ is equal to the RHS of (1 I .7). This motivates the 
requirement that the initial values Q+~( I ,k) = gkt2 are bounded, and it shows 
that type 111 iterations converge to the rational expectations solution. Note 
that in this model thesolution isindependent ofall&values. Given that theg, 
values are bounded, type 111 iterations ensure convergence to the correct 
a”sWW. 

Note that the condition for this convergence (Ial < 1) is identical to the 
condition needed to obtain a unique solution in rational expectations models 
(see Taylor 1977). This suggests that the numerical method will converge in 
the class ofrational expectations models for which the uniqueness conditions 
hold, although a general proof is still open. 

This example will now be used to illustrate the relationship between the 
procedure described in Section 11.2.2 (designed to choose initial conditions 
for estimation applications) and the conditional maximum likelihood esti- 
mates of linear ARMA models. 

Substituting (I 1.7) into (I 1.4) results in 

Subtracting the lagged value of ( I 1.10) multiplied by 0 from (I I. 10) results in 
the “quasi-differenced” expression 

which when combined with (I 1.5) gives a two-dimensional vector 
ARMA(2,I) model with nonlinear constraints on the parameters. For esti- 
mation ofthe parameters ofthis ARMA model it is necessary to calculate the 
residuals (Ed,, E*J in terms of the data and the parameters. For “conditional” 
maximum likelihood estimates. this calculation is started by settinge,,_, = 0 
and taking JJ~-~, x,_, , and x~_~ as given. where s is the beginning of the 
estimation period. The residual E,~ is then computed by subtracting (I I. 1 I) 
with these values from the actual observation y,. The residuals for later 
periods are calculated recursively using this computed residual E,~. 

The procedure described in Section 1 I .2.2 is designed to calculate these 
“conditional” residuals numerically for linear as well as nonlinear models. 
This can be illustrated by showing that 
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when the value ulr_, in (I I .7) is chosen according to the procedure outlined 
in steps(i) through(v) in Section 1 I .2.2. It is known from (1 I .7) that the basic 
numerical solution method will generate 

aA 
(11.13) ,C-, =- - , _ &, xx-2 + , Pap Ulr-2 

when applied in period s - 1, as indicated in step (ii). Iterating steps (iii) and 
(iv) will yield a converged iterate of u+~ that has the property that 
>j,T_I - J?_~ - l ls_-l = 0 to within the tolerance level. From (I I, 13) this value 
of t~~~-~ is given by 

and therefore 

Substituting ( 1 I. 15) into ( 1 I, 17) yields ( 11,12), which is what is to be shown. 
Note that when analytic techniques can be used, it is trivial to choose ulr-* 
according to (I 1.14). but when the solutions are calculated numerically, it is 
necessary to search for the value t~ls--2 that gives 6,$-i = 0. 

11.3 FIML Estimation 

11.3.1 Evaluating and Maximizing the Likelihood Function 

FIML estimates of the coefficients are obtained by maximizing I> in (6.33), 
which is repeated here: 

(6.33) L = - f logIS/ + i loglJ,l. 
I-I 

S is the ITI X m matrix whose ij element is + 2 u;&,, and J, is the n X n 
I I 

Jacobian matrix whose ij element is &/CJ&,. &cause the expectations in 
(I I. I) are based only on information through period f - 1 (and thus not on 
J$,)$ the derivatives of the expectations with respect to the yjl (j = 1, _ n) 
are zero. The expectations are thus like the exogenous variables with respect 
to the Jacobian calculations. 

Given the solution method in Section 1 I .2, it is straightforward to compute 
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L for a given value of (Y for rational expectations models. If there is no serial 
correlation, then for a given value of a one can solve for E y,, E y x+1, , 

s--l s--I 
E ys+h for s = 1, 2. , T using the solution method. These values can 

5-1 
then be used in conjunction with the y and x data to compute values of U, 
(s = 1,2: , T) and thus the matrix S. The Jacobian determinants can be 
computed in the usual way_ thereby completing the determination ofL. The 
extra work involved in the calculation of L for rational expectations models 
thus consists of using the solution method to compute the expected values for 
each ofthe Tviewpoint dates. For models without rational expectations none 
of these calculations are needed. Given this extra work, however, FIML 
estimates can be obtained in the usual way by maximizing L numerically with 
respect to 01. For small models an algorithm like DFP may be sufficient to 
maximize L, but for other models the Parke algorithm is likely to be needed. 

When the ui, follow a first-order autoregression process, only one main 
change to the procedure given above is necessary. In this case steps(i) through 
(iv) in Section 11.2.2 are needed to calculate the expected values for the first 
sample point (say, period 2). Given these expected values, which have 
viewpoint date 1, the expected values for period 3 can be obtained using the 
solution method. These expected values can then be used in the calculation of 
the expected values for period 4, and so on through the end of the sample 
period. The only extra work in the serial correlation case pertains to the first 
sample point. Numerical maximization in this case is with respect to both the 
structural coefficients and the serial correlation coefficients. 

11.3.2 A Less Expensive Method for Maximizing the Likelihood Function 

The procedure in Section 11.3.1 is expensive because many evaluations of L 
are needed in the process of maximizing the likelihood function, and the 
model must be solved T times for each evaluation of L. This requires a very 
large number of passes through the model for a given estimation problem. In 
this section a way of modifying the estimation method is considered that 
requires fewer calls to the solution method. This modification is as follows. 

(A) Given the initial value of LY, solve for E ys, E y s+,r , E Ys+n for 
1-t s--I s-1 

s = 1, 2, , T using the solution method. This requires doing steps 
1 - 5 in Section 11.2. I T times. Call the solution values from this step the 
“base” values. 

(B) Perturb each coefficient (one at a time) from its initial value and use the 
solution method to get a new set of solution values. From these values and 
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the base values, calculate numerically the derivatives of the expectations 
with respect to the coefficients. This step requires doing steps l-5 Rimes 
for each coefficient. 

(C) In the procedure that calculates L for a given value of cy, use the base 
values and the derivatives to calculate new expected values for each new 
value of (Y. This eliminates the need to use the solution method in 
computing new values of L. 

(D) Once the maximization algorithm has found the value of 01 that maxi- 
mizes L, compute a new set of base values using the new value ofa and a 
new set of derivatives. Given the new derivatives. use the maximization 
algorithm again to find the value of 01 that maximizes L. Keep doing this 
until the successive estimates of a from one use of the maximization 
algorithm to the next are within a prescribed tolerance level. 

The advantage ofthis modification is that once the problem is turned over 
to the maximization algorithm, the solution method is no longer needed. The 
use of the base values and derivatives in the calculation of L is very inexpen- 
sive relative to the use of the solution method, and given that algorithms 
require many calculations of L, this modification is likely to result in a 
considerable saving of time. There is. of course, no guarantee that the 
procedure will converge. If the expectations are not a well-behaved function 
ofa, then computing the derivatives at a given point may not be very helpful. 
It may be, in other words, that using the base values and derivatives to 
calculate new expected values yields values that are far from the (correct) 
values that would be computed by the solution method. 

Once the estimates have been obtained, the covariance matrix in (6.34) can 
be calculated by taking numerical derivatives of L with respect to a (at the 
optimum). It may be possible to use the derivatives of the expectations with 
respect to 01 in the calculation of the values of L. This would allow the 
covariance matrix to be computed without using the solution method. 

For the serial correlation case one must also calculate in step (B) the 
derivative of i&-, with respect to u (for each i), where s is the first sample 
point. ii,_, isa function ofa, and therefore ifsteps( are to be bypassed 
in the calculation of L, the derivative of &-, with respect to (Y must also be 
calculated and used. 

11.4 Solution and Estimation Using Stochastic Simulation 

The use of stochastic simulation to estimate and solve rational expectations 
models isdiscussedin thissection. Thecaseof( 1 I. 1) with no serialcorrelation 
will be considered. 



384 Macroeconometric Models 

Consider first the problem of solving a rational expectations model. Sup- 
pose that both the 01 coefficients in ( 1 I. I) and S are known, where S is the 
covariance matrix of the disturbances ui,. Assume that the tlir are normally 
distributed. The solution procedure is modified as follows. First, the expected 
values computed in step 2- E ys+,, I’ = 0, 1, , k + h-are computed 

by stochastic rather than deterministic simulations. Instead of setting the 
disturbances to their expected values and solving once, one solves the model 
for many different trials. Each trial consists of a set of draws of the distur- 
bances I+*+,> r = 0, 1, , k + h, from the N(O,S) distribution (assuming 
the expected values of all the disturbances are zero). Each expected value is 
computed as the average across all the trials. Second, the final solution value 
jjs computed in step 5 is also computed by a stochastic rather than a deter- 
ministic simulation. In this case only draws of the disturbances for period s 
are needed. 

Stochastic simulation can also be used to obtain F’IML estimates of the 
coefficients, In contrast to the deterministic case, however, the likelihood 
function cannot be “concentrated” as it is in (6.33). In the fully stochastic 
case, changes in S affect the solution of the model and thereby the computed 
residuals. Instead, one works directly with the “unconcentrated” (log) likeli- 
hood function, which except for a constant can be written 

(11.16) L*=~log~J,i-::log,s,-:~u:s-‘u,, i=, t-1 

where a, = (u,,, , u,,) I. FIML estimates can be obtained by maximizing 
L * with respect to the parameters (cu,S). Each evaluation of L* for a given set 
of values of (Y and S requires computing the expected values, E y,+,, r = 0, 

t--I 
1, , k + h, by means of stochastic simulation, where each trial consists of 
draws of the disturbances from the N(O,S) distribution. The expected values 
are-computed for each sample point t = 1, , T, which then allows a, to 
be computed for each point. The determinants ofthe J, can be obtained, and 
thus the function L* can be evaluated in terms of the parameters (a,S). 
Nonlinear maximization routines can then be used to maximize L*. 

Because this estimation procedure requires maximization over the 
(m + l)m/2 independent elements of S in addition to the elements of o and 
because of the stochastic simulation costs, the method is likely to be ex- 
tremely expensive in practice. Given this, experiments with the method on 
small representative nonlinear models would be useful to try to gauge how 
much accuracy is likely to be gained by using stochastic simulation. 
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11.5 Solution of Optimal Control Problems for Rational 
Expectations Models 

The method for solving optimal control problems in Section 10.2 merely 
requires the ability to solve the model for a given set of values of the control 
variables. Given this, the problem is turned over to a maximization algorithm 
like DFP to find the optimum. The method in Section 11.2 provides the 
ability to solve rational expectations models, and thus optimal control prob- 
lems can be solved for these models by using this solution method within the 
context of the overall method in Section 10.2. 

Since rational expectations models are forward-looking, future values of 
the control variables affect current decisions, and therefore more values of the 
control variables have to be determined in this case than in the standard case. 
Values of the control variables must be chosen far enough into the future so 
that adding another future period has a negligible effect on the solutions for 
the actual control problem. The solution method in Section 1 I .2 ensures that 
the predicted values in the last future period have a negligible effect on the 
predicted values for the current period, and thus the requirement for the 
optimal control problem is merely to choose the number of control values 
that are required by the solution method in the course of solving the model. 

There is a potential problem of time inconsistency in solving optimal 
control problems for rational expectations models, which has been pointed 
out by Kydland and Prescott (1977). Consider a deterministic setting, and 
assume that a control problem has been solved using the above procedure for 
periods I through T. This yields optimal values z:, z:, , 2;. Now wait 
for one period, and consider the solution of the problem at the beginning of 
period 2. Since the settingisdeterministic, nothing unexpected has happened, 
and therefore one might think that the same optimal values zf. , z$ 
would be determined. Ifthe model is forward-looking, this is not necessarily 
the case, and when it is not, the optimal policy is said to be time-inconsistent. 
The model does not have to be a rational expectations model in order for this 
problem to arise; it only needs to have the property that future values ofthe 
control variables affect current decisions. 

