
2 Macroeconomic Methodology 

2.1 Macro Theoretical Models and the Role of Theory 

2.1.1 Ingredients of Models 

Broadly speaking, an economy consists of people making and carrying out 
decisions and interacting with each other through markets. Theories provide 
explanations of how the decisions are made and how the markets work. The 
ingredients of a theory include the choice of the decision-making units, the 
decision variables and objective function ofeach unit, the constraints facing 
each unit. and the amount of information each unit has at the time the 
decisions are made. Possible constraints include budget constraints, techno- 
logical constraints, direct constraints on decision variables, and institutional 
or legal constraints. If expectations of future values affect current decisions, 
another ingredient of a theory is an explanation of how expectations are 
formed. 

A theory of how markets work should explain who sets prices and how they 
are set. If there is the possibility of disequilibrium in certain markets, the 
theory should explain how quantities are determined each period and why it 
is that prices are not set to clear the markets. Institutional constraints may 
play an important role in some markets. 

In macroeconomics there are also a number of adding-up constraints that 
should be met. In particular, balance-sheet and flow-of-funds constraints 
should be met. An asset of one person is a liability of wmeone else, and 
income of one person in a period is an expenditure of someone else in the 
period. These two constraints are not independent, since any deviation of 
income from expenditure for an individual in a period corresponds to a 
change in at least one of his or her assets or liabilities. 

2.1.2 The Traditional Role of Theory 

An important issue in the construction ofa model is the role that one expects 
theory to play. If the aim is to use the theoretical model to guide the 
specification of an empirical model, the issue is how many restrictions one 
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can expect theory to provide regarding the specification ofthe equations to be 
estimated. In practice, the primary role of theory has been to choose the 
variables that appear with nonzero coefficients in each equation. (Stated 
another way, the primary role of theory has been to provide “exclusionary” 
restrictions on the model, that is, to provide a list ofvariables not to include in 
each equation.) In most cases theory also chooses the signs ofthe coefficients. 
Much less often is theory used to decide things like the functional forms ofthe 
estimated equations and the lengths ofthe lag distributions. (This is not to say 
that theory could not be used for such purposes, only that it generally has not 
been.) This role of theory-the choice of the variables to include in each 
equation-will be called the “traditional” role or approach. 

An interesting question within the traditional approach is whether theory 
singles out one variable per equation as the obvious dependent or “left-hand- 
side” (LHS) variable, where the other variables are then explanatory or 
“right-hand-side” (RHS) variables. In this way of looking at the problem, the 
LHS variable is the decision variable and the RHS variables are the determi- 
nants of the decision variable. If the theoretical problem is to explain the 
decisions of agents, this way seems natural. Each equation is a derived 
decision equation (derived either in a maximization context or in some other 
way) with a natural LHS variable. The alternative way of looking at the 
problem is that theory treats all variables in each equation equally. These two 
interpretations have important implications for estimation. In particular, full 
information maximum likelihood (FIML) treats all variables equally, 
whereas two-stage least squares (2SLS) and three-stage least squares (3SLS) 
require an LHS variable to be chosen for each equation before estimation 
(see, for example, Chow 1964). One might thus be inclined to choose 3SLS 
over FTML under the first interpretation, although there are other issues to 
consider in this choice as well. This issue is discussed in more detail in Section 
6.3.4, where FIML and 3SLS are compared. For the remainder ofthis chapter 
it will be assumed that within the traditional approach the LHS variable is 
also chosen. 

2.1.3 The Hansen-Sargent Approach and Lucas’s Point 

An alternative role for theory is exemplified by the recent work of Hansen and 
Sargent (1980). In this work the aim is to estimate the parameters of the 
objective functions ofthe decision-making units. In the traditional approach 
these parameters are never estimated. The parameters ofthe derived decision 
equations (rules) are estimated instead, where these parameters are functions 
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of the parameters of the objective function and other things. The Hansen- 
Sargent approach imposes many more theoretical restrictions on the data 
than does the traditional approach, especially considering that the traditional 
approach imposes very few restrictions on the functional forms and the lag 
structures of the estimated decision equations. 

The advantage of the Hansen-Sargent approach is that it estimates struc- 
tural parameters rather than combinations of structural parameters and other 
things. The problem with estimating combinations is that if, say, one wants to 
examine the effects of changing an exogenous variable on the decision 
variables, there is always the possibility that this change till change some- 
thing in the combinations. If so, then it is inappropriate to use the estimated 
decision equations, which are based on fixed estimates of the combinations, 
to examine the effects of the change. This is the point emphasized by Lucas 
(1976) in his classic article. (Note that the validity of the point does not 
depend on expectations being rational. Even if expectations are formed in 
rather naive ways, it may still be that the coefficients of the decision equations 
are combinations of things that change when an exogenous variable is 
changed.) 

There are two disadvantages of the Hansen-Sargent approach, one that 
may be temporary and one that may be more serious. The temporary 
disadvantage is that it is extremely difficult to set up the problem in such a way 
that the parameters can be estimated, especially if there is more than one 
decision variable or if the objective function is not quadratic. Very restrictive 
assumptions have so far been needed to make the problem tractable. This 
disadvantage may gradually be lessened as more tools are developed. At the 
present time, however, this approach is a long way from the development of a 
complete model of the economy. 

A potentially more serious disadvantage, at least as applied to macroeco- 
nomic data, is the possibility that the approach imposes restrictions on the 
data that are poor approximations. Macroeconomic data are highly aggre- 
gated, and it is obviously restrictive to assume that one objective function 
pertains to, say, the entire household sectororthe entire firm sector. Although 
both the traditional approach &d the Hansen-Sargent approach are forced to 
make assumptions like this when dealing with macroeconomic data, the 
Hansen-Sargent approach is much more restrictive. Ifbecause ofaggregation 
problems the assumption that a sector behaves by maximizing an objective 
function is not correct, models based on both approaches will be misspecified. 
This misspecification may be more serious for models baaed on the Hansen- 
Sargent approach because it uses the assumption in a much stronger way. To 
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put it another way, by not requiring that a particular objective function be 
specified, the traditional approach may be more robust to errors regarding the 
maximization assumption. 

It is difficult to argue against the Hansen-Sargent approach without sound- 
ing as if one is in favor of the use ofad hoc theory to explain macroeconomic 
data. Arguments against theoretical purity are generally not well received in 
the economics profession. There are, however, as just discussed, different 
degrees to which theory can be used to guide econometric specifications. 
There is a middle ground between a completely ad hoc approach and the 
Hansen-Sargent approach, namely what I have called the traditional ap 
preach. An example of this approach is given in Chapters 3 and 4. 

