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1. Introduction

Methods for evaluating the predictive accuracy of econometric models are dis-
cussed in this chapter. Since most models used in practice are nonlinear, the
nonlinear case will be considered from the beginning. The model is written as:

fly,x,a)=u,,  (i=1,..,n), (t=1,...,T), (1)

where y, is an n-dimensional vector of endogenous variables, x, is a vector of
predetermined variables (including lagged endogenous variables), a; is a vector of
unknown coefficients, and u,, is the error term for equation i for period ¢. The
first m equations are assumed to be stochastic, with the remaining u, (i =m +
1,..., n) identically zero for all 7.

The emphasis in this chapter is on methods rather than results. No attempt is
made to review the results of comparing alternative models. This review would be
an enormous undertaking and is beyond the scope of this Handbook. Also, as will
be argued, most of the methods that have been used in the past to compare
models are flawed, and so it is not clear that an extensive review of results based
on these methods is worth anyone’s effort. The numerical solution of nonlinear
models is reviewed in Section 2, including stochastic simulation procedures. This
is background material for the rest of the chapter. The standard methods that
have been used to evaluate ex ante and ex post predictive accuracy are discussed
in Sections 3 and 4, respectively. The main problems with these methods, as will
be discussed, are that they (1) do not account for exogenous variable uncertainty,
{2) do not account for the fact that forecast-error variances vary across time, and
(3) do not treat the possible existence of misspecification in a systematic way.
Section 5 discusses a method that I have recenily developed that attempis to
handle these problems, a method based on successive reestimation and stochastic
simulation of the model. Section 6 contains a brief conclusion.

It is important to note that this chapter is not a chapter on forecasting
techniques. It is concerned only with methods for evaluaring and comparing
econometric models with respect to their predictive accuracy. The use of these
methods should allow one (in the long run) to decide which model best approxi-
mates the true structure of the economy and how much confidence to place on the
predictions from a given model. The hope is that one will end up with a model
that for a wide range of loss functions produces beiter forecasts than do other
techniques. At some point along the way one will have to evaluate and compare
other methods of forecasting, but it is probably too early to do this. At any rate,
this issue is beyond the scope of this chapter.'

'For a good recent text on forecasting technigues for time series, see Granger and Newbold (1977).
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2. Numerical solution of nonlinear models

The Gauss—Seidel technique is generally used to solve nonlinear models. [See
Chapter 14 (Quandt) for a discussion of this technique.] Given a set of estimates
of the coefficients, given values for the predetermined variables, and given values
for the error terms, the technique can be used to solve for the endogenous
variables. Although in general there is no guarantee that the technique will
converge, in practice it has worked quite well.

A “static” simulation is one in which the actual values of the predetermined
variables are used for the solution each period. A “dynamic” simulation is one in
which the predicted values of the endogenous variables from the solutions for
previous periods are used for the values of the lagged endogenous variables for
the solution for the current period. An “ex post” simulation or forecast is one in
which the actual values of the exogenous variables are used. An “ex ante”
simulation or forccast is one in which guessed values of the exogenous variables
are used. A simulation is “outside-sample” if the simulation period is not
included within the estimation period; otherwise the simulation is “within-sam-
ple.” In forecasting situations in which the future is truly unknown, the simula-
tions must be ex ante, outside-sample, and (if the simulation is for more than one
period) dynamic,

If one set of values of the error terms is used, the simulatton s said to be
“deterministic.” The expected values of most error terms in most models are zero,
and so in most cases the errors terms are set to zero for the solution. Although it
is well known [see Howrey and Kelejian (1971)] that for nonlinear models the
solution values of the endogenous variables from deterministic simulations are
not equal to the expected values of the variables, in practice most simulations are
deterministic. It is possible, however, to solve for the expected values of the
endogenous variables by means of “stochastic” simulation, and this procedure
will now be described. As will be seen later in this chapter, stochastic simulation
is useful for purposes other than merely solving for the expected values.