The problem of time inconsistency does not mean that the above solution 
of the control problem is not optimal. It is optimal if it is believed and carried 
out. The problem is that the policymakers have an incentive to do something 
different in the future, and therefore agents may not believe that the original 
plan will be carried out. If it is not possible for the policymakers to convince 
agents that the plans will be carried out, other policies may be better. Even in 
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this case, however, it is of some interest to solve the control problem in the 
above manner in order to have a benchmark to which other policies can be 
compared. 

11.6 Results for a Small Linear Model 

11.6.1 Model without Serial Correlation 

For purposes of testing the solution and estimation methods, a small linear 
model has been analyzed. This model can be solved and estimated using 
existing linear techniques, and thus it provides a useful check for the nonlin- 
ear methods. The model is a version ofthe wage-contracting model in Taylor 
(1980). It can be represented as 

1--L I--I 
+ a,, EY,, + ax Eyzt+, + %EYz<+z + UI,> 

1--I c-1 L--l 

(11.18) yz, = ~ZIYU + RIYI,-I + ‘YZ&-~ + uzt, 

with restrictions 01,~ = Q = ), (Y,* = a,, = &, LY,~ = 01~~ = cxl,, azl = 
cyz2 = 01~~. There are two free coefficients to estimate, (Y,~ and a*, . The data 
for this model were generated by simulating the model using normally 
distributed serially independent errors with zero correlation between equa- 
tions. Values of LY,~ and c+, of .0333333 and -.333333 were used for this 
purp0Se. 

The model was first solved and estimated using the technique described in 
Taylor (1980), which is based on a factorization procedure that calculates a 
restricted ARMA version of the model. The ARMA version is used for the 
likelihood function calculations. Because of its small size, the model does not 
require the use of the Parke algorithm for the FIML estimation, so the DFP 
algorithm was used. Using a sample of 50 observations, the estimated coeffi- 
cients were &,$ = .02601 and&,, = -.3916, with t-statistics of 1.18 and 6.33, 
respectively. Each evaluation of the likelihood function took about .004 
seconds on an IBM 360/9 1 at Columbia University using this factorization 
technique. The DFP algorithm required 90 function evaluations starting 
from the true values (.0333333 and - .333333). 

The model was next solved using the method in Section 11.2. The model 
was solved for all 50 observations, and the value of the likelihood function 
was computed. When evaluated at the same coefficient values, the method 
gave the same value of the likelihood function as did the factorization 
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technique, which serves as a useful check on both procedures. The details of 
the iterations of the method when solving the model are summarized in the 
upper section of Table It_ 1. A total of about 27,7 50 passes through the model 
were required for one function evaluation, which is estimated to take about I 
second on an IBM 360/91. This is about 250 times slower than the factoriza- 
tion technique. (The actual computations were done on a computer at Yale 
University, and the estimated time for the IBM 360/91 is only approximate.) 

Had the same DFP program been used to maximize the likelihood function 
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as was used for the factorization technique, the same 90 function evaluations 
would have been required to find the maximum. The reason for this is that the 
solution method and the factorization technique give the same value of the 
likelihood function for the same set of coefficient values, and this is all the 
information that the DFP algorithm takes from the methods. The total time 
needed to estimate the model would thus be about 90 seconds. The DFP 
calculations were not repeated, but instead an attempt was made to maximize 
the likelihood function using the less expensive method discussed in Section 
11.3.2. These calculations will now be described. 

The calculations using the less expensive method are summarized in Table 
1 l-2. Using the true values of the coefficients as starting values, the model was 
first solved for each of the 50 observations. As noted in Table 11-1, this 
requires about 27,750 passes through the model. The model was then solved 
two more times to calculate the derivatives ofthe expectations with respect to 
the two coefficients. The problem was then turned over to the DF’P algorithm. 
The computer program ofthe DFP algorithm used here was different from the 
program used above for the factorization technique, and the performance of 
the algorithm for a given problem does vary across programs. The following 
results thus differ in two respects from the results using the factorization 
technique: the derivatives are used in one case but not in the other, and the 
computer programs differ. It is not possible to say which of these factors is 
more important regarding the performance ofthe DFP algorithm, but this is 
not of great concern here. The question of interest is whether the use of the 
derivatives results in the optimum being found. (The program of the DFP 
algorithm used here is also not the one that I wrote and used for the results in 
Section 10.4. The work for the present section was done before I wrote the 
DFP program that is now part of the overall Fair-Parke program.) 

As indicated in Table 11-2, the first DFP iteration required 45 calls to the 
subroutine that calculates L for a given value of the coefficient vector. 
Convergence was essentially achieved after the first iteration. The program 
was allowed to run for three more iterations, where for each iteration the 
model was solved three times: once to get the base values and twice more to 
get the derivatives. The results in Table 11-2 show that the use of the 
derivatives provides a close approximation to the “true” value of L obtained 
by solving the entire model. Given that the DFP algorithm required 45 
evaluations of L (for the first iteration), the use of the derivatives saved a 
considerable amount of time. The derivatives were also used in the calcula- 
tion of the covariance matrix after the optimum was reached. 
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11.6.2 Model with Serial Correlation 

The linear model was also solved and estimated for the case where u,, in 
(11.17) follows a first-order autoregressive process, with pI = .7. Steps (i)-(v) 
were used with a damping factor of .25 to solve for the first observation, with 
steps I-4 used thereafter. Some initial experimentation with no damping 
factor for calculating the initial condition indicated that convergence would 
either not be achieved or would be very slow. Again, for the same set of 
coefficient values, the same likelihood value was obtained using both the 
factorization technique and the method in Section 11.2. A summary of the 
calculations for the method is presented in the lower section of Table 11-l. 
The required number of passes in this case was about 37,563, which is about 
35 percent greater than the number required for the model without serial 
correlation. 

An attempt was made to use the less expensive method to estimate this 
version of the model. but this was not successful. The expectations did not 
appear to be well-behaved functions of the coefficients, and quite different 
derivatives were obtained for different step sizes. The values of L computed 
using the derivatives were generally not very close to the values ofL computed 
by solving the entire model. It appears for this version that the entire model 
has to be solved for each new evaluation of L. 

The use of the less expensive method for the small linear model thus 
produced mixed results. More estimation of alternative models is needed 
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before one can determine whether the difficulties with the serial correlation 
case are specific to the example and, if so, whether the example is representa- 
tive of the type of model that is likely to be estimated in practice. 

11.7 Results for the US Model with Rational Expectations in the Bond 
and Stock Markets (USREl and USREZ) 

An interesting exercise with the US model is to consider how its policy 
properties would differ if it were specified to be consistent with the assump- 
tion of rational expectations in the bond and stock markets. The method in 
Section 11.2 can be used to solve the model in this case. The modifications of 
the model to incorporate the rational expectations assumption are discussed 
first, and then the policy properties of the different versions are compared. 

11.7.1 The Two Term Structure Equations 

The two term structure equations in the model, Eqs. 23 and 24, are discussed 
in Section 4. I .6. In each equation the long-term rate, RB or RM, is a function 
of current and lagged values of the short-term rate. RS. The theory on which 
these equations are based is the expectations theory of the term structure of 
interest rates. According to this theory, the return from holding an n-period 
security is equal to the expected return from holding a series of one-period 
securities over the n periods. Let Rx+, denote the expected one-period rate of 
return for period f + i, the expectation being conditional on information 
available as ofthe beginning of period I, and let R, denote the yield to maturity 
in period t on an n-period security. Then according to the expectations theory, 

(11.19) (l+R,)“=(l +Rq)(l+R.Sf.+J. r. (I+RSI,._,). 

When considered by themselves, Eqs. 23 and 24 are consistent with the 
expectations theory in the sense that the current and lagged values of RS are 
proxies for the expected future values in (11.19). When these equations are 
considered as part of the overall model. however. they are not consistent with 
the expectations theory if’expectations ofthe future values of RSare rational. 
The reason for this is that in simulations ofthe model, the predicted values of 
the long-term rates and the short-term rates do not in general satisfy (1 I. 19). 

The US model can be modified to be consistent with the rational expecta- 
tions assumption by dropping Eqs. 23 and 24 from the model and requiring 
instead that the solution values ofR.S, RB, and RMsatisfy ( I I. IS), where R, in 
( Il. 19) represents RB and RM. The resulting model, which will be called 
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USRE 1, is then consistent with the assumption of rational expectations in the 
bond market if( 1) people believe that USREl is the true model and know 
how to solve it and (2) people at any one time have the same set of forecasts 
regarding the future values of the exogenous variables and the same set of 

, expectations regarding the future values of the error terms. Given these 
assumptions. the solution values of the endogenous variables are people’s 
expectations of these values (ignoring the bias due to the nonlinearity of the 
model). Since three ofthe endogenous variables in the model are RS, RB, and 
RM, if the solution values of these variables satisfy (11.19), then people’s 
expectations are consistent with this equation. 

11.7.2 The Stock-Price Equation 

The stock-price or capital-gains equation, Eq. 25, is also discussed in Section 
4.1.6. The capital-gains variable, CG, is a function of the change in RB, the 
change in after-tax cash flow, and the one-quarter-lagged value ofthe change 
in after-tax cash flow. The theory on which this equation is based is that the 
value of stocks is the present discounted value of expected future after-tax 
cash flow, the discount rates being the expected future short-term interest 
rates. Let K, = CF, - 7”+ - Tel denote the actual value of after-tax cash flow 
for period t, and let n;+; denote the expected value for period f + i, the 
expectation being conditional on information available as of the beginning of 
period t. Let SP, denote the value of stocks for period t based on information 
as of the beginning of period t. Then according to the theory 

-....z- G+ I 
(11’20) Spr=l+RS:+(l+R~)(I+R~+,)+ ‘. 

+(l+RSJ)(l+R;;I;. (l+R;+,,)’ 

where T is large enough to make the last term in (I 1.20) negligible. By 
definition 

(11.21) CG,=SP,-SP,_,, 

where CG is the capital-gains variable used on the LHS of Eq. 25. 
When considered by itself, Eq. 25 is consistent with ( 11.20) and ( 11.2 1) in 

the sense that the change in the bond rate is a proxy for expected future 
interest rate changes and the changes in after-tax cash flow are proxies for 
expected future changes. When considered as part of the overall model, Eq. 
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25 is not consistent with (11.20) and (11.21) if expectations of the future 
values are rational: this is because in simulations of the model the predicted 
values of CC do not in general satisfy (1 I .20)-( Il.2 1). 

The US model can also be modifid to be consistent with the rational 
expectations assumption regarding stock prices by dropping Eq. 25 and 
requiring instead that the solution values of CG satisfy ( I 1 JO)-{ 1 I .2 1). If this 
modification is made in conjunction with the modification regarding the term 
structure of interest rates, the resulting model, which will be called USRE2, is 
consistent with the assumption of rational expectations in both the bond and 
stock markets. Note in this case that because RSis used as the discount rate in 
(1 I .20). the expected return on stocks is the same as the expected return on 
bonds. There are no arbitrage opportunities in USREZ between bonds and 
stocks, just as there are none in either USREI or USREZ between bonds of 
different maturities. 

RS is in units of percentage points at an annual rate, and for use in ( Il. 19) 
and (I 1.20) in the following experiments, each RS term was divided by 400. 
This puts RS in units of percent at a quarterly rate. 