It should also be noted that the Hansen-Sargent approach can be discussed 
without reference to how expectations are formed. It is typically assumed 
within this approach that expectations are rational, but this is not a necessary 
assumption. It is clearly possible within the context of a maximization 
problem to assume that expectations of the future variable values that are 
needed to solve the problem are formed in simple or naive ways. The possible 
problems with the Hansen-Sargent approach discussed earlier exist indepen- 
dently of the expectational assumptions that are used. The problems are 
perhaps potentially mom serious when the rational expectation assumption is 
used because of the tighter theoretical restrictions that are implied, but this is 
only a matter ofdegree. The treatment ofexpectations is discussed in Section 
2.2.2. 

Whether the Hansen-Sargent approach will lead to better models of the 
economy is currently an open question. As noted in Chapter 1, a major theme 
of this book is that it should be possible in the long run to decide questions like 
this using methods like the one discussed in Chapter 8. The method in 
Chapter 8 allows one to compare different models in regard to how well they 
approximate the true structure. If the Hansen-Sargent approach leads eventu- 
ally to the construction of complete models of the economy, it should be 
possible to compare these models to models based on the traditional ap- 
proach. 

If because of the limitations just discussed the Hansen-Sargent approach 
does not lead to econometric models that are good approximations, this does 
not invalidate Lucas’s point (1976). The point is a logical one. If parameters 
that are taken to be constant change when an exogenous variable is changed, 
the estimated effects of the change are clearly in error. The key question for 
any given experiment with an econometric model is the likely size of this 
error. There are many potential sources of error, and even the best economet- 
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ric model in the future (as judged, say, by the method in Chapter 8) will be 
only an approximation to the structure. It may be that for many experiments 
the error from the Lucas point is quite small. The question is how much the 
parameters of estimated decision equations, such as consumption and labor 
supply equations of the household sector, change when a government policy 
variable changes. For many policy variables and equations these changes may 
not be very great. The errors in the multipliers that result from not accounting 
for the parameter changes may be much smaller than, say, the errors that 
result from aggregation. At any rate, how important the Lucas point is 
quantitatively is currently an open question. 

One encouraging feature regarding the Lucas point is the following. As- 
sume that for an equation or set of equations the parameters change consider- 
ably when a given policy variable changes, Assume also that the policy 
variable changes frequently. In this case the method in Chapter 8 is likely to 
weed out a model that includes this equation or set of equations. The model is 
obviously misspecified, and the method should be able to pick up this 
misspecification if there have been frequent changes in the policy variable. It 
is thus unlikely that a model that suffers from the Lucas criticism will be 
accepted as the best approximation of the structure. 

One may, of course, still be misled regarding the Lucas point if the policy 
variable has changed not at all or very little in the past. In this case the model 
will still be misspecified. but the misspecification has not been given a chance 
to be picked up in the data. The model may thus be accepted when in fact it is 
seriously misspecitied with respect to the effects of the policy variable on the 
endogenous variables. One should thus be wary of drawing conclusions about 
the effects of seldom-changed policy variables unless one has strong reasons 
for believing that the Lucas point is not quantitatively important for the 
particular policy variable in question. 

2.1.4 The Sims Approach 

Another role for theory in the construction of empirical models has been 
stressed recently by Sims (1980). This role is at the opposite end of the 
spectrum from that advocated by Hansen and Sargent-namely, it is very 
limited. Sims does not trust even the exclusionary restrictions imposed by the 
traditional approach; he argues instead for the specification of vector autore- 
gressive equations. where each variable is specified to be a function of its own 
lagged values and the lagged values of other variables. (An important early 
study in this area is that of Phillips 1959.) Although this approach imposes 
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some restrictions on the data-in particular, the number of variables to use, 
the lengths of the lags, and (sometimes) cross-equation restrictions on the 
coefficients-the restrictions are in general less restrictive than the exclusion- 
ary ones used by the traditional approach. 

Although it is again an open question whether Sims’s approach will lead to 
better models, it should be possible to answer this question by comparing 
models based on this approach to models based on other approaches. Some 
results that bear on this question are presented in this book. The method in 
Chapter 8 is used to compare my US model to two vector autoregressive 
models. The vector autoregressive models are presented in Section 5.2, and 
the comparison is discussed in Section 8.5. 

2.1.5 Long-Run Constraints 

In much macroeconomic modeling in which theory is used, various long-run 
constraints are imposed on the model. Consider, for example, the question of 
the long-run trade-off between inflation and unemployment. Economists 
with such diverse views as Tobin and Lucas seem to agree with the Friedman- 
Phelps proposition that there is no long-run trade-off. (See Tobin 1980, p. 39, 
and Lucas 1981, p. 560. For the original discussion of the Friedman-Phelps 
proposition see Friedman 1968 and Phelps 1967.) Accepting this proposition 
clearly colors the way in which one thinks about macroeconomic issues. 
Lucas, for example, points out that much of the recent work in macroeco- 
nomic theory has been concerned with trying to reconcile this long-run 
proposition with the observed short-run fluctuations in the economy (198 1, 
p. 561). The imposition of long-run constraints of this type clearly has 
important effects on the entire modeling exercise, including the modeling of 
the short run. 

Although it is difficult to argue this in the abstract, my feeling is that 
long-run constraints may be playing too much of a role in recent macroeco- 
nomic work. Consider the two possible types of errors associated with a 
particular constraint. The first is that an incorrect constraint is imposed. This 
error will lead to a misspecitied model, and the misspecification may be large 
if the constraint has had important effects on the specification of the model 
and if it is a poor approximation. The second type of error is that a correct 
constraint is not imposed. Depending on the setup, this type oferror may not 
lead to a misspecified model, but only one in which the coefficient estimates 
are inefficient. At any rate, it is my feeling that the first type of error may be 
more serious in practice than the second type, and if this is so, long-run 
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constraints should be imposed with considerable caution. It is not obvious, 
for example, that the assumption of no long-run trade-off between inflation 
and unemployment warrants so much confidence that it should be imposed 
on models, given the severe restrictions that it implies. 

This argument about long-run constraints will be made clearer in Section 
3.1.6 in the discussion of my theoretical model. Again, however, this issue of 
the imposition of long-run constraints can be tested (in the long run) by 
comparing models based on different constraints. 

