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1. INTRODUCTION 

This paper is concerned with testing for structural change in nonlinear models. For the 
classical linear regression model the F-test discussed by Chow (1960) commonly is used, 
and for the linear simultaneous equations model the Lo and Newey (1985) or Hodoshima 
(1986) extensions of this test can be used. Somewhat surprisingly, however, more general 
cases have received little attention in the literature. An exception is the work of Anderson 
and Mizon (1983) on the nonlinear simultaneous equations model. In this paper we 
consider fairly wide classes of models, estimators, and test statistics. We also cover the 
case where the structural change is only partial, i.e. it pertains to only a subset of the 
coefficients in the model. Some of the test statistics we present can be computed using 
the output from standard software packages. 

The models we consider may be dynamic, simultaneous, and nonlinear and may 
include limited dependent variables. The error terms may show a very general form of 
temporal dependence and heteroskedasticity. The estimators include nonlinear least 
squares (LS), two stage least squares (2SLS), three stage least squares (3SLS), maximum 
likelihood (MI.,), and M-estimators. The tests covered are the Wald (W) test, a Lagrange 
multiplier-like (LM) test, and a likelihood ratio-like (LR) test. Under certain conditions, 
we show that the test statistics are asymptotically chi-square under the null hypothesis 
of no structural change and asymptotically noncentral chi-square under sequences of 
local alternatives. 

The paper is organized as follows. Three examples are introduced in Section 2: (1) 
the single equation nonlinear regression model, (2) the nonlinear simultaneous equations 
model, and (3) any model estimated by maximum likelihood. General estimation and 
testing results that cover these examples and others are given in Section 3, with proofs 
in the Appendix. Sectibn 4 contains a detailed treatment of the application of the general 
results to the non-linear simultaneous equations example. 
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The general results of Section 3 have the added feature that in several respects they 
provide the most general unifying results in the econometrics literature for estimation 
and testing in dynamic and nondynamic, nonlinear, finite dimensional parametric models. 
Also, they do so in a much more economical fashion than is available elsewhere, such 
as in Gallant (1987) or Gallant and White (1988).’ In contrast to Gallant (1987, Chapters 
3 and 7), least mean distance and method of moment estimators are treated simultaneously. 
Also in contrast to Gallant and White (1988), a more complete treatment of multi-step 
procedures is given.’ 

The approach taken in Section 3 is a variant of that of Gallant (1987, Chapter 7). 
In contrast to Gallant (1987), however, the results are stated such that they can be applied 
with any uniform law of large numbers and any central limit theorem. This allows 
developments in these areas--especially with respect to temporal dependence-to be 
adopted readily. 

2. INTRODUCTORY EXAMPLES 

This section introduces three examples that are covered by the generalaesults of Section 
3. These examples are used in Section 3 to illustrate the way,in which the general results 
can be applied to particular models and estimation procedures. The second example, 
the nonlinear simultaneous equations model, is considered in more detail in Section 4. 
See Andrews and Fair (1987) for more discussion of the first and third examples. 

First, consider a nonlinear regression model with structural change: 

Y,=f;(x,,e,,B,)+u, for t=-r, (___, -1, 
(2.1) 

Y,=f;(x,,e,,e,)+u, fort=l,.:.,T,, 

where Y, is a scalar dependent variable, X, is a vector of regressor variables, U, is a 
scalar error term, J;( ‘, ‘, .) is a known function, and 6 = (ei, e:, 0:)’ is an unknown 
parameter vector. The errors may be heteroskedastic and/or autocorrelated, but must be 
oncorrelated with the regression function. The regressors X, may include lagged values 
of Y,. The time index is normalized such that structural change occurs at f = 0 if such 
change occurs. 

The null hypothesis of no structural change is given by the simple restriction on B 
that 0, = 8,. We are interested in testing this restriction as well as testing joint null 
hypotheses of no structural change plus additional restrictions h(B) =O. In the case of 
pure structural change, there is no subparameter 8, that is constant across periods, and 
so, 8, does not appear in (2.1) or in 8. 

Most estimators of 0, such as the least squares (LS) estimator or M-estimators, are 
extremum estimators. Such estimators are defined as the solution to some minimization 
problem. The properties of such an estimator (such as consistency and asymptotic 
normality) can be determined from the properties of the optimand that defines the 
estimator. Test statistics can be formed using the restricted and unrestricted versions of 
the estimator and/or the restricted and unrestricted values of the optimand or its deriva- 
tives. The properties of the test statistics can also he determined from the properties of 
the optimand that defines the estimator. In consequence, general results can be obtained 
for estimation and testing by analyzing general optimization problems without specifying 
the models from which the optimization problem was obtained. To apply the general 
results to a particular problem, one links the particular model and estimation procedure 
with the general results via one’s definition of the optimand. 
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The testing results of Section 3 cover three types of procedures: Wald, LM-like, and 
LR-like tests. These procedures apply whether or not estimation has been carried out by 
maximum likelihood. The Wald statistic is defined in the usual way. It is given by a 
quadratic form based on the difference between the unrestricted estimated value of the 
restrictions and their value under the null hypothesis. The LM statistic is a quadratic 
form based on the vector of derivatives with respect to 0 of the optimand that defines 
the estimator, evaluated at the restricted estimator of 8. By suitable choice of a weight 
matrix for the quadratic form, the Wald and LM statistics have asymptotic chi-square 
distributions under the null with degrees of freedom given by the number of restrictions. 
For example, even if the errors are heterogeneous and autocorrelated in (2.1), a weight 
matrix can be chosen such that the test is valid asymptotically. 

The LR-like statistic, on the other hand, only has the desired asymptotic chi-square 
null distribution under more restrictive conditions. For example, it does in the nonlinear 
regression case with estimation by LS if the errors are homoskedastic and uncorrelated. 
Although this condition can be restrictive, it can be circumvented in some cases by 
transforming a model with correlated errors into one with uncorrelated errors (e.g. see 
Fair (1970)). 

In the case of testing for pure structural change, the LR-like statistic is particularly 
simple. For example, suppose the nonlinear regression model of (2.1) is estimated by 
LS. Then, the LR test statistic equals T1 + T2 times the difference between the sum of 
squared residuals from the restricted and unrestricted LS regressions divided by the sum 
of squared residuals from the unrestricted regression. The unrestricted residuals are 
obtained by doing separate LS regressions on the data with t<O and t>O; while the 

.restricted residuals are obtained by doing a single LS regression on the whole data set 
(with e2 set equal to 0,). The LR test statistic in this case is analogous to the classical 
F- statistic one obtains in the linear regression model when testing for structural change. 

Next, consider a nonlinear dynamic simultaneous equations model with structural 
change: 

f;,(Y,,X,,8,,0,)=U,, fori=l,._., n,t=-T, ,___, -1, 
(2.2) 

f;,(Y,,X,,8,,6,)=U,, fori=l,_._, n,f=l,___, Tz, 

where Y,cR” and X,eRK are observed endogenous and predetermined variables, 
respectively, U,,t R’ is an unobserved error, f;,( ., ., ., .)E R’ is a known function, 
6 = (0;) t?;, 0;) E 0 c RP is an unknown parameter, and n (Z 1) is the number of equations. 
The null hypothesis of no structural change is given by 0, = t$. In the case of pure 
structural change, no subparameter 6, appears in (2.2) or in 0. 

In Section 4 a class of nonlinear three stage least squares (3SLS) and two stage least 
squares (2SLS) estimators introduced by Amemiya (1977) is considered. These estimators 
are based on instrumental variables (IV). They are examples of extremum estimators. 
In consequence, their properties and those of the corresponding W, LM-like, and LR-like 
test statistics can be obtained from the general results of Section 3. 

In this example, the conditions needed for the LR statistic to be valid include having 
each instrument z, such that z, = 0 for all f c 0 or z, = 0 for all f > 0 and having error 
vectors U, that are uncorrelated across time, homoskedastic for t <O (i.e. EU,U: =Q, 
Wt<O), and homoskedastic for t>O (i.e. EU,U:=R,Vr>O). In the case of testing 
for pure structural change, one simply estimates the restricted value of 8, (=6,) using 
the full data set and one estimates the unrestricted values of 8, and O2 from the t<O and 
the 1 > 0 data sets respectively. The LR test statistic is 2( T, + TJ times the value of the 
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optimand based on the whole data set evaluated at the restricted estimator minus the 
sum of the two values of the optimand for the two sub-samples evaluated at the unrestricted 
estimators of 0, and e2 respectively. 

As a third example, consider any regular finite dimensional parametric model that 
is estimated by ML. Such models include a wide variety of dynamic and nondynamic 
econometric models. (A model is “regular” if its score functions satisfy the conditions 
of Section 3.) The ML estimator is an extremum estimator whose properties can be 
determined from the general results of Section 3. The Wald, LM, and LR test statistics 
are all asymptotically valid in this context. 