11.7.3 The Policy Experiments 

Unmticipated Change 

Since both USREl and USREZ have expected future values on the RHS of 
some equations, the solution method in Section 1 I .2 must be used to solve the 
models. Before they can be solved, however, some assumption must be made 
about n in (11.19) and Tin (I 1.20). For present purposes both n and T were 
taken to be 32 quarters. The policy experiment consisted of a permanent 
increase in C, (from its historical values) of 1 .O percent of real GNP. This is 
the same experiment as the first experiment in Table 9-1 except for a different 
period. The period here is 19581- 196OIV; this early period was chosen so that 
enough future data would be available to avoid having to make any assump 
tions about values of variables beyond the end of the data. 

The value of h in (11.1) for both models is 3 1. The initial value of k in step 1 
was chosen to be 67. This required initial guesses of the expectations of the 
future values of RS and of after-tax cash flow for 19581 through 199011, 
although the values for the last 31 quarters are not changed during the 
solution process. For all but the last 31 quarters the initial expected values 
were taken to be the actual values. For the last 31 quarters (1982IV- 199011) 
the values were taken to be the 1982111 values. 
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An important question for the experiment is how to handle the fact that 
(I 1.19) and ( 11.20)-( 1 I .2 I) do not fit the data perfectly. The present experi- 
ment is not meant to be a test ofthe assumption ofrational expectations in the 
bond and stock markets, but merely to examine the sensitivity ofthe proper- 
ties of the model to this assumption. Given this, the easiest thing to do is to 
add error terms to (I 1.19) (for both RB and Rnil) and to (11.20) in such a way 
that the equations fit perfectly when the expected values are taken to be the 
actual values. If the actual values of the error terms are also used for the other 
equations, the solution of the model using the actual values of the exogenous 
variables (including Cg) is the perfect tracking solution. The base values for 
the C, experiment are thus the actual values, which is the same as for the 
experiments in Chapter 9. The actual values of the exogenous variables were 
used for the experiment. 

The error terms in (11.19) and (11.20) are not assumed to be serially 
correlated, which means that steps (a)-(e) in Section 1 I .2.2 do not have to be 
used. Even though some ofthe stochastic equations in the model have serially 
correlated errors, steps (a)-(e) do not have to be used unless the serial 
correlation occurs in equations with explanatory expectations variables. 

The estimated policy effects are presented in Table 11-3. The solution 
method in Section I 1.2 worked quite well in solving USREI and USREZ. For 
USRE2, for example, the number of type II iterations required for conver- 
gence was 28 for k = 67. When k was increased by one, the required number 
was 17. Type III convergence was achieved at this point. In other words, the 
initial value of k was chosen large enough so that increasing it by one more 
had negligible effects on the solution values for the lirst 32 quarters. For 
h = 3 I and k = 67, each type II iteration requires solving the model for 
31 + 67 + 1 = 99 quarters. The solution for each quarter requires about .2 
seconds on the IBM 434 1, so the solution time for one type II iteration is 
about 19.8 seconds. The total time for the 28 type II iterations was thus about 
9.2 minutes. Fork increased by one, the time per type II iteration is only .2 
seconds longer. The time for the other 17 type II iterations was thus about 20 
seconds X 17 = 5.7 minutes. The total time required for the solution for 
USRE2 was thus about 14.9 minutes. The times for USREl were similar. If 
one compares these times to the time required to solve the regular version of 
the US model for the 12 quarters in Table 11-3 of 12 X .2 seconds = 2.4 
seconds, the USRE 1 and USRE2 models are about 373 times more expensive 
to solve than the US model. 

It is important to note with respect to solution times that the model only 
had to be solved once for each set of results in Table 11-3. The reason for this 
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is that the actual values of the exogenous variables were used and that the 
length of the simulation period of interest (12 quarten) was less than h. (See 
the discussion at the end of Section 11.2.1 for an explanation of this.) 

The results in Table 11-3 are fairly easy to understand. For all three 
versions, the Fed responded to the increase in C, by raising RS. In the regular 
version this had a gradual effect over time on RB and RM through the term 
structure equations. In the other two versions, however, knowledge that the 
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Fed was going to raise RSin the future was incorporated immediately into the 
long-term rates, and therefore the initial changes in RB and RMwere greater 
for USREl and USRE2 than for the US model. This led to lower initial 
increases in real GNP and to smaller initial decreases in the unemployment 
rate. The lower initial increases in real GNP led to smaller increases in the 
GNP deflator. 

Because of the lower initial increases in real GNP for USRE 1 and USRE2, 
the initial increases in RS were also lower. In other words, the Fed responded 
less with respect to increasing RS in these two cases. The higher initial values 
of RE and RM for USRE 1 and USRE2 required less of an increase in RS in 
order to lessen the expansionary impact of the increase in C,. 

One puzzling feature of the results in Table 11-3 is why the initial change in 
stock prices (CC) is negative for USRE2. It is more negative for USRE2 than 
it is for USREI, which through the wealth effects in the model leads to a 
slightly more expansionary economy for USREl than for USRE2. If future 
values of cash flow are higher because of the expansion, this information 
should be reflected immediately in higher stock prices for USRE2. There are, 
of course, two effects on stock prices, a positive one through higher future 
values of cash flow and a negative one through higher future values of the 
discount rates. It may merely be that the negative discount rate effect 
dominates for USREZ. This is not. however, the case. The problem is that 
future values of cash flow are smaller rather than larger. (This can be seen for 
the first 12 quarters in Table 11-3.) The reason for this is that interest 
payments of the firm sector, which are subtracted from cash flow, are larger 
because of the higher bond rate. (This can also be seen for the first 12 quarters 
in Table 1 l-3). 

The puzzling result is thus due to the higher interest payments of the firm 
sector. Interest payments are determined by Eq. 19 in the model. This 
equation, as discussed in Section 4.1 S, does not have good statistical proper- 
ties, and in particular it may be that the bond rate coefficient in the equation is 
too large. The USREl versus USRE2 results thus unfortunately depend on a 
questionable equation. In order to see how sensitive the results in Table 11-3 
are to the interest payments equation, the experiments were done over with 
the interest payments equation dropped and interest payments taken to be 
exogenous. The results ofthese experiments are presented in Table 11-4. The 
results for US and USREl are not much affected, but it is now the case that 
future values of cash flow are positive. The initial change in stock prices for 
USRE2 is now positive. CG increased by 1.28 in the first quarter for USRE2, 
whereas it decreased by 1.96 for USREI. The decrease for USREI is a result 
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ofthe higher value ofRB. which appears as an explanatory variable in the CG 
equation. The economy is now more expansionary for USRE2 than it is for 
USREI. 

This feature of the results regarding the difference between USREl and 
USRE2 is thus sensitive to the interest payments equation. The results in 
Tables I l-3 and 1 l-4 bound the differences in the sense that interest pay- 
ments are probably too sensitive to interest rates in Table I l-3 and not 
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sensitive enough in Table 11-4. For purposes of illustrating the properties of 
the two versions of the US model, these results are sufficient. 

An interesting aspect of the results is that the sums of the GNP changes 
across the 12 quarters are quite close. The timing of the GNP changes differs 
between the US model and the two rational expectations versions, but this is 
to some extent the only substantial difference among the results. 

The experiment just reported is an unanticipated increase in C, beginning in 
19581. Ifthe increase had been announced before this time, the quarters prior 
to the enactment would have been affected in models USREl and USRE2. To 
investigate this, a second experiment was run in which it wasassumed that the 
announcement of the C, increase beginning in 19581 was made at the 
beginning of 19561. The results of this experiment are reported in Table 1 l-5. 
(The interest payments equation was used for these results.) The initial value 
of k was taken to be 75 for this experiment rather than 67, and the starting 
quarter was 19561 rather than 19581. Otherwise, the procedure for this 
experiment was the same as that for the first. Convergence was achieved in 
two type III iterations for each model, and the solution times were similar to 
those for the first experiment. 

The results for the US model in Table II-5 are the same as those in Table 
11-3. The announcement has no effect on this model since it is not forward- 
looking. For the other two models, knowledge that the Fed will raise RSin the 
future gets incorporated immediately into RB and R.44, which has a negative 
effect on real output. Real GNP is lower in 1956 and 1957 because of the 
higher long-term interest rates. RS is lower in these two years because of the 
contractionary economy; RS begins to rise after the increase in C, actually 
takes place. 

The sum of the output changes across the 20 quarters is 4.95 for the US 
model, 3.96 for USREl, and 3.44 for USREZ. The difference between the US 
model and the others is larger here than it is in the first experiment, which is 
due to the negative effects in the first two years for USREl and USRE2. The 
reason the economy is less expansionary for USRE2 than for USRE 1 is again 
because of the interest payments equation. The opposite result would be 
obtained if the interest payments equation were dropped. 

Conclu.sions 

These experiments give a good indication of the sensitivity of the policy 
properties ofthe model to the assumption ofrational expectations in the bond 
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and stock markets. It is clear that there are some important quantitative 
policy differences, especially with respect to timing and anticipated changes. 
The rational expectations assumption is clearly of some quantitative impor- 
tance. 

It should be stressed again that the results in this section provide no tests of 
the rational expectations assumption. For purposes of the experiments, 
(1 I. 19) and (I 1.20) have been made to fit perfectly by merely adding the 
actual errors to them before they are solved. These errors are in fact quite large 
relative to the errors in the estimated term structure and capital gains 
equations. This is not, however, evidence against the specification of (I I. 19) 
and (I 1.20). Some of the reasons for this are the following. 

1. The RB and RM rates are not eight-year rates, as assumed here, and 
therefore a closer matching of the rate data to n would be needed in any 
tests. 

2. The value of Tused for ( I 1.20), 32 quarters, is not large enough to make the 
last term in the equation negligible. 

3. The data on cash flow after taxes and stock prices do not match exactly. 
4. The use of actual values of RS and z for the expected future values in the 

construction of the error terms for ( Il. 19) and ( 1 I .20) is not appropriate. 

None of these problems are important for the sensitivity experiments 
performed in this section, but they are obviously so for testing. If better data 
were collected so that 1 and 3 were taken care ofand ifa larger value of Twere 
used so that 2 was taken care of, then the rational expectations assumption 
with respect to the bond and stock markets could be tested by, say, comparing 
the accuracy of the predictions from USRE2 and US, especially the predic- 
tions of RB, RM and CG. For USRE2 one would have to choose for each 
beginning quarter of a prediction period a set of future values of the exoge- 
nous variables that one believes were expected at the time. The predictions for 
each different beginning quarter would be based on a different set of future 
values of the exogenous variables. The joint hypothesis that would be tested 
by this procedure is that (a) people know USREZ and believe it to be true, 
including ( 11.19) and ( 11.20); (b) the chosen exogenous variable values and 
error terms correctly reflect the expectations at the time; and (c) expectations 
with respect to future values of RS and cash flow after taxes are rational. 

11.8 Results for Sargent’s Model (SARUS) 

The estimation of Sargent’s model is somewhat involved, as is true of any 
rational expectations model, and it will be easiest to discuss the estimation of 
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it in steps. The model is presented in Section 5.4. and the reader should review 
this material before reading this section, in particular the material in Tables 
5-3 and 5.4. The model consists of five stochastic equations and one identity. 
These equations are listed in Table 11-6. The first thing to remember about 
the model is that the error term in Eq. (4) is assumed to be uncorrelated with 
the other error terms in the model. This means that Eq. (4) can be treated 
separately from the rest and simply estimated by OLS. 