Stochastic simulation requires that an assumption be made about the distribu-
tions of the error terms and the coefficient estimates. In practice these distribu-
tions are almost always assumed to be normal, although in principle other
assumptions can be made. For purposes of the present discussion the normality
assumption will be made. In particular, it is assumed that u,= (u,,,...,u,, ) 18
independently and identically distributed as multivariate ¥(0, X). Given the
estimation technique, the coeflicient estimates, and the data, one can estimate the
covariance matrix of the error terms and the covariance matrix of the coefficient
estimates. Denote these two matrices as Sand 7, respectwcly The dimension of
3 is m X m, and the dimension of Vis K XK, where X' is the total number of
coefficients in the model. 3 can be computed as {1/ T)U U/, where U/ is the m X T
matrix of values of the estimated error terms. The computation of ¥ depends on
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the estimation technique used. Given ¥ and given the normality assumption, an
estimate of the distribution of the coefficient estimates is N(4&, V'), where & is the
K X1 vector of the coefficient estimates.

Let u} denote a particular draw of the m error terms for period ¢ from the
N(O, E) dlstnbutlon and let a* denote a particular draw of the X coeflicients
from the N{&, I’} distribution. Given u} for each period ¢ of the simulation and
given a*, one can solve the model. Thas 1s merely a deterministic simulation for
the given values of the error terms and coefficients. Call this simulation a “trial”.
Another trial can be made by drawing a new set of values of u* for each period ¢
and a new set of values of a*. This can be done as many times as desired. From
each trial one obtains a prediction of each endogenous variable for each period.
Let 7/, denote the value on the jth trial of the k-period-ahead prediction of
variable i from a simulation beginning in period ¢.2 For J trials, the estimate of
the expected value of the variable, denoted ¥, is:

1

i‘rk =7F j”u{k' (2)

L
b
—

In a number of studies stochastic simulation with respect to the error terms
only has been performed, which means drawing only from the distribution of the
error terms for a given trial. These studies include Nagar (1969); Evans, Klein,
and Saito (1972); Fromm, Klein, and Schink (1972); Green, Licbenberg, and
Hirsch (1972); Sowey (1973); Cooper and Fischer (1972); Cooper (1974); Garbade
(1975); Bianchi, Calzolari, and Corsi (1976); and Calzolari and Corsi (1977).
Studies in which stochastic simulation with respect to both the error terms and
coetlicient estimates has been performed include Cooper and Fischer (1974);
Schink (1971), (1974); Haitovsky and Wallace (1972); Muench, Rolnick, Wallace,
and Weiler (1974); and Fair (1980).

One important empirical conchision that can be drawn from stochastic simula-
tion studies to date is that the values computed from deterministic simulations are
quite close to the mean predicted values computed from stochastic simulations. In
other words, the bias that results from using deterministic simulation to solve
nonlinear models appears to be small. This conclusion has been reached by Nagar
(1969), Sowey (1973), Cooper (1974), Bianchi, Calzolani, and Corsi (1976), and
Calzolani and Corsi (1977) for stochastic simulation with respect to the error
terms only and by Fair (1980) for stochastic simulation with respect to both error
terms and coefficients.

A standard way of drawing values of a* from the N(&, V") distribution is to (1)
factor numerically (using a subroutine package) ¥ into PP’, (2) draw (again using

ZNote that ¢ denotes the first period of the simulation, so that 7, is the prediction for period
t+ k-1
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a subroutine package) K values of a standard normal random variable with mean
0 and variance 1, and (3) compute a* as & + Pe, where ¢ is the KX X1 vector of
the standard normal draws. Since EFee’ = [, then E(a* — &)(a* — &) = EPee’P’
= 17, which is as desired for the distribution of a* A similar procedure can be
used to draw values of #* from the N(0, 3 distribution: ¥ is factored into PP’,
and u* is computed as Pe, where e 15 a m X 1 vector of standard normal draws.

An alternative procedure for drawing values of the error terms, dve to
McCarthy (1972), has also been used in practice. For this procedure one begins
with the m X T matrix of estimated error terms, U. T standard normal random
variables are then drawn, and u* is computed as 7 V20e, where e is a T x1
vector of the standard normal draws. It is easy to show that the covariance matrix
of u¥is 3 where, as above, 3 is (I/T)ﬁﬁ’.