In the case of testing for pure structural change in an ML situation, the parameter 
vector 8 is of the form 8 = (f?:, 8;)‘, where the likelihood function for f < 0 depends only 
on 6, and the likelihood function for f > 0 depends only on S2. To calculate the LR 
statistic for testing 8, = &, one needs to compute the restricted estimate of 8, (= 8,) using 
the whole data set and then compute the unrestricted estimates of 0, and f& using the 
t<O data and the f>O data respectively. The LR statistic, then, is simply 2( T,+ T2) 
times the difference between the restricted log-likelihood function and the unrestricted 
log-likelihood function, where the latter is just the sum of the log-likelihood functions 
for f < 0 and t > 0 evaluated at the unrestricted estimates of 0, and & iespectively. 

3. GENERAL RESULTS 

T&s section gives general results for estimation and testing in models with structural 
change. The basic approach we adopt is one that has evolved in a long series of papers 
on inference in nonlinear models. Such papers include those of Wald (1949), Huber 
(1967), Jennrich (1969), Burguete, Gallant, and Souza (1982) (denoted BGS (1982)), 
Domowitz’and White (1982), Bates and White (1985), Gallant (1987), and Gallant and 
White (1988). Our approach most closely follows that of BGS (1982) and Gallant (1987). 
Our notation is chosen to be as compatible as possible with theirs. 

This section is outlined as follows: We first consider a class of extremum estimators 
for models where structural change may or may not occur. Consistency and asymptotic 
normality of these estimators are established. Consistent estimators of their asymptotic 
covariance matrices are provided. We then consider tests of general nonlinear restrictions. 
Wald, Lagrange multiplier-like, and likelihood ratio-like tests are shown to be asymptoti- 
cally chi-square under the null hypothesis and asymptotically noncentral chi-square under 
local alternatives under certain conditions. 

3.1. Consistency of Estimators 

The data are given by a doubly infinite sequence of random vectors (TV’S) { W,) = 
{W, : f = , -2, -1, 1,2, .} defined on some probability space (a, 9, P). Probability 
statements made below refer to probabilities calculated under F! The observed sample 
ofsize T=T,+T,is{W,:t=-7 ,,._., -1, 1, , Tz}. The point f = 0 is the point of 
structural change, if such change occurs. (For notational convenience, the sequence { W,} 
is indexed such that no W, rv exists.) In most cases, the asymptotics used below correspond 
to situations where 

a,r=T,/T+v,~(O,l) and 1r2r=TJT+z>~(O,l) as T-*m (3.0 

Extremum estimators are defined as follows. 
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Dejinifion. A sequence of extremum estimators {e’}={e^: T= 1,2,. .} is any 
sequence of rv’s such that 

d(~,(~,;),i)=inf,,,d(~T(e,7^), 8 (3.2) 

with probability that goes to one as T-m, where A,(B,7)=1/Tz,rf_r, m,(O,‘r), 
m,(~,~)=m,(W,,~,~),a”dm,(~;;,):R*~xOx~~~R”where~,=R”,m,(~,~)’0,7^ 
is a random u-vector (which depends on T in general), and d( ., .) is a non-random 
real-valued function (which does not depend on T). 

Note that ? is a preliminary estimator used in the definition of t? 
For notational simplicity, we let rB1,( @) abbreviate r&( 8, ?) and we let xi denote 

LB_, for arbitrary integers n C b. 
In the case of pure structural change, the parameter vector B can be partitioned into 

two sub-vectors (6:. 0;)’ such that m,( 8,~) does not depend on 8, for t > 0 or on t$ for 
1~0. In the case of partial structural change, the parameter vector B can be partitioned 
as (8:, O:, B;)‘, where 8, and 6> are as above and 6, is unrestricted. 

We now describe briefly several common estimators in terms of the above framework. 
Consider the nonlinear regression model of (2.1). Let W, = (Y,, Xc)‘. The nonlinear least 
squares estimator of 0 = (e;, e;, e;)’ can be defined either as one that minimizes the sum 
of squared residuals or one that solves the first order conditions of this minimization 
problem. Correspondingly, for the consistency results for 8, we can take either m,(e, 7) = 
(Y, -f;(X,, e,, e,))‘and d(m, 7) = m, where j= 1 for I< 1 andj =Z for t> 1, or m,(& 7) = 

(Y, -ax,, d,, ~3))(J/JwxX, 66) and d( m, T) = m’m/2, whichever is more con- 
venient. For the asymptotic normality and testing results given below, the second definition 
must be used. 

For the LS estimator, no nuisance parameter 7 appears in the functions m,(& T) and 
d(m, 7). If an M-estimator is used, however, then m,(& r) is set equal to G(( Y, - 
.fi(x,, e,, e,wd or #cc y, -h(x,, e,, emm/aeMx,, e,, ed, where the nuisance 
parameter 7 is a scale parameter, e(x) = (d/dx)b(x), and d(. , .) is as above. Huber 
(1981) discusses different choices for the function i( .). 

Next, consider two stage least squares (ZSLS) estimation of a single, nonlinear, 
simultaneous equation with pure structural change. The model is: A( Y,, X,, 6;) = U,, for 
I=-T,,..., T2, where j= 1 for f <O and j=2 for t>O, Y, is a vector of endogenous 
variables, aned X, is a vector of predetermined variables. Let 2, be a vector of instrumental 
variables that can be partitioned as Z, = (Z:, , Z;,)‘, where Z,, = 0 for f Z 0 and Z,, = 0 
for f ~0. Let W, = (Y:, X:, Z;)‘. The 2SLS estimator of 0 is defined by taking m,(e, r) = 
A( Y,, X,, e,)Z, and d(m, T) = m’D(7)m/2, where 7 equals the non-redundant elements of 

( 

-1 
D(T)= lim.,, +$ Ezz:)-’ and D(F)= -$r;,Z,Z: 

( > 

The definitions of m,( 6,~) and d( ‘, .) for the 3SLS estimator are given in Section 4. 
For the case of ML estimation of a parametric model, letf;( 6) denote the conditional 

density of the endogenous variables Y, conditional on the preceding endogenous variables 
{Y, : s < t} and the exogeneous variables {X, : V’s}. Then, the ML estimator is an extremum 
estimator with 

m,(l?,T)=-logf,(0) and d(m,r)=m for meR’ or 
(3.3) 

m,(e, T)= -:logf;(e) and d(m, T)= m’m/Z for m E R”. 
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Either set of definitions can be used for establishing cynsistency of f?. The second set 
must be used for establishing asymptotic normality of @ and obtaining testing results. 

We now return to the general case. In*what follows we avoid imposing conditions 
that are used just to ensure measurability of 6 by stating results that hold for any sequence 
of xv’s {e^}. Such results have content only if such a sequence exists. Clearly, sequences 
{a that satisfy (3.2), but are not necessarily measurable, always exist, since B is assumed 
below to be compact. Furthef, we note that one set of sufficient conditions for the existence 
of a measurable sequence { 6) is that d( rfti( @), F), viewed as a function from fl x 0 to R, 
is continuous in B for each w ~0 and is measurable for each fixed B t 0, and 0 is a 
compact subset of some Euclidean space (see Jennrich (1969), Lemma 2). 

For consistency we assume the following. 

Assumption 1. (a) 0 is compact. 
(b) 7^isarvand@+“rOas T+aoforsorne~~E~~cR”. 
(c) There exists a Bore1 measurable function m( ., ):8x T-B R” such that 

fi,(8,7)+” m(& 7) uniformly over (@, ~)t0~ r as T+w, where Ypc Y, is 
some compact neighbourhood of r,. 

(d) d(m(6, T), 7) is continuous in (0,~) at all (0, T)E@)X K 
(e) d( m( 0, Q), 7@) is uniquely minimized over 0 E 0 at 0,. 

For notational simplicity, we often denote m(e, ro) by m( 0). 
Assumption l(a) is standard in the nonlinear econometrics literature. Assumption 

l(b) can be verified straightforwardly by the application of a weak law of large numbers 
(WLLN) in some cases (e.g. see Andrew (1988) or McLeish (1975)) and by the application 
of Theorem 1 below to get consistency of 7^ rather than e^ in other cases. The function 
m(e, T) of Assumption l(c) generally is given by lim,_, l/TZr;, Em,(ff, 7). Thus, 
Assumption l(c) holds if these limits exist and if {l/T, zr:, m<(0, T)} and 
{l/r, z? m,(e, T){ satisfy uniform WLLNs over 0 x 3 The latter hold under conditions 
that allow considerable heterogeneity and temporal dependence. It is sufficient that 
{ m,( S, T)] satisfy a smoothness condition in (8, r), a moment condition, and a condition 
of asymptotically weak temporal dependence-see Andrew (1987b), Gallant (1987, 
Chapter 7, Theorem l), Potscher and Prucha (1987), or Bierens (1984, Lemma 2). 
Assumption l(d) holds $ most applications. Assumption l(e) is the uniqueness assump- 
tion that ensures that {e} converges to a point Bu rather than to a multi-element subset 
0, of 04. 