The key variable in Sargent’s model isp, - E,_,p,, which is an explanatory 
variable in Eqs. (1) and (2). Without this variable, the model is not a rational 
expectations model and can thus be estimated by standard techniques. The 
first step in the estimation work was to estimate the model by 2SLS without 
thept - E,_,p, variable included. These estimates are presented first in Table 
11-6. The first-stage regressors that were used for these estimates are listed at 
the bottom ofthe table. The next step was to estimate this same version of the 
model by FIML. These estimates are presented next in Table 11-6. The 2SLS 
estimates were used as starting values. The value of L (see Eq. 6.33) at the 
starting point was 2438.49. The Parke algorithm was allowed to run for 40 
iterations, which increased L by 10.37 to 2448.86. Near the end of the 40 
iterations, L was increasing by about .Ol per iteration. Each iteration cone- 
sponds to about 180 function evaluations and takes about 65 seconds on the 
IBM 434 I, At the stopping point the covariance matrix of the coefficient 
estimates was computed ( ?d in Eq. 6.34), and this is where the t-statistics for 
the first set of FIML estimates in Table I l-6 come from. 

The next step was to add the expectations variable to the model and 
estimate it using the method in Section 11.2. The solution of the model is 
fairly easy because there are no expectations variables for periods t + I and 
beyond, only for period 1. This means that no type 11 or type III iterations have 
to be performed. In order to get the values for E,_ ,p, (t = 1. , T) that are 
needed for the computation of L, the model is simply solved each period 
using the expected values of the exogenous variables. The predicted values of 
p! from this solution are the values used for Et- @, For purposes ofestimation 
there are three exogenous variables: m,, pop,. and R,. As noted in Table 5-4. 
the expected values of m, and pop, were taken to be predicted values from 
eighth-order autoregressive equations. The expected values of R, were taken 
to be the predicted values from Eq. (4). 

In this third step each evaluation of L requires that the model be solved for 
each of the I 14 observations of the sample period. This solution takes about 
10.5 seconds on the IBM 4341. As noted earlier, the number of function 
evaluations required per iteration of the Parke algorithm is about 180. which 
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takes about 65 seconds for the nonrational expectations version ofthe model. 
The total time per iteration for the complete model is thus about 10.5 
seconds X 180 + 65 seconds = 32.6 minutes. Because of the cost per itera- 
tion, the Parke algorithm was only allowed to run for eight iterations. The 
FIML estimates of the nonrational expectations version were used as starting 
values. The value of L was increased from the starting value of 2448.86 to 
2475.16, which is a change of 26.30 points. 

The set of estimates at this point is the third set presented in Table 11-6. 
The key result in this table is that both coefficient estimates forp, - E,_g, are 
of the expected sign (negative in Eq. 1 and positive in Eq. 2). According to the 
theory behind the model, positive price surprises should lead to a fall in the 
unemployment rate and a rise in labor supply, and the results are consistent 
with this theory. 

The covariance matrix of the third set of coefficient estimates was not 
computed because of the expense, but it is the case that the two coefficient 
estimates forp, - E,_,p, are jointly significant. This can be seen by perform- 
ing a likelihood ratio test. Let L* denote the optimal value of L and let L** 
denote the value ofL obtained by maximizing the likelihood function subject 
to the constraint that both coefficients are zero. Then 2(L* - L**) has an 
asymptotic x2 distribution with two degrees of freedom. The value of L** is 
2448.86 from the above results. A lower bound for the value of L* is the final 
vaIueof2475.16. (Thisisonlyalowerbound becausetheParkealgorithm was 
not allowed to NII long enough to obtain the maximum.) Twice the differ- 
ence between the lower bound for L* and L** is 52.60, which is clearly 
greater than the critical f value at the 95-percent confidence level of 5.99. 
Therefore, even using this conservative value, the two coefficient estimates 
are highly significant. 

Because ofthe expense of estimating Sargent’s model, it was not feasible to 
use the method in Chapter 8 to examine the accuracy of the model. It did 
seem worthwhile, however, to try to get a rough idea of its accuracy. This was 
done by computing within-sample root mean squared errors (RMSEs). 
RMSEs were computed for one- through eight-quarter-ahead predictions for 
the 19701- 1982111 period. This was done for the three estimates of Sargent’s 
model in Table 11-6, for the ARUS model, and for the US model. The results 
are presented in Table 11-7. The results in Table 11-7 for the US model are 
the same as those in Table 8-5 (2SLS estimates). 

Before discussing the results in Table 11-7, one should be clear about how 
the rational expectations version of Sargent’s model is solved when the 
simulation is dynamic. (The simulations that were used in the above estima- 
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tion of the model were all static.) Remember that the model is actually solved 
two times per quarter to get the final solution values. The model is first solved 
using the expected values of the exogenous variables, which gives a solution 
value for E,_,p,. The model is then solved again using this solution value plus 
the actual values of the exogenous variables. For both the static and dynamic 
simulations the expected values of the two exogenous variables, m, and pop,, 
were taken to be static predictions from the two estimated eighth-order 
autoregressive equations. It would not be appropriate to use dynamic predic- 
tions for this purpose because of the exogeneity of m, and pop, themselves. For 
solution purposes, in contrast to estimation purposes. R, is an endogenous 
variable, and therefore the above procedure form, and pop, is not followed for 
R,. The R, equation, Eq. (4), is simply added to the model for solution 
purposes. 

The results in Table I 1-7 indicate that Sargent’s model is not very accurate. 
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All three versions are considerably less accurate than the US model for all 
three variables. All versions are less accurate than the ARUS model for the 
GNP deflator. The three versions and ARUS are ofabout the same degree of 
accuracy for the unemployment rate. The rational expectations version of 
Sargent’s model is slightly more accurate than ARUS for real GNP for the 
five- through eight-quarter-ahead predictions. The other two versions are less 
accurate than ARUS for real GNP. Although these results are subject to the 
reservations discussed in Chapter 8 regarding within-sample RMSE compari- 
sons, they are clearly not encouraging regarding Sargent’s model. 

Sargent’s model was the first serious attempt to construct an econometric 
version ofthe class ofrational expectations models discussed in Section 3.1.7, 
and thus it is obviously very preliminary in nature. The negative results 
achieved here should thus be interpreted with some caution. It may be that 
with more work on models of this type, the accuracy will be much improved. 
It is really too early to judge this type of model. One discouraging feature 
about this work, however, is that there have been no attempts to follow up on 
Sargent’s model or models like it. Unless more econometric work is done on 
this class of rational expectations models, it may lose by default. 



12 Conclusions 

Because of the “wait and see” theme of this book, no strong conclusions are 
drawn here. The following is a summary of some of the main results in the 
book and a discussion of problems that I think are in particular need of future 
research. 

12.1 Methodology 

One of the three main goals of this book has been to argue for a particular 
methodology. The methodology centers around the testing of econometric 
models using the method in Section 8.4. An example of the use of the method 
is presented in Section 8.5. I am under no illusions that the method can be 
easily used to decide which model best approximates the structure of the 
economy. The problem is not that the method is expensive to use, since, as 
seen in Section 8.5, the method is not prohibitively expensive now and it will 
be considerably less expensive in the future with cheaper and faster com- 
puters. Rather, the problem is that it is in general difficult to use macroeco- 
nomic data to distinguish among alternative hypotheses or models. Given the 
smoothness of much of the data, the size of the sample that one is dealing with 
is to some extent small. Many more observations are needed before much can 
be said. I am also aware of the possibility, as discussed in Section 2.4, that the 
structure of the economy is not stable enough for any model in the future to 
be very good. If this is the case, any attempt to find the “best” model is futile. 
Whether the methodology emphasized here will in fact help to advance our 
knowledge ofthe structure ofthe economy is clearly an open question. Since 
the method presented here can be easily used within the context of the 
Fair-Parke program, the hope is that this book will stimulate more compari- 
sons and testing of models as well as more work on the method itself, 

12.2 Specification 

Another goal ofthis book has been to present my theoretical and econometric 
macro models. This modeling exercise is my attempt at approximating the 
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structure of the economy, and it provides an example of the transition from 
theoretical to econometric models. 

12.2.1 The US Model 

The theoretical model on which the US econometric model is based is one in 
which disequilibrium can occur because of expectation errors. Contrary to 
the work of Barre and Grossman (1976) and the related work on fixed price 
equilibria, the model provides an explanation of market failures. Firms 
determine prices and wages (along with other variables) within the context of 
their multiperiod maximization problems, and because ofexpectation errors, 
these prices and wages are not always market clearing. Whether the key 
assumption in the model regarding expectations, namely that expectations 
are not rational, is the best approximation to the truth is one of the most 
important current issues in macroeconomics. If expectations are in fact 
rational, many of the features of the theoretical model are not likely to be 
good approximations, and thus the econometric model that is based on this 
model should not, other things being equal. perform well in tests against 
models in which expectations are rational. 

Another important feature of the theory is the idea that firms may spend 
time “off” their production functions. Because ofadjustment costs, it may be 
optimal for firms to hold excess labor, excess capital, or both during periods of 
slack demand. Ifthis is true, it has important implications for empirical work: 
it means that attempts to estimate the degree of substitution between capital 
and labor that are based on the assumption that the observed inputs arc the 
utilized inputs are not trustworthy. The same holds for attempts to estimate 
the effects of the cost of capital on investment behavior. 

Another characteristic of both the theoretical and econometric models is 
the accounting for all flow-of-funds and balance-sheet constraints. This 
implies that the government budget constraint is accounted for, and it makes 
clear the various assumptions about monetary policy that are possible. These 
issues are discussed in Sections 4. I. 10 and 9.4.4. 

The results that have been obtained for the econometric model so far are 
encouraging. With respect to the disequilibrium issue. the key disequilibrium 
variable in the model (the Z variable) appears in the three consumption 
equations and in three of the four labor supply equations. It is significant in 
the three labor supply equations and in two of the three consumption 
equations (Section 4.1.4). Regarding the question of whether firms spend 
time off their production functions, the excess labor variable is significant in 
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the employment and hours equations and the excess capital variable is 
significant in the investment equation (Section 4.1.5). The tests ofthe overall 
model in Section 8.5 show that it is more accurate than the ARUS. VARl US, 
VAR2US, and LINUS models for a number of the key variables, and the 
results of the comparisons in Section 11.8 show that it is more accurate than 
Sargent’s model. 

Some of the open questions or problems about the US model as I see them 
are the following. 

1. The method in Chapter 8 has not been used to compare the model to 
other large-scale structural models. Also, the results in Section 8.5 show that 
the model is less accurate than at least one of the other models for some 
variables. and therefore more work is needed regarding the explanation of 
these variables. 

2. Interest rates have a very large effect on consumption and housing 
investment (and thus on GNP). This can be seen best in Tables 9-4 and 9-5, 
especially the latter. It may be that these effects are too large. Trying both the 
short-term and the long-term rates, current and lagged, in each equation and 
then choosing the one that was most significant may have resulted in an 
upward bias in the estimated effects. 

3. The interest rate reaction function appears to have changed when 
Volcker became chairman of the Fed, although not enough observations are 
available to know whether the way in which this change has been modeled is a 
good approximation. It may be that the entire equation will have to be 
replaced by a reaction function with a different LHS variable. 

4. Some of the minor equations of the model, such as the equation 
explaining the interest payments ofthe firm sector, have fairly poor statistical 
properties and are thus in need of further work. 

5. No evidence could be found for the effects of real as opposed to nominal 
interest rates in the household expenditure equations, which could be because 
of poor estimates of expected future inflation rates. More work is needed here. 

Within the next ten years or so these problems should be worked out one 
way or another. One should also have by this time a good idea of how the 
model compares to other structural models. If the problems have not been 
adequately dealt with or if other features of the model are poor approxima- 
tions, the comparisons should reveal this. In particular, ifthe Lucas point is a 
serious quantitative problem for the model, this should be revealed in poor 
performances. Likewise, ifthe Brainard-Tobin pitfallscriticism regarding the 
treatment of financial securities in models like the US model is important 
quantitatively, this should show up. 
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12.2.2 The MC Model 

The MC model is in a much more preliminary state than is the US model, and 
it will take more than ten years to decide if it has formed the basis for a model 
that provides a good approximation of the economic linkages among coun- 
tries. 

