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1. 1”trodwAi0” 

Methods for evaluating the predictive accuracy of econometric models are dis- 
cussed in this chapter. Since most models used in practice are nonlinear, the 
nonlinear case will be considered from the beginning. The model is written as: 

0x9 x,‘ai) = uit. (i=l ,..., n), (f=l,...,T), (I) 

where yt is an n-dimensional vector of endogenous variables. n, is a vector of 
predetermined variables (including lagged endogenous variables), aii is a vector of 
unknown coefficients, and ui, is the error term for equation i for period f. The 
first m equations are assumed to be stochastic, with the remaining uir(i = m + 
1,. , n) identically zero for all 1. 

The emphasis in this chapter is on methods rather than results. No attempt is 
made to review the results of comparing alternative models. This review would be 
an enormous undertaking and is beyond the scope of this Handbook. Also, as will 
be argued, most of the methods that have been used in the past to compare 
models are flawed, and so it is not clear that an extensive review of results based 
on these methods is worth anyone’s effort. ‘Ihe numerical solution of nonlinear 
models is reviewed in Section 2, including stochastic simulation procedures. This 
is background material for the rest of the chapter. The standard methods that 
have been used to evaluate ex ante and ex post predictive accuracy are discussed 
in Sections 3 and 4, respectively. The main problems with these methods, as will 
be discussed, are that they (1) do not account for exogenous variable uncertainty, 
(2) do not account for the fact that forecast-error variances vary across time, and 
(3) do not treat the possible existence of r&specification in a systematic way. 
Section 5 discusses a method that I have recently developed that attempts to 
handle these problems, a method based on successive reestimation and stochastic 
simulation of the model. Section 6 contains a brief conclusion. 

It is important to note that this chapter is not a chapter on forecasting 
techniques. It is concerned only with methods for evaluating and comparing 
econometric models with respect to their predictive accuracy. The use of these 
methods should allow one (in the long run) to decide which model best approxi- 
mates the true structure of the economy and how much confidence to place on the 
predictions from a given model. The hope is that one will end up with a model 
that for a wide range of loss functions produces better forecasts than do other 
techniques. At some point along the way one will have to evaluate and compare 
other methods of forecasting, but it is probably too early to do this. At any rate, 
this issue is beyond the scope of this chapter.’ 

‘For a good recent text on forecasting techniques for time series, see Franger and Newbold (1977). 
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2. Numerical solution of nonlinear models 

The Gauss-Seidel technique is generally used to solve nonlinear models. [See 
Chapter 14 (Quandt) for a discussion of this technique.] Given a set of estimates 
of the coefficients, given values for the predetermined variables, and given values 
for the error terms, the technique can be used to solve for the endogenous 
variables. Although in general there is no guarantee that the technique will 
converge, in practice it has worked quite well. 

A “static” simulation is one in which the actual values of the predetermined 
variables are used for the solution each period. A “dynamic” simulation is one in 
which the predicted values of the endogenous variables from the solutions for 
previous periods are used for the values of the lagged endogenous variables for 
the solution for the current period. An “ex post” simulation or forecast is one in 
which the actual values of the exogenous variables are used. An “ex ante” 
simulation or forecast is one in which guessed values of the exogenous variables 
are used. A simulation is “outsidesample” if the simulation period is not 
included within the estimation period; otherwise the simulation is “within-sam- 
ple.” In forecasting situations in which the future is truly unknown, the simula- 
tions must be ex ante, outside-sample, and (if the simulation is for more than one 
period) dynamic. 

If one set of values of the error teams is used, the simulation is said to be 
“deterministic.” The expected values of most error terms in most models are zero, 
and so in most cases the errors terms are set to zero for the solution. Although it 
is well known [see Howrey and Kelejian (1971)] that for nonlinear models the 
solution values of the endogenous variables from deterministic simulations are 
not equal to the expected values of the variables, in practice most simulations are 
deterministic. It is possible, however, to solve for the expected values of the 
endogenous variables by means of “stochastic” simulation, and this procedure 
will now be described. As will be seen later in this chapter, stochastic simulation 
is useful for purposes other than merely solving for the expected values. 