Theorem 1. Under Assumption 1, euery sequence of exfremum estimators [6} satisfies 
8^+*0, as T+m under P. 
The proofs of Theorem 1 and other results below are given in the Appendix. 

3.2. Asymptotic normality of estimators 

We now establish the asymptotic normality of sequences of extremum estimators {s^} 
for models that may exhibit structural change. Their asymptotic covariance matrix 
V is defined as follows. Let 

S = limT_, Var, (V’T &(G, %1). 
M = limr__ lIrG1 w3/ae’h(eo, 4, 
D= (a2/amam’)d(m(6 7 ) 7 ) 0, 0, 0, 
9 = M’DM, 9 = M’DSDM, and 
V=$-‘.r?$+, 

where m,( ., ‘) and d( ., .) need not be defined as in Assumption 1 (see footnote 4). For 
the LS estimator, M-estimators, and ML estimators, m,( , .) and d(‘, ) must be chosen 
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in this sub-section and the next to correspond to their first order conditions definition. 
For the 2SLS estimator, m,( ., .) and d( ., .) are defined as in Section 3.1. 

Let 11 ‘11 denote the Euclidean norm and let (J/Jm)d(. , .) denote the derivative of 
d(. , .) with respect to its first argument. We assume: 

Assumption 2. (a) e^+ p 0,~ R* as T+ CO. 
(b) i. fi(7*-?,)=0,(1) as T+~forsome 70~Y,r 

ii. (d/am) d(Er&(O,, -ro), TV) =0 WT large, and iii. (a’/Jl-am’) d(m(O,), T,,) =O. 
(c) {m,(O,, -ro)] satisfy a central limit theorem (CLT) with covariance matrix S. That 

~~,~(~,(O,,T~)-E~~(O~,T~))‘~N(O,S) as T-+m. 
(d) 6 c RP and 0 contains a convex neighbourhood @, of 0”. 
(e) (J/Jm)d(m, 7), (J*/JmJm’)d(m, 7) and (J*/J~Jm’)d(m, r) exist and are con- 

tinuous for (m, T)E 4 x T, where & is smne neighbourhood of m(O,, 70). 
(f) m,(O, 7) is once and twice continuously differentiable in 7 and 0, respectively, 

on 0,x F, Vt, Vo~fi. {m,(O, T)}, (J/JO)m,(O, T)), {(J/JT) m,(O, T)], and 

I II J’ 
suP~ll.,,*,,exr..=, ,..., p ae,ae’ mr(O*, T*) 

III 

are sequences of F\Borel-measurable I-V’S that satisfy uniform WLLNs over 
(0,~) t 8, x Y. The expectations of the sample averages of the latter sequence 
are uniformly bounded for T 5 1. 

m(O,7) =lim,,, 

M(o,r)=limT.,$C$ E$m,(o, T), 

and 

dm(0, 7) = limT,, T ‘XI;, E; m,(O, 7) 

exist uniformly for (0,~) E 0, x tT5 and are continuous and dm( O,,, ~“0) = 0, 
(g) M’DM is nonsingular. 

Assumption 2(a) can be established by Theorem 1 or some other consistency proof. 
Assumption 2(b) can be verified by applying a CLT to i in some cases and by applying 
the result of Theorem 2 below to e rather than e^ in other cases. Assumption Z(c) can be 
verified by defining mT, = n~,+~,+,( Oo, TV) for f = -&, , Tz to get a triangular array 
{mr,: I = 1, _, Tf 1; T= 1,2,. } to which any of a number of CLTs apply. Thus, 
Assumption 2(c) holds under conditions that allow considerable heterogeneity and tem- 
poral dependence. It is sufficient that Em,(O,, ro) =O, Vr, and that {m!(O,, T,,)) satisfy 
standard moment conditions and a condition of asymptotically weak temporal dependence 
see Gallant (1987, Chapter 7, Theorem 2), McLeish (1977, Theorem 2.4 and Corollary 
2.11), Herrndorf (1984, Theorem and Corollaries l-4), or Withers (1981, Theorems 
2.1-2.3). 

Assumption 2(d) is standard. Assumption 2(e) often is satisfied trivially, since d(m, T) 
often equals m or m’D(r)m, where D(T) is a square matrix comprised of the elements 
of 7. Assumption 2(f) is a standard requirement of smoothness of m,(O, T) in 0 and 7, 
the existence of certain limiting averages of expectations, and non-explosive non-trending 
behaviour of the summands {m,(O, 7)) and their first two derivatives. The smoothness 
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conditions are stronger than necessary (cf. Huber (1967) and Pollard (1985)), but are 
satisfied in a large fraction of the cases encountered in practice. Assumption 2(g) is 
standard. For example, it reduces to nonsingularity of the information matrix in iid ML 
contexts. 

Theorem 2. For any sequence ojextremum estimarors { 6) that satisfies Assumption 2, 

fi(e^-O,)+d N(0, V) as T+m. 

Next we consider estimation of the covariance matrix V. Let 

fj= a2 ~ d(rFiT(6, ;), i) and _$= &?&f. amad 
Let s^ be an estimator of S. If {m,(O “, TV)} is a sequence of independent N’S, then we 
cantake~=l/TI:_T;,m,(~,;)m,(B,;)’. If{m,(6 “, To)} is a sequence of temporally depen- 
dent N’S, however, a more complicated estimator is required. The following choice is 
anal?gous to estimators suggested by Andrew (1987~) and Gallant (1987, pp. 551,556). 
Let S = S(B), where 

m,(O) = m,(O, @), [( T,) is a “bandwidth”parameterthat satisfies I(q) +a7 and I(T,) = o(q) 
as T, -co for j = 1,2, and k( .) is the quadratic spectral (QS) kernel, i.e. 

25 
k(x)=--- 

sin (67rx/5) 

12&x* 67rxl5 
--cos (6nx/5) 

or k( .) is the Parzen kernel, i.e. 

1-6x2+6x’ forOCxzl/z 

k(x) = 2(,1-x)” for 1/2SXSl. 

0 forx21 

See Andrew (1987~) for a detailed analysis of the choice of bandwidth parameter i( T,) 
forj=l,Z. 

Conditions under which this estimator is consistent can be found in the references 
above or in Newey and West (19X7).6 These conditions require { m,( oO, 7”)} to have more 
moments finite than are required for {mJ&,, TJ} to satisfy an LLN or a CLT. Given the 
availability of such conditions, it is straightforward to verify the following assumption. 

Assumprion 3. 2 +P S as T+m (where S is as in Assumption 2) 

Let _?=n;r’@fih% and e=$-$$-, where (.)- denotes some reflexive g-inverse 
(such as the Moore-Penrose inverse). 
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Theorem 3. Under Assumptions 2 and 3, I!? + p M, b +P D, and P _tP V as T-, m. 

Comment. When V_simplifies, as occurs in many applications, then c simplifies or 
simpler estimators than V can be constructed. 

3.3. Tesis of hypotheses concerning structural change 

We now consider tests of null hypotheses of the form H,,: h(O) =O. Of particular interest 
are tests of pure and partial structural change. For testing pure structural change, the 
null hypothesis is Ho: .$I = &, where 0 = (O:, 0;)’ and 0, and O2 are parameters associated 
only with the observations indexed by I < 0 and t > 0, respectively. I” the case of partial 
structural change, the null hypothesis is Ho: 0, = O2 where 0 = (O:, O;, 6;)‘, 0, and 0, are 
as above, and 0, is a parameter that may be associated with the observations from all 
time periods. A third class of hypotheses of interest are joint null hypotheses of no 
structural change (pure or partial) plus certain nonlinear restrictions. In this case, the 
null hypothesis is Ho: 6,= 0, and h*(O,)=O when O= (f?:, 6;)’ or H,,: 0, = O2 and 
h*( 0,) 0,) = 0 when 0 = (0;) Ok, 0:)‘. The present framework also includes tests of “on- 
linear restrictions that do not involve testing for structural change. Results for such 
hypotheses, however, already are available in the literature--see Gallant (1987, 
Chapter 7) and Gallant and White (1988, Chapter 7). 

The function h( .) defining the restrictions is assumed to satisfy: 

Assumption 4. (a) h(0) is continuously differentiable in a neighbourhood of O0 and 
H = (J/JO’)h( 0,) has full rank r.( 5~). 

(b) V is nonsingular. 