2.1.6 Theoretical Simulation Models 

With the growth of computer technology there has been an increase in the 
number of theoretical models that are analyzed by simulation techniques. 
The main advantage of using these techniques is that much larger and more 
complicated models can be specified, one need not be restricted by analytic 
tractability in the specification of the model. A disadvantage of using the 
techniques is that the properties of the model may depend on the particular 
set ofparameters and functions chosen for the simulation, and one may get a 
distorted picture of the properties. Although one can guard against this 
situation somewhat by performing many experiments with different sets of 
parameters and functions, simulation results are not a perfect substitute for 
analytic results. 

The relationship between simulation exercises and empirical work is not 
always clearly understood, and it will be useful to consider this issue. If 
simulation techniques are merely looked upon as a substitute for analytic 
techniques when the latter are not feasible to use, then the relationship 
between simulation exercises and empirical work is no different from the 
relationship between analytic exercises and empirical work. The results of 
analyzing theoretical models are used to guide empirical specifications, and it 
does not matter how the theoretical model is analyzed. An example ofthe use 
of simulation techniques in this way is presented in this book. The theoretical 
model discussed in Chapter 3 is analyzed by simulation techniques, and the 
results from this model are used to guide the specification ofthe econometric 
model in Chapter 4. Had it been feasible to analyze the model in Chapter 3 by 
analytic techniques, this would have been done, and provided no new insights 
about the model were gained from this, the econometric specifications in 
Chapter 4 would have been the same. In this way of looking at the issue, the 
difference between simulation and analytic techniques is not important: the 
methodology is really the same in both cases. 



Macroeconomic Methodology 17 

Note with respect to empirical work that the type oftheoretical simulation 
model just discussed is not an end in itself; it is merely a stepping-stone to the 
specification of the equations to be estimated. The data arc used in the 
estimation and analysis of the derived empirical model (derived in a loose 
sense-see Section 2.2), not in the theoretical model itself. This type of 
theoretical simulation model is quite different from the type that has come to 
be used in the field of applied general equilibrium analysis. A good discussion 
of the methodology of this field is contained in Mansur and Whalley (198 I), 
and it will be useful to review this methodology briefly to make sure there is no 
confusion between it and the methodology generally followed in macroeco- 
nomics. 

There are two main steps in the construction ofan applied general equilib- 
rium model. The first is to construct for a given period (usually a particular 
year) a “benchmark equilibrium data set,” which is a collection of data in 
which equilibrium conditions of an assumed underlying equilibrium model 
are satisfied. Considerable data adjustment is needed in this step because the 
existing data are generally not detailed enough (and sometimes not concep- 
tually right) for a general equilibrium model. The data, for example, may not 
be mutually consistent in the sense that the model equilibrium conditions are 
not satisfied in the data. Most benchmark equilibrium data sets satisfy the 
following four sets of equilibrium conditions: (1) demand equals supplies for 
all commodities, (2) nonpositive profits are made in all industries, (3) all 
domestic agents (including the government) have demands that satisfy their 
budget constraints, and (4) the economy is in zero external balance. Condi- 
tion (3) usually involves treating the residual profit return to equity as a 
contractual cost. 

The second step is to choose the functional forms and parameter values for 
the model. These are chosen in such a way that the model is “calibrated” to 
the benchmark equilibrium data set. The fundamental assumption involved 
in this calibration is that the economy is in equilibrium in the particular year. 
The restriction on the parameter values is that they replicate the “observed 
equilibrium” as an equilibrium solution of the model. The values are deter- 
mined by solving the equations that represent the equilibrium conditions of 
the model, using the data on prices and quantities that characterize the 
benchmark equilibrium. Depending on the functional forms used, the ob- 
served equilibrium may not be sufficient to determine uniquely the parameter 
values. If the values are not uniquely determined, some of them must be 
chosen ahead of time (that is, before the model is solved to get the other 
values). The values chosen ahead of time are generally various elasticities of 
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substitution; they are often chosen by searching the literature for estimated 
values. 

Once the parameters are chosen, the model is ready to be used for policy 
analysis. Various exogenous variables can be changed, and the model can be 
solved for these changes. The differences between the solution values and the 
values in the data set are the estimates of the effects of the policy change. 
These estimates are general equilibrium estimates in the sense that the entire 
general equilibrium model is solved to obtain them. 

The difference between this second type of theoretical simulation model 
and the first type should be clear. The second type is an end in itself with 
respect to empirical work: models of this type are used to make empirical 
statements. The main problem with this methodology, as is well known by 
people in the field, is that there is no obvious way oftesting whether the model 
is a good approximation to the truth. The models are not estimated in the 
usual sense, and there is no way to use a method like the one in Chapter 8 to 
compare alternative models. Each model fits the data set perfectly, usually 
with room to spare in the sense that many parameter values are typically 
chosen ahead of time. This is contrasted with models of the first type, which 
can be indirectly tested by testing the empirical models that are derived from 
them (see the discussion in Section 2.3). 

It is unclear at this stage whether the applied general equilibrium models 
will become more like standard econometric models and thus more capable 
ofbeing tested or whether they will remain in their current “quasi-empirical” 
state. Whatever the case, the main point for this book is that the methodology 
followed here is quite different from the methodology currently followed in 
applied general equilibrium analysis. 

2.2 The Transition from Theoretical to Econometric Models 

The transition from theoretical models to empirical models is probably the 
least satisfying aspect of macroeconomic work. One is usually severely con- 
strained by the quantity and quality of the available data, and many restric- 
tive assumptions are generally needed in the transition from the theory to the 
data. In other words, considerable “theorizing” occurs at this point, and it is 
usually theory that is much less appealing than that of the purely theoretical 
model. Many examples of this will be seen in Chapter 4 in the discussion of 
the transition from the theoretical model in Chapter 3 to the econometric 
model in Chapter 4. This section contains a general discussion of the steps 
that are usually followed in the construction of an econometric model. 



Macroeconomic Methodology 19 

2.2.1 Step 1: Data Collection and the Choice of Variables and Identities 

The first step is to collect the raw data, create the variables ofinterest from the 
raw data, and separate the variables into exogenous variables, endogenous 
variables explained by identities, and endogenous variables explained by 
stochastic equations. The data should match as closely as possible the vari- 
ables in the theoretical model. In macroeconomic work this match is usually 
not very close because of the highly aggregated nature of the macro data. 
Theoretical models are usually formulated in terms of individual agents 
(households, firms, and the like), whereas the macro data pertain to entire 
sectors (household, firm, and the like). There is little that can be done about 
this problem, and for some it calls into question the usefulness of using 
theoretical models of individual agents to guide the specification of macro- 
econometric models. It may be, in other words, that better macroeconometric 
models can be developed using less micro-based theories. This is an open 
question, and it is another example of an issue that can be tested in the long 
run by comparing different models. 