An alternative procedure is also available for drawing values of the coefficients.
Given the estimation period (say, 1 through 7') and given 2, one can draw T
values of u*(f=1,...,T). One can then add these errors to the model and solve
the model over the estimation period (static simulation, using the original values
of the coefficient estimates). The predicted values of the endogenous variables
from this solution can be taken to be a new data base, from which a new set of
coefficients can be estimated. This set can then be taken to be one draw of the
coefficients. This procedure is more expensive than drawing from the N(&, )
distribution, since reestimation is required for each draw, but it has the advantage
of not being based on a fixed estimate of the distribution of the coefficient
estimates. It is, of course, based on a fixed value of ¥ and a fixed set of original
coefficient estimates.

It should finally be noted with respect to the solution of models that in actual
forecasting situations most models are subjectively adjusted before the forecasts
are computed. The adjustments take the form of either using values other than
zero for the future error terms or using values other than the estimated values for
the coefficients. Different values of the same coefficient are sometimes used for
different periods. Adjusting the values of constant terms is equivalent to adjusting
values of the error terms, given that a different value of the constant term can be
used each period.® Adjustments of this type are sometimes called “add factors”.
With enough add factors it is possible, of course, to have the forecasts from a
model be whatever the user wants, subject to the restriction that the identities
must be satisfied. Most add factors are subjective in that the procedure by which
they were chosen cannot be replicated by others. A few add factors are objective.
For example, the procedure of setting the future values of the error terms equal to
the average of the past two estimated values is an objective one. This procedure,

3Although much of the discussion in the literature is couched in terms of constant-term adjustments,
Intriligator (1978, p. 516) prefers to interpret the adjustments as the user’s estimates of the future
values of the error terms,



1984 R.C, Fair

along with another type of mechanical adjustment procedure, is used for some of
the results in Haitovsky, Treyz, and Su (1974). See also Green, Licbenberg, and
Hirsch (1972) for other examples.

3. Evaluation of ex ante forecasts

The three most common measures of predictive accuracy are root mean squared
error (RMSE), mean absolute error (MAE), and Theil’s inequality coefficient*
(). Let 3, be the forecast of variable i for period ¢, and let y, be the actual
value. Assume that observations on §, and y,, are available for ¢+ =1,..., T Then
the measures for this variable are:

1 & 2
RMSE = \/ T & Oum ) (3)

MAE = Z e = Dl (4)

\/ Z (4y, - 4%,

\/ Z (4y,)

where A in (5} denotes either absolute or percentage change. All three measures
are zero if the forecasts are perfect. The MAFE measure penalizes large errors less
than does the RMSE measure. The value of U is one for a no-change forecast
(47, =0). A value of U greater than one means that the forecast is less accurate
than the simple forecast of no change.

An important practical problem that arises in evaluating ex anie forecasting
accuracy is the problem of data revisions. Given that the data for many variables
are revised a number of times before becoming “final”, it is not clear whether the
forecast values should be compared to the first-released values, to the final values,
or to some set in between. There is no obvious answer to this problem. If the
revision for a particular variable is a benchmark revision, where the level of
the variable is revised beginning at least a few periods before the start of the
prediction period, then a common procedure is to adjust the forecast value by

(s)

*See Theil (1966, p. 28).
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adding the forecasted change (A p,), which is based on the old data, to the new
lagged value (y,_,) and then comparing the adjusted forecast value to the new
data. If, say, the revision took the form of adding a constant amount ¥, to each of
the old values of y,, then this procedure merely adds the same ¥, to each of the
forecasted values of y,,. This procedure is often followed even if the revisions are
not all benchmark revisions, on the implicit assumption that they are more like
benchmark revisions than other kinds. Following this procedure also means that
if forecast changes are being evaluated, as in the I/ measure, then no adjustments
are needed.