Stochastic simulation requires that an assumption be made about the distribu- 
tions of the error terms and the coefficient estimates. In practice these distribu- 
tions are almost always assumed to be normal, although in principle other 
assumptions can be made. For purposes of the present discussion the normality 
assumption will be made. In particular, it is assumed that tl, = ( ul,, , u,,)’ is 
independently and identically distributed as multivariate N(O,Z). Given the 
estimation technique, the coefficient estimates, and the data, one can estimate the 
covari&e matrix of the error terms and the covariance matrix of the coefficient 
estimates. Denote these two matrices as 2 and ?, respectively. The dimension of 
2 is M X m, and the dimension of P is K X K, where K is the total number of 
coefficients in the model. ,YX can be computed as (l/T)fifi: where fi is the m X 7’ 

matrix of values of the estimated error terms. The computation of 3 depends on 
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the estimation technique used. Given ? and given the normality assumption, an 
estimate of the distribution of the coefficient estimates is A’(&, ?), where 8 is the 
K x 1 vector of the coefficient estimates. 

Let_ u: denote a particular draw of the m error terms for period I from the 
N(0, X) distribution, and let a* denote a particular draw of the K coefficients 
from the N(B, p) distribution. Given u: for each period f of the simulation and 
given a+, one can solve the model. This is merely a deterministic simulation for 
the given values of the error terms and coefficients. Call tbis simulation a “trial”. 
Another trial can be made by drawing a new set of values of u: for each period f 
and a new set of values of a*. This can be done as many times as desired. From 
each trial one obtains a prediction of each endogenous variable for each period. 
Let j& denote the value on the jth trial of the k-period-ahead prediction of 
variable i from a simulation beginning in period t.* For J trials, the estimate of 
the expected value of the variable, denoted ji,,, is: 

In a number of studies stochastic simulation with respect to the error terms 
only has been performed, which means drawing only from the distribution of the 
error terms for a given trial. These studies include Nagar (1969); Evans, Klein, 
and Saito (1972); Fromm, Klein, and S&ink (1972); Green, Liebenberg, and 
Hirsch (1972); Sowey (1973); Cooper and Fischer (1972); Cooper (1974); Garbade 
(1975); Bianchi, Calzolari, and Corsi (1976); and Calzolari and Corsi (1977). 
Studies in which stochastic simulation with respect to both the error terms and 
coefficient estimates has been performed include Cooper and Fischer (1974); 
S&ink (1971), (1974); Haitovsky and Wallace (1972); Muench, Rolnick, Wallace, 
and Weiler (1974); and Fair (1980). 

One important empirical conclusion that can be drawn from stochastic simula- 
tion studies to date is that the values computed from deterministic simulations are 
quite close to the mean predicted values computed from stochastic simulations. In 
other words, the bias that results from using deterministic simulation to solve 
nonlinear models appears to be small. This conclusion has been reached by Nagar 
(1969), Sowey (1973), Cooper (1974), Bianchi, Calzolani, and Corsi (1976), and 
Calzolani and Corsi (1977) for stochastic simulation with respect to the errcz 
terms only and by Fair (1980) for stochastic simulation with respect to both error 
terms and coefficients. 

A standard way of drawing values of a* from the A’(&, k) distribution is to (1) 
factor numerically (using a subroutine package) ? into PP’, (2) draw (again using 
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a subroutine package) K values of a standard normal random variable with mean 
0 and variance 1, and (3) compute a* as 6 + Pe, where e is the K x 1 v&or of 
the standard normal draws. Since Eee’ = I, then E(a* - &)(a* - &)’ = EPee’P’ 
= e, which is as desired for the distribution of a*. A similar procedure can be 
used to draw values of u: from the N(0, 2) distribution: % is factored into PP’, 
and u: is computed as Pe, where e is a m Xl vector of standard normal draws. 

An alternative procedure for drawing values of the error terms, due to 
McCarthy (1972), has also been used in practice. For this procedure one begins 
with the m X T matrix of estimated error terms, 0: T standard normal random 
variables are then drawn, and II,? is computed as T-“%, where e is a T x 1 
vector of the standard normal draws. It is easy to show that the covariance matrix 
of u: is 2, where, as above, ,% is (l/T)&?‘. 