One ofthe key features of the theoretical model is that there is no stock-flow 
distinction with respect to the determination of the exchange rate. Because 
the model accounts for the flow-of-funds and balance-sheet constraints, the 
stock and flow effects are completely integrated. The other features of the 
theoretical model are essentially those ofthe single-country model, since the 
two-country model is conceived ofas two single-country models put together. 

For the econometric work, data limitations required that a special version 
of the theoretical model be considered. This is a version in which (1) the 
short-term interest rates are determined by interest rate reaction functions, (2) 
the exchange rate is determined by an exchange rate reaction function. (3) the 
forward rate is passive, and (4) the bonds of the two countries are perfect 
substitutes. In addition, the sectors are aggregated into just one sector per 
country. This version guided the econometric specifications. 

The results of comparing the MC and ARMC models in Section 8.6 are 
encouraging regarding the MC model. In general. it does better than the 
ARMC model, and variables like the exchange rates seem to be explained 
fairly well so far. These results are, of course, very preliminary, and for 
variables like consumption and investment more work on the specification of 
the equations is needed. 

The discussion and results in Section 9.5 give a good idea of the properties 
of the MC model. It is clear from these results that the effects ofa given change 
vary considerably across countries and that the trade effects by no means 
dominate the price, interest rate, and exchange rate effects. Although suffi- 
cient observations in the flexible exchange rate regime are not yet available to 
allow much weight to be placed on these results. they do suggest that models 
that are primarily trade multiplier models are likely to be poor approxima- 
tions. 

12.3 Estimation and Analysis 

The final main goal of this book has been to discuss the techniques needed to 
estimate and analyze large nonlinear macroeconometric models. The Fair- 
Parke program, which is discussed in Appendix C, provides a fairly easy way 
of implementing these techniques. 
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12.3.1 Estimation Techniques 

The results in Chapter 6 show that it is becoming feasible to estimate 
large-scale models by full information techniques and by robust techniques 
like 2SLAD. If one takes the view that all models are at least slightly 
misspecified, and thus that the standard statistical properties ofthe estimators 
are not valid. the key question is which estimator yields a model that is the 
best approximation ofthe structure. The results in Chapter 6 and in Section 
8.5.5 are inconclusive on this matter, but to some extent they show that the 
choice of estimator does not make much difference. An important question 
for future research is whether this conclusion holds for other models and for 
later versions of the US model. 

12.3.2 Testing and Analysis 

The results in Chapters 7.8, and 9 show that stochastic simulation can now be 
a fairly routine matter in analyzing models. The use of stochastic simulation 
allows one to compare models by means of the method in Chapter 8 and to 
estimate standard errors of multipliers. The method in Chapter 8 requires that 
a model be estimated a number of times, which is clearly feasible for the 
limited information techniques. This is still not feasible for 3SLS and FIML, 
although in a few years even these techniques may be capable of being used 
routinely. 

The method in Chapter 8 is based on the premise that all models are 
misspecified. It is not designed to test the null hypothesis ofcorrect specitica- 
tion, since this hypothesis is already assumed to be false. but instead to 
&in& the degree to which a model is misspecified. An important conclu- 
sion from the results in Table 8-2 is that all the models tested appear to be 
misspecified by a fairly large amount. More precisely, the estimated contribu- 
tion of misspecification to the total variance ofthe forecast error is fairly large 
for most variables. This conclusion has important implications for the esti- 
mation of the standard errors of multipliers in Chapter 9. The method in 
Chapter 9 that is used to estimate these standard errors does not account for 
misspecification effects, and thus the estimated standard errors are merely 
lower bounds. An important question for future research is how to account 
for misspecification effects in this context. 

The results in Chapter 10 show that it is feasible to solve optimal control 
problems for large models. Until models become more accurate: it is unlikely 
that optimal control techniques will be used in a serious way for actual policy 
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purposes. The techniques can also be used, however, to help analyze the 
properties of the models, and in this respect they are ofcurrent interest. They 
are also of current interest in helping to evaluate past policies in the light of 
particular welfare functions. 

12.4 Rational Expectations Models 

The methods in Chapter 1 I now allow nonlinear rational expectations 
models to be estimated and solved. The methods are expensive for large 
models, but not necessarily prohibitively so on fast andcheap computers. The 
estimation method is, as far as I know, the only method available for 
estimating a nonlinear rational expectations model by FIML. Given the 
widespread use of the rational expectations assumption and the important 
implications it has for policy, it is important in future research that the 
assumption be tested. The methods in Chapter 1 I allow this to be done. 

The solution method in Chapter 1 I is used in Section 11.7 to analyze two 
versions of the US model, one with rational expectations in the bond market 
and one with rational expectations in the bond and stock markets. These 
versions are not realistic because they have not been estimated, but this 
exercise provides a good example ofthe way in which the solution method can 
be used. The exercise is also useful in determining how sensitive the properties 
of the US model are to alternative specifications. The estimation method is 
used in Section Il.8 to estimate Sargent’s model. 

It may be that it will become feasible to test econometric rational expecta- 
tions models before these models are actually developed. Very little work has 
been done in this area since Sargent’s model in 1976. Now that the methods in 
Chapter I I are available, it may be that work will proceed more rapidly. One 
would hope that within the next ten years or so, well-developed rational 
expectations models will be available to compare to other models. 
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Appendix A: Data and Identities for 
the United States Model 

The data and identities for the US model are discussed in this appendix. 
Tables A-l through A-4 describe the construction of the variables, and Table 
A-5 contains the identities. The stochastic equations ofthe model. which are 
presented in Chapter 4, are repeated in Table A-5. (The tables are grouped 
together at the end of this appendix.) Some ofthe material in these tables was 
discussed in Section 4.1.2, and the discussion will not be repeated here. 

The FFA data were taken from a Flow of Funds tape of data through 
1982111. The NIA data prior to 19771 were taken from an NIA tape. The tape 
consisted ofdata through 198 I I1 but the data from 19771 on were preliminary 
and subject to revision. NIA data for the 19771- 19821 period were taken 
from the July 1982 issue of the Siuve,v ofCurrmt Business. In addition, data 
for a few variables for 1973I- 1976IV were taken from this issue (table 3, pp. 
13 I - 132) to replace the data taken from the tape. NIA data for 198211 and 
1982111 were taken from an advance copy of the Survey of Current Busine:ss 
tables dated December 1982. 

Table A-l lists the sectors of the model. The notation on the RHS of the 
table (HI, F,4, and so on) is used in Table A-2 in the description ofthe FFA 
data. The notation on the LHS (h, .i and so on) is used in the model. 

Table A-2 contains a description of all the raw-data variables. These 
variables are used in Table A-4 to construct the actual variables in the model. 
The units quoted in Table A-2 are the units used for the construction of the 
variables in Table A-4: they are not necessarily the units from the original 
sources. The raw-data variables are listed in alphabetic order at the end of 
Table A-2. This makes it easier to find particular raw-data variables, which 
one needs to do to see how the variables in Table A-4 are constructed. 

The source for the interest rate data is the FederalReserveEuNelin, denoted 
FRB in the table. Listed in the table for each interest rate variable is the table 
number in the November 1982 issue of the FRB where the variable can be 
found. Some ofthe past data were obtained directly from the Federal Reserve. 
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The main source for the employment and population data is Empkymenl 
and Earnings, denoted EE in the table. Listed in the table for each variable is 
the table or page number in the February 1982 issue of EE where the variable 
can be found. Some of the past data were obtained directly from the Bureau of 
Labor Statistics (BLS). For two variables, JFand /IF, the relevant data are not 
published in EE. and they were obtained directly from the BLS. 

A few adjustments were made to the raw data, and these are also presented 
in Table A-2. The quarterly social insurance variables I7 I - 176 were con- 
structed from the annual variables 73-78 and the quarterly variables 33.54, 
and 66. Only annual data are available on the breakdown of social insurance 
contributions between the federal and the state and local governments with 
respect to the categories “personal, ” “government and government enter- 
prises employer,” and “other employer.” It is thus necessary to construct the 
quarterly variables using the annual data. It is implicitly assumed in this 
construction that as employers, state and local governments do not contrib- 
ute to the federal government and vice versa. 

The tax variables 177 and 178 concern the breakdown of corporate profit 
taxes of the financial sector between federal and state and local. Data on this 
breakdown do not exist. It is implicitly assumed in this construction that the 
breakdown is the same as it is for the total corporate sector. 

Regarding the tax and transfer variables 5 1 and 56. the tax surcharge of 
1968111-1970111 and the tax rebate of 197511 were taken out of personal 
income taxes (PC) and put into personal transfer payments (TRGH). The 
tax surcharge numbers were taken from Okun (1971, table 1, p. 171). The 
rebate was 7.8 billion dollars at a quarterly rate. 

The multiplication factors in Table A-2 pertain to the population. labor 
force, and employment variables. Official adjustments to the data on POP, 
POPI> POP2. CL, CL I, CI_2_ and CE: were made a few times, and these 
must be accounted for. This was done as follows. Consider as an example the 
adjustments to POP. In January 1972 the BLS added 787 thousand to POP(a 
,547 percent increase). and in March 1973 it added 13 thousand (a .009 
percent increase). To account for the first change, the old data on POP for the 
19521- 197 IIV periodwere multiplied by 1.00547. To account for thesecond 
change. the old data on POP (“old” now including the first change) for the 
1952I- 1972IV period were multiplied by 1.00009 and the old data for 19731 
were multiplied by 1.00006. Since the second change occurred in March 
1973, the adjustment to the old data for 19731 was only two-thirds of the 
adjustment for the earlier quarters. The same procedure was followed for the 
other variables. For four of the variables (CL, CL 1, CL 2, and CE), there was 
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also an official adjustment in January 1978. All the multiplication factors are 
presented in Table A-2. The official adjustments are discussed in Em&>>- 
rneflnl and Earnings, Februav 1972, April 1973 (note to Table A-l), and 
February 1978. Some of the official adjustment numbers were obtained 
directly from the BLS. In the February 1983 issue of ,%ployment and 
I5ming.s the household data were revised hack to 1970 to reflect the informa- 
tion from the 1980 Census. These revisions did not eliminate the need to 
make the above adjustments, but they did otherwise make the pre- and 
post-Census data comparable. 

Table A-3 contains the checks on the consistency of the NIA and FFA data. 
The financial savings of the sectors are defined in Eqs. (l)-(6). The savings 
must sum to zero across sectors, which is Eq. (7). The savings variables are 
based on NIA data, and they must match the corresponding variables based 
on FFA data-Eqs. (S)-( 13). Equations (14)-(16) are adding-up checks on 
the FFA data alone. 

Table A-4 presents all the variables in the model. With a few exceptions, the 
variables are either defined in terms of the raw-data variables in Table A-2 or 
are determined by identities. The construction of each variable is given in 
brackets. If the variable is determined by an identity, the notation “Def., eq.” 
appears, where the equation number is the identity in Table A-5 that defines 
the variable. In a few cases the identity that defines an endogenous variable is 
not the equation that determines it in the model. For example, Eq. 85 defines 
LM, whereasstochasticequation 8 determines LMin the model. Equation 85 
instead determines E, E being constructed directly from raw-data variables. 
Also, some of the identities define exogenous variables. For example, the 
exogenous variable dz, is defined by Eq. 49. In the model Eq. 49 determines 
TI, T/being constructed directly from raw-data variables. 

The financial stock variables in the model that are constructed from flow 
identities need a base quarter and a base quarter starting value. The base 
quarter values are indicated in the table. The base quarter was taken to be 
197 I IV, and the stock values for this quarter were taken from the Flow of 
Funds tape. 