There are many special features and limitations of almost any data base 
that one should be aware of, and one of the most important aspects of 
macroeconometric work, perhaps the most important, is to know one’s data 
well. Knowledge of how to deal with data comes in part through experience 
and in part from reading about how others have done it; it is difficult to learn 
in the abstract. Appendixes A and B of this book provide an example of the 
collection of the data for my model. 

It is important, ifpossible, to have the data meet the adding-up constraints 
that were mentioned at the beginning of this chapter. In addition to such 
obvious things as having the data satisfy income identities, it is useful to have 
the data satisfy balance-sheet constraints. For the US data, this requires 
linking the data from the Flow of Funds Accounts to those from the National 
Income and Product Accounts. This is discussed in Chapter 4 and in Appen- 
dix A. The linking of these two data bases is a somewhat tedious task and is a 
good example of the time-consuming work that is involved in the collection 
of data. 

The data base may be missing observations on variables that are essential 
for the construction of the model. In such cases, rather than giving up, it may 
be possible to construct estimates ofthe missing data. If, for example, the data 
for a particular variable are annual, whereas quarterly data are needed, it may 
be possible, using related quarterly variables, to create quarterly data from the 
annual data by interpolating. There are also more sophisticated procedures 
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for constructing missing observations (see, for example, Chow and Lin I97 1). 
Appendix B provides a number of examples of the construction of missing 
data for my multicountry model. 

Although it is easiest to think of the division of endogenous variables into 
those determined by stochastic equations and those determined by identities 
as being done in the first step, the choice of identities is not independent ofthe 
choice of explanatory variables in the stochastic equations. If a given explana- 
tory variable is not exogenous and is not determined by a stochastic equation, 
it must be determined by an identity. It is thus not possible to list all the 
identities until the stochastic equations are completely specified. 

2.2.2 Step 2: Treatment of Unobserved Variables 

Most theoretical models contain unobserved variables, and one of the most 
difficult aspects of the transition to econometric specifications is dealing with 
these variables. Much of what is referred to as the “ad hoc” nature of 
macroeconomic modeling occurs at this point. If a theoretical model is 
explicit about the determinants of the unobserved variables and if the deter- 
minants are observed, there is, of course, no real problem. The problem is that 
many models are not explicit about this, and so “extra” modeling or theoriz- 
ing is needed at this point. 

Expctmions 

The most common unobserved variables in macroeconomics are expecta- 
tions. A common practice in empirical work is to assume that expected future 
values of a variable are a function of the current and past values of the 
variable. The current and past values of the variable are then used as 
“proxies” for the expected future values. Given the importance of expecta- 
tions in most models, it will be useful to consider this procedure in some 
detail. 

Consider first the following example: 

(2.1) yt = cu, + w%x,+, + u,> 
where E,_,x,+, is the expected value of x,+i based on information through 
period f - 1. A typical assumption is that E,_,x,+, is a function ofcurrent and 
past values of x 

(2.2) &-ix,+, =a,x,+&x_,+ +i,x,_.+,, 
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where it is assumed that x, is observed at the beginning of period t. Given 
(2.2) two procedures can be followed to obtain an estimatable equation. One 
is to substitute (2.2) into (2. I) and simply regress y, on the current and past 
values ofx. (Other variables can also be used in 2.2 and then substituted into 
2.1. If, say, z, affects E,_,x,+,, then z, would be used as an explanatory 
variable in the ~1~ regression.) A priori restrictions on the Ai coefficients (that is, 
on the shape of the lag distribution) are sometimes imposed before estima- 
tion. Lagged values oftime series variables tend to be highly correlated, and it 
is usually difficult to get estimates of lag distributions that seem sensible 
without imposing some restrictions, If no restrictions are imposed on the & 
coetlicients, a, cannot be identified. 

The other procedure is to assume that the lag distribution is geometrically 
declining, in particular that rli = ,?, i = 1, , m. Given this assumption, 
one can derive the following equation to estimate: 

(2.3) v,=cuo(l-n)+~,x,+i;y,_,+u,--~,_,. 

The coefficient of the lagged dependent variable in this equation, 1, is the 
coefficient of the lag distribution. It appears both as the coefficient of the 
lagged dependent variable and as the coefficient of u,_ I, and although this 
restriction should be taken into account in estimation work, it seldom is. 
Sometimes equations like (2.3) are estimated under the assumption of serial 
correlation of the error term (that is, an assumption like t+ = pv,_, + e,, 
where t+ denotes the error term in 2.3) but this is not the correct way of 
accounting for the J, restriction. 

There is a nonexpectational model that leads to an equation similar to 
(2.3) which is the following simple lagged adjustment model. Let y: be the 
“desired” value of y,, and assume that it is a linear function of x,: 

(2.4) yr = o$ + 0.,x,. 

Assume next that J+ only partially adjusts toy: each period, with adjustment 
coefficient y: 

(2.5) Y,-~~-,=~(~:-~~-l)+ur 

Equations (2.4) and (2.5) can be combined to yield 

(2.6) I; = Plcyo + ~cx,x, + (1 - y).v-, + U‘. 

Equation (2.6) is in the same form as (2.3) except for the restriction on the 
error term in (2.3). As noted earlier, the restriction on the error term in (2.3) is 
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usually ignored, which means that in practice there is little attempt to 
distinguish between the expectations model and the lagged adjustment 
model. It may be for most problems that the data are not capable of 
distinguishing between the two models. The problem of distinguishing be- 
tween the two is particularly difficult if the u, error terms in (2.1) and (2.5) are 
assumed to be serially correlated, because in this case the differences in the 
properties ofthe error terms in the derived equations (2.3) and (2.6) are fairly 
subtle. At any rate, it is usually the case that no attempt is made to distinguish 
between the expectations model and the lagged adjustment model. 

