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This paper extends the classical test for structural change in linear regression models (see
Chow (1960)} to a wide variety of nonlinear models, estimated by a variety of different procedures.
Wald, Lagrange multiplier-like, and likelihood ratio-like test statistics are introduced. The results
allow for heterogeneity and temporal dependence of the observations.

in the process of developing the above tests, the paper also provides a compact presentation
of general unifying results for estimation and testing in nonlinear parametric econometric models,

1. INTRODUCTION

This paper is concerned with testing for structural change in nonlinear models. For the
classical linear regression model the F-test discussed by Chow (1960) commonly is used,
and for the linear simultaneous equations model the Lo and Newey (1985) or Hodoshima
{1986) extensions of this test can be used. Somewhat surprisingly, however, more general
cases have received little attention in the literature. An exception is the work of Anderson
and Mizon {1983) on the nonlinear simultaneous equations model. In this paper we
consider fairly wide classes of models, estimators, and test statistics, We also cover the
case where the structural change is only partial, i.e. it pertains to only a subset of the
coefficients in the model. Some of the test statistics we present can be computed using
the output from standard software packages.

The models we consider may be dynamic, simultaneous, and nonlinear and may
include limited dependent variables.. The error terimns may show a very general form of
temporal dependence and heteroskedasticity. The estimators include nonlinear least
squares (LS), two stage least squares (2SLS), three stage least squares (3SLS), maximum
likelihood (ML), and M -estimators. The tests covered are the Wald (W) test, a Lagrange
multiplier-like (LM) test, and a likelihood ratio-like (LR) test. Under certain conditions,
we show that the test statistics are asymptotically chi-square under the null hypothesis
of no structural change and asymptotically noncentral chi-square under sequences of
local alternatives.

The paper is organized as follows. Three examples are imtroduced in Section 2: (1)
the single equation nonlinear regression model, (2) the nonlinear simultaneous equations
model, and (3) any model estimated by maximum likelihood. Geneéral estimation and
testing results that cover these examples and others are given in Section 3, with proofs
in the Appendix. Section 4 contains a detailed treatment of the application of the general
results to the non-linear simultaneous equations example,
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616 REVIEW OF ECONOMIC STUDIES

The general results of Section 3 have the added feature that in several respects they
provide the most general unifying results in the econometrics literature for estimation
and testing in dynamic and nondynamic, nonlinear, finite dimensional parametric models.
Also, they do so in a much more economical fashion than is available elsewhere, such
as in Gallant (1987) or Gallant and White (1988)." In contrast to Gallant (1987, Chapters
3 and 7), least mean distance and method of moment estimators are treated simultaneously.
Also in contrast to Gallant and White (1988), a more complete treatment of multi-step
procedures is given.’

The approach taken in Section 3 is a variant of that of Gallant (1987, Chapter 7).
In contrast to Gallant (1987), however, the results are stated such that they can be applied
with any uniform law of large numbers and any central limit theorem. This allows
developments in these areas-—especially with respect to temporal dependence—to be
adopted readily.

2. INTRODUCTORY EXAMPLES

This section introduces three examples that are covered by the general.results of Section
3. These examples are used in Section 3 to illustrate the way in which the general results
can be applied to particular models and estimation procedures. The second example,
the nonlinear simultaneous equations model, is considered in more detail in Section 4.
See Andrews and Fair (1987) for more discussion of the first and third examples.

First, consider a nonlinear regression model with structural change:

Y;‘:f;(xfsgl;‘g})'i_ur fort:”Tl,---,‘“‘“’l,
Y. =f(X, 0,,8)+ U, foret=1,..., T,

(2.1)

where Y, is a scalar dependent variable, X, is a vector of regressor variables, U, is a
scalar error term, f,{:,+,+) is a known function, and 6= (87, 84, #%)' is an unknown
parameter vector. The errors may be heteroskedastic and/or autocorrelated, but must be
uncorrelated with the regression function. The regressors X, may include lagged values
of Y,. The time index is normalized such that structural change occurs at =0 if such
change occurs.

The null hypothesis of no structural change is given by the simple restriction on &
that #, = 6,. We are interested in testing this restriction as well as testing joint null
hypotheses of no structural change plus additional restrictions 2{8) =0. In the case of
pure structural change, there is no subparameter ¢, that is constant across periods, and
s0, 8, does not.appear in (2.1) or in &

Most estimators of 8, such as the least squares (LS) estimator or M-estimators, are
extremum estimators. Such estimators are defined as the solution to some minimization
problem. The properties of such an estimator (such as consistency and asymptotic
normality) can be determined from the properties of the optimand that defines the
estimator. Test statistics can be formed using the restricted and unrestricted versions of
the estimator and/ or the restricted and unrestricted values of the optimand or its deriva-
tives. The properties of the test statistics can also be determined from the properties of
the optimand that defines the estimator. In consequence, general results can be obtained
for estimation and testing by analyzing general optimization problems without specifying
the models from which the optimization problem was obtained. To apply the general
results to a particular problem, one links the particular model and estimation procedure
with the general results via one’s definition of the optimand.
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The testing results of Section 3 cover three types of procedures: Wald, LM-like, and
LR-like tests. These procedures apply whether or not estimation has been carried out by
maximum likelihood. The Wald statistic is defined in the usual way. It is given by a
quadratic form based on the difference between the unrestricted estimated value of the
restrictions and their value under the null hypothesis. The LM statistic is a quadratic
form based on the vector of derivatives with respect to 8 of the optimand that defines
the estimator, evaluated at the restricted estimator of 8. By suitable choice of a weight
matrix for the quadratic form, the Wald and LM statistics have asymptotic chi-square
distributions under the null with degrees of freedom given by the number of restrictions.
For example, even if the errors are heterogeneous and autocorrelated in (2.1), a weight
matrix can be chosen such that the test is valid asymptotically.

The LR-like statistic, on the other hand, only has the desired asymptotic chi-square
null distribution under more restrictive conditions. For example, it does in the nonlinear
regression case with estimation by LS if the errors are homoskedastic and uncorrelated.
Although this condition can be restrictive, it can be circumvented in some cases by
transforming a model with correlated errors into one with uncorrelated errors (e.g. see
Fair (1970)).

In the case of testing for pure structural change, the LR-like statistic is particularly
simple. For example, suppose the nonlinear regression model of (2.1) is estimated by
LS. Then, the LR test statistic equals T, T, times the difference between the sum of
squared residuals from the restricted and unrestricted LS regressions divided by the sum
of squared residuals from the unrestricted regression. The unrestricted residuals are
obtained by doing separate LS regressions on the data with <0 and ¢> 0; while the
-restricted residuals are obtained by doing a single LS regression on the whole data set
(with 8, set equal to 8,). The LR test statistic in this case is analogous to the classical
F- statistic one obtains in the linear regression model when testing for structural change.

Next, consider a nonlinear dynamic simultaneous equations model with structural
change:

f(YIersglsaii)_’ it f(}[’I."—'l,...,ﬂ,f"—-’—T;,...,—l
ﬂI(YranGEaBB):[Jir fori:ls"'snstils"'aTZs

-

(2.2)

where Y,e R® and X,e R"® are observed endogenous and predetermined variables,
respectively, U,e R' is an unobserved error, f,(-,-,-,-)€R' is a known function,
6=(87, #;, 85)€ @ c RPis an unknown parameter, and n (=1} is the number of equations.
The null hypotihesis of no structural change is given by 8,=8;. In the case of pure
structural change, no subparameter 8, appears in (2.2} or in 6.