There are also a few internal checks on the data in Table A-4. The variables 
for which there are both raw data and an identity available are GNP, GNPR. 
Mb, PL\, PU,, and z,. In addition, the savings variables in Table A-3 (SAH. 
SAI< and so on) must match the savings variables in Table A-4 (S,, S,, and so 
on). The checks on the savings variables are strong because many variables 
affect savings. Finally, there is one redundant equation in the model, Eq. 80. 
which the variables must satisfy. 
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There are a few variables in Table A-4 whose construction needs some 
explanation. They are discussed in the following sections. 

The Variable H,’ 

H; is Hf detrended. The trend factor was obtained from a regression of H, 
on a constant and t for the 19521- 1982111 period. The estimate of the 
coefficient oft was -.56464, and this is the coefficient that is used in the 
definition of Hr (Eq. 100). 

The Variable HO 

Data are not available for HO for the first 16 quarters of the sample period 
(19521- 1955IV). The equation that explains HO in the model has log II0 on 
the LHS and a constant and Hf on the RHS. This equation was estimated for 
the 19561- 1982111 period, and the predicted values from this regression for 
the (outside sample) 19521- 19551V period were taken to be the actual data. 
For this work the equation was estimated under the assumption of no serial 
correlation of the error term. The equation that is actually used in the model is 
estimated under the assumption of first-order serial correlation. 

The Variable JJ’ 

.U* is JJ detrended. The trend factor was obtained from a regression of log JJ 
on a constant and f for the 19521-1982111 period. The estimate of the 
coefficient oft was - .00083312, which is the coefficient that is used in the 
definition of JJ* (Eq. 96). 

The Parameter 7, 

yp is the progressivity tax parameter in the personal income tax equation forg. 
It was obtained as follows. The sample period was divided into 15 subperiods. 
each subperiod corresponding roughly to a period in which there were no 
major changes in the federal tax laws. The I5 subperiods are 19541- 19631V. 
19641- 19651, 196511-196811, 1968111- 1969IV, 19701-197OIV, 19711- 
19711V, 19721-1972IV, 19731-197511 197511, 1975111-1976IV, 19711, 
197711, 1977111-198OIV, 19811-198lIV, and 19821- 1982111. Twoassump- 
tions were then made about the relationship between Thg, personal income 
taxes, and YT, taxable income. The first is that within a subperiod T,/POPis 
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equal to [d, + ~~ia( YT/POF)]( YT/POP) plus a random error term, where d, 
and pR are constants. The second is that changes in the tax laws affect d, but 
not yx. These two assumptions led to the estimation ofthe following equation: 

64.1) &=- .0187 + $a;DLX4Gi~+ .015513 
(3.39) I.=’ 

ri,= ,123 ,&= .108 ,a^,= ,108 ,&,= ,112 , 

(15.12) (14.98) (16.85) (18.52) 
& = ,109 ,a,= ,101 ,Li,= ,108 ,&= ,100 , 

(18.23) (17.15) (18.77) (17.77) 
d, = ,095 , ri,, = ,092 , ii,, = ,098 ,8,, = .093 , 

(16.13) (16.12) (16.44) (15.59) 
d,, = ,090 , il., = ,088 , a^,, = ,080 

(I 4.43) (12.67) (11.26) 

SE = .00355, R* = .999, DW = 1.74, 19541- 1982111 

DUMGj is a dummy variable that takes on a value of one in subperiod i and 
zero otherwise. cii is an estimate of d, for subperiod i. The estimate of the 
coefficient of ( YT/POP)z, .O 155 13, is the estimate of ya. Since (A. 1) is only a 
rough approximation, a constant term was included in the estimated equa- 
tion even though the above two assumptions do not call for it. When YT is 
zero, r, ought to be zero, but the zero-zero point is so far removed from any 
observation in the sample period that it seemed unwise from the point ofview 
ofapproximating the tax system to constrain theequation to pass through this 
point. 

Given 1’4, d,, is dehned to be T,JYT - ~+KYT)/POP (see Table A-4). d,, is 
taken to be exogenous, and T, is explained (Eq. 47) as [d,, + (y,YT)/ 
POP]YT. This treatment allows a marginal tax rate to be defined (Eq. 90): 
flz = d,, + (2yzYT)/POP. 

The Parameter y. 

ys is the progressivity tax parameter in the personal income tax equation fors. 
The same procedure was used to estimate this parameter as was used to 
estimate yc. There were 19 subperiods: 19541- 1964IV, 1965I- 1965IV. 
19661-19661V. 19671-1967IV. 19681-19681V, 19691-1969IVT 19701- 
19701V. 19711-197llV, 19721-19721%‘. 19731-19731V, 19741-19741V, 
19751- 19751V, 19761- 1976IV, 19771-19771V. 1978IL 1978IV, 19791- 
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1979IV. 19801-198OIV, 19811- 1981IV, and 19821-1982111. The estimated 
equation was 

C4.2) L = -.0157 + $ &D,Dc’M$ g + .0022626 ’ 
‘Op (12.93) ‘-’ 

6, = .0352 , & = .0344 ,6, = .0344 ,6, = .0351 , 
(16.79) (17.35) (17.53) (17.91) 

6, = .0362 , I$ = .0371 , ti, = .0383 , & = .0398 , 
(18.44) (18.75) (19.18) (19.78) 

& = .0431 , 6,, = .0408 , 6,, = .0398 , &, = .0408 , 
(20.93) (19.05) (18.01) (18.10) 

&, = .0415 ,6,, = .0413 , b^,, = .0401 , & = .03x0 , 
(17.60) (16.56) (14.90) (13.09) 

&,, = .0379 , 6,, = .0368 , 6,, = ,037s 
(12.32) (10.99) (10.82) 

SE = .000780, Rz = ,999, DW = 1.82, 19541- 1982111 

As can be seen, the estimate of 1: is .0022626. d,, is defined to be T,J 
YT - (y,YT)/POP(see Table A-4). The marginal tax rate is defined to be (Eq. 
9 I): & = d,, + (2ysYT)/POP. 

The Variable V 

The base quarter for the stock of inventories, V, was taken to be 198OIV. The 
base quarter value was 340.6, which was taken from the Survey ~lCurrenr 
Businrss, July 198 I, p. 17. 

The Variable Kff 

KHis an estimate of the stock of housing of the household sector. It is defined 
by Eq. 59: 

59. KH=(l -6,,)KH_,+IH,. 

Given IH,, which is constructed from the raw data, KH can be constructed 
once a base quarter value and a value for the depreciation rate S, are chosen. 
Annual estimates of the stock of housing are available through 1975 from the 
Surw~~~fCurwnt Business. April 1976. The base quarter for KH was taken to 
be 19631V. and the base quarter value was taken to be 657.1. This number is 
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the sum ofthe last four numbers in the 1963 row in table 8, p. 52, ofthe April 
1976 issue of the Surve.v. Given this starting point, alternative values of S, 
were used to generate different KH series from Eq. 59. The aim was to find a 
value that led to fourth-quarter values of KH that were close to the published 
values. The value of S,, that was chosen was .00655, which is a depreciation 
rate of ,655 percent per quarter. The generated value of KH for 19731V was 
905.4, which compares almost exactly to the published value of 905.9. (Again, 
the 905.9 number is the sum of the last four numbers in table 8, p. 52, of the 
Surw~.) The generated value for 1974IV was 928.1, which compares to the 
published value of 923.3. 

The Variable KD 

KD is an estimate of the stock of durable goods. It is determined by Eq. 58, 
which is similar to Eq. 59 for KH. Annual estimates of KD are available 
through 1979 from the Survqv, April 198 I. The base quarter was taken to be 
19641V, and the base quarter value was taken to be 249.6, which is the 1964 
value in table 4, p. 65, of the April 198 I issue of the Sunv~. The value of the 
depreciation rate, SD, that led to a good approximation to the published series 
was .05 15. The generated value ofKD for 19791V was 599.7. which compares 
to the published value of 598.3. 

The Variable KK 

KK is an estimate ofthe stock ofcapital ofthe firm sector. It is determined by 
Eq. 92, which is similar to Eqs. 58 and 59 for KD and KH. Annual estimates of 
KK are available through 1979 from the Survey,, February 198 1. In this case 
no one depreciation rate could be found that adequately approximated the 
published data, and in the end two rates were used. The first rate, .0247, was 
used from 19521 through 1963IV, and the second rate, .0263, was used from 
19641 on. The first base quarter was 19521V, with a value of 290..3, and the 
second base quarter was 1963IV, with a value of 413.0. The first value is the 
1952 value in table4, p. 60, ofthe February 198 I issueofthe Surve~~under the 
column heading “Corporate Nonfinancial.” The second value is the value of 
KK generated for 1963IV using the lint depreciation rate. This value com- 
pares closely to the published value of 41 I .3. The value of KK generated for 
1979IV (using the second rate) was 812.5, which compares to the published 
value of 806.0. 
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Appendix 6: Data and Identities for 
the Multicountry Model 

The data for all the countries were obtained from the International Financial 
Statistics (IFS) tape (November 1982) and the Direction of Trade (DOT) tape 
(November 1982). The following steps were involved in the construction of 
the data base. 

I. A program was written to read the IFS tape and create for each country all 
the variables in Table B-2 except the variables for which DOT data are 
needed: ,1_175$A,, M75$B,, PM/, XX.%,, XX7&, c+, and vzi. Most ofthe 
work in constructing the data base was writing this program. Since no two 
countries were exactly alike with respect to the availability of the data. 
separate subroutines were written for each country. (Before these subrou- 
tines were written, a program was written to print the IFS data in a 
convenient format. The information needed to write the individual sub- 
routines was taken from this printout. I am indebted to William Parke for 
help in writing the initial program that read the tape.) The individual 
treatment of the countries is discussed below. The output from this pro- 
gram was stored by country on a tape called IFSI. 

2. A program was written to read the DOT tape and create the XX%,, data (the 
bilateral trade data). The output from this program was stored by country 
on a tape called DOT 1. 

3. The IFS1 and DOT1 tapes were sorted to store the data by quarter. The 
sorted tapes were then used together to create the variables mentioned in 
step 1. This completed the construction of the data base. 

The individual treatment of the data for each country is outlined in Table 
B-I. The comments in the table discuss any special treatment of the country. 
If no comments appear for a particular country, then all the data were 
available and nothing special needed to be done. Two standard procedures 
were followed for all the countries, and it is necessary to discuss these before 
considering the comments in Table B-l. First. if no quarterly National 
Income Accounts (NIA) data were available, quarterly data were interpolated 
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from annual data using quarterly data on the industrial production index 
(IP). If quarterly data on IP were not available, the procedure in Table B-6 
was used to create the quarterly data. One can thus tell from Table B-l how 
the quarterly NIA data were constructed (if they were) by noting whether or 
not IP data were available. 

The second standard procedure concerns the construction ofthe Balance of 
Payments (BOP) data; this procedure is presented in Table B-7. The key 
variable that is created in this process is SF, the balance of payments on 
current account. It is used in the construction of the asset variable, A r. for 
each country. Quarterly BOP data do not generally begin as early as the other 
data, and the procedure in Table B-7 allows data on st to be constructed as 
far back as the beginning of the data for merchandise imports and exports 
(M$i and X$3. When all data are available. the procedure is a way of linking 
the BOP and non-BOP data. 

Most of the comments in Table B-I are self-explanatory. Data for a variable 
were “made up” ifthere was a relatively small gap in an otherwise good series. 
In these cases the data were usually made up by linearly interpolating between 
the closest two available observations. In a few cases quarterly data on the 
consumer price index (01) were used for quarterly interpolations of annual 
data, and for France and Switzerland quarterly data on employment (EMPL) 
rather than on industrial production were used for the quarterly interpolation 
oftheNIA data. Formanycountriesonlydiscount ratedatawereavailablefor 
the short-term interest rate (KS), and these cases are mentioned in the table. 
For a few countries the NIA year began at a time other than January 1, and 
this had to be taken into account in the quarterly interpolations. These cases 
are also mentioned in the table. For a few countries data on real GNP(Y) 
were not available, but data on the nominal NIA variables were. In these 
cases, as indicated in the table, CPI data were used for the GNP deflator. Real 
GNP was then taken to be nominal GNP divided by the GNP deflator. 