Two other points about (2.3) should be noted. First, if there is another 
variable in the equation, say z,, the implicit assumption that is being made 
when this equation is estimated is that the expectations ofz are formed using 
the same coefficient i. that is used in forming the expectations of x. In other 
words, the shape of the two lag distributions is assumed to be the same. This 
may be, of course, a very restrictive assumption. Second, if there is another 
future expected value ofx in (2. l), say (Y E _ x 2 I I 1+2> and if this expectation is 
generated as 

(2.7) Et-,xc+z =~E,_,x,+,+~*x,+A3x,-, + , 

then (2.3) is unchanged except for a different interpretation ofthe coefficient 
of x,. The coefficient in this case is ?,((a, + 24,) instead of Aa,. The same 
equation would be estimated in this case, although it is not possible to identify 
01, and (Y*. 

It should be clear that this treatment ofexpectations is somewhat unsatisfy- 
ing. Agents may look at more than merely the current and past values of a 
variable in forming an expectation of it, and even if they do not, the shapes of 
the lag distributions may be quite different from the shapes usually imposed 
in econometric work. The treatment of expectations is clearly an important 
area for future work. An alternative treatment to the one just presented is the 
assumption that expectations are rational. This means that agents form 
expectations by first forming expectations of the exogenous variables (in some 
manner that must be specified) and then solving the model using these 
expectations. The predicted values of the endogenous variables from this 
solution are the expected values. The assumption of rational expectations 
posesa numberofdifhcult computational problems when oneisdealing with 
large-scale nonlinear models, but many of these problems are now capable of 
solution. Chapter 11 discusses the solution and estimation of rational expec- 
tations models. 

It is by no means obvious that the assumption that expectations are rational 
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is a good approximation to the way that expectations are actually formed. The 
assumption implies that agents know the model, and this may not be realistic 
for many agents. It would be nice to test assumptions that are in between the 
simple assumption that expectations of a variable are a function of its current 
and past values and the assumption that expectations are rational. One 
possibility is to assume that expectations ofa variable are a function not only 
of its current and past values but also of the current and past values of other 
variables. To implement this, the variable in question could be regressed on a 
set of variables and the predicted values from this regression taken to be the 
expected values. In other words, one could estimate a small model of how 
expectations are formed before estimating the basic model. Expectations are 
not rational in this case because they are not predictions from the basic 
model, but they are based on more information than merely the current and 
past values of one variable. An example of the use of this assumption is 
presented in Section 4.1.3. Although, as will be seen, this application was not 
successful, there is clearly room for more tests of this kind. 

In models in which disequilibrium is a possibility, there is sometimes a 
distinction between “unconstrained” and “constrained” (or “notional” 
and “actual”) decisions. An unconstrained decision is one that an agent 
would make if there were no constraints on its decision variables other than 
the standard budget constraints. A constrained decision is one in which other 
constraints are imposed; it is also the actual decision. In the model in Chapter 
3, for example, which does allow for the possibility of disequilibtium, a 
household may be constrained in how much it can work. A household’s 
unconstrained consumption decision is the amount it would consume if the 
constraint were not binding, and the constrained decision is the amount it 
actually chooses to consume given the constraint. In models of this type the 
unconstrained decisions are observed only ifthe constraints are not binding, 
and so this is another example of the existence of unobserved variables. The 
treatment of these variables is a difficult problem in empirical work, and it is 
also a problem for which no standard procedure exists. The way in which the 
variables are handled in my model is discussed in Section 4.1.3. 

2.2.3 Step 3: Specification of the Stochastic Equations 

The next step is to specify the stochastic equations, that is, to write down the 
equations to be estimated. Since the stochastic equations are the key part of 
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any econometric model, this step is of crucial importance. If theory has not 
indicated the functional forms and lag lengths of the equations, a number of 
versions of each equation may be written down to be tried, the different 
versions corresponding to different functional forms and lag lengths. If the 
theoretical approach is the traditional one, theory has presumably chosen the 
LHS and RHS variables. The specification of the stochastic equations also 
relies on the treatment of the unobserved variables from step 2; the extra 
theorizing in step 2 also guides the choice of the RHS variables. 

Theory generally has little to say about the stochastic features ofthe model, 
that is, about where and how the error terms enter the equations. The most 
common procedure is merely to add an error term to each stochastic equa- 
tion. This is usually done regardless of the functional form of the equation. 
For example, the term + uu would be added to equation i regardless of 
whether the equation were in linear or logarithmic form. If the equation is in 
log form, this treatment implies that the error term affects the level ofthe LHS 
variable multiplicatively. This somewhat cavalier treatment of error terms is 
generally done for convenience; it is another example of an unsatisfying 
aspect of the transition to econometric models, although it is probably not as 
serious as most of the other problems. 

2.2.4 Step 4: Estimation 

Once the equations ofa model have been written down in a form that can be 
estimated, the next step is to estimate them. Much experimentation usually 
takes place at this step. Different functional forms and lag lengths are tried, 
and RHS variables are dropped ifthey have coefficient estimates ofthe wrong 
expected sign. Variables with coefficient estimates of the right sign may also 
be dropped if the estimates have &statistics that are less than about two in 
absolute value, although practice varies on this. 

If at this step things are not working out very well in the sense that very few 
significant coefficient estimates of the correct sign are being obtained, one 
may go back and rethink the theory or the transition from the theory to the 
estimated equations. This process may lead to new equations to try and 
perhaps to better results. This back-and-forth movement between theory and 
results can be an important part of the empirical work. 

The initial estimation technique that is used is usually a limited informa- 
tion technique, such as 2SLS. These techniques have the advantage that one 
can experiment with a particular equation without worrying very much about 
the other equations in the model. Knowledge of the general features of the 
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other equations is used in the choice of the first-stage regressors (FSRs) for the 
2SLS technique, for example, but one does not need to know the exact 
features of each equation when making this choice. If a full information 
technique is used, it is usually used at the end ofthe search process to estimate 
the final version of the model. If the full information estimates are quite 
different from the limited information ones, it may again be necessary to go 
back and rethink the theory and the transition. In particular, this may 
indicate that the version of the model that has been chosen by the limited 
information searching is seriously misspecified. 

Sometimes ordinary least squares (OLS) is used in the searching process 
even though the model is simultaneous. This is a cheap but risky method. 
Because the OLS estimates are inconsistent, one may be led to a version ofthe 
model that is seriously misspecified. This problem presumably will be caught 
when a consistent limited information or full information technique is used, 
at which point one will be forced to go back and search using the consistent 
limited information technique. It seems better merely to begin with the latter 
in the first place and eliminate this potential problem. The extra cost involved 
in using, say, 2SLS over OLS is small. 