An alternative procedure is also available for drawing values of the coefficients. 
Given the estimation period (say, 1 through T) and given 2, one can draw 7 
values of u:(’ = 1, , T). One can then add these errors to the model and solve 
the model over the estimation period (static simulation, using the original values 
of the coefficient estimates). The predicted values of the endogenous variables 
from this solution can be taken to be a new data base, from which a new set of 
coefficients can be estimated. This set can then be taken to be one draw of the 
coefficients. This procedure is more expensive than drawing from the N(ir, P) 
distribution, since reestimation is required for each draw, but it has the advantage 
of not being based on a fixed estimate of the dis$bution of the coefticient 
estimates. It is, of course, based on a fixed value of 2 and a fixed set of original 
coefficient estimates. 

It should finally be noted with respect to the solution of models that in actual 
forecasting situations most models are subjectively adjusted before the forecasts 
are computed. The adjustments take the form of either using values other than 
zero for the future error terms or using values other than the estimated values for 
the coefficients. Different values of the same coefficient are sometimes used for 
different periods. Adjusting the values of constant terms is equivalent to adjusting 
values of the error terms, given that a different value of the constant term can be 
used each period.3 Adjustments of this type are sometimes called “add factors”. 
With enough add factors it is possible, of course, to have the forecasts from a 
model be whatever the user wants, subject to the restriction that the identities 
must be satisfied. Most add factors are subjective in that the procedure by which 
they were chosen cannot be replicated by others. A few add factors are objective. 
For example, the procedure of setting the future values of the error terms equal to 
de average of the past two estimated values is an objective one. This procedure. 
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along with another type of mechanical adjustment procedure, is used for some of 
the results in Haitovsky, Treyz, and Su (1974). See also Green, Liebenberg, and 
Hirsch (1972) for other examples. 

3. Evaluation of ex ante forea& 

The three most common measures of predictive accuracy are root mean squared 
error (RMSE), mean absolute error (MAE), and Theil’s inequality coefficient4 
(U). Let ji,, be the forecast of variable i for period t, and let y,, be the actual 
value. Assume that observations on pi,, and y,, are available for f = 1,. , T. Then 
the measures for this variable are: 

where A in (5) denotes either absolute or percentage change. All three measures 
are zero if the forecasts are perfect. The MAE measure penalizes large errors less 
than does the RMSE measure. The value of U is one for a no-change forecast 
(Aj!,, = 0). A value of U greater than one means that the forecast is less accurate 
than the simple forecast of no change. 

An important practical problem that arises in evaluating ex ante forecasting 
accuracy is the problem of data revisions. Given that the data for many variables 
are revised a number of times before becoming “final”, it is not clear whether the 
forecast values should be compared to the first-released values, to the final values, 
or to some set in between. There is no obvious answer to this problem. If the 
revision for a particular variable is a benchmark revision, where the level of 
the variable is revised beginning at least a few periods before the start of the 
prediction period, then a common procedure is to adjust the forecast value by 
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adding the forecasted change (Aj+,), which is based on the old data, to the new 
lagged value (y,,_,) and then comparing the adjusted forecast value to the new 
data. If, say, the revision took the form of adding a constant amount J, to each of 
the old values of L;,, then this procedure merely adds the same y, to each of the 
forecasted values of yi,. This procedure is often followed even if the revisions are 
not all benchmark revisions, on the implicit assumption that they are more like 
benchmark revisions than other kinds. Following this procedure also means that 
if forecast changes are being evaluated, as in the U measure, then no adjustments 
are needed. 

There are a number of studies that have examined ex ante forecasting accuracy 
using one or more of the above measures. Some of the more recent studies are 
McNees (1973, 1974, 1975, 1976) and Zarnowitz (1979). It is usually the case that 
forecasts from both model builders and nonmodel builders are examined and 
compared. A common “base” set of forecasts to use for comparison purposes is 
the set from the ASA/NBER Business Outlook Survey. A general conclusion 
from these studies is that there is no obvious “winner” among the various 
forecasters [see, for example, Zarnowitz (1979, pp. 23, 30)]. The relative perfor- 
mance of the forecasters varies considerably across variables and length ahead of 
the forecast, and the differences among the forecasters for a given variable and 
length ahead are generally small. This means that there is yet little evidence that 
the forecasts from model builders are more accurate than, say, the forecasts from 
the ASA/NBER Survey. 