There are a number of studies that have examined ex ante forecasting accuracy
using one or more of the above measures. Some of the more recent studies are
McNees (1973, 1974, 1975, 1976) and Zarnowitz (1979). It is usually the case that
forecasts from both model builders and nonmodel builders are examined and
compared. A common “base” set of forecasts to use for comparison purposes is
the set from the ASA/NBER Business Outlook Survey. A general conclusion
from these studies is that there is no obvious “winner” among the various
forecasters [see, for example, Zarnowitz (1979, pp. 23, 30)). The relative perfor-
mance of the forecasters varies considerably across variables and length ahead of
the forecast, and the differences among the forecasters for a given variable and
length ahead are generally small. This means that there is yet little evidence that
the forecasts from model builders are more accurate than, say, the forecasts from
the ASA /NBER Survey,

Ex ante forecasting comparisons are unfortunately of little interest from the
point of view of examining the predictive accuracy of models. There are Lwo
reasons for this. The first is that the ex ante forecasts are based on guessed rather
than actual values of the exogenous variables. Given only the actual and forecast
values of the endogenous variables, there is no way of separating a given error
into that part due to bad guesses and that part due to other factors. A model
should not necessarily be penalized for bad exogenous-variable guesses {rom its
users. More will be said about this in Section 5. The second, and more important,
reason is that almost all the forecasts examined in these studies are generated
from subjectively adjusted models, (i.e. subjective add factors are used). It is thus
the accuracy of the forecasting performance of the model builders rather than of
the models that is being examined.

Before concluding this section it is of interest to consider two further points
regarding the subjective adjustment of models. First, there is some indirect
evidence that the use of add factors is quite important in practice. The studies of
Evans, Haitovsky, and Treyz (1972) and Haitovsky and Treyz (1972) analyzing
the Wharton and OBE models found that the ex ante forecasts from the model
builders were more accurate than the ex post forecasts from the models, even
when the same add factors that were used for the ex ante forecasts were used for
the ex post forecasts. In other words, the use of actual rather than guessed values
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of the exogenous variables decreased the accuracy of the forecasts. This general
conclusion can also be drawn from the results for the BEA model in Table 3 in
Hirsch, Grimm, and Narasimham (1974). This conclusion is consistent with the
view that the add factors are (in a loose sense) more important than the model in
determining the ex ante forecasts: what one would otherwise consider to be an
improvement for the model, namely the use of more accurate exogengus-variable
values, worsens the forecasting accuracy.

Second, there is some evidence that the accuracy of non-subjectively adjusted
ex ante forecasts is improved by the use of actual rather than guessed values of
the exogenous variables. During the period 1970I1I-197311, I made ex ante
forecasts using a short-run forecasting model [Fair (1971)]. No add factors were
used for these forecasts. The accuracy of these forecasts is examined in Fair
{1974), and the results indicate that the accuracy of the forecasts is generally
improved when actual rather than guessed values of the exogenous variables are
used.

It is finally of interest to note, although nothing really follows from this, that
the (non-subjectively adjusted) ex ante forecasts from my forecasting model were
on average less accurate than the subjectively adjusted forecasts [McNees (1973)],
whereas the ex post forecasts, {i.e. the forecasts based on the actual values of the
exogenous variables) were on average about the same degree of accuracy as the
subjectively adjusted forecasts [Fair (1974)].

4. Evaluation of ex post forecasts

The measures in (3)-(5) have also been widely used to evaluate the accuracy of
ex post forecasts. One of the more well known comparisons of ex post forecasting
accuracy is described in Fromm and Klein (1976), where eleven models are
analyzed. The standard procedure for ex post comparisons 15 to compute ex post
forecasts over a common simulation period, calculate for each modei and variable
an error measure, and compare the values of the error measure across models. If
the forecasts are outside-sample, there is usually some attempt to have the ends
of the estimation periods for the models be approximately the same. It is
generally the case that forecasting accuracy deteriorates the further away the
forecast period is from the estimation period, and this is the reason for wanting to
make the estimation periods as similar as possible for different models.

The use of the RMSE measure, or one of the other measures, to evaluate
ex post forecasts is straightforward, and there is little more to be said about this.
Sometimes the accuracy of a given model is compared to the accuracy of a
“naive” model, where the naive model can range from the simple assumption of
no change in each variable to an autoregressive moving average (ARIMA) process
for each variable. {The comparison with the no-change model is, of course,
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already implicit in the U/ measure.) It is sometimes the case that turning-point
observations are examined separately, where by “turning point” is meant a point
at which the change in a variable switches sign. There is nothing inherent in the
statistical specification of models that would lead one to examine turning points
separately, but there is a strand of the literature in which turning-point accuracy
has been emphasized.