2.2.5 Step 5: Testing and Analysis 

The next step after the model has been estimated is to test and analyze it. This 
step, it Seems to me, is the one that has been the most neglected in macroeco- 
nomic research. Procedures for testing and analyzing models are discussed in 
Chapters 7 - 10; they will not be discussed here except to note the two that 
have been most commonly used. First, the principal way that models have 
been tested in the past is by computing predicted values from deterministic 
simulations, where the accuracy of the predictions is usually examined by 
calculating root mean squared errors (Sections 8.2 and 8.3). Second, the main 
way that the properties of models have been examined is by computing 
multipliers from deterministic simulations (Section 9.2). As will be seen, both 
of these procedures, especially the first, are subject to criticism. 

It may also be the case that things are not working out very well at this 
testing and analysis step. Poor fits may be obtained, and multipliers that seem 
(according to one’s a priori views) too large or too small may also be obtained. 
This may also lead one to rethink the theory, the transition, or both, and 
perhaps to try alternative specifications. In other words, the back-and-forth 
movement between theory and results may occur at both the estimation and 
analysis steps. 
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2.2.6 General Remarks 

The back-and-forth movement between theory and results may yield a model 
that fits the data well and seems on other grounds to be quite good, when it is 
in fact a poor approximation to the structure. If one searches hard enough, it 
is usually possible with macro time series data to come up with what seems to 
be a good model. The searching for models in this way is sometimes called 
“data mining” and sometimes “specification searches,” depending on one’s 
mood. A number of examples of this type of searching are presented in 
Chapter 4. Fortunately, there is a way of testing whether one has mined the 
data in an inappropriate way, which is to do outside sample tests. If a model is 
poorly specified, it should not fit well outside ofthe sample period for which it 
was estimated, even though it looks good within sample. It is thus possible to 
test for misspecification by examining outside sample results, and this is what 
the method in Chapter 8 does in testing for misspecification. (There is, 
however, a subtle form of data mining that even the method in Chapter 8 
cannot account for. This is discussed in Section 8.43.) 

Because of the dropping of variables with wrong signs and (possibly) the 
back-and-forth movement from multiplier results to theory, an econometric 
model is likely to have multiplier properties that are similar to what one 
expects from the theory. Therefore, the fact that an econometric model has 
properties that are consistent with the theory is in no way a confirmation of 
the model. Models must be tested using methods like the one in Chapter 8, 
not by examining the “reasonableness” of their multiplier properties. 

It should also be emphasized that in many cases the data may not contain 
enough information to decide a particular issue. If, for example, tax rates have 
not been changed very much over the sample period, it may not be possible 
to discriminate between quite different hypotheses regarding the effects of 
tax rate changes on behavior. It may also be difficult to discriminate be- 
tween different functional forms for an equation, such as linear versus 
logarithmic. In Chapter 4 a number of examples are presented of the inability 
to discriminate between alternative hypotheses. When this happens there is 
little that one can do about it except to wait for more data and be cautious 
about making policy recommendations that are sensitive to the different 
hypotheses. 

2.3 Testing Theoretical Models 

This is a good time to consider the second methodological question men- 
tioned in Chapter I, namely, what do econometric results have to say about 
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the validity of theories? It should be clear by now that transitions from 
theoretical models to econometric models are typically not very tight. It may 
be that more than one theoretical model is consistent with a given economet- 
ric model. If this is so, then finding out that an econometric model is, say, the 
best approximation among all econometric models is not necessarily a 
finding that a particular theory that is consistent with the model is valid. One 
may thus be forced to make weaker conclusions about theoretical models 
than about econometric models. 

If it is possible to test the assumptions ofa theoretical model directly, it may 
not be the case that one is forced to make weaker conclusions about theoreti- 
cal models. The problem in macroeconomics is that very few assumptions 
seem capable of direct tests. Part of the problem is the aggregation; it is not 
really possible to test directly assumptions about, say, the way an entire sector 
chooses its decision variables. A related problem is that many macroeco- 
nomic assumptions pertain to the way in which agents interact with each 
other, and these assumptions are difficult to test in isolation. Assumptions 
about expectations are also difficult or impossible to test directly because 
expectations are generally not observed. Even if expectations were observed, 
however, it would not be possible to test the rational expectations assumption 
directly. In this case one needs a complete model to test the assumption. One 
is thus forced in macroeconomics to rely primarily on testing theories by 
testing econometric models that are derived (however loosely) from them. 
This procedure of testing theories by testing their implications rather than 
their assumptions is Friedman’s view (1953) about the way theories should be 
tested. One does not, however, have to subscribe to Friedman’s view about 
economic testing in general in order to believe that it holds for macroeco- 
nomics. Macroeconomic theories are tested indirectly not always out of 
choice, but out of necessity. 

Given the indirect testing of theories and the sometimes loose transitions 
from theories to empirical specifications, it is not clear that one ought to talk 
in macroeconomics about theories being “true” or “false.” Macroeconomics 
is not like physics, where on average theories are linked more closely to 
empirical tests. 1 have suggested (Fair 1974d) that it may be better in 
macroeconomics to talk about theories being “useful” or “not useful.” A 
theory is useful if it aids in the specification ofempirical relationships that one 
would not already have thought of from a simpler theory and that turn out to 
be good approximations. Otherwise, it is not useful. Although how one wants 
to label theories is a semantic question, the terms “useful” and “not useful” 
do highlight the fact that theories in macroeconomics are not as closely linked 
to empirical tests as arc many theories in physics. 
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2.4 Expected Quality of Macroeconometric Models in the Long Run 

An interesting question is how good one expects macroeconometric models 
to be in the long run, say in twenty orthirty years. It may be that behavior is so 
erratic and things like aggregation problems so severe that no model will be 
very good. This will show up in large estimated variances ofprediction errors 
by the method in Chapter 8 and probably in large estimates of the degree of 
misspecification. Another way of stating this is that the structure of the 
economy may be too unstable or our potential ability to approximate closely 
a stable structure too poor to lead to accurate models. If this is true, models 
will never be of much use for policy purposes. They may be of limited use for 
short-run forecasting, but even here probably only in conjunction with 
subjective adjustments. 

My research is obviously based on the premise that there is enough 
structural stability to warrant further work on trying to approximate the 
structure of the economy well. This is, of course, a premise that can only be 
verified or refuted in the long run, and there is little more that can be said 
about it now. It is interesting to note that the extensive use of subjective 
adjustments by the commercial model builders and their lack of much 
scientific research on the models may indicate lack of confidence in a stable 
structure. 