Quarterly population data were not available for any country, and the 
procedure in Table B-6 was used to construct quarterly from annual data. See 
in particular the note at the bottom of the table. 

Quarterly DOT data began only in 19701, and no attempt was made to 
construct DOT data before this quarter. Instead. the variables in the model 
were constructed in such a way (with one exception noted below) that no 
DOT data were needed in the estimation of the model. In other words, no 
DOT data were used for the estimates in Tables 4- 1 through 4- 13 in Chapter 
4. This allowed the estimation periods for most countries to be much longer 
than would otherwise have been the case. The DOT data are needed. of 
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course, for the solution of the model, and therefore the earliest quarter for 
which the model can be solved is 19701. In a few cases annual but not 
quarterly DOT data were available, and in these cases the procedure in Table 
B-6 was used to construct the quarterly data. In a few cases no DOT data 
existed, and in these cases the observations were assumed to be zero. 

For a few countries no data on import prices were available, and for these 
countries the data were constructed as indicated in the fifth note to Table B-2. 
This construction required the existence of DOT data, and this is the excep- 
tion mentioned in the previous paragraph where DOT data were needed for 
the estimation work. For countries for which DOT data were used in the 
construction of the import price index, the estimation period had to begin no 
earlier than 19701 for the equations that relied on these data. 

The links to and from the US model are listed in Table B-5. The two key 
exogenous foreign sector variables in the US model are the real value of 
exports (EX) and the import price deflator (PIM). When the US model is 
embedded in the overall model, these two variables become endogenous. The 
US endogenous variables in Table A-4 that affect the rest ofthe model are the 
real value of imports (I&f), the bill rate (RS), the GNP deflator (GNPD), real 
GNP (GNPR), and the demand pressure variable (ZZ). The data base for the 
US model is different from the data base for the United States on the IFS tape 
(among other things, the real variables in the US model are in 72$, whereas 
the real variables for the United States on the IFS tape are in 75$), and the S, 
variables in Table B-5 are used to link the two data sets. As noted in the table, 
when the US model is partofthe MC model, the equation dete&ningPEXis 
no longer Eq. 32 in Table A-5. Instead, Eq. I1 in Table 4-12 for the United 
States is used to determine KY,, and PEX is then linked to PX, 

The sample periods that were used for the estimation work are listed in the 
tables in Chapter 4. The beginning of the sample period was usually taken to 
be four quarters after the beginning of the data, and the end of the sample 
period was usually taken to be the last quarter of the data. One can thus tell 
from the tables in Chapter 4 approximately how many observations are 
available for each country. 
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NO IPS data. 
ho IFS data. 
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Appendix C: The Fair-Parke Program for the 
Estimation and Analysis of Nonlinear 
Econometric Models 

The Fair-Parke program allows all the techniques discussed in this book to be 
used automatically once the necessary information on a model has been read 
by the program. The necessary information consists of a few FORTRAN 
subroutines and a few data sets to present the stochastic equations and the 
identities. Once the program has this information. almost all the techniques 
can be used with no further programming. (In a few cases, such as FIML 
estimation, the user must supply additional information. In the FIML case, 
for example, information on the Jacobian must be supplied. These exceptions 
are discussed later in this appendix.) This has the obvious advantage of 
allowing many things to be done with only one setup, and it also means that 
the model only needs to be debugged once. It is quite easy, as will be seen, to 
check coding errors, and once these errors have been corrected, one need not 
worry about further coding errors for any of the techniques. 

The model is represented by (6.1), which is repeated here: 

(6.1) l;(li> 4, %) = 4, i=l , ,n. 

The program requires that the stochastic equations of the model be rewritten, 

(C.1) .f;(& 4 = ui,, i=l > , m, 

where z, is a vector of variables that are transformations (generally nonlinear) 
ofthe variables in y,andx,. If. for example, one ofthe variablesinan equation 
is Iog(~zi2i/xzI-,), then one ofthe variables in z, would equal this. A variable in 
7 can simply be a variable in >‘z or x,, and thus no generality is lost in going 
iiorn (6. I) to (C. I). In this notation the stochastic equations are assumed to 
come first in the model, although the program does not require this. 

The heart of the program consists of four subroutines: ZFYX, YFZX, 
IDENT, and RESID. RESID is internal to the program, and the other three 
are user-supplied. ZFYX calculates the z variables as a function of they and .x 
variables. It consists of statements like Z(J,I) = DLOG(Y(J,Z)/X(J - 1,3)). 
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where J is the time index. YFZX contains the reverse transformations from 
the ; and x variables to the y variables that are matched to the stochastic 
equations. If. say, zll = log(yzt/x,,_ I) is the LHS variable of equation 1 and if 
y,, is matched to this equation, then YFZX would contain the expression 
yzvz, = 8, . x3,_, , which in FORTRAN isY(J,2) = DEXP(Z(J, l))*X(J - 1,3). 
YFZX contains m such statements. The z variables pertain only to the 
stochastic equations: they are not needed and are not used for the identities. 
IDENT calculates the identities. It contains the code for the identities in terms 
of the y and x variables, such as Y(J,6) = Y(J,5) + Y(J14) + X(J,3). IDENT 
contains n - m such statements. 

RESID calculates the LHS z variable for each stochastic equation. If an 
equation is linear in coefficients except for the possible presence of serial 
correlation coefficients, RESID only needs to know which z variables appear 
in the equation. These variables can simply be listed in a data set, and 
therefore in this case RESID does not have to be touched by the user. If an 
equation is nonlinear in coefficients, RESID has to be modified for the 
equation. Since most equations in macroeconometric models are linear in 
coefficients, RESID seldom needs to be adjusted. 

The reason these four subroutines are the heart ofthe model is that they are 
used by the Gauss-Seidel technique to solve the model. In the solution ofthe 
model for a given period, ZFYX is first called to get initial values for the z 
variables. The problem is then turned over to the Gauss-Seidel technique. 
One iteration (that is, one “pass” through the model) consists of successive 
calls to RESID, YFZX, IDENT, and ZFYX. RESID computes the LHS z 
variables in the stochastic equations; YFZX computes they variables corre- 
sponding to these z variables; IDENT computes the y variables that are 
determined by the identities; and ZFYX computes the z variables that were 
not computed by RESID. The four calls are then repeated, and the process 
continues until convergence is reached or there is an abnormal termination. 
(With respect to the call to ZFYX, it does not make any difference if ZFYX 
computes the z variables that were already computed by RESID. Given that 
YFZX is called right after RESID, ZFYX merely computes the values 
computed by RESID back again. It is, ofcourse, wasteful of computer time to 
do this, and ZFYX has an option for the relevant z variables to be skipped.) 
The order of the equations matters for solution purposes in that once a z or y 
variable is computed, this value is used in any subsequent calculations 
involving the variable on the RHS of the equations. The order is determined 
by the user in the coding of subroutines YFZX. IDENT, and ZFYX and in 
the numbering of the stochastic equations. 
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Since the techniques discussed in this book require little, if anything, more 
from the user than a way of solving the model. once the four subroutines are 
available, the rest ofthe programming for a technique requires little or no user 
intervention. One of the advantages of this feature is that one can move 
automatically from estimation to the use of other techniques. It is easy in the 
program to modify a stochastic equation (or to create a new one) and then 
estimate it, and the program always stores the last estimate of each equation. 
This means that one can modify a model, reestimate it, and then go immedi- 
ately to the solution of the modified version with no extra programming. 

Debugging subroutines is always a problem for large models, but the pro- 
gram allows this to be done fairly easily. First, given the actual data for the .V 
and x variables, a call to IDENT should result in the predicted values of the 
identity-determined y variables being equal to the actual values. Since, as 
noted earlier. order matters in this subroutine, if an error has been made in 
one equation so that the predicted value of they variable corresponding to the 
equation is not equal to the actual value, this error will affect the calculations 
of subsequent identities that use this variable. This sometimes makes it 
difficult to determine if an error is a coding error or the result of a previous 
error, and the easiest thing to do is to correct the obvious errors and run the 
test again. Debugging of IDENT can usually be accomplished with two or 
three sets of corrections. 

Second, RESID can be tested in the following way. There is an option in 
RESID to compute either the LHS z variables in the stochastic equations or 
the residuals. In other words, RESID will compute either the LHS variable in 
equation i in (C. I) or the error term uiz. Ifthe residuals are computed over the 
estimation period and ifthe actual values ofthe z variables are used for these 
calculations, then the sum ofthese residuals squared for each equation should 
equal the sum of squared residuals computed by the estimation technique at 
the time of estimation. This latter sum is printed by the program at the time of 
estimation, and thus one can check to see if the two sums are the same for 
each equation. To~some extent this check is unnecessary, since RESID does 
not have to be debugged, but it is useful to make sure that the set of 
coefficients being used is what the user thinks it is and that no changes have 
been made between estimation and solution time that affect these calcula- 
tions. 

Finally, the entire solution process can be tested as follows. If RESID is 
called and if the residual computation option is used, the program computes 
and stores the residuals. A second call to RESID to compute the z variables 
will then result in the computed values of the z variables being equal to the 
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actual values. A call to YFZX should then produce actual values of the y 
variables corresponding to the stochastic equations, and a call to IDENT 
should produce the actual values of the y variables determined by the 
identities, In short, the solution values should equal the actual values when 
the estimated residuals are used in RESID for the solution ofthe z variables. If 
not, and if RESID and IDENT have been checked previously, then YFZX 
must contain one or more errors. 

These three tests do not catch all errors. There may. for example. be an 
error in ZFYX in computing a a variable that is not a LHS variable of a 
stochastic equation, and this will not necessarily be caught. The tests do, 
however, catch most errors so once these tests are passed, one can have some 
confidence that no coding errors are involved in the use of the various 
techniques. 

Note with respect to the third test that because RESID computes residuals 
as well as z variables, perfect tracking solutions are easy to create and then use 
as a base for other experiments. This is accomplished by one call to RESID 
using the residual option and the actual values of the z variables. The residuals 
are stored and treated as exogenous for any future experiments. 

The extra subroutines are that needed for some ofthe techniques will now 
be discussed. For FIML estimation, one must supply information on the 
Jacobian. This is done by creating a data set that consists ofFORTRAN code 
for the nonzero derivatives (in any order). A program that accompanies the 
main Fair-Parke program reads this data set and creates two FORTRAN 
subroutines, which are then added to~the main program. The program 
automatically takes account ofthe sparse structure ofthe Jacobian. so the user 
need not worry about this. Debugging the Jacobian code is a serious problem, 
however. If errors have been made in the code, it may still be the case that the 
subroutines compile and the determinants of the Jacobian are computed with 
no error messages. There is no obvious way to test that all the derivatives are 
correct. It is easy to make small errors in the code, and my suggestion is to 
have two people each take and code the derivatives. Two separate setup jobs 
can then be run, and two separate initial values ofthe likelihood function can 
be computed. If the two values are not the same, then at least one error has 
been made, which then requires checking the two sets of code line by line. 