Although the use of the RMSE or similar measure is widespread, there are two
serious problems associated with the general procedure. The first concerns the
exogenous variables. Models differ both in the number and types of variables that
are taken to be exogenous and in the sensitivity of the predicted values of the
endogenous variables to the exogenous-variable values. The procedure does not
take these differences into account. If one model is less “endogenous” than
another (say that prices are taken to be exogenous in one model but not in
another), then it has an unfair advantage in the calculation of the error measures.
The other problem concerns the fact that forecast error variances vary across
time. Forecast error variances vary across time both because of nonlinearities in
the model and because of variation in the exogenous variables. Although RMSEs
are in some locse sense estimates of the averages of the variances across time, no
rigorous statistical interpretation can be placed on them: they are not estimates of
any parameters of the model.

There is another problem associated with within-sample calculations of the
error measures, which is the possible existence of data mining. If in the process of
constructing a model one has, by running many regressions, searched diligently
for the best fitting equation for each variable, there is a danger that the equations
chosen, while providing good fits within the estimation period, are poor ap-
proximations to the true structure. Within-sample error calculations are not likely
to discover this, and so they may give a very misleading impression of the true
accuracy of the moedel. Outside-sample error calculations should, of course, pick
this up, and this is the reason that more weight is generally placed on outside-
sample results.

Nelson (1972) used an alternative procedure in addition to the RMSE proce-
dure in his ex post evaluation of the FRB-MIT-PENN (FMF) model. For each of
a number of endogenous variables he obtained a series of static predictions using
both the FMP model and an ARIMA model. He then regressed the actual value
of each variable on the two predicted values over the period for which the
predictions were made. Ignoring the fact that the FMP model is nonlinear, the
predictions from the model are conditional expectations based on a given
information set. If the FMP model makes efficient use of this information, then
no further information should be contained in the ARIMA predictions. The
ARIMA model for each variable uses only a subset of the information, namely,
that contained in the past history of the variable. Therefore, if the FMP model
has made efficient use of the information, the coefficient for the ARIMA
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predicted values should be zero. Nelson found that in general the estimates of this
coefficient were significantly different from zero. This test, while interesting,
cannot be used to compare models that differ in the number and types of
variables that are taken to be cxogenous. In order to test the hypothesis of
efficient information use, the information set used by on¢ model must be
contained in the set used by the other model, and this is in general not true for
models that differ in their exogenous variables.

5. An alternative method for evaluating predictive accuracy

The methed discussed in this section takes account of exogenous-variable uncer-
tainty and of the fact that forecast error variances vary across time. It also deals
in a systematic way with the question of the possible misspecification of the
model. It accounts for the four main sources of uncertainty of a forecast:
uncertainty due to (1) the error terms, (2) the coefficient estimates, (3} the
exogenous-variable forecasts, and (4) the possible misspecification of the model.
The method is discussed in detail in Fair (1980). The following is an outline of its
main features. '

Estimating the uncertainty from the error terms and coefficients can be done by
means of stochastic simulation. Let o2, denote the variance of the forecast error
for a k-period-ahead forecast of variable ¢ from a simulation beginning in period
1. Given the J trials discussed in Section 2, a stochastic-simulation estimate of o2,
(denoted G2,) is:

~2 __
Opge ™

J
Y (5= )’ (6)
jml

|

where J,,, is determined by (2). If an estimate of the uncertainty from the error
terms only is desired, then the trials consist only of draws from the distribution of
the error terms.®

There are two polar assumptions that can be made about the uncertainty of the
exogenous variables. One is, of course, that there is no exogenous-variable
uncertainty, The other is that the exogenous-variable forecasts are in some way as
uncertain as the endogenous-variable forecasts. Under this second assumption
one could, for example, estimate an autoregressive equation for each exogenous
variable and add these equations to the model. This expanded model, which
would have no exogenous variables, could then be used for the stochastic-simula-

$Note that it is implicitly assumed here that the variances ol the forecast errors exist. For some
estimation techniques this is not always the case. If in a given application the variances do not exist,
then one should estimate other measures of dispersion of the distribution, such as the interquartile
range or mean absolute deviation.
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tion cstimates of the variances. While the first assumption is clearly likely to
underestimate exogenous-variable uncertainty in most applications, the second
assumption is likely to overestimate it. This is particularly true for fiscal-policy
variables in macroeconomic models, where government-budget data are usually
quite useful for purposes of forecasting up to at least about eight quarters ahead.
The best approximation is thus likely to lie somewhere in between these two
assumptions.