In Section 4 a class of nonlinear three stage least squares (3SLS) and two stage least
squares (25L.S) estimators introduced by Amemiva {1977) is considered. These estimators
are based on instrumental variables (IV). They are examples of extremum estimators.
In consequence, their properties and those of the corresponding W, LM-like, and LR-like
test statistics can be obtained from the general results of Section 3.

In this example, the conditions needed for the LR statistic to be valid include havnng
each instrument z, such that z, =0 for all <0 or z,=0 for all >0 and having error
vectors U/, that are vncorrelated across time, homoskedastic for ¢ <0 {i.e. EU, U=,
¥i<0), and homoskedastic for t>0 (ie. EUU;=0,Ve>0). In the case of testing
for pure structural change, one simply estimates the restricted value of 8, (=8,) using
the full data set and one estimates the unrestricted values of 8, and 8, from the ¢t <0 and
the 1> 0 data sets respectively. The LR test statistic is 2( T, + T.) times the value of the



618 REVIEW OF ECONOMIC STUDIES

optimand based on the whole data set evaluated at the restricted estimator minus the
sum of the two values of the optimand for the two sub-samples evaluated at the unrestricted
estimators of 6, and 8, respectively.

As a third example, consider any regular finite dimensional parametric model that
is estimated by ML. Such models include a wide variety of dynamic and nondynamic
econometric models. (A model is “regular” if its score functions satisfy the conditions
of Section 3.) The ML estimator is an extremum estimator whose properties can be
determined from the general results of Section 3. The Wald, LM, and LR test statistics
are all asymptotically valid in this context.

In the case of testing for pure structural change in an ML situation, the parameter
vector @ is of the form & = (8], 8), where the likelihood function for ¢ < 0 depends only
on &, and the likelihood function for 1> 0 depends only on 8,. To calculate the LR
statistic for testing 8; = §,, one needs to compute the restricted estimate of &, {=8.) using
the whole data set and then compute the unrestricted estimates of 8, and 6, using the
t<0 data and the 7> 0 data respectively. The LR statistic, then, is simply 2(T,+ T)
times the difference between the restricted log-likelihood function and the unrestricted
log-likelihood function, where the latter is just the sum of the log-likelihood functions
for t <0 and 1> 0 evaluated at the unrestricted estimates of 6, and #, respectively.

3. GENERAL RESULTS

This section gives general results for estimation and testing in models with structural
change. The basic approach we adopt is one that has evolved in a long series of papers
on inference in nonlinear models. Such papers include those of Wald (1949}, Huber
(1967}, Jennrich {1969), Burguete, Gallant, and Souza (1982) (denoted BGS (1982)),
Domowitz and White (1982), Bates and White (1985), Gallant (1987}, and Gallant and
White (1988). Our approach most closely follows that of BGS (1982) and Gallant (1987).
Gur notation is chosen to be as compatible as possible with theirs.

This section is cutlined as follows: We first consider a class of extremum estimators
for models where structural change may or may not occur. Consistency and asymptotic
normality of these estimators are established. Consistent estimators of their asymptotic
covariance matrices are provided. We then consider tests of general nonlinear restrictions.
Wald, Lagrange multiplier-like, and likelihood ratio-like tests are shown to be asymptoti-
cally chi-square under the null hypothesis and asymptotically noncentral chi-square under
local alternatives under certain conditions.

3.1. Consistency of Estimators

The data are given by a doubly infinite sequence of random vectors (rv’s) {W,}=
{Wot=_..,-2-1,1,2,...} defined on some probability space ({1, %, P). Probability
statements made below refer to probabilities calculated under P. The observed sample
of size T=T\+ T, is {W,:t=-T,,...,—1,1,..., Tz}, The point t =0 is the point of
structural change, if such change occurs. (For notational convenience, the sequence { W}
is indexed such that no Wj rv exists. ) In most cases, the asymptotncs vsed below correspond
to situations where

mr=T/T->me(0,1) and mr=T/T->mec{(0,1) as T (3.1)

Extremum estimators are defined as follows.
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Definition. A sequence of extremum estimators {5} ={§: T=1,2,...} is any
sequence of rv's such that

d (8, 7), #) =inf,.o d(R(6, 7), 7) (3.2)

with probability that goes to one as T -0, where (8, 1-)—1/'1"2,;;, m (8, r),
ml8, Ty=m{W, 8 1), and m{(-,-,-): R"fo)x F,—» R" where F,< R", mo(f) =0, 7
is a random wu-vecior (which depends on T in general), and d{(-,-) is a non-random
real-valued function (which does not depend on T).

Note that 7 is a preliminary estimator used in the definition of 8.

For notational simplicity, we let m(#) abbreviate (8, 7) and we let Y2 denote
y*_. for arbitrary integers a = b.

In the case of pure structural change, the parameter vector § can be partitioned into
two sub-vectors (8}, 85) such that m,(8, 7) does not depend on 8, for ¢ >0 or on 8, for
t < 0. In the case of partial structural change, the parameter vector ¢ can be partitioned
as (8%, 85, 91), where 8, and @, are as above and 8, is unrestricted.

We now describe briefly several common estimators in terms of the above framework.
Consider the nonlinear regression model of (2.1). Let W, =(Y,, X}). The nonlinear least
squares estimator of 6 = (6}, 85, #3) can be defined either as one that minimizes the sum
of squared residuals or one that solves the first order condltlons of this minimization
problem. Correspondingly, for the consistency results for {J we can take either m,(8, 7) =
(Y, —fi(X,, 8,6 and d(m, 7)=m, where j=1for t<landj=2fort>1,or m,(f) )=
(Y. —f(X,, Gj, 6:1)(a/a0)f,(X,, 6,, 8;) and d(m, v)=m'm/2, whichever is more con-

_venient. For the asymptotic normality and testing results given below, the second definition
must be used.

For the LS estimator, no nuisance parameter T appears in the functions m,( 6, 7) and
d(m, 7). If an M-estimator is used, however, then m(8, ) is set equal to p{(Y,—
f(X., 8, 0:0)/7) or (Y, —fi(X,, 8, 0:))/7){(6/a8)f(X,, 6, 8;), where the nuisance
parameter 7 is a scale parameter, y(x)=(d/dx)p(x), and d(-,-) is as above. Huber
(1981) discusses different choices for the function p(-).

Next, consider two stage least squares (2SLS) estimation of a single, nonlinear,
simultaneous equation with pure structural change. The model is: £(Y,, X, §;,)= U,, for
t=—T,,..., T, where j=1 for 1<0 and j=2 for t>0, Y, is a vector of endogenous
variables, aned X, is a vector of predetermined variables, Let Z, be a vector of instrumental
variables that can be partitioned as Z, =(Z},, Z5,), where Z,, =0 for t>0 and Z,,=0
for t<0 Let W,=(Y!, X!, Z!). The 2SLS estimator of 8 is defined by taking m,(6, 7) =
flY, X, 6,)Z, and d(m, 7} = m'D(7)m/2, where r equals the non-redundant elements of

-1

—1
D(r):(;amm%zz,ﬁzfz:) and  D(7) ( i 2z )

The definitions of m,(#, 7) and d(-, -} for the 35LS estimator are given in Section 4.