The Wald statistic is defined as 

W1-= Th(e^)‘(ri%%‘-h(g), (3.5) 

where l? = (J/JO’) h(s). Since fi%’ +J’ HVH’ as T + a3 and HVH’ is nonsingular under 
Assumption 4, the g-inverse ( ‘)- equals the usual inverse ( .)-’ with probability that goes 
to one at T -) a?.? 

I” the case of testing for pure structural change, W, is given by 

W,=T(8^,-~~)‘(~,/n,7+~~J=~ZT)~(~l-~*), (3.6) 

where ?, and p> are the estimators of the asymptotic covariance matrices of e^, and &, 
which are analogous to the estimator t of V and which use the observations indexed by 
t=-T,,..., -1 and f = 1,. , Tz, respectively. This formula holds in the standard case 
where fi is block diagonal with two blocks (for some ordering of its rows and columns) 
and m,(t?, ?) has elements corresponding to the first block of 6 that are “on-zero only 
if I < 0 and other elements that are “on-zero only if f > 0. 

The LM and LR statistics defined below make use of a restricted estimator of 0”: 

Definition. A sequence of restricted extremum estimators {i} = { $: T = 1,2, .} is 
any sequence of rv’s such that 

d(lir,(~),~)=inf{d(~l,(6),i):OEQ,h(B)=O} 

with probability that goes to one as T + m. 

(3.7) 
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Suppose the null hypothesis is true and h( .) is continuous on 8. If Assumption 1 
holds for the parameter space 0 it also holds for the parameter space 0, = { 0 E Q: h( 0) = O}, 
since 8, is compact and t&e 0,. Thus, Assumption 1, Theorem 1, and continuity of h( .) 
over 8 imply that t!+” 13, as T+CC under the null hypothesis. In consequence, the 
following assumption is straightforward to verify: 

Assumption 5. f? eP 8, as T + co under the null hypothesis 

The LM statistic uses an estimator of V that is constructed with the restricted 
estimator 5 in place of t? Let 

fi=I/Tx?T, (a/as')m,(t?,7*), 
ri= (d2/dmJm’)d(rii,(r$ 7^), +), di; = fi,fiG, $= .?(e^), 

and fi = (J/J~‘)/x($ (where m,(. , .) and d(‘, .) are as in Assumption 2). Note that the 
estimator of the nuisance parameter 70 still is denoted ?, even though it may be a restricted 
estimator of 70, The same is true of the estimator S of S. With the notation, we do not 
need to adjust Assumptions 2(b) or 3 when a restricted estimator of 70 is used. Let 
3 = ~‘fi&%f and ? =&s$-. As above with c, the estimator c can be simplified 
when V simplifies, as often occurs in applications of interest. 

The LM-like statistic is defined as 

LM,= T~d(~=(~),i)~-A’(A~~‘i’)~~~-~d(m,(~), ;) (3.8) 

(where m,( ., .) and d(. , ‘) are as in Assumption 2). As shown below, this statistic often 
simplifies considerably. 

The LR-like statistic (defined below) has the desired asymptotic chi-square distribu- 
tion under the null in two particular contexts contained within the general framework 
considered thus far. Outside of these contexts, the LR statistic generally is not asymptoti- 
cally chi-square under the null. The first context is defined by the following assumption. 

Assumption 6a. Under the null hypothesis, 9 = b$ for some scalar constant b # 0 
and b* +P b as T + cc for some sequence of non-zero rv’s {b*} (where m,(*, .) and d( ., .) 
are as in Assumption 2). 

Assumption 6a is satisfied by 2SLS and 3SLS estimators of nonlinear simultaneous 
equations models under certain assumptions regarding the heterogeneity and temporal 
dependence of the equation errors-see Section 4 below. 

The second context is defined by the following assumption. 

Assumption 6b. Let m,(. , .) and d( ., .) be as in Assumption 2. 

(i) d(m, 7) = m’m/2. There exist functions p,( W,, 6, T) such that 

mr( W,, 8, T) = (J/Je)fe(I+‘,, e, T), Vt. 

With probability that goes to one as T + m, e* solves 

p,(i,7^) =inf {ge,i): et@} 
and f? solves 

pr(~i)=inf{p‘T(B,i):e~O,h(B)=O), 
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where 

,w>~)=lIrzT,Pr(w, &i). 

(ii) Under the null hypothesis, S = CM for some scalar c # 0 and c* +P E as T + m 
for some sequence of non-zero N’S {Q. 

Assumption 6b is satisfied by ML estimators for general parametric models. Assumption 
6b(i) is satisfied by the LS estimator and many M-estimators for the nonlinear regression 
model. Assumption 6b(ii) is satisfied with these estimators only when the errors are 
uncorrelated and homoskedastic. 

Note that Assumption 6b(i) is compatible with the definitions of i?, because an 
estimator e^ that minimizes &(0, ?) is in the interior of 0 with probability that goes to 
one as T + m under Assumption 2, and hence, also minimizes d(ri+(8), ;) with probability 
that goes to one as T + m. Also note that in the definition of LR, below, when Assumption 
6b holds, g is as defined in Assumption 6b(i) rather than as in (3.7). 

The LR-like statistic is defined as 

LRT= 2T(d(fiii,($, G)-d(rFiT($, G))/b* when 6a holds 

I 2T(pr(& ?)-P,(f$ G))/Z 
(3.9) 

when 6b holds. 

where m,(. , .) and d( , .) are as in Assumption 2.8 The nuisance parameter estimator 
7^ may be a restricted or an unrestricted estimator of TV. It must be the same inPoth 
criterion functions used to calculate LRT, however, and it must be such that both B and 
f? are consistent under the null hypothesis. Otherwise, the LR statistic generally does not 
have the desired asymptotic distribution. That is, for use of the LR statistic, e* and f? 
must be N’S that minimize the same criterion function subject to no restrictions and to 
the restrictions h( 0) = 0, respectively. 

Theorem 4. Suppose Assumptions 2-4 hold under the null hypothesis, h( 0,) = 0, and 
the null hypothesis is true. Then the following results hold: 

(a) WT +d x: as T + 00, where I is the number of restrictions, 
(b) LMr+ d x: LIS T + 00 provided Assumption 5 also holds, and 
(c) LR7 + ’ ~3 as T + m provided Assumption 5 holds and either Assumption 6a or 

6b holds in place of Assumption 3, where xf denotes the chi-square distribution 
with I degrees of freedom. 

Comments. 1. When Assumption 6a holds, as occurs with 2SLS and 3SLS estimators 
in nonlinear simultaneous equations models with indeeend$ identically distri+ted 
(i.i.d.) errors (see Section 4 below), then we u@!y_have .P = b$ for ~om$ sca@r TV b_# 0; 
lnthe latter case, tan(r_WT simplify. We get v= bF and WT = 7h(B)‘(H$-H’)Yh(B)/b. 
_ %$larIy, if $ = bdp for some sc;?ar IT_ b # 0, then V and LT$’ simplify. We get 
V= b$- and LMT+ T(J/Je’)d(rR,(f?), i)$-(J/JO)d(W-z,(@, i)/b (where + denotes 
equality that holds with probability that goes to one as T -m),since(J/Je)d(ril,(~), ;)+ 
-*X for some vector X of Lagrange multipliers. 

2. When Assumption 6b(i) holds, both WT and LM, simplify. In this case, 

D=ZP, M=lim._,l T2 Tx_T,E&P,(W,,e,7), dp=M’, $ = MSM, 

(J/J~)d~r+(t$+?)= ki,($, and by 2(g), M is nonsin@ar. We get WT + 
Tb(B)‘(HM~SM~fi’)~h(.$ and LM,+ T~T(6)‘~-~(~~-~~-~‘)-~~-mT(~). 
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If, in addition, 2 = & or 2 = tfi for some scalar rv’s c^ # 0 (as usually occurs when 
Assumption 6b(ii) holds), then Wr and LMJ simplify to WT+ Th(e^)‘(fi,‘K~‘)-h(t?)/t 
and LM, + Tr?i,(e’)‘P?rir,( $/Z, respectively. The latter holds because Gri+( g) + ti’< 
for some vector of Lagrange multipliers { under Assumption 6b(i). 

3. One would expect the small sample properties of WT, LM,, and LR, to be 
improved by replacing the divisors T, T,, and Tz that arise in various sample averages 
by their counterparts with the estimated number of parameters subtracted off. The relevant 
number of estimated parameters to subtract off may o; may not include the elements of 
i and may or may not include all of the elements of 0, depending upon the context. 