The assumption that was made for the results in Fair (1980) was in between the
two polar assumptions. The procedure that was followed was to estimate an
eighth-order autoregressive equation for cach exogenous variable (including a
constant and time in the equation) and then to take the estimated standard error
from this regression as the estimate of the degree of uncertainty attached to
forecasting the change in this variable for each period. This procedure ignores the
uncertainty of the coefficient estimates in the autoregressive equations, which is
one of the reasons it is not as extreme as the second polar assumption. In an
earlier stochastic-simulation study of Haitovsky and Wallace (1972), third-order
autoregressive equations were estimated for the exogenous variables, and these
equations were then added to the model. This procedure is consistent with the
second polar assumption above excepr that for purposes of the stochastic
simulations Haitovsky and Wallace took the variances of the error terms to be
one-half of the estimated variances. They defend this procedure (pp. 267~268) on
the grounds that the uncertainty from the exogenous-variable forecasts is likely to
be less than is reflected in the autoregressive equations.

Another possible procedure that could be used for the exogenous variables
would be to gather from various forecasting services data on their ex ante
forecasting errors of the exogenous variables {exogenous {o you, not necessarily to
the forecasting service). From these errors for various periods one could estimate
a standard error for each exogenous variable and then use these errors for the
stochastic-simulation draws.

For purposes of describing the present method, all that needs to be assumed is
that some procedure is available for estimating exogenous-variable uncertainty. If
equations for the exogencus variables are not added to the model, but instead
some in between procedure is followed, then each stochastic-simuiation trial
consists of draws of error terms, coefficients, and exogenous-variable errors. If
equations are added, then each trial consists of draws of error terms and
coeficients from both the structural equations and the exogenous-variable equa-
tions. In either case, let &7, denote the stochastic-simulation estimate of the
variance of the forecast error that takes into account exogenous-variable uncer-
tainty. 62, differs from G2, in (6) in that the trials for §2, include draws of
exogenous-variable errors.

Estimating the uncertainty from the possible misspecification of the model is
the most difficult and costly part of the method. It requires successive reestima-
tion and stochastic simulation of the model. It is based on a comparison of
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estimated variances computed by means of stochastic simulation with estimated
variances computed from outside-sample forecast errors.

Consider for now stochastic simulation with respect to the structural error
terms and coefficients only (no exogenous-variable uncertainty). Assume that the
forecast period begins one period after the end of the estimation period, and call
this period 7. As noted above, from this stochastic simulation one obtains an
estimate of the variance of the forecast error, 62,. One also obtains from this
simulation an estimate of the expected value of the k-period-ahead forecast of
variable i: ¥, in equation (2). The difference between this estimate and the
actual value, y,,,_,, is the mean forecast error:

a

i = Virb-1™ yzirk' (7)

If it is assumed that ¥,,, exactly equals the true expected value, j,,, then &, in
(7) is a sample draw from a distribution with a known mean of zero and variance
02,. The square of this error, #},, is thus under this assumption an unbiased
estimate of 6%,. One thus has two estimates of 67,, one computed from the mean
forecast error and one computed by stochastic simulation. Let d,,, denote the

difference between these two estimates:

dr‘zk = éizik jk (8)

If it is further assumed that &2, exactly equals the true value, then d,, is the
difference between the estimated variance based on the mean forecast error and
the true variance. Therefore, under the two assumptions of no error in the
stochastic-simulation estimates, the expected value of 4, is zero.

The assumption of no stochastic-simulation error, i.e. ¥, = 7, and 6., = 0.2,
is obviously only approximately correct at best. Even with an infinite number of
draws the assumption would not be correct because the draws are from estimated
rather than known distributions. It does seem, however, that the arror introduced
by this assumption is likely to be small relative to the error introduced by the fact
that some assumption must be made about the mean of the distribution of 4,,.
Because of this, nothing more will be said about stochastic-simulation error, The
emphasis instead is on the possible assumptions about the mean of the distribu-
tion of d,,,, given the assumptions of no stochastic-simulation error.