Ex ante forecasting comparisons are unfortunately of little interest from the 
point of view of examining the predictive accuracy of models. There are two 
reasons for this. The first is that the ex ante forecasts are based on guessed rather 
than actual values of the exogenous variables. Given only the actual and forecast 
values of the endogenous variables, there is no way of separating a given error 
into that part due to bad guesses and that part due to other factors. A model 
should not necessarily be penalized for bad exogenous-variable guesses from its 
users. More will be said about this in Section 5. The second, and more important, 
reason is that almost all the forecasts examined in these studies are generated 
from subjectively adjusted models, (i.e. subjective add factors are used). It is thus 
the accuracy of the forecasting performance of the model builders rather than of 
the models that is being examined. 

Before concluding this section it is of interest to consider two further points 
regarding the subjective adjustment of models. First, there is some indirect 
evidence that the use of add factors is quite important in practice. The studies of 
Evans, Haitovsky, and Treyz (1972) and Haitovsky and Treyz (1972) analyzing 
the Wharton and OBE models found that the ex ante forecasts from the model 
builders were more accurate than the ex post forecasts from the models, even 
when the same add factors that were used for the ex ante forecasts were used for 
the ex post forecasts. In other words, the use of actual rather than guessed values 
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of the exogenous variables decreased the accuracy of the forecasts. This general 
conclusion can also be drawn from the results for the BEA model in Table 3 in 
Hirsch, Grimm, and Narasimham (1974). This conclusion is consistent with the 
view that the add factors are (in a loose sense) more important than the model in 
determining the ex ante forecasts: what one would otherwise consider to be an 
improvement for the model, namely the use of more accurate exogenous-variable 
values, worsens the forecasting accuracy. 

Second, there is some evidence that the accuracy of non-subjectively adjusted 
ex ante forecasts is improved by the use of actual rather than guessed values of 
the exogenous variables. During the period 197OIIIL197311, I made ex ante 
forecasts using a short-run forecasting model [Fair (1971)]. No add factors were 
used for these forecasts. The accuracy of these forecasts is examined in Fair 
(1974), and the results indicate that the accuracy of the forecasts is generally 
improved when actual rather than guessed values of the exogenous variables are 
used. 

It is finally of interest to note, although nothing really follows from this, that 
the (non-subjectively adjusted) ex ante forecasts from my forecasting model were 
on average less accurate than the subjectively adjusted forecasts [McNees (1973)], 
whereas the ex post forecasts, (i.e. the forecasts based on the actual values of the 
exogenous variables) were on average about the same degree of accuracy as the 
subjectively adjusted forecasts [Fair (1974)]. 

4. Evaluation of ex post forecasts 

The measures in (3)-(5) have also been widely used to evaluate the accuracy of 
ex post forecasts. One of the more well known comparisons of ex post forecasting 
accuracy is described in Fromm and Klein (1976), where eleven models are 
analyzed. The standard procedure for ex post comparisons is to compute ex post 
forecasts over a common simulation period, calculate for each model and variable 
an error measure, and compare the values of the error measure across models. If 
the forecasts are outside-sample, there is usually some attempt to have the ends 
of the estimation periods for the models be approximately the same. It is 
generally the case that forecasting accuracy deteriorates the further away the 
forecast period is from the estimation period, and this is the reason for wanting to 
make the estimation periods as similar as possible for different models. 

The use of the RMSE measure, or one of the other measures, to evaluate 
ex post forecasts is straightforward, and there is little more to be said about this. 
Sometimes the accuracy of a given model is compared to the accuracy of a 
“naive” model, where the naive model can range from the simple assumption of 
no change in each variable to an autoregressive moving average (ARIMA) process 
for each variable. (The comparison with the no-change model is, of course, 
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already implicit in the U measure.) It is sometimes the case that turning-point 
observations are examined separately, where by “turning point” is meant a point 
at which the change in a variable switches sign. There is nothing inherent in the 
statistical specification of models that would lead one to examine turning points 
separately, but there is a strand of the literature in which turning-point accuracy 
has been emphasized. 