For the case of ML estimation of a parametric model, let £,{8) denote the conditional
density of the endogenous variables Y, conditional on the preceding endogenous variables
{Y,: s < t}and the exogeneous variables { X, : ¥s}. Then, the ML estimator is an extremum
estimator with

m,(0, r)=—log fi(8) and d(m r)=m for meR' or (33)

d
m,(e,r)zmglogf,(ﬂ) and d{m, 7)=m'm/2 for meR"
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Either set of definitions can be used for establishing consistency of 6. The second set
must be used for establishing asymptotic normality of g and obtaining testing results,

We now return to the general case. In what follows we avoid imposing conditions
that are used just to ensure measurability of ) by stating results that hold for any sequence
of rv's {9}. Such results have content only if such a sequence exists. Clearly, sequences
{é} that satisfy (3.2), but are not necessarily measurable, always exist, since # is assumed
below to be compact. Further, we note that one set of sufficient conditions for the existence
of a measurable sequence {6} is that d(m(8), 7), viewed as a function from (}x0 to R,
is continuous in & for each w €} and is measurable for each fixed 8¢ @, and @ is a
compact subset of some Euclidean space (see Jennrich (1969), Lemma 2).

For consistency we assume the following.

Assumption 1. {a) © is compact.

(b} fisarvand 7> 7 1y as T~ for some 1y F, < R™

(¢) There exists a Borel measurable function m(-,-):@xF > R" such that

mr(f, 7= m(8, r) uniformly over (@, 7)c@x T as T->00, where Fo 7, is
some compact neighbourhood of ;.

(d) d(m(8, 7), v} is continuous in {6, 7) at all (6, T} e G x T.

(e} d{(m(8, 1), 75) is uniquely minimized over 8 ® at 6,.

For notational simplicity, we often denote m(#6, 1) by m(#).

Assumption 1{a) is standard in the nonlinear econometrics literature. Assumption
1(b) can be verified straightforwardly by the application of a weak law of large numbers
(WLLN) in some cases (e.g. see Andrews (1988} or MCLCISh (1975)) and by the application
of Theorem 1 below to get consistency of # rather than 6 in other cases. The function
m{6, r) of Assumption 1(c) generally is given by lim,_ ., 1/T }: % Em/(6, 7). Thus,
Assumptlon 1(c} holds if these limits exist and if {1/T, E‘T n, (8, 7}} and
{1/ T 21 m, (8, v}} satisfy uniform WLLNs over ® x . The latter hold under conditions
that allow considerable heterogeneity and temporal dependence. It is sufficient that
{m,(8, )} satisfy a smoothness condition in (6, ), 2 moment condition, and a condition
of asymptotically weak temporal dependence—see Andrews (1987b), Gallant (1987,
Chapter 7, Theorem 1), Potscher and Prucha (1987}, or Bierens (1984, Lemma 2).
Assumption 1(d) holds in most applications. Assumption 1(e} is the uniqueness assump-
tion that ensures that {#} converges to a point 8, rather than to a multi-element subset
8, of @*,

Theorem 1. Under Assumption 1, every sequence of extremum estimaiors {5} satisfies
# "8, as T—© under P.

The proofs of Theorem 1 and other results below are given in the Appendix.

3.2. Asymptotic normality of estimators

We now establish the asymptotic normality of sequences of extremum estimators {é}
for models that may exhibit structural change. Their asymptotic covariance marrix
V is defined as follows. Let

S=limr.. Vare (V,_T (6, 7)),

M =lim7.. 1/ TED E(3/38)m,(8o, 7o),

D= (a*/amam’)d(m(8y, 7o), 7o),

F=MDM, §=MDSDM, and

V=gTlsg7,
where m,(+, -} and d{ -, ) need not be defined as in Assumption 1 (see footnote 4). For
the LS estimator, M-estimators, and ML estimators, m,(-,-) and d{-, - ) must be chosen
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in this sub-section and the next to correspond to their first order conditions definition.
For the 25LS estimator, m,(-,-) and d(-, -} are defined as in Section 3.1.

Let || - || denote the Euclidean norm and let (3/am)d(-, -} denote the derivative of
d(-, -} with respect to its first argument. We assume:

Assumption 2. (a) f>" O, RP as T-co.
(b) i. VT(F~ 1) = Op(1) as T for some 7o¢ J,,
ii. {(3/om) d{Emr {8y, 74), 7o) =0V T large, and iii. (°/aram’) d{m(8,), 75) =0.
{c) {m,(8,, 7o)} satisfy a central limit theorem (CLT) with covariance matrix 5. That
is, VT (1p(8y, 7o) — Ery(8,, 7)) > ¢ N(0, 8) as T'-» 00,
(d) ®c R’ and ® contains 5 convex neighbourhood 0, of 4,.
(e) (a/am)d(m, 1), (*/amamyd(m, ) and (&°/o7am")d(m, r) exist and are con-
tinuous for {m, ) € M x F, where M is some neighbourhood of m{8,, 7).
(f) m (8, r)is once and twice continuously differentiable in 7 and 8, respectively,
on @, x 7, ¥Vt Yo . {m(6, 1)}, (8/88)m.(6, )}, {{3/37) m,(8, 7}}, and
82
30,08’ }
are sequences of F\Borel-measurable rv’s that satisfy uniform WLLNs over
(8, T}e®,x . The expectations of the sample averages of the latter sequence
are uniformly bounded for Tz 1.

m, (0%, 7*)

{SUPte‘,r*mex Fa=1,.p

1
m(8, 7) =Hmm;zﬁl Em,(6, 1),

M8, 7)=limrae— 2‘, m(ﬂ 7},

i 83'

and

ler, .0
?Z—TI EE;; m,(f), 7)

exist uniformly for (8, 7)€ ®,x J° and are continuous and dm(8,, 7,) =0.
(g) M'DM is nonsingular.

dm(8, ) =limy.,.

Assumption 2(a) can be established by Theorem 1 or some other consistency proof.
Assumption 2(b} can be verified by applying a CLT to 7 in some cases and by applying
the result of Theorem 2 below to 7 rather than @ in other cases. Assumption 2{¢) can be
verified by defining my, = M, 7,.1(8,, 7o) for t=-T,,..., T, to get a triangular array

Ampit=1,...,T+1; T=1,2,...} to which any of a number of CLTs apply. Thus,
Assumption 2(c) holds under conditions that allow considerable heterogeneity and tem-
poral dependence. It is sufficient that Em,(6,, 1,) =0, V¢, and that {m,(8,, r;)} satisfy
standard moment conditions and a condition of asymptotically weak temporal dependence
see Gallant {1987, Chapter 7, Theorem 2), McLeish (1977, Theorem 2.4 and Corollary
2.11), Herrndorf (1984, Theorem and Corollaries 1-4), or Withers {1981, Theorems
2.1-2.3).

Assumption 2{d) is standard. Assumption 2(e) often is satisfied trivially, since d{m, 1)
often equals m or m'D{7)m, where D{r) is a square matrix comprised of the elements
of . Assumption 2(f) is a standard requirement of smoothness of m,(#, 7} in 8 and 7,
the existence of certain limiting averages of expectations, and non-explosive non-trending
behaviour of the summands {m,(8, r)} and their first two derivatives. The smoothness
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conditions are stronger than necessary (cf. Huber (1967) and Pollard (1985}), but are
satisfied in a large fraction of the cases encountered in practice. Assumption 2(g) is
standard. For example, it reduces to nonsingularity of the information matrix in iid ML
contexts.