The procedure just described uses a given estimation period and a given
forecast period. Assume for sake of an example that one has data from period 1
through 100. The mode! can then be estimated through, say, period 70, with the
forecast period beginning with period 71. Stochastic simulation for the forecast
period will yield for each / and k a value of d,;,, in (8). The model can then be
reestimated through period 71, with the forecast period now beginning with
period 72, Stochastic simulation for this forecast period will yield for each i and &
a value of d,5,; in (8). This process can be repeated through the estimation period
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ending with period 99. For the one-period-ahead forecast (k =1) the procedure
will yvield for each variable i 30 values of 4, (¢1=71,...,100); for the two-
period-ahead forecast (& = 2) it will yield 29 values of d,,, (¢=72,...,100); and
so on. If the assumption of no simulation error holds for all ¢, then the expected
value of d,,, 1s zero for all ¢.

The discussion so far is based on the assumption that the model is correctly
specified. Misspecification has two effects on d,,, in (8). First, if the model is
misspecified, the estimated covariance matrices that are used for the stochastic
simulation will not in general be unbiased estimates of the true covariance
matrices. The estimated variances computed by means of stochastic simulation
will thus in general be biased. Second, the estimated variances computed from the
forecast errors will in general be biased estimates of the true variances. Since
misspecification affects both estimates, the effect on d,,; is ambiguous. It is
possible for misspecification to affect the two estimates in the same way and thus
leave the expected value of the difference between them equal to zero. In general,
however, this does not seem likely, and so in general one would not expect the
expected value of d,, to be zero for a misspecified model. The expected value
may be negative rather than positive for a misspecified model, although in general
it seems more likely that it will be positive. Because of the possibility of data
mining, misspecification seems more likely to have a larger positive effect on the
outside sample forecast errors than on the (within-sample) estimated covariance
matrices.

An examination of how the d,,, values change over time (for a given i and &)
may reveal information about the strengths and weaknesses of the model that one
would otherwise not have. This information may then be useful in future work on
the model. The individual values may thus be of interest in their own right aside
from their possible use in estimating total predictive uncertainty.

For the total uncertainty estimates some assumption has to be made about how
misspecification affects the expected value of d,,,.. For the results in Fair (1980a)
it was assumed that the expected value of d,,, is constant across time: for a given
i and k, misspecification was assumed to affect the mean of the distribution of
d,,; in the same way for all 1. Other possible assumptions are, of course, possible.
Ome could, for example, assume that the mean of the distribution is a function of
other variables. (A simple assumption in this respect is that the mean follows a
linear time trend.) Given this assumption, the mean can be then estimated from a
regression of d,, on the variables. For the assumption of a constant mean, this
regression is merely a regression on a constant (i.e. the estimated constant term is
merely the mean of the d,,, values). § The predicted value from this regression for
period 7, denoted d,,,, is the estimated mean for period t.

$For the results in Fair (1980) a slightly different assumption than that of a constant mean was
made for va.r;ables with trends. For these vanables it was assumed that the mean of d,, is
proportional to $2,, i.e. that the mean of d,,, /3., is constant across time.
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An estimate of the total variance of the forecast error, denoted 62,, is the sum
of &2, —the stochastic-simulation estimate of the variance due to the error terms,
coefficient estimates, and exogenous variables—and 4,

6131; = éf%k +dyy. (9)

Since the procedure in arriving at 67, takes into account the four main sources of
uncertainty of a forecast, the values of 87, can be compared across models for a
given 7, k, and ¢. If, for example, one model has consistently smaller values of 62,
then another, this would be fairly strong evidence for concluding that it is a more
~accurate model, 1., a better approximation to the true structure.