Although the use of the RMSE or similar measure is widespread, there are two 
serious problems associated with the general procedure. The first concerns the 
exogenous variables. Models differ both in the number and types of variables that 
are taken to be exogenous and in the sensitivity of the predicted values of the 
endogenous variables to the exogenous-variable values. The procedure does not 
take these differences into account. If one model is less “endogenous” than 
another (say that prices are taken to be exogenous in one model but not in 
another), then it has an unfair advantage in the calculation of the error measures. 
The other problem concerns the fact that forecast error variances vary across 
time. Forecast error variances vary across time both because of nonlinear&s in 
the model and because of variation in the exogenous variables. Although RMSEs 
are in some loose sense estimates of the averages of the variances across time, no 
rigorous statistical interpretation can be placed on them: they are not estimates of 
any parameters of the model. 

There is another problem associated with within-sample calculations of the 
error measures, which is the possible existence of data mining. If in the process of 
constructing a model one has, by running many regressions, searched diligently 
for the best fitting equation for each variable, there is a danger that the equations 
chosen, while providing good fits within the estimation period, are poor ap- 
proximations to the true structure. Within-sample error calculations are not likely 
to discover this, and so they may give a very misleading impression of the true 
accuracy of the model. Outside-sample error calculations should, of course, pick 
this up, and this is the reason that more weight is generally placed on outside- 
sample results. 

Nelson (1972) used an alternative procedure in addition to the RMSE proce- 
dure in his ex post evaluation of the FRB-MIT-PENN (FMP) model. For each of 
a number of endogenous variables he obtained a series of static predictions using 
both the FMP model and an ARIKA model. He then regressed the actual value 
of each variable on the two predicted values over the period for which the 
predictions were made. Ignoring the fact that the FMP model is nonlinear, the 
predictions from the model are conditional expectations based on a given 
information set. If the FMP model makes efficient use of this information, then 
no further information should be contained in the ARIMA predictions. The 
ARIMA model for each variable uses only a subset of the information, namely, 
that contained in the past bistoiy of the variable. Therefore, if the FMP model 
has made efficient use of the information, the coefficient for the ARIMA 
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predicted values should be zero. Nelson found that in general the estimates of this 
coefficient were significantly different from zero. This test, while interesting, 
cannot be used to compare models that differ in the number and types of 
variables that are taken to be exogenous. In order to test the hypothesis of 
efficient information use, the information set used by one model must be 
contained in the set used by the other model, and this is in general not true for 
models that ditk in their exogenous variables. 

5. An alternative method for evaluating predictive accuracy 

The method discussed in this section takes account of exogenous-variable uncer- 
tainty and of the fact that forecast error variances vary across time. It also deals 
in a systematic way with the question of the possible r&specification of the 
model. It accounts for the four main sources of uncertainty of a forecast: 
uncertainty due to (1) the error terms, (2) the coefficient estimates, (3) the 
exogenous-variable forecasts, and (4) the possible misspecification of the model. 
The method is discussed in detail in Fair (1980). The following is an outline of its 
main features. 

Estimating the uncertainty from the error terms and coeflicients can be done by 
means of stochastic simulation. Let a& denote the variance of the forecast error 
for a k-period-ahead forecast of variable i from a simulation beginning in period 
f. Given the J trials discussed in Section 2, a stochastic-simulation estimate of C& 
(denoted ~5,:~) is: 

where $i,k is determined by (2). If an estimate of the uncertainty from the error 
terms only is desired, then the trials consist only of draws from the distribution of 
the error ternx5 

There are two polar assumptions that can be made about the uncertainty of the 
exogenous variables. One is, of course, that there is no exogenous-variable 
uncertainty. The other is that the exogenous-variable forecasts are in some way as 
uncertain as the endogenous-variable forecasts. Under this second assumption 
one could, for example, estimate an autoregressive equation for each exogenous 
variable and add these equations to the model. This expanded model, which 
would have no exogenous variables, could then be used for the stochastic-simula- 
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tion estimates of the variances. While the first assumption is clearly likely to 
underestimate exogenous-variable uncertainty in most applications, the second 
assumption is likely to overestimate it. This is particularly true for fiscal-policy 
variables in macroeconomic models, where government-budget data are usually 
quite useful for purposes of forecasting up to at least about eight quarters ahead. 
The best approximation is thus likely to lie somewhere in between these two 
assumptions. 