Theorem 2. For any sequence of extremum estimators {8} that satisfies Assumption 2,

ﬁ(@—@o)ad N{0, V) as Teoo

Next we consider estimation of the covariance matrix V. Let |

2

z . 69,m (87, ﬁ:amam, d(m (8, 7),7) and §=A'DM.
Let § be an esnmator of S If {m (8;, 7o)} is a sequence of independent rv's, then we
cantake $=1/T %2 : m,(e f)ml(ﬂ 7Y, If {m,( 6, 7,)} is a sequence of temporally depen-
dent rv’s, however, a more complicated estimator is required. The following choice is
analogous to estimators suggested by Andrews (1987c) and Gallant (1987, pp. 551, 556).
Let §= S(H}, where

5(8) = m,r8,(8) + m,r 5:(0),

§1(e)=}1-z:;, m,(a)m,(e)’+23‘;.k( - )i o [m(0)Ym,_ (8)

K1)/ T,
+m,_ (0)m(8)], (3.4)
$:(6) m%zfz m(0)m,(8)+5 1 k ( I(;z)) %z;ﬁv [m,(8)m,_,(8Y + m,_,(0)m,(8)],

m,(8)=m,(8, 7), [{T,) is a “bandwidth” parameter that satisfies I{ T,) > ccand I{ T;) = o( T}
as T,»cofor j=1,2, and k() is the quadratic spectral (QS) kernel, i.c.

2 sin (6ax/5)
klx) = x( 6mx/5

- CO8 (61rx/5))

or k(-} is the Parzen kernel, i.e..

1-6x?+6x° for0=x=1/2
k(x)={2(1-x) for 1/22x=1.
0 forx=1

See Andrews (1987c¢) for a detailed analysis of the choice of bandwidth parameter {(T;)
forj=1, 2.

Conditions under which this estimator is consistent can be found in the references
above or in Newey and West (1987).° These conditions require {m,(8,, 7,)} to have more
moments finite than are required for {m.(8,, 7o}} to satisfy an LLN or a CLT. Given the
availability of such conditions, it is straightforward to verify the following assumption.

Assumption 3. § =" § as T->c0 (where S is as in Assumption 2).

Let 4 =M'DSDM and ff=ﬁ‘ﬁﬁ“, where (-}~ denotes some reflexive g-inverse
(such as the Moore-Penrose inverse). o
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Theorem 3. Under Assumptions 2 and 3, M >° M, Dsr D, and Vo"Vas T->oo,

Comment. When V snnphﬁes as occurs in many applications, then v simplifies or
simpler estimators than V can be constructed.

3.3. Tests of hypotheses concerning structural change

We now consider tests of null hypotheses of the form H,: k(@) =0. Of particular interest
are tests of pure and partial structural change. For testing pure structural change, the
null hypothesis is Hy: #;, = 6,, where # = (8!, 8,) and 6, and ¢, are parameters associated
only with the observations indexed by ¢ < 0 and 1> {, respectively. In the case of partial
structural change, the null hypothesis is H,: 8, = 6, where 8 =(81, 83, 83), 8, and 8§, are
as above, and 6, is a parameter that may be associated with the observations from all
time periods. A third class of hypotheses of interest are joint null hypotheses of no
structural change (pure or partial} plus certain nonlinear restrictions. In this case, the
null hypothesis is Hy: #,=60, and hA*(8,)=0 when #=(8},63) or Hy 6,=6, and
h*{#,, 6,) =0 when 8 = (8}, 8%, 85). The present framework also includes tests of non-
linear restrictions that do not involve testing for structural change. Results for such
hypotheses, however, already are available in the literature—see Gallant (1987,
Chapter 7) and Gallant and White (1988, Chapter 7).
The function h(-) defining the restrictions is assumed to satisfy:

Assumption 4. {(a) h(8) is continuously differentiable i ina neighbourhood of 8, and
H =(5/50")h(8,) has full rank r( = p).
{b) V is nonsingular.

The Wald statistic is defined as
W= Th(8)y(AVE") h(f), (3.5)

where H = (3/00"} h(é‘)‘ Since HVA’' ~” HVH as T » cc and HVH ' is nonsingular under
Assumption 4, the g-inverse { - )~ equals the usual inverse (-) ™' with probability that goes
to one at T » .7

In the case of testing for pure structural change, W, is given by

W =T(8,— 8, (V,/myr+ Vyf mar) (6,~ 65), (3.6)

where V, and Vz are the estimators of the asymptotic covariance matrices of 61 and 82,
whlch are analogous to the estimator ¥ of V and which use the observations indexed by
=-T...,-1 and t=1,..., T,, respectively. This formula holds in the standard case
where Dis biock dzagonal w1th two blocks (for some ordering of its rows and columns)
and m,(& #) has elements corresponding to the first block of D that are non-zero only
if r< 0 and other elements that are non-zero only if t>0.
The LM and LR statistics defined below make use of a restricted estimator of 8.

Definition. A sequence of restricted extremum estimators {5}——-{5 :T=1,2,...}is
any sequence of rv’s such that
d(m(6), /) =inf {d(m,(0), F): 6O, h(6) =0} (3.7

with probability that goes to one as T = oo
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Suppose the null hypothesis is true and h(-) is continuous on &. If Assumption 1
holds for the parameter space @ it also holds for the parameter space @g= {8 @: h(8) =0},
since 0, is compact and 8,€ @y. Thus, Assumption 1, Theorem 1, and continuity of h(-)
over © imply that ¢ »? 6, as T-co under the null hypothesis. In consequence, the
following assumption is straightforward to verify:

Assumption 5. # -7 8, as T - oo under the null hypothesis.

The LM statistic uses an estinator of V that is constructed with the restricted
estimator € in place of 8. Let

M =1/TY"5 (3/38)m (4, 7),
D= (a*/amamyd(hr(6, 7), 7), § = M'DNI, § = $(8),
and H = (9/06" )h(é) (where m,(-,-) and d(-, -} are as in Assumption 2). Note that the
estimator of the nuisance parameter Ty still is denoted 7, even though it may be a restricted
estimator of 7,. The same is true of the estimator S of 5. With the notation, we do not
need to adjust Assumptions 2(b) or 3 when a restricted estimator_of 7, is used. Let
F=MDSDM and V= f .95;5 As above with V the estimator ¥ can be simplified

when V simplifies, as often occurs in applications of interest.
The LM-like statistic is defined as

3 v o maa ey @ .
LMy = Tg; d(mz(0), ) $ H'(HVH'Y Hg" g—éd(ﬁ‘tr(@), 7) (3.8)

(where m,(-, ) and d(-, ) are as in Assumption 2). As shown below, this statistic often
simplifies considerably.

The LR-like statistic (defined below) has the desired asymptotic chi-square distribu-
tion under the null in two particular contexts contained within the general framework
considered thus far. Outside of these contexts, the LR statistic generally is not asymptoti-
cally chi-square under the null. The first context is defined by the following assumption.

Assumption 6a. Under the null hypothesis, £ = b# for some scalar constant b0
and b >? b as T - © for some sequence of non-zero 1v's {b} (where m,(+,-)and d{(-, )
are as in Assumption 2).