If there are constraints on the coefficients, such as a,s = cr,7cr25, a subrou- 
tine must be supplied that codes these constraints. The constrained coeffi- 
cients are not estimated, but they are used in RESID in computing the z 
variables and residuals. Given the subroutine for the constraints. RESID does 
not have to be modified to account for them. 
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If an equation is nonlinear in coefficients for reasons other than because of 
serial correlation problems and if the equation is to be estimated by OLS or 
ZSLS, a subroutine must be supplied that computes the residuals for a given 
set of coefficients, The program uses the residuals to compute u:Diu, in (6.5), 
which is then turned over to the DFP algorithm. 

For the solution of optimal control problems, a subroutine must be sup- 
plied that computes the value ofthe objective function foragiven set ofvalues 
of the JJ and x variables. In other words, the user must supply a subroutine that 
computes Win (10.2). 

Two additional subroutines are needed if the model is a rational expecta- 
tions model. One subroutine creates the expectations variables from the Y 
and Xvariables. The user-supplied part ofthis subroutine consists merely of 
one line of code per expectation variable, so it requires very little work to 
construct. The other subroutine creates the expectations of the exogenous 
variables. where the assumptions that are used for this are left to the user. This 
subroutine does not have to be supplied if the expectations of the exogenous 
variables are assumed to be equal to the actual values for all variables. 

These are the main additional subroutines. A few others are required for 
some ofthe options, but they are not ofgeneral interest here. A final point to 
emphasize about the program is that it allows successive reestimation and 
stochastic simulation to be done with virtually no extra work on the part of 
the user. One number indicates how many times the estimation or simulation 
is to be done. Because of the emphasis in this book on the comparison method 
in Chapter 8, which requires successive reestimation and stochastic simula- 
tion, the program was written to make this as easy as possible. 
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3. A Theoretical Model 

The single-country model in Section 3.1 is similar to the model in Fair (1974d). The 
main differences between the two models are the following. (I) The earlier model took 
account of both labor and loan constraints, whereas the present model considers only 
labor constraints. I have been unable to find in my empirical work much evidence of 
the effects of loan constraints on the economy, and this is the main reason they have 
been dropped from the theoretical model. Eliminating the loan constraints greatly 
simplifies the model. The household and firm maximization problems are easier to 
specify, and it is no longer necessary to specify a maximization problem for banks. If 
financial markets always clew, as is assumed here, banks can be specified to play a 
passive role in the economy. In the earlier model a rather complicated model of bank 
behavior had to be specified to explain the possible existence ofcredit rationing. Also. 
a bond dealer had to be postulated in the earlier model, which is now no longer 
necessary. (2) The model of household behavior now includes another decision 
variable, the amount of time spent taking care of money holdings. It provides a 
choice-theoretic explanation of the interest sensitivity of the demand for money. (3) 
Some slight changes in the specification of adjustment costs in the model of firm 
behavior have been made. (4) An option has been added to allow monetary policy to 
be endogenous, which is to postulate the possible existence ofan interest rate reaction 
function of the government. In my empirical work 1 have estimated and used such a 
function, and it is now part of the theoretical model. (5) The length of the decision 
horizon for the solution of the household and lirm maximization problems is now 
taken to be three rather than thirty. This change lessens the cost of solving the model, 
and it allows more accurate algorithms to be written. The first-order conditions have 
been obtained explicitly for the household problem, and a more accurate algorithm 
has been written for the firm problem. The cost of solving the earlier model was large 
enough to require that a “condensed” version of the model be used for many of the 
simulations. In the present case a condensed version is not needed. The use of three 
periods is enough to capture the multiperiod nature ofthe maximization problems, so 
nothing is really lost by lessening the length of the horizon. (6) Because of the 
foregoing changes, the values used for the parameters and variables in the simulation 
work are generally different between the two models. This is not very important, 
however, because the only things of interest from the simulation experiments are the 
qualitative results. 
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The discussion of the class of rational expectations models in Section 3. I .7 is 
similar to that in Fair (1978~). The discussion in this paper relied on a “static-equilib- 
rium” version of the basic model in Fair (1974d). I have not used this version in the 
present case. The main points about the class of rational expectations models can be 
made without reference to this version, ofwhich I have never been particularly fond. It 
is an attempt to collapse the basic version, which is dynamic and has disequilibrium 
features, to one with no dynamics and no disequilibrium. So much ofthe basic version 
is lost in this process. however, that the resulting model is not very useful for 
comparison purposes. 

The two-country model in Section 3.2 is similar to the theoretical model in Fair 
(1979a). In this paper a “quasi-empirical” two-country model was also presented, 
which consisted of my US econometric model linked to a model exactly like it. This 
model, which was called Model A. has not been used here. I look on Model A as a help 
in the transition from the theory to the multicountry econometric model in Chapter 4. 
but it is now no longer of much interest. 

Although this note has concentrated on the differences between the models in 
Sections 3. I and 3.2 and those in Fair (1974d) and (1979a), the general premises and 
main features are the same. In particular, the discussion of the models in Sections 
3. I I and 3.2. I pertains to both the earlier work and the present work. 

4. An Econometric Model 

The US model in Section 4. I is similar to the model in Fair (1976), with the addition 
ofthe interest rate reaction function in Fair (1978b). The idea that firms may at times 
be off their production functions and hold excess labor, which is part of both the 
theoretical and econometric models, was first explored in Fair (1969). The employ- 
ment and hours equations in Section 4. I .5 are similar to those in this earlier work. The 
specification of the production equation has been in part influenced by the results in 
Fair (197la). 

The US model has been updated and changed slightly over the year?., but the basic 
structure and features have remained the same. One of the more important minor 
changes that has been made is the imposition of the real wage constraint in Section 
4.1.5. A change that expanded the size ofthe model, but otherwise had little effect, was 
the disaggregation of the government sector into federal and state & local. 

The US model is not a revised or extended version of my original forecasting 
model (Fair 197 lb). The only stochastic equation that is similar between the two 
models is the employment equation. which, as just noted, is derived from the work in 
Fair (1969). The forecasting model was intended to be used for very short run 
forecasting purposes, which meant that a number of expectations variables, such as 
a variable measuring plant and equipment investment expectations, were taken to 
be exogenous. In this sense the forecasting model is not structural, whereas the US 
model is. 
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The MC model in Section 4.2, aside from the trade share equations. is presented 
in an unpublished working paper (Fair 19gla). The model in this paper took trade 
shares to be exogenous. The endogenous treatment of trade shares in Section 4.2.6 is 
new. This treatment is different from an earlier one presented in another unpublished 
working paper (Fair 198 lb), where constraints were imposed on the coellicients across 
eauations. 

5. Other Econometric Models 

The discussion of Sargent’s model in Section 5.4 is similar to the discussion in section 
II in Fair (1979~). An iterative ZSLS procedure was used in this paper to estimate 
Sargent’s model, but this has not been done here. A much better technique for rational 
expectations models is full information maximum likelihood (FIML), and it is now 
possible to estimate Sargent’s model by FIML. This is discussed in Chapter I I. 

6. Estimation 

The method discussed in Section 63.2 for the linear-in-coefficients case with serial 
correlation is presented in Fair (1970). The formulas in (6.20)-(6.23) for the 2SLS 
covariance matrix are presented in Fair and Parke (1980). The 3SLS estimator that is 
based on the minimization of (6.26) is also presented in this paper. The 2SLAD 
estimator in Section 6.3.6 for 4 = 1.0 is suggested in Fair (1974~). 

The RML. cost savings with respect to the Jacohians that are considered in 
Section 6.5.2 are discussed in Fair (1976, chap. 3). The estimation of subs& of 
coefficients by FIML is also discussed in this chapter. The DFP algorithm was used for 
this earlier FIML work, and it turned out that the “FIML” estimates that are reported 
in Fair (1976) are not the true FIML estimates. Parke later found using his algorithm a 
larger value of the likelihood function. 

The computational method for the LAD and 2SLAD estimators in Section 6.5.4 
is discussed in Fair (1974~). 

The possible use of the Hausman test in Section 6.6 to compare the ZSLS, 3SLS, 
and FlML estimates is discussed in Fair and Parke (I 980). The discussion in this paper 
is misleading in one respect: we failed to point out that the alternative hypothesis that 
is tested when the 3SLS and FIML estimates are compared for a nonlinear model is 
that the distribution of the error terms is such as to lead to inconsistent FIML 
estimates. It was implicitly assumed that any nonnormal distribution meets this 
requirement, which, as Phillips (1982) has pointed out, is not the case. The Hausman 
test was used in this paper to compare the 2SLS and 3SLS estimates even though, as 
we pointed out. the comparison is not valid because of the different sets of first-stage 
regressors used by 2SLS and 3SL.S. The test was applied, where possible, to try to get a 
feeling for the results, but very little weight was placed on them. For purposes of this 
book, no attempts have been made to use the Hausman test. 
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7. Solution 

Part ofthe discussion in this chapter is taken from Fair (forthcoming). 

8. Evaluating Predictive Accuracy 

Thcdiscussion in Sections 8.2 and 8.3 is taken from Fair(forthcoming). Theoriginal 
discussion of the method in Section 8.4 is contained in Fair (1980a). Further discus- 
sion of the method and its use can be found in Fair (1979~) and (1982b). The 
discussion of the d;,, values in Section 8.5.2 is similar to that in Fair (1982b), and the 
comparison of the models in Section 8.5.4 is similar to that in Fair (1979~). The 
comparison of the MC and ARMC models in Section 8.6 is similar to that in Fair 
(198lzl). 

9. Evaluating Static and Dynamic Properties 

The original discussion of the stochastic simulation method in Seaion 9.3 for estimat- 
ing the uncertainty of policy effects is contained in Fair (1980b). The empirical 
analysis in Section 9.4.2 is similar to that in Fair (1980b); the analysis in Section 9.4.4 
is similar to that in Fair (l97Xb); and the analysis in Section 9.4.5 is similar to that in 
Fair and Parke (1980). The empirical results in these sections are not exactly the same 
as those in the original papers because the US model has been updated for the 
purposes of this book. 

The discussion ofthe properties ofthe MC model in Section 9.5 is similar to that 
in Fair (1982a). The results in this section are not exactly the same as those in the 
paper because the US and MC models have been updated and because a different set 
of trade share equations has been used. For the results in the paper the trade share 
equations in Fair (198lb) were used, whereas for the results in this book the trade 
share equations in Section 4.2.6 have been used. 

10. Optimal Control Analysis 

The original discussion ofthe method in Section 10.2 is in Fair (1974~1). The measure 
of performance in Section 10.3 was hrst proposed in Fair (1978~1). Chow’s (1978) 
comment on this measure contains an error. Chow asserts that because the measure is 
based on the open-loop approach it assumes that “decisions [are] made once for 
ail four years at the beginning of each administration” (p, 314). This Statement is 
incorrect because the measure is based on the open-loop approach wirh reoptimiza- 
tion each period. Furthermore. Chow is not explicit in pointing out that his measure 
also requires that a new optimization problem be solved each period for a nonlinear 
model because the linearization changes with each new realization. An attempt was 
made in Fair (1978~1) to approximate the measure of performance by solving fewer 
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control problems than are ac%dly needed in the complete case. These approxima- 
tions were then used to compare past U.S. presidential administrations. No attempt 
has been made to do this here, since it is not clear how good the approximation is. 

11. Models with Rational Expectations 

The discussion in Sections 1 I .2, I 1.3: 1 I .4, and 11.6 is based on Fair and Taylor 
(1983). The analysis in Section II .7 is similar to that in Fair (1979d). The results in 
Section I I .7 do not match exactly the results in this paper because the US model has 
been updated for present purposes and because the experiments are not exactly the 
same. The experiments differ in the prediction periods used, in the choice ofa value of 
Tin (I I .20), in the treatment ofthe initial value ofstock prices, and in the treatment of 
the variable values beyond the end of the data. The discussion of the solution of 
optimal control problems in Section 11.5 and the estimation of Sargent’s model by 
FIML in Section I I .8 are new. 
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