The assumption that was made for the results in Fair (1980) was in between the 
two polar assumptions. The procedure that was followed was to estimate an 
eighth-order autoregressive equation for each exogenous variable (including a 
constant and time in the equation) and then to take the estimated standard error 
from this regression as the estimate of the degree of uncertainty attached to 
forecasting the change in this variable for each period. This procedure ignores the 
uncertainty of the coefficient estimates in the autoregressive equations, which is 
one of the reasons it is not as extreme as the second polar assumption. In an 
earlier stochastic-simulation study of Haitovsky and Wallace (1972), third-order 
autoregressive equations were estimated for the exogenous variables, and these 
equations were then added to the model. This procedure is consistent with the 
second polar assumption above except that for purposes of the stochastic 
simulations Haitovsky and Wallace took the variances of the ermr terms to be 
one-half of the estimated variances. They defend this procedure (pp. 267-268) on 
the grounds that the uncertainty from the exogenous-variable forecasts is likely to 
be less than is reflected in the autoregressive equations. 

Another possible procedure that could be used for the exogenous variables 
would be to gather from various forecasting services data on their ex ante 
forecasting errors of the exogenous variables (exogenous to you, not necessarily to 
the forecasting service). From these errors for various periods one could estimate 
a standard error for each exogenous variable and then use these errors for the 
stochastic-simulation draws. 

For purposes of describing the present method, all that needs to be assumed is 
that home procedure is available for estimating exogenous-variable uncertainty. If 
equations for the exogenous variables are not added to the model, but instead 
some in between procedure is followed, then each stochastic-simulation trial 
consists of draws of error terms, coefficients, and exogenous-variable errors. If 
equations are added, then each trial consists of draws of error terms and 
coefficients from both the structural equations and the exogenous-variable equa- 
tions. In either case, let ajrrk ‘* denote the stochastic-simulation estimate of the 
variance of the forecast error that takes into account exogenous-variable uncer- 
tainty. & differs from I$,:, in (6) in that the trials for g,‘, include draws of 
exogenous-variable errors. 

Estimating the uncertainty from the possible misspecification of the model is 
the most difficult and costly part of the method. It requires successive reestima- 
tion and stochastic simulation of the model. It is based on a comparison of 



mm R. c. Fair 

estimated variances computed by means of stochastic simulation with estimated 
variances computed from outside-sample forecast errors. 

Consider for now stochastic simulation with respect to the structural error 
terms and coefficients only (no exogenous-variable uncertainty). Assume that the 
forecast period begins one period after the end of the estimation period, and call 
this period 1. As noted above, from this stochastic simulation one obtains an 
estimate of the variance of the forecast error, &. One also obtains from this 
simulation an estimate of the expecled value of the k-period-ahead forecast of 
variable i: J!:,/, in equation (2). The difference between this estimate and the 
actual value, yrr+k_l, is the mean forecast error: 

%* = Y;t+k-l- Y&k. (7) 

If it is assumed that Fi,, exactly equals the true expected value, &, then iirk in 
(7) is a sample draw from a distribution with a known mean of zero and variance 
KY,:,. The square of this error, G&, is thus under this assumption an unbiased 
estimate of u&. One thus has two estimates of a&, one computed from the mean 
forecast error and one computed by stochastic simulation. Let d,** denote the 
difference between these two estimates: 

If it is further assumed that Zzk exactly equals the true value, then d:,, is the 
difference between the estimated variance based on the mean forecast error and 
the true variance. Therefore, under the two assumptions of no error in the 
stochastic-simulation estimates, the expected value of diix is zero. 

The assumption of no stochastic-simulation error, i.e. Ti,, = j& and 6:,:, = a& 
is obviously only approximately correct at best. Even with an infinite number of 
draws the assumption would not be correct because the draws are from estimated 
rather than known distributions. It does seem, however, that the error introduced 
by this assumption is likely to be small relative to the error introduced by the fact 
that some assumption must be made about the mean of the distribution of di,k. 
Because of this, nothing more will be said about stochastic-simulation error. The 
emphasis instead is on the possible assumptions about the mean of the distribu- 
tion of dirk, given the assumptions of no stochastic-simulation error. 