Next, we present asymptotic local power results for the three tests considered above. 
These results can be used to approximate the power functions of the tests. We assume: 

Assumption 7. There exists a sequence of distributions { Pr] on (Cl, 9;) such that 
Assumption 2 holds under {PJ} with B0 replaced by & = .9,+ ~/fl in parts 2(b)ii and 
2(c) for some 17 E R9 

The distributions { Pr] usually are determined quite easily in applications. For 
example, in the nonlinear regression model, the sequence of models is YTc =f;(S,)+ CJ<, 
1=-T,,..., T2, for T = l,Z,. . , and P7 is just the distribution of (( Yrc, X,, U,): 
t= . ..( -l,l,... }forT=1,2 ).... 

Verificiation that Assumption 2(a) holds under {PT} can be made by showing that 
Assumption 1 holds under { Pr}. 

We define the following analogues of Assumptions 3, 5, 6a, and 6b: 

Assumption 8. Assumption 3 holds under { P7} 

Assumption 9. t? +” 6, under {Pr} as T + m. 

Assumption 10a. Assumption 6a holds and b^ jP b under {PT] as T--f 00. 

Assumprion lob. Assumption 6b holds and c^ ip c under {PT) as T+ cc. 

Note that Assumption 9 holds if 0, is compact and Assumption 1 holds under {PT}. 

Theorem 5. Under Assumptions 4, 7, and 8, 

(a) WT + ’ &S’), where S*= $H’(HVH’)-‘HQ 
(b) LM+d x:(8’) provided Assumption 9 also holds, and 
(c) LR, +” x:(8’) provided Assumption 9 holds and either Assumption 10a or lob 

holds in place of Assumption 8, where x:(6’) denotes the noncentral chi-square 
distribution with noncentrality parameter S2 and I degrees offreedom. 

Comments. 1. Since fih(!3,)+ Hv as T + co, power approximations can be 
based on a ,&S$) distribution, where SC= Th(&)‘(HVH’-‘h(&). In particular, to 
approximate the power of a test against an alternative 8 when the sample size is T, we 
set 8= 0, and take 6:= Th(B)‘(HVH’)~‘h(6). 
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2. Due to the local nature of the alteratives in Theorem 5, the approximations 
described in Comment 1 usually are more accurate for close alternatives to the null 
hypothesis than for distant alternatives. 

4. NONLINEAR SIMULTANEOUS EQUATIONS 

In this section we consider structural change in the nonlinear simultaneous equations 
model of (2.2). Let 0,~ Q denote the true parameter vector in this model. 

We consider Amemiya’s (1977) class of 3SLS estimators generalized to the structural 
change problem considered here. A special case of the 3SLS estimator is the 2SLS 
estimator. 

Let f;,(0) abbreviate f;,( Y,, X,, t?) and take 

fi(e)=(f,,~,~(8),...,.f,,~,(8),f,,~,,(e) ,...>_ f,,-,(w,,,,. (4.1) 

Let Zj, be a column u,-vector of instrumental variables (IVs) for the i-th equation and 
the 1.th time period. For i = 1,. , n, let Z: be a T, x ui matrix whose rows are given by 
ZI, for t=-T I,..., -1. Define 

Z,=diag{Z: ,..., Z;}.,,xO, where v=C:=, ui. (4.2) 

Define f2( 0) and Z, analogously with the time periods t = -T,, , -1 replaced by 
t=l,...,T,. 

Let 5, and A2 denote n x n nuisance parameter estimators. Either 6, and h, are 
estimators of 0, =lim,,, I/T, II:, EU,lJ: and n,=lim,,,l/Tz~:7EU,U:, 
respectively, where u, = (U,,, , U,,,)’ or Cl, =d, and 6, and f12 are estimators of 
n,=n,=limTeo l/T x?T, EUJJ:. The former case corresponds to the common situation 
where one believes that structural change may affect both 0, and the distribution of U,. 
The latter case corresponds to the less likely situation where one believes that structural 
change m,ay aftect 8, but not the distribution of U,. 

LetAi=~j,01~andAj==i01~forj=1,2. 
A sequence of 3SLS estimators of B0 for T = 1,2,. is defined to be any sequence 

of N’S { s^} such that s^ minimizes 

(fi(e)‘~;Z,+f2(6)‘~;Zz)(2:~;Z,+zZ;~;Z*)~(Zl~;fi(8)+Z;~;f(B~) (4.3) 

over 0 F 0 with probability that goes to one as T + co. 
In the special case where one takes 8, = & = I,,, the estimator l? defined by equation 

(4.3) is the 2SLS estimator of 0”. In this case, the objective function can be written as 
the sum of n terms, each involving a separate equation. If the parameter space 0 does 
not impose any cross equation restrictions, then the 2SLS estimators of the n sub-vectors 
of 0, can be estimated one at a time. 

When only one equation is estimated (n = l), equation (4.3) simplifies. In particular, 
in the case of pure structural change, it can be written as the sum of two terms, the first 
of which corresponds to the ordinary 2SLS estimator usi?g the r_<O data and the second 
to the 2SLS estimator using the t 20 data. The scalars a, and fi, become redundant in 
this case and need not be calculated. 
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The following Assumption Sl guarantees the existence of a sequence of 3SLS 
estimators{A}. Also,itimpliesAssumption 1 ofSection with W, = ( Y:, Xi, Z:)‘,m,(O, i) = 
Z:h,:f;(6), where Z, =diag{Z;,, ., ZkJfxv, JXW=(h,(@), ,L,(~))L,j= 1 for 
f < 0, and j = 2 for t > 0, and d (m, G) = m’Dm/2, where 

- 6= T(Z:ii;Z,+Z;ii;Z,)-= 
> “X” 

and i: is a u-vector comprised of the non-redundant elements of A,, A,, and 6. Using 
Theorem 1, Assumption Sl guarantees the consistency of every sequence of 3SLS 
estimators. We note that each variable and vector that appears in this assumption and 
the others below is assumed implicitly to be ~Borel-measurable. 

Assumption Sl. (a) 0 is a compact subset of RP. 
(b) 6, +P 0, and & +p a, as T + a, for some n x n nonsingular matrices% and %. 
(c) ?T~ = lim,,, ?T,~, lim,,,, l/T, 1Ib1 Ef,(O)Z,,, and lim,+, l/T,x:’ %,(@)Z,, 

exist uniformly for BE 0 and are continuous in e for all ee 0 for 
i,r=l,..., n. lim,,, l/TC?T, EZ:fl,:‘J(O)=O if and only if 6=&. D= 
linh, (l/T z?$ EZ:Ciy’Z,);:, exists and is positive definite. 

(d) {(Y,, X,, Z,)} is strong mixing.’ 
(e) sup,E[sup,,,ll~,(8)Z,,II~+IZ:,Z,,I’]<co,Vi, r=l,..., n,forsome c>l. 
(f) f;,(e) is differentiable in 8, Vi = 1,. , n, Vt, for all realizations of {(Y,, X,)}, 

VB E o*, where O* is some convex or open set that contains @, and 
I&_, l/Tx?rl E sup,,,* il(a/ae)f;,(e)z:,il<m, vi, r=l,..., n. 

The strong mixing Assumption Sl(d) is used to ensure that an LLN holds for certain 
rv’s. This condition is quite convenient and fairly general, but is not all-encompassing 
(see Andrew (1984, 1985)). For cases where this assumption fails, one can substitute 
an alternative condition of asymptotic weak dependence (see references in Section 3) 
and use the results of Section 3 to establish consistency and asymptotic normality of 0. 

Nuisance parameter estimators fI, and l& that satisfy Assumption Slfh) can be 
obtained as follows. Let t? be some consistent preliminary estimator of 00, such as the 
2SLS estimator. Then, for the case where 6, and 6, are allowed to differ, take 

&=+‘I;,J,(sM;(#)’ and &=@j@j~(@. 

For the case where 6, and l?, are constrained to be equal, take 

(4.5) 

Next, we introduce an Assumption S2 such that Assumptions Sl and S2 imply 
Assumption 2 of Section 3 with m,(f?,t) and d(m, ;) as above. Hence, by Theorem 2, 
under Assumptions Sl and S2, fi(@ - 6,) has an asymptotic N(0, V) distribution as 
T-t co, where V= (M’DM)-‘M’DSDM(M’DM)-‘, 

M=limT_.,$z?T, EZK;‘$J(OO),x,, 

D is as in Sl(c), and S is as in S2(c) below. 

(4.7) 
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Assumption S2. (a) 0 contains a convex compact neighbourhood 0, of 0,. 
(b) EU,,Z,,=O, vi, r=l,. , n. 
(c) S = limr_, Var(l/fil:I’r,Z:O;‘U,) exists where U,=(U ,,,. , U.,)‘. 
(d) fl[&fi,)=O,(l) as T,+os, a&&)=0,(1) as T,+co, and 

lim,,,Var(l/fi~?~, Zl,Z.,) exists for all i = 1,. , n. 
(e) liw,-, l/T, XI:, E@/de)f;,(@Z:, and Km,,,, l/T,z? E(d/d@x,(@Z:, exist 

uniformly for 8 t 0 and are continuous for fI E 0, Vi, r = 1,. , n, and M is full 
column rank. 