Assumption 6a is satisfied by 2SLS and 3SLS estimators of nonlinear simultaneous
equations models under certain assumptions regarding the heterogeneity and temporal
dependence of the equation errors—see Section 4 below.
The second context is defined by the following assumption.
Assumption 6b. Let m,(-,-) and d(-, ) be as in Assumption 2.
(i} d(m, r)=m’'m/2. There exist functions p,(W,, 8, 7} such that
m,(“/,, Ba T) = (a/aﬁ)Pr("Vu 91 T}s VI‘
With probability that goes to one as T —» 0, é solves
pr(6, ) =inf {5,(8, 7}: f O}
and @ solves
pr(6, ) =inf {5r(6, 7): 6O, h(8) =0},
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where
pr(6, /) =1/TLTy p(W,, 6,7).

(ii) Under the null hypothesis, §=¢M for some scalar cZ0 and { > cas T»>
for some sequence of non-zero rv’s {&}.

Assumption 6b is satisfied by ML estimators for general parametric models. Assumption
6b(i} is satisfied by the LS estimator and many M -estimators for the nonlinear regression
model. Assumption 6b(ii) is satisfied with these estimators only when the errors are
uncorrelated and homoskedastic. .

Note that Assumption 6b{i) is compatible with the definitions of 6, because an
estimator # that minimizes pr{6, T) is in the interior of ® with probability that goes to
oneas T - oo under Assumption 2, and hence, also minimizes d(#(8), 7) with probability
that goes to one as T = 00, Also note that in the definition of LR 1 below, when Assumption
6b holds, § is as defined in Assumption 6b(i} rather than as in {3.7).

The LR-like statistic is defined as

2T(d{m(8), 7} — d(m(8), 7))/ when 6a holds

2T(pr(6, F)— prl(d, 7))/ E when 6b holds. (3.9)

ro -
where m,(-,-) and d{-,-) are as in Assumption 2.® The nuisance parameter estimator
7 may be a restricted or an unrestricted estimator of 75. It must be the same in _both
cnterlon functions used to calculate LRy, however, and it must be such that both é and
@ are consistent under the null hypothesis. Otherwise, the LR statistic generally does not
have the desired asymptotic distribution. That is, for use of the LR statistic, 6 and @
‘must be rv's that minimize the same criterion function subject to no restrictions and to
the restrictions k(@) =0, respectively.

Theorem 4. Suppose Assumptions 2-4 hold under the null hypothesis, h(8,) =0, and
the null hypothesis is true. Then the following results hold:

(a) Wy > x? as T - 0, where r is the number of restrictions,

(b) LMy =“ x? as T - o provided Assumption 5 also holds, and

(¢) LRy =% x? as T provided Assumption 5 holds and either Assumption 6éa or
6b holds in place of Assumption 3, where x? denotes the chi-square distribution
with r degrees of freedom.

Comments. 1. When Assumption 6a holds, as occurs with 2SLS and 35SLS estimators
in nonlinear simultaneous equations models with independent identically dlstnbuted
(i.i.d.) errors (see Sectlon 4 below), then we usually have = boiﬁ for some scalar rv b # 0.
In the latter case, Vand W simplify. We get V b# and W= Th(8)' (Hj H'Y h(6)/b.

Slmllarfy, if #= b,,@ for some scalar rv b;é(} then V and LMT simplify. We get
1= b,f' and LM,=T(a/a8" )d(mT(B) 7)}5 (a/a@)d (i (8), w)/b (where = denotes
equality that holds with probability that goes to one as T — c0), since {3/38)d (i ( 8), )=
—H'} for some vector A of Lagrange multipliers.

2. When Assumption 6b{i) holds, both W3 and LMy simplify. In this case,

2

D=Ips M=1imT—»m Z ”]“.EE (Ms 691.)5 f=M2, ﬁ=MSM

aaae’p‘

(a/aﬂ)d(mf{g) r)mf\:fmT(B) and by Z(g) M 1s nonsmgular We get WT
T?:(B) (HM SM H’) h(ﬂ) and LM, = T ()M H'(AM SM H') HM m(8).
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If, in addition, § = &M or § = M for some scalar rv’s £# 0 (as usuall occurs when
Assumption 6b(it) holds) then Wr and LM, simplify to W, = T'h(()) (HM A ) h(a)/c
and LM = Ty M~ mr(8)/E respectlvely The latter holds because M (6)= H'5
for some vector of Lagrange multipliers 7 under Assumption éb{i).

3. One would expect the small sample properties of W4, LM, and LR+ to be
improved by replacing the divisors T, Ty, and T, that arise in various sample averages
by their counterparts with the estimated number of parameters subtracted off. The relevant
number of estimated parameters to subtract off may or may not include the elements of
7 and may or may not include all of the elements of 6, depending upon the context.

Next, we present asymptotic local power results for the three tests considered above.
These results can be used to approximate the power functions of the tests. We assume:

Assumption 7. There exists a sequence of distributions { Pr} on (£}, #) such that
Assumption 2 holds under { Py} with 8, replaced by 6, = 8,+n/vT in parts 2(b)ii and
2{(c) for some 5 & R”,

The distributions { P} usually are determined quite easily in applications. For
example, in the nonlinear regression model, the sequence of models is Y, =f;(67)+ U,
t=-T1,,..., T, for T=1,2,..., and Py is just the distribution of {(Y, X,, U, )
t=...,-1,1,..for T=1,2,....

Verificiation that Assumption 2(a) holds under { Py} can be made by showing that
Assumption 1 holds under { Pr}.

We define the following analogues of Assumptions 3, 5, 6a, and 6b:

Assumption 8.  Assumption 3 holds under { Pr}.

Assumption 9. 6" #, under {P;} as T » 0.

Assumption 10a. Assumption 6a holds and b =* b under {Pr}as T > o,
Assumption 10b. Assumption 6b holds and ¢ »* ¢ under {Py} as T .

Note that Assumption 9 holds if 8, is compact and Assumption 1 holds under {P;}.

Theorem 5. Under Assumptions 4, 7, and 8,

(3) Wy xH8%), where 8*=n'H'(HVH"Y 'Hn,
(b} LM > x%(8%) provided Assumption 9 also holds, and
p
(¢) LRy = xX(8%) provided Assumption 9 holds and either Assumption 10a or 10b
p
holds in place of Assumption 8, where x2(8°) denotes the noncentral chi-square
distribution with noncentrality parameter 8% and r degrees of Jfreedom.

Comments. 1. Since VTh(8;) > Hn as T > o, power approximations can be
based on a xX(8%) distribution, where 8% = Th{8;Y(HVH') 'h(#;). In particular, to
approximate the power of a test against an alternative 8 when the sample size is T, we
set 8= 6, and take 6% = Th(8)(HVH") 'h(8).
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2. Due to the local nature of the alteratives in Theorem 5, the approximations
described in Comment 1 usunally are more accurate for close alternatives to the null
hypothesis than for distant alternatives.

4. NONLINEAR SIMULTANEOUS EQUATIONS

In this section we consider structural change in the nonlinear simultaneous equations
model of {2.2). Let 8, ® denote the true parameter vector in this model.

4.1. Three stage least squares estimation

We consider Amemiya’s {1977) class of 3SLS estimators generalized to the structural
change problem considered here. A special case of the 3S5LS estimator is the 25LS
estimator.