The procedure just described uses a given estimation period and a given 
forecast period. Assume for sake of an example that one has data from period 1 
through 100. The model can then be estimated through, say, period 70. with the 
forecast period beginning with period 71. Stochastic simulation for the forecast 
period will yield for each i and k a value of diTIX in (8). The model can then be 
reestimated through period 71, with the forecast period now beginning with 
period 72. Stochastic simulation for this forecast period will yield for each i and k 
a value of diTzk in (8). This process can be repeated through the estimation period 
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ending with period 99. For the one-period-ahead forecast (k = 1) the procedure 
will yield for each variable i 30 values of dir1 (t = 71,. ..,lOO); for the two- 
period-ahead forecast (k = 2) it will yield 29 values of dir2 (f = 72,. ,100); and 
so on. If the assumption of no simulation error holds for all f, then the expected 
value of djtk is zero for all t. 

The discussion so far is based on the assumption that the model is correctly 
specified. Misspecification has two effects on dirk in (8). First, if the model is 
misspecified, the estimated covariance matrices that are used for the stochastic 
simulation will not in general be unbiased estimates of the true covariance 
matrices. The estimated variances computed by means of stochastic simulation 
will thus in general be biased. Second, the estimated variances computed from the 
forecast errors will in general be biased estimates of the true variances. Since 
r&specification affects both estimates, the effect on dirk is ambiguous. It is 
possible for m&specification to affect the two estimates in the same way and thus 
leave the expected value of the difference between them equal to zero. In general, 
however, this does not seem likely, and so in general one would not expect the 
expected value of dirk to be zero for a m&specified model. The expected value 
may be negative rather than positive for a m&specified model, although in general 
it seems more likely that it will be positive. Because of the possibility of data 
mining, misspecification seems more likely to have a larger positive effect on the 
outside sample forecast errors than on the (within-sample) estimated covariance 
matrices. 

An examination of how the ditk values change over time (for a given i and k) 
may reveal information about the strengths and weaknesses of the model that one 
would otherwise not have. This information may then be useful in future work on 
the model. The individual values may thus be of interest in their own right aside 
from their possible use in estimating total predictive uncertainty. 

For the total uncertainty estimates some assumption has to be made about how 
misspecification aI%cts the expected value of de,,. For the results in Fair (198Oa) 
it was assumed that the expected value of dira is constant across time: for a given 
i and k, misspecification was assumed to affect the mean of the distribution of 
dirr in the same way for all t. Other possible assumptions are, of course, possible. 
One could, for example, assume that the mean of the distribution is a function of 

I other variables. (A simple assumption in this respect is that the mean follows a 
linear time trend.) Given this assumption, the mean can be then estimated from a 
regression of dim on the variables. For the assumption of a constant mean, this 
regression is merely a regression on a constant (i.e. the estimated constant term is 
merely the mean of, the dirk values).6 The predicted value from this regression for 
period f, denoted dirk, is the estimated mean for period f. 
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An estimate of the total variance of the forecast error, denoted 6;,, is the sum 
of &:,:, -the stochastic-simulation estimate of the variance due to the error terms, 
coefficient estimates, and exogenous variables-and d,,: 

Since the procedure in arriving at azk takes into account the four main sources of 
uncertainty of a forecast, the values of I$$ can be compared across models for a 
given i, k, and f. If, for example, one model has consistently smaller values of c?,:~ 
then another, this would be fairly strong evidence for concluding that it is a more 
accurate model, i.e. a better approximation to the true structure. 

This completes the outline of the method. It may be useful to review the main 
steps involved in computing aif,:, in (9). Assume that data are available for periods 
1 through T and that one is interested in estimating the uncertainty of an 
eight-period-ahead forecast that began in period T + 1, (i.e. in computing 6j;k for 
f = T + 1 and k = 1,. ,8). Given a base set of values for the exogenous variables 
forperiodsT+lthroughT+8,onecancompute~~,:,fort=T+landk=1,...,8 
by means of stochastic simulation. Each trial consists of one eight-period dynamic 
simulation and requires draws of the error terms, coefficients, and exogenous-vari- 
able errors. These draws are based on the estimate of the model through period T. 
This is the relative inexpensive part of the method. The expensive part consists of 
the successive reestimation and stochastic simulation of the model that are needed 
in computing the ditk values. In the above example, the model would be 
estimated 30 times and stochastically simulated 30 times in computing the dirk 
values. After these values are computed for, say, periods T- r through T, then 
ditk can be computed for t = T + 1 and k = 1,. ,8 using whatever assumption has 
been made about the distribution of dirk. This allows 6& in (9) to be computed 
for t=T+l and k=1,...,8. 