(f) The strong mixing numbers {a(s)} of {(Y,, X,, Z,)} satisfy a(s) = 0(s5”@~“) 
ass+coforsomen>l. 

(g) f;JtJ) is twice differentiable in 0, VB E 0,, Vi = 1, , n, Vt, for all realizations 
of { Y,, X,}, Sl(e) holds for some 5’ 01, and 

SUP, E SUP#&?( I/~f;,(s)z.,lli+/l~/;,(e)z:,lli+ Il~;,z,,li’f+~z:.z,,~~~) 

<‘X 
Vi,r=l,..., n,Vn=l,..., p,forsome52aandsome5>1. 

In cases where S = D-‘, the covariance matrix V simplifies to V= (M’DM)-‘. 
This occurs when 

E(U,U:IZ,)=fJ as., vt, 

and (4.8) 
Ez:I/,u:_,z,_, =o, vt, Vdk= 1,2,. 

A consistent estimator of the covariance matrix V is given by e= 
(&?fi$f~&?&%fi(fi’fij+, where fi = I%?, 

j&(e)=+ z:,~;~f,(e)+z;~;~f2(e) 
( 1 

and i = &s^) for $0) defined in equation (3.4) with m,( ., .) defined just above equation 
(4.4), with I( q,) such that I( q;) -a CO and I( ‘I;) = o( T1”) as 7; + m, and with k( ‘) corre- 
sponding to the OS or Panen kernel.” (See Andrew (1987~) for results regarding the 
optimal choice of the bandwidth param$ers I( I;) and the kernel k( ).) If the second 
condition of equation (4.8) holds, then S can be simplified by taking I( T,) = I( TJ = 0 in 
its definition. This yields 

“=+z?T# z:A;f;(e*)A(e*)‘A,:z,. (4.9) 

If both of the conditions of (4.8) hold, then take 

.?=6- and 9=(&“5&. (4.10) 

To establish consistency of e we assume: 

Assumption S3. sup, EIIZ:U,/j4’<m for some c>a. Jz2 in SZ(g). 

Tbeorem6. (a) UnderAssumptionsSl-S3, s^ +p S, 16 eP M, and 6-sp Vas T + co 
for 3 as defined just below equation (4.8). 

(b) Under Assumptions Sl and S2, 3 ~QS,~~pM,and3~PVn~T-,mfolS~~ 
defined in (4.9) or (4.10), provided the additional conditions outlined above (4.9) or (4.10) 
are satisfied, respectively. 
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4.2. Tests of structural change 

We now consider tests of nonlinear restrictions Ho : h( 0) = 0. 
A sequence of restricted 3SLS estimators of @, is any sequence of N’S ($1 such that 

5 minimizes equation (4.3) over B t O. = {B E 0: h( 0) = 0). Assumptions Sl and S5 (below) 
guarantee the existence and consistency of sequences of restricted 3SLS estimators, since 
they imply that Assumption 1 of Section 3 holds with parameter space Oo. 

Assumption S5. 0, is compact, 

The LM test st$stic -Of ,equ@on(3;8)_ uses a restricted covariance matrix estimator 
givenAby V= (~‘DM)-M’DSOM(M’DM), where ,!%=k_($, .?=$I$, and ti(tJ) 
and S(e) are as defined just below equation (4.8). The estimator fi is a preliminary 
estimator that does not depend on 0 or 8. If desired, the preliminary estimator of &, that 
is used in forming fi can be chosen to be a restricted estimator of 6,. As in equations 
(4.9) and (4.10), .? can be replaced by the simpler estimator 

(4.11) 

when the conditions outlined above (4.9) or (4.10), respectively, hold under the null 
hypothesis. By the same argument as in the proof of Theorem 6, s, 6, and care consistent 
for S, M, and V, respectively, under the null hypothesis under the conditions of Theorem 
6 and Assumption S5. 

The following Assumption S6a implies Assumption 6a of Section 3. It is used to 
obtain the asymptotic null distribution of the LR statistic. 

Assumption S6a. Under the null hypothesis, 

wherej=lfort<Oandj=2fort>O. 

Assumption S6a implies that S = De’ and 9 = 9. S6a holds under (4.8). 
Assumptions Sl-S3, 4, S5, and S6a for the 3SLS estimator imply Assumptions 1-5 

and 6a of Section 3. Thus, Theorem 4 holds and the W, LM, and LR statistics of equations 
(3.5), (3.8), and (3.9) are asymptotically chi-square with r degrees of freedom under the 
null hypothesis (where Assumption S6a is needed only for the LR statistic). 

The next assumption is used to obtain local power results: 

Assumption S7. Given 7 t R’, let 6Jr = #,f v,Ifi and f;,( Yr,, X,, 0,) = U;,. Let Pr 
denote the distribution of {( Yr,, X,, U,, 2,)) for T = 1,2, Suppose Assumptions Sl 
and S2 hold with Y, and&(e) replaced by YT, and f;,( YT,, X,, 0) throughout, with Sl(b) 
and S](d) holding under {Pr}, with the sequence {(Y,, X,, Z,)} replaced by the triangular 
array {( Yr,, X,, Z,): -T, ~5 t5 T2, T= 1,2,. .} in Sl(d) and S2(f), and with sup, replaced 
by sup,,,,=,,,,... in St(e) and S2k). 

Assumptions 7, 8, 9, and 10a (with b^= 1) of Section 3 are implied by Assumptions 
S7, S3 and S7, S5 and S7, and S6a, respectively. Thus, Theorem 5 of Sectiqn 3 applies 
and the W, LM, and LR statistics have noncentral chi-square distributions under local 
alternatives. Their large sample power functions can be approximated accordingly. 
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We now provide some simplified formulae for the W, LM, and LR test statistics in 
the nonlinear simultaneous equations context. The general form for the Wald statistic is 
given in_equ_ation (3.2). If Assumption %a hold& then $ can be taken as in equation 
(4.10), S = De, _‘?_=$i a?d_ W, isAgiven by the simplified formulae of Comment 1 to 
Theorem 4 with $ = M’DM and b = 1: 

w, = Th(e^),[A(~,~i)-c,]-~(~). (4.12) 

When testing for pure structural change, we assume that the IV’s are taken such that 
each IV is non-zero only for observation.s with f < 0 or only for observations with f > 0. 
This condition ensures that the matrix D-s blockdiagonal (after appropriate per?utation 
of its rows and columns) with blocks D, and 9, say. It also emures that m,(e, i) has 
elecents corresponding to D, that are non-zero only if t <O and elements corresponding 
to D2 that are non-zero only if t> 0. Hence, the Wald statistic for testing pure structural 
change is given by (3.6): 

1 
W7= T(t+~J(V,17r,.+ Q*/?T2T)-(tG&), (4.13) 

where $ is analogous to 3 but is based on the j-th sub-sample of the data for j = 1,2. 
When Assumption S6a holds, c( and c1 of (4.13) can be simplified as in (4.9) or (4.10). 

The LM statistic corresponding to 3SLS estimation is given by 

LM== T~,(~)‘~~~~~j’(~~~‘)~~~~~‘~~~~~), (4.14) 

where $=fi’L%. Note that the LM statistic is a quadratic form in the vector of 
orthogonality conditions between the IVs and the model evaluated at the restricted 
estimator t! 

When testing for pure structural change (with IVs as in the second paragraph above), 
the LM statistic becomes 

LMT= T(~,T(~)‘61~1~;-~*T(~)‘~~~~;)[~,/p,T+ ~J~T~T]- 

(~;~;Ij,~,.(~)-~*ni;~~rFt,,(~)), 
(4.15) 

where 

jj = fi;ls,lir,, 6 = ~,~.&j,~, jj = .q &,$&q, 

and .$ = $( t?) for $( 0) defined in equation (3.4) for j = 1, 2. 
When Assumption S6a holds, LMT simplifies by taking .‘? = 6-: 

LM,~T~,(~)‘8~~-~‘~~~(~). (4.16) 

In particular, when testing for pure structural change under Assumption S6a, 

LMT+ T,rii,.(~)‘6,~,~;~:Lj,~,.(~)+ T2~l,,(e’)‘~~~~~;n~~~~*~(~). (4.17) 

The LR statistic in the 3SLS case is given by 

LR,=2T(d(~,(~),i)-d(~,(8*),?‘)), (4.18) 
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where d(fi,(B), <) is the expression given in (4.3), i.e. the objective function for the 3SLS 
estimator. When testing for pure structural change (with IVs as above), the objective 
function factors as follows: 

d(fil,(e), ;) = d,(%,(@), +)+ dz(*r(fl). t), (4.19) 

where dj(rEjT(6), ;)=~(6)‘~7Zj(Z:~rZj)~Z:~~~(6) for j= 1,2. 