It is also interesting to note, as mentioned in Chapter 1, that the lack of 
confidence in large-scale models has led to research on much smaller ones. In 
one sense this may be a reasonable reaction, and in another sense not. If the 
lack of confidence is a lack of confidence in a stable structure, the reaction 
does not seem sensible. It seems quite unlikely that the structure would be 
unstable in such a way as to lead small models to approximate it less poorly 
than large models. One should instead just give up the game and do some- 
thing else. If, on the other hand, the lack of confidence in large-scale models is 
a feeling that they have gone in wrong directions, it may be sensible to back up 
for a while. In this case the premise is still that the structure is stable, and the 
issue is merely how best to proceed to try to approximate it well. 

2.5 Nonlinear Optimization Algorithms 

It may seem odd to put a section on nonlinear optimization algorithms in a 
chapter on macroeconomic methodology, but the solution of nonlinear 
optimization problems is an important feature of current macroeconomic 
research. In this book the following problems arise. (1) In the theoretical 
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model in Chapter 3 the decisions of the agents are based on the solutions of 
nonlinear multiperiod maximization problems. (2) The estimation tech- 
niques discussed in Chapter 6 require the solution of nonlinear optimization 
problems. (3) The optimal control problems discussed in Chapter 10 are set 
up as standard nonlinear maximization problems. (4) The estimation of 
rational expectations models discussed in Chapter 1 I requires the solution of 
a nonlinear maximization problem. 

For many nonlinear optimization problems, general-purpose algorithms 
are sufficient. One of the most commonly used is the Davidon-Pletcher- 
Powell (DFP) algorithm, which is discussed later in this section. For a number 
of problems, however, general-purpose algorithms do not work or do not 
work very well, and for these problems special-purpose algorithms must be 
written. As discussed in Section 6.5.2. the DFP algorithm does not seem to 
work for moderate to large PIML and 3SLS estimation problems. These 
problems must instead be solved using an algorithm designed particularly for 
them, the Parke algorithm. The other problems in this book for which 
special-purpose algorithms were written are the least absolute deviations 
(LAD) and two-stage least absolute deviations (2SLAD) estimation problems 
in Section 65.4 and the multiperiod maximization problems in Sections 
3.1.2 and 3. I .3. The DE’ algorithm does not work for the LAD and 2SLAD 
problems, and it was not tried for the multiperiod maximization problems 
because it seemed likely to be too expensive. 

When general-purpose algorithms are used, it is not really necessary to 
know how they find the optimum as long as they do. They can, in other words, 
be treated as black boxes as long as things are going well. If the algorithms are 
not working well, knowledge of what they are trying to do may help either in 
modifying them for the particular problem or in designing new algorithms. In 
the remainder of this section a brief explanation of the DFP algorithm will be 
presented. 

Consider the problem of minimizingf(xi with respect to the elements of 
thenX 1 vectorx=(x,,x 2, ,A-,)! (The problem of maximizingf(xi is 
merely the problem of minimizing -f(x).) The function/is assumed to be 
twice continuously differentiable. Approximating f(-u by a second-order 
Taylor series about some point x0 yields 

(2.8) f(x) -flxO) + g(,+)‘(x - x0) + 3x - xa)‘G(xa)(x- x0), 

where g(x”) is the n X 1 vector of the gradient off(xl evaluated at x0 and 
G(xO) is the n X n matrix of the second derivatives of f(x) evaluated at x? 
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Minimizing the RHS of (2.8) by setting the partial derivatives with respect to 
x equal to zero yields 

(2.9) &CC’) + G(x”)(x - x0) = 0 

or 

(2.10) x=.x0 - [G(xO)]-‘g(x”) 

Equation (2.10) forms the basis for many algorithms. Letting xk denote the 
value of x on the kth iteration, one can iterate using (2.10): 

(2.1 I) 9 = ,xJ-’ - [G(.x-‘)]-I&+‘), 

where someinitial guessis used for.rPIf(2.11) isused exactly, thealgorithm is 
called Newton’s method, or Newton-Raphson’s method. The matrix 
[G(& ‘)I-’ is called the Hessian matrix. 

Newton’s method can be expensive because it requires calculating the 
Hessian matrix at each iteration, and much ofthe recent work in this area has 
been concerned with algorithms that do not require this calculation. The 
general formula for many of these algorithms can be written 

(2.12) x*=$-L - ikx- IE,k-I&$-l), 

where Hh - ’ is an n X n matrix and A” - ’ is a scalar. Algorithms based on 
(2.12) do two things at each iteration: (1) they choose a search direction 
Hk- ‘g(xX- I). and (2) they choose a value for I? 1 by carrying out a line 
search in this direction. (Newton’s method is, of course, one of these algo- 
rithms, where H*-’ = [G(,A?-‘)]-~ and ?,‘;-I = 1.) After the direction is 
chosen, the line search usually consists of fitting a second-degree polynomial 
to three points along the direction and then minimizing the resulting polyno- 
mial. 

The algorithms differ in their choice of search directions. The DFP algo- 
rithm, which is of primary concern here. is a member of a class of methods 
called “matrix-updating” methods. Other names for this class include 
“quasi-Newton” and “variable metric.” These methods never compute the 
Hessian, but instead build up an approximation to it during the iterative 
process by successive additions of low-rank matrices. The updating equation 
for the DFP algorithm is 

(2.13) 9 = I, 

Hk-, = Hx-z + g _ Hk-2Y(Hh-z~Y 
0 y,f{k-2y : k=2>3,. , 
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where 6 = x*-’ - ti-z and y = &x*-l) - &a~-~). There are a number of 
ways to motivate (2.13). but to do so here would take us too far afield; the 
interested reader is referred to Huang (1970) and Dennis and More (1977). 
(The original discussion ofthe DFP algorithm is contained in Davidon 1959 
and Fletcher and Powell 1963.) It can be shown that ifSis quadratic and if 
accurate line search is used,, He = G-l, where n is the dimension of x. Note 
that although algorithms like DFP do not require the computation of second 
derivatives, they do require the computation of first derivatives. 

Another update that is sometimes used is 

(2.14) Ho = I, 

where 6 and y are as above. This algorithm is called the Broyden-Fletcher- 
Goldfarh-Shanno (BFGS) algorithm. (See Dennis and More 1977 for refer- 
ences.) Once a program for the DFP algorithm has been written, the extra 
coding for the BFGS algorithm is small. and therefore many nonlinear 
optimization packages offer a choice of both the DFP and BFGS updating 
equations. My experience is that it generally does not make much difference 
which of the two updating equations is used. An example of the use of the two 
algorithms is reported in Section 10.4. 