In the successive reestimation of the model, the first period of the estimation 
period may or may not be increased by one each time. The criterion that one 
should use in deciding this is to pick the procedure that seems likely to corre- 
spond to the chosen assumption about the distribution of dirk being the best 
approximation to the truth It is also possible to take the distance between the last 
period of the estimation period and the first period of the forecast period to be 
other than one, as was done above. 

It is important to note that the above estimate of the mean of the dj,* 
distribution is not in general efficient because the error term in the dirk regression 
is in general heteroscedastic. Even under the null hypothesis of no misspecifica- 
tion, the variance of the di,k distribution is not constant across time. It is true, 
however, that Z,,/(L?~;:, + ri,,,) I’* has unit variance under the null hypothesis, 
and so it may not be a bad approximation to assume that %f,,/(aj, + dilk) has a 
constant variance across time. This then suggests the following iterative prow 
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dure. 1) For each i and k, calculate d,, from the dirx regression, as discussed 
above; 2) divide each observation in the dirk regression by cl:,:, + ail*, run another 
regression, and calculate dak from this regression; 3) repeat step 2) until the 
successive estimates of (iirk are within some prescribed tolerance level. Litterman 
(1980) has carried out this procedure for a number of models for the case in 
which the only explanatory variable in the d,,, regression is the constant term (i.e. 
for the case in which the null hypothesis is that the mean of the dirk distribution 
is constant across time). 

If one is willing to assume that girk is normally distributed, which is at best 
only an approximation, then Litterman (1979) has shown that the above iterative 
procedure produces maximum likelihood estimates. He has used this assumption 
in Litterman (1980) to test the hypothesis (using a likelihood ratio test) that the 
mean of the d,,k distribution is the same in the first and second halves of the 
sample period. The hypothesis was rejected at the 5 percent level in only 3 of 24 
tests. These results thus suggest that the assumption of a constant mean of the 
di,k distribution may not be a bad approximation in many cases. This conclusion 
was also reached for the results in Fair (1982), where plots of ditk values were 
examined across time (for a given i and k). There was little evidence from these 
plots that the mean was changing over time. 

The mean of the di,* distribution can be interpreted as a measure of the 
average unexplained forecast error variance, (i.e. that part not explained by &) 
rather than as a measure of m&specification. Using this interpretation, Litterman 
(1980) has examined whether the use of the estimated means of the dirk distribu- 
tions lead to more accurate estimates of the forecast error variances. The results 
of his tests, which are based on the normality assumption, show that substantially 
more accurate estimates are obtained using the estimated means. Litterman’s 
overall results are thus quite encouraging regarding the potential usefulness of the 
method discussed in this section. 

Aside from Litterman’s use of the method to compare various versions of Sims’ 
(1980) model, I have used the method to compare my model [Fair (1976)], 
Sargent’s (1976) model, Sims’ model, and an eighth-order autoregressive model. 
The results of this comparison are presented in Fair (1979). 

1 
4 6. Conclusion 

It should be clear from this chapter that the comparison of the predictive 
accuracy of alternative models is not a straightforward exercise. The difficulty of 
evaluating alternative models is undoubtedly one of the main reasons there is 
currently so little agreement about which model best approximates the true 
structure of the economy. If it were easy to decide whether one model is more 
accurate than another, there would probably be by now a generally agreed upon 



,994 R. c. fair 

model of, for example, the U.S. economy. With further work on methods like the 
one described in Section 5, however, it may be possible in the not-too-distant 
future to begin a more systematic comparison of models. Perhaps in ten or twenty 
years time the use of these methods will have considerably narrowed the current 
range of disagreements. 
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