Thus, LR, is obtained quite simply by performing 3SLS estimation on the observations 
indexed by {-T1,. , -l}, 11, _, T2}, and {-T,, ;. , T,}. 

When carrying out 2SLS estimation by setting 0, = 0, = a, = a2 = I., the simplifying 
Assumption S6a generally will not hold because it requires 

Ez,“uz= J=:z, I vi=s 
IrSr 0 Vdtfs. 

The latter holds if the errors have variance one and are uncorrelated across time periods 
and equations conditional on the IVs-unrealistic assumptions in most applications. This 
problem can be avoide*d by c$ulating the 2SLS estimator one equation at a time and 
by defining the scalars fl, and 02, as in (4.5) and (4.6). With these definitions, Assumption 
S6a only requires the errors to be homoskedastic and uncorrelated conditional on the 
IVs. In the case of testing for pure st~ctural~change, the 2SLS estimator is the same 
regardless of the values of the scalars R, and 0,. Thus: the latter can be defined using 
the 2SLS estimator itself in (4.5) and (4.6) (i.e. with t?= 0) for the purposes of generating 
the W, LM, and LR test statistics. 

Roofs, Thheorem 1. Let d(@, 7) and d&9, T) abbreviate d(m(@, 7). T) and d(r&(ff, T), 7) respectively. 
Let 9, be any open neighbourhood of 0,. Then, Q, = e-C& is compact, using Assumption l(a). We show 
below that there exists a constant S > 0 and a compact neighbourhood Ya of i. such that 

APPENDIX 

min,,,,,,,.~,d(B,r)-d(B,,r,)eS>O. (A.11 

We also show that 

d(&i)-nd(80,q,, as T+m. (A.21 

Combining (A.,), (A.2), and Assumption I(b) gives 

P(B^te,)-_P(d(~,i)-d($,i,)<S,7’t~*,)-l (A.31 

as 7 - m, which is the desired result. 
First, we establish (A.l). By the compatiness of 0, and Assumption l(e), 

S- [min,,,, d(B, ro)-d(Bo, %)I/2 (A.41 

exists and is positive. By the uniform continuity of d(B, 7) on 8x Y (Assumption I(a) and l(d)), given S>O 
these exists a compact neighbourhood FTBb(c Y) of r, such that for all TE Ta 

ld(B,r)-d(B,q)/<S VBsO. (A.51 

Let (6*, T*) be some element of 0, x Y6 such that d(B*, 7”) =min,,,,,,,,, d(B, 7). Using (A.4). (AS), and 
Assumption l(e), we now have 

(A.6) 

and (A.,) is established. 
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To show (.a), we write 
d(ii)-d(Bo,d 

(A.7) 

d(~,i)-d(B,,r,)=[d(~,i)-d(~,7,)]+[d(~,i,)-d(8,,7,), 

Zd(a,;)-d(i,.i,) 

+‘0 as T-m, 

WN 

o,(l)=Jf~d(m,(B^),i)=JT~d(ril,($),i)+~dd(rit,(8*),i)~(~-$), (A.9) 

where 8* is a TV on the line segment joining s^ and So. and hence, B* -O 0,. (See Jennrich (1969) Lemma 3 
for the mean value theorem for random funnians.) The first equality holds because s^ minimizes d(in,(8). ;) 
and 6 is in the interior of 0 with probability that goes to one as T-m by Assumptions 2(a) and (d). 

Below we show that 

&d(ri~~(S*),;)=~ 
c 

dB dB’dM$).~J+opU), 
c 

where (a2/aC4a0’)d(m($), TO)= M’DM and 

v$ d(?ii,(B,), G) -’ NO, M’DSDM) as T + m. 

These resub, equation (*.9), and the nonsingularity of M’DM give 

~(e^-e,)=-(M’DM)-‘~d(A,(O,).i)+o,(l)-,d N(0, v, as T + CD. 

To show (AlO), we proceed as follows: 

$$Wr&*L ;I=& m,(O*)‘dd(lit&*), i) 
0 , ot am 

+L rFqo*)’ 
a’ 

w 
amam’d(W@*L +W*) 

By Assumptions 2(a). (b), and (f), 

Ilfi,(0*)-m(~~)ll~ llM@“, i)-~~,(O.r)/,-.~,,-;ll 

+llE~~~o,~~/g_~*.,_i-m~o*, ~)ll+llm(o*, +m(o,,To,)lI +no 

(A.10) 

(A.11) 

(A.12) 

(A.13) 

(A.14) 

as T* m, where //.[I denotes the Euclidean norm. Using this result, the continuity of (a/am) d(m, 4 over 
.kt x LT (Asumption Z(e)), the Assumption Z(b) that i -@ ro. and the continuous mapping theorem, we get 

; d(fdO*), ) i -“~d(m(O,),q,)=O as T-m, (A.15) 

where the equality holds by 2(b), (e), and (f). Using Assumption 2(f), it is straightforward to 6bm that 
(a’/~O.dO,)~~(e*)=o,(l)a. T-m. Thisresultand(A.1Sjimplythatthefinttermof(A.13)isO,(Lj85 T-m. 
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Applying the mean value rheorem element by element and stacking the equations yields 

(A.37) 

=r~d(~,(8),;)8-~d(mT(8,,i)/6+0p(l). 

because j-3 + Ip, ~(J/ae)d(A,(~L i) = OJI), $*8--D $, and $-$* 4 0 as T-co, by (AJO), (A.25). 
and (A.33,. 

Since 4 =k$ and 6+p b by Assumption 6a, ?= &+o,(l). In this case, LM, simplifies to 

LM, = r~d(m,(~),;).~-~d(ril,(b),1)/6+o,(l)=LR,+o,(l) 64.38) 

using (a/aO)d(~r(~), ;)i -,?‘I, as above. Ihe desired result now follows from part (b) oftbe Theorem. The 
proof of part (c) when Assumption 6b holds is analogous to the above proof under Assumprion 6a. I/ 

Pmqfo~Tkheo;em 5. First we prove part (a). The proof of Theorem 3 shows that n”l +-p M and 6 +O D 
under {Pi), since B tP 0,. i +p T*, and Assumption 2(f) holds under (Pr). We have HVH’ is nonsingular, 
.? -p S, and fi -p H under (PT), by Assumptions 4,8, and 4 and 7, respectively. Thus, (&%‘)- tP (HVH’)-’ 
under {Pr}. 

Mean value expansions of k.(6) about k.(O,), stacked for (I = 1,. ,p. yield 

J-k(B’)=~h(B,)+H*~(B-BT) (A.39) 

for an rxp matrix H* that satisfies H” jR H under (PT}. Assumption 4 and element by element mean value 
expansions give JT’k(e,) + Hq as T + CO. Part (a) now follows by the confinuow mapping theorem once we 
show that 

vT(&O,)‘d N(0, V) under ( Prl as T - m. (A.40) 

This follows using Assumption 7 by the proof of Theorem 2 with 0, replaced by S, in all equations but (A.lO), 
(A.13)~(A.17), and (A.Zoi. 

To prove part (b), note that under Assumptions 4 and 7-9 the proof of Theorem 4(b) goes through with 
the following changes: The parameter 0, is replaced by 0, in equations (A.26).(A.28) and equations (A.29), 
(A.30). and (A.34 are replaced by 

O=Ji;h(B,+H*fi(&C?,), (A.41) 

H’~-vT~d(Ar~~),;)+H *9~JT~d(~~(B,),i)+~k(8r) 

*d N(HT#, HYH’) 85 7 - cc, 
(A.42) 

and 

fijm$d(fi,(k), i)-rd N(H,,), HVH’) under [Pr} as T-m, (A.43, 

Part (c) is proved by the proof of Theorem 4(c). l-be latter goes through under Assumptions 4,6a or 6b, 
7,9, and 10 with the only change being an appeal to Theorem 5(b) rather than Theorem 4(b). 11 

aloof tkor S1 + 1 and S1 plus S2 + 2. Assumption Sl(f) and Lemma 2 of Jennricb (1969) guarantee 
the existence of a sequence of3SI.S estimators {&. Ncx~, the notation of Assumptions I and 2 and SI and S2 
are linked via the definitions of m,(., .) and d(. , ,) given just above equation (4.4). 



ANDREWS & FAIR NONLINEAR MODELS 637 

Assumption I(a) is implied by Sl(a). Assumption I(b) follows from S,(b), the fact that {i&Z:: t= 
-1,. , Tt} and {Z,Z:: L = 1, , TJ satisfy weak LLNs as 7, - m and T, + m, respectively (which follows 
from Andrew (1988) Theorem 1 and Example 4 using Assumptions S,(d) and(e)) and the Assumption Sl(c) 
that the appropriate limits exist. 