Let f,.(9) abbreviate f,(Y,, X,, 9) and take

F0 = (hon(0)s o, Aa(0), o orf0), oo £ ma (8)) s - (4.1)

Let Z, be a column p-vector of instrumental variables (IVs) for the i-th equation and
the ¢-th time period. For i=1,...,n, let Z, be a T, x v, matrix whase rows are given by
Zifort=-T,,...,-1. Define

Zy=diag{Z\,...,Z "} er,x0, where v=Y7_ v, (4.2)

Define f.(#) and Z, analogously with the time periods ¢=~T,,...,—1 replaced by
t=1,..., T;.

Let ﬁ; and ﬁz denote nxXn nuisance parameter estimators. Either f]l and ﬁz are
estimators of (O, =limr..1/T, Z  EU, U! and !L—-Iuny . 1/722:t EUUY,
respectively, where U, =(U,,..., U, ) ‘or §,=10, and &}, and 9.2 are estimators of
O ={L=limr, /T Ef’n EUU,. The former case corresponds to the common situation
where one believes that structural change may affect both #, and the distribution of L.
The latter case corresponds to the less likely situation where one believes that structural
change may affect 8, but not the distribution of L/,

Let A, =0, @1, and A; =0,® 1, for j=1,2.

A sequence of 3SLS estimators of 8, for T=1,2,... is defined to be any sequence
of tv’s {#} such that # minimizes

HBYA; Zi+ S OVAT Z I ZIAT 2+ Z3AS Z)(ZIATH(0) + ZIAT1(8))  (4.3)

over # € © with probability that goes to one as T - .

In the special case where one takes ﬂl ﬂj 1, the estimator @ defined by equation
(4.3) is the 2SLS estimator of 8,. In this case, the objective function can be written as
the sum of n terms, each involving a separate equation. If the parameter space @ does
not impose any cross equation restrictions, then the 2S5 estimators of the n sub-vectors
of 8, can be estimated one at a time, _

When only one equation is estimated (n = 1), equation (4.3} simplifies. In particular,
in the case of pure structural change, it can be written as the sum of two terms, the first
of which corresponds to the ordinary 2SLS estimator using the t <0 data and the second
to the 25LS estimator using the ¢ >0 data. The scalars ﬂ, and 02 become redundant in
this case and need not be calculated,
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The following Assumption S1 guarantees the existence of a sequence of 3SLS
estimators {8}. Also,itimplies Assumption 1 of Section3withW, = (Y], X}, Z}Y,m{0,F) =
Z\);£,(8), where Z =diag{Z,,..., Zu}pxe, f0)=(/1{8),.. .. i) 7x1, j=1 for
t<0,and j=2 for t>0, and d{m, ) =m'Dm/2, where

. A {1 A N\
D=T(ZIAZ,+2Z5M,Z,) = (?ijﬂ Zy); Zr) (4.4)
and 7 is a u-vector comprised of the non-redundant elements of ﬁ,, f!z, and D. Using
Theorem 1, Assumption S1 guarantees the consistency of every sequence of 3SLS
estimators. We note that each variable and vector that appears in this assumption and
the others below is assumed implicitly to be 5\ Borel-measurable.

Assumption S1. {a)} ® is a compact subset of R”.

(b) Q,>?Q,and ﬁ,_ =70, as T - oo forsome »n x n nonsingular matrices (}, and (},.

{C) m xlimT»oo T, lim'r,aao 1/ Tl Z:E,rl Ef;‘r(e)zru and lim']’}»m 1/T2 ETZ Eﬂr(e)zﬂ ’
exist uniformly for #e@ and are continuous in & for all #e® for
Lr=1,...,n hmr_,m VVTY EZ/Q;'f(6)=0 if and only if 6=6, D=
limr, o (1 / TY EZ10;'Z, )m exists and is positive definite.

(d) (Y, X,,Z,}} is stmng mixing.”

(¢) sup, E[supe.ollfi(8)Z,|*+|Z.Z.[5 1<, Vi, r=1,..., n, for some &> 1.

{f) f,(8) is differentiable in 6, Vi=1,...,n, Vi, for all realizations of {(Y,, X,}},
Y8ec 0% where ©F is some convex or open set that contains @, and
imy . 1/TY "% E supyco- [1(3/00) fi(8)Z0) <o0, ¥i, r=1,...,n.

The strong mixing Assumption S1(d) is used to ensure that an LLN holds for certain
rv's. This condition is quite convenient and fairly general, but is not all-encompassing
(see Andrews (1984, 1985)). For cases where this assumption fails, one can substitute
an alternative condition of asymptotic weak dependence (see references in Section 3)
and use the results of Section 3 to establish consistency and asymptotic normality of é.

Nuisance parameter estimators 01 and Qz that satisfy Assumption 81(b} can be
obtained as follows. Let & be some consistent preliminary estimator of 8,, such as the
2SLS estimator. Then, for the case where fl] and ﬁE are allowed to differ, take

) — - A 1 -
QF;E_% fi(8)f(8)" and ﬂz:;Z:’ff(G)ﬁ(ﬂ)’- (4.5)
1 z
For the case where ﬁl and (), are constrained to be equal, take
A a1 —
=0, =230, £(0)f(6) (4.6)

Next, we introduce an Assumption 52 such that Assumptions S! and $2 imply
Assumption 2 of Section 3 with m (9 #) and d(m, ) as above. Hence, by Theorem 2,
under Assumptions 81 and 82, VT T(6 —6,) has an asymptotic N{0, V) distribution as
T - o, where V={(M'DM)” 'M DSDM{(M'DM)"",

. 1 .7 v~y O
M = hmT-ﬂ)c-fZ—Tl Ezlﬂj k Q.ﬁ(eo)wcpa (4-7)

D is as in S1(c}, and S is as in $2{(c) below.
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Assumption 52. (a) @ contains a convex compact neighbourhood 6, of 6,.

(by EU,Z,=0,¥i r=1,.

(¢} S»whm;m,a0 Var(l/v/_z Z Q; '4,) exists where U, ={U,,,..., U.).

(d) \/Tl(ﬂl )= Op{l) as Tl - 00, V/Tz(nz 0,)= O (1) as T,»o, and
limy.o Var(1l/ \/_ TY": Z,Z,) exists forall i=1,

(e} limr.1/T, Yo E(a/ae)f,,(e)z and limy I/T2 Z; E(a/ae)f,(e)z,, exist
uniformly for 8¢ @ and are continuous for #€ @, Vi, r=1,..., n and M is full
column rank.

(f) The strong mixing numbers {a(s)} of {(Y,, X,, Z,)} satisfy a(s)=o(s"*/“"")
as 5 -» <0 for some a > 1.

(g) f.{(0} is twice differentiable in 8, V8O, Vi=1,..., n, V1, for all realizations
of {¥,, X,}, S1(e) holds for some £> a, and

[4 2

A

d
sup, E supm,( 5a fiOVZu|| H|o D Sul0) 2| + U2, [;ze+(z:,zﬂ)zf)
<0
Vir=1,...,n VYa=1,...,p, for some £> a and some {>1.