This completes the outline of the method. It may be useful to review the main
steps involved in computing 85, in (9). Assume that data are available for periods
1 through 7 and that one is interested in estimating the uncertainty of an
eight-period-ahead forecast that began in period 7'+ 1, (i.e. in computing 62, for
t=7+1and k=1,...,8). Given a base set of values for the exogenous variables
for periods 7 +1 through T + 8, one can compute 62, for t=T+1and k=1,....8
by means of stochastic simulation, Each trial consists of one eight-period dynamic
simulation and requires draws of the error terms, coefficients, and exogenous-vari-
able errors, These draws are based on the estimate of the model through period 7.
This is the relative inexpensive part of the method. The expensive part consists of
the successive reestimation and stochastic simulation of the model that are needed
in computing the 4, values. In the above example, the model would be
estimated 30 times and stochastically simulated 30 tirmes in computing the d,,,
values. After these values are computed for, say, periods T~ r through T, then
d ., can be computed for 1 =T +1 and & =1,...,8 using whatever assumption has
been made about the distribution of d,,,. This allows 2, in (9) to be computed
for 1 =7 +1 and k =1,...,8.

In the successive reestimation of the model, the first period of the estimation
period may or may not be increased by one each time. The criterion that one
should use in deciding this is to pick the procedure that seems likely to corre-
spond to the chosen assumption about the distribution of d,, being the best
approximation to the truth. It is also possible to take the distance between the last
period of the estimation period and the first period of the forecast period to be
other than one, as was done above.

It is important to note that the above estimate of the mean of the 4,
distribution is not in general efficient because the error term in the 4, regression
is in general heteroscedastic. Even under the null hypothesis of no misspecifica-
tion, the variance of the 4, distribution is not constant across time. It is true,
however, that &,, /(6% +d,,)"”? has unit variance under the null hypothesis,
and so it may not be a bad approximation to assume that 82, /(62, + d,,;) has a
constant variance across time. This then suggests the following iterative proce-
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dure. 1) For each i and k, calculate d,, from the d,, regression, as discussed
above; 2) divide each observation in the d,,, regression by &2, + d,,;, run another
regression, and calculate d,,, from this regression; 3) repeat step 2) until the
successive estimates of d,,, are within some prescribed tolerance level. Litterman
(1980) has carried out this procedure for a number of models for the case in
which the only explanatory variable in the d,,, regression is the constant term (i.e.
for the case in which the null hypothesis is that the mean of the 4,,, distribution
is constant across time).

If one is willing to assume that &, is normally distributed, which is at best
only an approximation, then Litterman (1979) has shown that the above iterative
procedure produces maximum likelihood estimates. He has used this assumption
in Litterman (1980} to test the hypothesis (using a likelihood ratio test) that the
mean of the 4, distribution is the same in the first and second halves of the
samptle period. The hypothesis was rejected at the 5 percent level in only 3 of 24
tests. These results thus suggest that the assumption of a constant mean of the
d,,;. distribution may not be a bad approximation in many cases. This conclusion
was also reached for the results in Fair {1982), where plots of d,,, values were
examined across time (for a given i and k). There was little evidence from these
plots that the mean was changing over time.

The mean of the d,, distribution can be interpreted as a measure of the
average unexplained forecast error variance, (i.e. that part not explained by &7,)
rather than as a measure of misspecification. Using this interpretation, Litterman
(1980) has examined whether the use of the estimated means of the 4, distribu-
tions lead to more accurate estimates of the forecast error variances. The results
of his tests, which are based on the normality assumption, show that substantially
more accurate estimates are obtained using the estimated means. Litterman’s
overall results are thus quite encouraging regarding the potential usefulness of the
method discussed in this section.

Aside from Litterman’s use of the method to compare various versions of Sims’
(19807 model, I have used the method to compare my model [Fair (1976)],
Sargent’s (1976) model, Sims” model, and an eighth-order autoregressive model.
The results of this comparison are presented in Fair (1979).

6. Conclusion

It should be clear from this chapter that the comparison of the predictive
accuracy of alternative models is not a straightforward exercise. The difficulty of
evaluating alternative models is undoubtedly one of the main reasons there is
currently so little agreement about which model best approximates the true
structure of the economy. If it were easy to decide whether one model is more
accurate than another, there would probably be by now a generally agreed upon
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model of, for example, the U.S. economy. With further work on methods like the
one described in Section 5, however, it may be possible in the not-too-distant
future to begin & more systematic comparison of models. Perhaps in ten or twenty
vears time the use of these methods will have considerably narrowed the current
range of disagreements.
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