To establish Assumption I(c), we need (m,(B, 7): f = -T,, , TJ to satisfy a uniform LLN over (S, 7)~ 
F) x 7. Due tothemultiplicadvewayinwbicb I (i.e.Oj) enters m,(6, T) and the assumption tbatlim, _ m ?ilT = T, 
exists, this reduces to obtaining uniform LLNs for (h,,(O)Z,: t = -1,. .,-T,) and (J;,(O)Z,,: t = 1, ~ TJ 
over 0 t B as 7, - m and Tz + m, respectively, for each i, I = 1,. _. , n. The latter follow using the 
theorem and Corollary 2 of Andrew (1987b). since Assumptions Sl(a), Sl(d) and (e), and %(a) and 
(f) imply Assumptions Al, AZ, and AS of Andrew (1987b), respectively, where A2 is verified using 
Theorem 1 and Example 4 of Andrew (1988). Assumption Sl(c) guarantees that the function m(O, T)= 
Km,_ DE l/TIT;, EmJO, 7) exists uniformly for (0, T) t e x T. 

Assumption l(d) holds because (1) d(., .) is a quadratic form and (2) m(0, v) is continuous on the 
compact set @x F by a subsidiary result of the uniform LLN used above (which utilizes Assumption Sl(O 
and by the fact that I enters multiplicatively. 

Assumption l(e) holds because D is nonsingular and m(0, I~) has a unique zero at 8 = 8, by Sl(c). 
Assumption Sl and Theorem 1 imply that Assumption Z(a) holds. The first part of Assumption 2(b) 

holds by Assumption SZ(d) and the fact ,ba, I/n I& (Z;,Z,, - EZ;,.?,,) satisfies a CLT for all i = 1, , n 
The latter holds using Assumptions Sl(d), SZ(d), SXO, and SZ(g) and Hermndorf’s (1984) Corollary 1 or 
WIthem (1981) Theorem 2.1A and equations (6.1)-W). The second and third parts of Assumptions 2(b) bold 
by Assumptions SZ(b) and S](c), respectively. 

Assumption 2(c) follows from Hermdorf’s (1984, Corollary 1) o, Withers’ (1981, Theorem 2.1A) CLT 
using S,(d), SZ(c), SZ(f), and SZ(g). Assumption 2(d) follows directly from S,(a) and SZ(a). Assumption 2(e) 
.holds because d(.;) is a quadratic form. 

Assumption Z(fj is established as follows: The differentiability of ~(0, 7) holds by SZ(g). {m,(O, 4) 
satisfies a uniform LLN using Assumption S1 by the above proof that S1+l. {(a/aO)m,(@,~)) and 
((a/&)m,(O, T)} satisfy uniform LLNs by fhc Theorem and Corollary 2 of Andrew (3987b) since Assumptions 
S,(a), Sl(d) and SZ(g), and S2(g) imply Assumptions At, AZ, and A5 of Andrew (1987b). respectively, where 
A2 is verified using Theorem 1 and Example 4 of Andrew (1988). m(O, T) and M(0, 7) enisr by Assumptions 
S,(c) andSZ(e),respectively. dm(B, 7) existsand dm(R,, ,,,I =Obecause E(a/sff)m,($, r)=O,Vt,Vr, by Wb). 
(sup~,,,,,~,J(aZ/as,aR)m,(R, 7)) satisfies a weak LLN for all a = 1, _. , p by assumptions Sl(dj and S2(g). 

Assumption Z(p) follows immediately from S,(c) and S2(e) // 

P,w~o~ ‘ITworem 6. If 3 .ep S as 7 + m, then ti -.D M and 3 +* I/ as T - m in pans (a) and (b) of 
Theorem 6 by Theorem 3: since Assumptions Sl and S2 imply Assumption 2 (as shown immediately above). 
In pan (b), the proof of S +P S is analogous to that of M -s M. 

It remains to show 3 -R S in part (a). This follows by fhe method of proof of Tbheorem 2 of Newey and 
West (1987), noting that their assumptions (i), (ii), and (iv) are implied by S2(g), SZ(g) and 53, and SZ(b) and 
the asymptotic normality of fi(e^- &,), respectively. Their assumption (iii) is stronger than our assumption 
SZ(0. Their proof still works with the weaker assumption SZ(f), however, by using the mixing inequality of 
Lemma 2.1 of Herrndorf (1984) in place of that of White’s (1984) Corollary 6.16 in the proof of White’s (1984) 
Lemmas 6.17 and 6.19. which are used in Newey and West’s (1987) proof. The fati that our observations are 
indexed by a doubly infinite sequence only requires a slight alteration of their proof. 11 

NOTES 
1. The authors thank Charles Coleman, Douglas Rivers, Quang Vuong, Guofu Tan, and two referees for 

helpful comments. The first author thanks the California Institute of Technology for its hospitality while pan 
of this research was carried out and the Alfred P. Sloan Foundation and the National Science Foundation for 
research support provided through a Research Fellowship and grant No. SES-8419789 respectively. 

2. These books do, however, have much mom detail than the present paper. 
3. Gallant and White (1988, Chapter 2, pp. 11-12) accommodate multi-stage estimation procedures by 

elongating the parameter vector 0 to include preliminary estimators. If both a preliminary estimator and the 
final estimator are asymptotically efficient. however, then their assumption PD (Chapter 5, p. 81), which requires 
the two estimators to have nonsingular asymptotic joint covariance matrix, is not satisfied. For example, this 
owws with the ZSLS and 3SLS estimators in a simultaneous equations model when the errors are uncorrelated 
across equations. In consequence, theiry asymptotic distributional results for multi-stage estimatorr and test 
statistics do not apply in certain important contexts. 

In addition, when misspecification occurs, the estimator obtained by elongating the parameter vector does 
not necessarily equal the multi-stage estimator of interest. 
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4. As mentioned above, the nonlinear IS estimator, ~xious M-estimator, and ML estimators cani be 
defined in two ways. The choice between the two definitions depends on Assumpfmn l(e). If the limit function 
d(m(8, rJ, ro) is minimized uniquely at 8= So when m.( ,, .) and d( ., ,) are defined in terms ofthe tint order 
conditions (i.e. the second definition given above for the IS, M-, and ML ertimatom), then this is the mos 
convenient definition. me rwwn is that this definition must be used in any event to establish asymplotic 
normality by Theorem 2 below. 

On the other band, the limiting first order conditions may have multiple solutions, even tbaugb the 
function d(m(B, ro), r,,) that corresponds to the underlying minimization problem (i.e. the function that 
corresponds to the first definition of m,i., ,) and d(., .) far the L.7 example) has a unique min@wm at &,. In 
this case, we need to USC the first definition of m,(., .) and d(‘, 3 to establish consistency of {0). Then, given 
consistency, we use the second definition to establish asymptotic normality. Since 8, is assumed to lie in the 
interior of @ for the proof of asymptotic normality a sequence of estimarors defined using the first definition 
also soIves equation (3.2) for the scond definition with probability that goes to one as 7 - a. 

The advantage of proceeding as above is that one need not treat the classes of least mean distance and 
method of moments estimators separately (as is done by BGS (1982) and Gallant (1987)). This results in 
considerable economy of presentation without sacrificing the generality of the consistency results. 

5. The existence of the limits uniformly far (0, hit M, x T means that 

6. In addition to the conditions given in these references, one needs the limiting covariance of 
l/fiZ, m,(B,, q,) between the two samples to be zero, i.e. 

This follows under standard conditions of asymptotic weak dependence. For example, if {m,(a,, Y”)} is strong 
mixinswitb mixing numbers (a(s)} that satisfy a(s) = O(s0) as s + co for home q 11, then this condition holds. 

7. If necessary, the nonsingularity of HVH’ can be avoided by using asymptotic distributional results for 
quadratic forms with g-inverted weighting matrices and singular limiting matrix-see Andrew (19870). 

8. As defined, LR, is unique except in the very rare case that M is proportional to the idendty matrix. 
In this case, LR, can be taken as either of the two expressionn above. 

9. Strong mixing is a condition of asymptotic weak dependence. A sequence of w’s 1 W,) is strong 
mtiing if 

a(s)=sup,inf,.,-,,,,:~,JP(AnB)-P(A)P(B)l-0 as s-m, 

where 9i, denotes the smallest o-field in 9 fhaf is generated by the w’s {. , Wt., , WC1 and likewise for *???+s_ 
10. Strictly speaking, the consistency result for S given by llearem 6(a) below only applieg to S when 

s is defined using the Parzen kernel. When defined using the QS kernel, the consistency of s can be established 
under somewhat different assumptions regarding the asymptotic weak dependence of {m,(.Q,, ro)} than the 
strong miring assumptions used here, see Andrew (1987~). 
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