In cases where §= D™, the covariance matrix V simplifies to V=(M'DM)"".
This occurs when
E(UUYZ)=Q, as, Wi,
and {4.8)
EZUU,_Z,_ =0, Vi, ¥Yk=1,2,....

o J}Acorisisfepﬁ Acstjmgtgr of the Acove}‘ri:anoe matrix V is given by V=
{M'DM) M'DSDM{M'DM) ", where M = M(#8),

. 1 .l @ oA @
M(a):?(z;;\, Sg N+ Z2A; a_a—'fz(ﬂ))

and §=§ (5) for §(B} defined in equation (3.4) with m,({-, -} defined just above equation
(4.4), with I(T;) such that I(T;) » co and H(T;)=o(T"*} as T, > o, and with k(-) corre-
sponding to the QS or Parzen kernel.'’ (See Andrews (1987¢) for results regarding the
optimal choice of the bandwidth parameters I(T)) and the kernel k{-).} If the second
condition of equation {4.8) holds, then § can be simplified by taking I{(T,)=1(T,)=01in
its definition. This yields

A 1 A~ o A A
$==¥" ZO f(Df(8YD,; 2. (49)
If both of the conditions of (4.8) hold, then take

§=D" and V=(NM'DM). (4.10)

To establish consistency of V we assume:
Assumption S3. sup, E||Z,U,J|* <oo for some é>a. {=2in S2(g).

_Theorem 6. {a) Under Assumptions $1-53, §» S, M " M, and Vos?VasT >
Jfor S as defined just below equation (4. 8)

(b} Under Assumptions 51 and 52, 57 S, M -* M, and V" Vas T ooforS as
defined in {4.9) or (4.10), provided the additional conditions outlined above (4.9) or (4.10)
are satisfied, respectively.



630 REVIEW OF ECONOMIC STUDIES

4.2. Tests of struciural change

We now consider tests of nonlinear restrictions H,: h(#)=10

A sequence of restricted 3SLS estimators of 6, is any sequence of rv’s {#} such that
6 minimizes equation (4.3) over 6 € @, ={d e @: k() =0}. Assumptions S} and 85 (below)
guarantee the existence and consistency of sequences of restricted 3SLS estimators, since
they imply that Assumption 1 of Section 3 holds with parameter space 6.

Assumption 85. 8, is compact.

The LM test statistic of ¢ uation (3 8) uses a restrlcted covarlance matrlx estlmator
given by V=(M'DM)"M'DSDM(M'DM)", where M = M(G) 5= S(e) and M(g)
and §(8) are as defined just below equation (4.8). The estimator Disa preliminary
estimator that does not depend on Gord If desired, the preliminary estimator of 8, that
is used in forming D can be chosen to be a restricted estimator of #,. As in equations
(4.9) and (4.10}), § can be replaced by the simpler estimator

§=23%, Z0 B8 7, or §=D (@.11)

when the conditiens outlined above (4.9) or {4.10), respectively, hold under the null
hypothesis. By the same argument as in the proof of Theorem 6, S, M and V are consistent
for 8§, M, and V, respectively, under the null hypothesis under the conditions of Theorem
6 and Assumption S5.

The following Assumption S6a implies Assumption 6a of Section 3. It is used to
obtain the asymptotic null distribution of the LR statistic.

Assumption S6a. Under the null hypothesis,

_ - EZi'Z, ift=5s
Ez',n,-luugn,-’z,m{o nh s forallos=.. 11,2,

where j=1 for <0 and j=2 for t > 0.

Assumption S6a implies that §=D"" and # = #. S6a holds under (4.8).

Assumptions $1-83, 4, S5, and S6a for the 38LS estimator imply Assumptions 1-5
and 6a of Section 3. Thus, Theorem 4 holds and the W, LM, and LR statistics of equations
{3.5), (3.8), and (3.9) are asymptotically chi-square with r degrees of freedom under the
null hypothesis (where Assumption 862 is needed only for the LR statistic).

The next assumption is used to obtain local power results:

Assumption 87. Given ne R”, let 0, =60,+n/vT and f,( Yy, X,, 6r)= U,. Let Py
denote the distribution of {( Y, X, U, Z,)} for T=1,2,... . Suppose Assumptions S1
and S2 hold with Y, and f,(8) replaced by Yy, and f,( Yr, X,, #) throughout, with S1{b})
and Si{dj holding under { P;-}, with the sequence {{ ¥, X, Z,}} replaced by the trianguiar
array {( Yy, X,, Z ) —-Ty=1=T,, T=1,2,.. .} in 81{d} and S2(f), and with sup, replaced
by sup,=7r-1... in S1{e) and S2(g). '

Assumptions 7, 8, 9, and 10a (with b =1) of Section 3 are implied by Assumptions
57, 83 and S7, 85 and 87, and S6a, respectively. Thus, Theorem § of Section 3 applies
and the W, LM, and LR statistics have noncentral chi-square distributions under local
alternatives. Their large sample power functions can be approximated accordingly.
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We now provide some simplified formulae for the W, LM, and LR test statistics in
the nonlinear simultaneous equations context. The general form for the Wald statistic is
given in equatton (3. 5) If Assumption 56a holds, then $§ can be taken as in equation
(4.10), §= D ,9" ,9, and W, 1s given by the simplified formulae of Comment 1 to
Theorem 4 wath j M'DM and b=1:

W= Th{§Y[H(M DM) H'] h{). (4.12)

When testing for pure structural change, we assume that the IV's are taken such that
each IV is non-zero only for observations with ¢ <0 or only for observations with t>-0.
This condition ensures that the matrix D 15 block diagonal (after appropriate permutation
of its rows and columns) with blocks D, and Dz, say. It also ensures that m,(6 7) has
elements corresponding to ), that are non-zero only if # <0 and elements corresponding
to D, that are non-zero only if 1> 0. Hence, the Wald statistic for testing pure structural
change is given by (3.6):

Wor=T(8,— 6)(V/mr+ Vof mar) (8, - 6)), (4.13)

where ¥, is analogous to 1% but is based on the j-th sub-sample of the data for j=1,2.
When Assumptlon S6a holds, Vi and Vz of (4.13) can be simplified as in (4.9) or (4. 10)
The LM statistic corresponding to 35LS estimation is given by

LM, = T (6) DM$ H'(AVA" H$ N'Dm,(6), (4.14)

where §=M 'DM. Note that the LM statistic is a guadratic form in the vector of
orthogonality conditions between the IVs and the model evaluated at the restricted
estimator 8.

When testing for pure structural change (with I'Vs as in the second paragraph above),
the LM statistic becomes

LMy = T( () D\ M, F7 — s (8Y DaMLFD Vi 7y 0+ Vo) mar]”

. o oa v oA {4.15)
- (#, MDD, (8) - F. ML Dy, 1(8)),
where
I S P |
ij(G)=FZjAj_fJ.(B)s M, = ?Z (3)
i J
$=MDN, V=837, $=mMDSDM,
and S S (6) for S (@) defined in equation (3.4) for j=1, 2.
When Assumptmn S6a holds, LM ; simplifies by taklng §=D:
LM, = Tiip(6) DME~M' Dmy(6). (4.16)

In particular, when testing for pure structural change under Assumption 56a,
LM = Ty (Y D, M, F; M Dy 7(8) + Toty r(8) D, Mo 85 M Do, (). (417)
The LR statistic in the 35LS case is given by

LRy =2T(d(mr(§), 7) — d(mp(8), 7)), (4.18)
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where d((0), 7) is the expression given in (4.3), i.e. the objective function for the 35LS
estimator. When testing for pure structural change (with IVs as above), the objective
function factors as follows:

d{mr(8), 7) = d, (M, r(8), 7) + da( W7 (8), 7), (4.19)
where d,(,-(8), F) = f[{0YA; Z(ZIA,; Z) ZiA; £(8) forj=1,2.

Thus, LR is obiained quite simply by performing 3SLS estimation on the observations
indexed by {-Ty,...,—1}, {1,..., Tz}, and {- T}, e 7:2}.