Another option that is sometimes available in nonlinear optimization 
packages is the method ofsteewst descent. This method simply uses H*-l = I 
for all k. It has very slow convergence properties, and it is not in general 
recommended. 

The DFP algorithm has turned out to work well for many problems, and it 
is widely used. It does not, however, by any means dominate all other 
algorithms for all problems. There are also many problems for which it does 
not work in the sense that it does not find the optimum. My experience with 
the DFP algorithm is mixed but on the whole is fairly good. It has worked 
extremely well for the solution of optimal control problems. where in one case 
it was used to solve a problem of 239 unknowns (that is. n = 239). These 
results are reported in an earlier paper (Fair 1974a), where it can be seen that 
DFP easily dominated two other algorithms, one that required no derivatives 
(Powell’s no-derivative algorithm: Powell 1964) and one that required both 
first and second derivatives (the quadratic hill-climbing algorithm of Gold- 
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feld, Quandt, and Trotter 1966). The solution ofoptimal control problems in 
this way is discussed in Section 10.2. 

As noted earlier, DFP does not work for moderate to large FIML and 3SLS 
estimation problems, which seem to require special-purpose algorithms like 
the Parke algorithm. It also does not work for the minimization problem 
associated with the LAD and 2SLAD estimators. I have found it to work fairly 
well for the OLS or 2SLS estimation of a single equation that is nonlinear in 
coefficients. 

My general strategy for dealing with nonlinear optimization problems is 
the following. If I choose to obtain and code analytic first derivatives, which is 
usually not the case, I merely solve the first-order conditions using the 
Gauss-Seidel technique (discussed in Section 7.2). In other words, I solve the 
equation system 

(2.15) g(x) = 0 

using Gauss-Seidel. I have had very good success with the Gauss-Seidel 
technique (with damping sometimes required), and the procedure of solving 
(2.15) avoids having to use any optimization algorithm. If first derivatives are 
instead computed numerically, then I usually begin with the DF’P algorithm 
and only try other procedures if this does not work. 

When first derivatives are computed numerically, they can be either “one- 
sided” or “two-sided.” Consider the derivative off with respect to x,. 
One-sided derivatives are computed as [f(x, + c, x,, , x,) -f(q) 

x2, , x,,)]/c, where E is a small number. Two-sided derivatives are 
computed as [f(xl + E, x,, , x,) -f(.q - E, x2, , x.)]/~E. Since 

fl x,, x,, , x,) is available at the time the derivatives are computed, 
one-sided derivatives require only one function evaluation per unknown, 
whereas two-sided derivatives require two. Both one-sided and two-sided 
derivatives were used for the results of solving the optimal control problems 
in Fair (1974a), and these results indicate that two-sided derivatives are not 
worth the extra cost. Little or no change in the number of iterations needed 
for convergence was obtained by the use of the two-sided derivatives. For the 
optimal control results in Chapter 10, on the other hand, slightly more 
accurate answers were obtained using two-sided derivatives, because the 
stopping criterion that was used for the Gauss-Seidel technique in solving the 
model was not small enough to allow highly accurate one-sided derivatives to 
be computed. This example is discussed in Section 10.4. 

Note that the use of the DFP algorithm in conjunction with numerical 
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derivatives requires very little work to set up the problem. One merely needs 
to write a program (a subroutine when using FORTRAN) to computeffor a 
given value of x. Once this is done, the DF’P algorithm merely calls this 
program many times in the iterative process. Each iteration requires n calls 
for the derivatives plus a few more for the line search. The calculations for 
each iteration other than the calculations involved in computing the function 
are generally very minor, so most ofthe computer time is taken in computing 
the function values. The estimates in Fair (1974a) for the one-sided derivative 
results show that this time is between 78 and 97 percent ofthe total time. For 
two-sided derivatives the percentages are even higher. It is thus important to 
code the function program efficiently. If numerical derivatives are used, it is 
easy to see why methods that require the calculation of second derivatives are 
likely to be expensive: (n2 + n)/2 evaluations of the function are needed to 
calculate the second-derivative matrix, and for large n this is obviously 
expensive. 

For purposes of the Fair-Parke program, I have coded the DFP and BFGS 
algorithms from scratch. The coding is straightforward except for the line 
search, which was coded as follows. (1) i. = I is tried. If this results in an 
improvement (a lower value of_f(xJ than that of the previous iteration), 
J, = I .25 is tried. Ifthis results in an improvement, J. = ( 1.25)2 is tried, and so 
on through J, = (1 .25)9. At the point of no improvement or at j, = (1 .25)9, a 
quadratic is fit to the three points .S&, ,Xx, and 1.2&, where 2x is either the last 
value of 1 that resulted in an improvement or (I&. The quadratic is 
minimized. The function is then evaluated for L = A*, where A* is the 
minimizing value. A second quadratic is then fit to the three points .95&, E,,, 
and 1.05&, where&is either .S&, &, 1.2,X‘,, or i;*, depending on which one 
has yielded the smallest value of the function. This quadratic is minimized, 
and the function is evaluated for i = A**, where A** is the minimizing value. 
The final value ofi, is then taken to be .95&, A,, 1 .OS& or i;**, depending on 
which one yielded the smallest value of the function. (2) If J, = 1 does not 
result in an improvement, 2 = .5 is tried. If this does not result in an 
improvement, i, = (.5)2 is tried, and so on through L = (.S)9. At the point of 
improvement or at i, = (.5)9, the quadratic fitting discussed in (1) is done. 

The algorithm is stopped for one of five reasons: ( 1) no improvement is 
found for any value of 1, tried at the current iteration; (2) the prescribed 
maximum number of iterations is reached, (3) the successive estimates of x 
are within some prescribed tolerance level; (4) at the current iteration the 
gradient values as a percentage of the respective x values are less than some 
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prescribed tolerance level in absolute value; or (5) the improvement in the 
function from one iteration to the next is within some prescribed tolerance 
level. 

There is nothing subtle or sophisticated about this code, but it seems to 
work quite well for the types of problems I have dealt with. It may be that one 
could get by with fewer function evaluations for the line search (there is now a 
maximum of sixteen per iteration). but for problems with a large number of 
unknowns, these function evaluations are a small percentage ofthe function 
evaluations required to get the derivatives. With respect to the derivatives, the 
user has the option of deciding whether to use one-sided or two-sided 
derivatives and what step size to use. 