When carrying out 2SLS estimation by setting ), = (), =), =, = I, the simplifying
Assumption S6a generally will not hold because it requires
EZ!Z, Vt=gs

EZ\UUZ, =
T {0 Vi#s.

The latter holds if the errors have variance one and are uncorrelated across time periods
and equations conditional on the IVs—unrealistic assumptions in most applications. This
problem can be avoided by calculatmg the 2SLS estimator one equation at a time and
by defining the scalars (1, and §), as in {4.5) and (4.6). With these definitions, Assumption
S6a only requires the errors to be homoskedastic and uncorrelated conditional on the
IVs. In the case of testing for pure structural change, the 2SLS estimator is the same
regardless of the values of the scalars ), and §,. Thus, the latter can be defined using
the 2SLS estimator itself in (4.5) and (4.6) (i.e. with 8 = §) for the purposes of generating
the W, LM, and LR test statistics.

APPENDIX

Proof of Theorem 1. Let d{8, r) and dr(6, r) abbreviate d{m(#8, 7), 7) and d(r (8, r}, 1) respectively.
Let @, be any open neighbourhood of 6,. Then, @,=0-0; is compact, using Assumption 1(a). We show
below that there exists a constant >0 and a compact neighbourhood F; of 7, such that

MiNg e, re, 48, )= d(8y, T} Z 620, (A1)
We also show that
(8, 7y »7 d(8,, 1) as T —» o {A.2)
Combining (A.1), (A.2), and Assumption 1{b} gives
P(Be@y)z P(d(8 F)~d(fy, T5) < 8, Fe Ts) > 1 (A3)

as T - 0, which is the desired result,
First, we establish (A.1). By the compactness of @ and Assumption 1(e),

8= [ming.q, d(8, 7o) —d(8,, 7,)1/2 (A4)

exists and is positive. By the uniform continuity of d{#4, r) on 8 x & {Assumption 1{a} and 1(d)}, given 30
these exists a compact neighbourhood F;( < T} of 7, such that for all re F,

ldig ry—d{8 m)|<8 V#eB, (AL5)

Let (8%, 7*) be some element of @, x ¥, such that d(#%, r*} =mingce, ,c o, (9, 7). Using (A.4), (A.5), and
Assumption 1(e), we now have

Ming g, e, 48, 7) = d{b, 7o) = [d(6%, %}~ d(6%, 7)1 +[d{8*, 7o) —d (6, To}]
= —5+ming.s, d(8, To)— (8, 75) =5

(A.6)

and (A.1) is established.
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To show {A.2), we write
d(6, #)~d(8y, 7o)
= [d(6, 7}~ dr(6, $)3+{dr (4, 7) — d(8y, D] +{d(8,, 7) = d(8,, 7))
=[d(6, #) - (6, )1+ [dr(8y, F) = d(By, DI+ (8, F) ~ (8, 70)] (A7)
S25upgce e aidr (8, ) —d (8, T +[d (8, - d (8, 7))
»P0 as T,
where the second inequality holds with probability that goes ic one as T — oo since #+? r,€ F and the

convergence to zero uses Assumptions 1(b), (c), and (d).
In addition, we have
d(f, #)—d(Bo, ro) ={d (8, 7~ A (8, 7o)+ [, 70) — d (B, 7)]

P

zd(6, ) -di8, 5 {A.8)
»PQ0 as Twwo,

where the inequality uses Assumption i{e}, and the convergence to zero uses the fact that Assumptions 1(a),
{b), and {(d) imply that sup,. g |#{8, 7} — 48, T,,)E =?0as T - cc. Equations {A.7) and (A.8) give {A.2) and the
proof is complete. I

The proofs of Theorems 2 and 4 are similar to proofs in Gallant {1987).

Proof of Theorem 2. Element by element mean value expansions of V{T(afaG)d(,ﬁT(é}, 7} about 4, give:
Ya=1,...,p

3 .. 3 . & _ . u
op{l) =ﬁ§;: d(mpid), 7) =ﬁ;~§“d(rﬁ-r(8o), T)“FE“;:;E d{mr(0%), FWT(O - 8,3, (A9)

a

where #% is a rv on the line segment joining ¢ and 8y, and hence, 8% >? §,. {See Jennrich {1969} Lemma 3
for the mean value theorem for random functions.) The first equality holds because # minimizes d{m (8}, )
and ¢ is in the interior of @ with probability that goes to one as T — 0 by Assumptions 2{(a) and (d).
Below we show that
2 s 5
29, 260 d{mp{6%), 7} = 29,00 dim{8,), ry) +0,(1), (A.10}

where (3°/4898"}d (m(8,), 7o) = M'DM and

8
ﬁg dimp{8y), 71 =< N0, M'DSDM) as T - 0. (A1}
These resolts, equation {A.9), and the nonsingularity of M'DM give
- a
VT{8-8,)=—{M DM v d{ifir{8y), F)+0,(1) > N0, V) as T, (A.12)
To show (A.10), we proceed as foHows:
T g 8%), £) = iy (67 = doRr(6%), P
i T)=—— — T
agae, o 7 Taemge, - Tam "
\ , , (A.13)
+— m(6*) d(i(8%), #) — My (8%,
26, (8%} amom (m(8%), f)ae, mp(6%)
By Assumptions 2{a), (b), and {f),
"’ﬁT(ﬂ*)“ m(oo}ﬁ = IE?ﬁr{ﬂ*, )= Err(8, f);ﬁ—ﬂ*,r-f"
+ | Erir (8, 1) gmpo oz — m{8%, 3] + m (8%, ) —m{8y, 7)| =7 0 {A.14)
as T - co, where ||+ || denotes the Euclidean norm. Using this result, the continuity of (3/am) d(m, r) over

M x F (Assumption 2{e)), the Assumption 2(b) that # =" =, and the continucus mapping theorem, we get
[ N a
— d{mhg(8%), 7} =" — d(m{8;), ;) =0 as T >0, {A.15)
am am

where the equality holds by 2(b), (e), and (f). Using Assumption 2(f), it is straightforward to show that
(3/99,68,)m(0%) = O,{1) as T - co. This result and (A.15) imply that the first term of {A.13) is 0,(1)as T » oc.
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Similarly, the continuity of (3%/amam’} d{m, 7} over M X T (Assumption 2(e)}, equation {A.14), T »% 7,
and the continuous mapping theorem gives
al
amam’
It follows from Assumptions 2(a), (b}, and (f) that

(B (0%), 7) =P -d(m{8y), 7)=D as T = o (A.16)
amont

+ [ M{8*, 7)— M (8, 7} »7 0 (A.17)

d d
Z (0% — M| s = me(8%) - M(6*, 7
Py (8%} “ "60' +(8%) ( 7)
as T > . Equations (A.16) and (A.17) imply that the second term of (A.13) equals {M'DM],,+ 0,(1), and
hence, (A.10) is established.

To establish equation (A.11), we write

& d
ﬁggd{rﬁ-r{ag), 3| :ﬁy rﬁT(BB d(mT 8y), F) = M\/—Md[mr(eo) )+ a,(1) {(A.18)
using Assumption 2(f provided v'—T(afam)d(rﬁT(ﬂu), 7}=0,(1), as we now demonstrate.

By the mean value theorem, the a-th element of +T(3/am}d(fir(8,,7), ¥) can be expanded about
(Erii-{ 8y, Ta), 7o) to get:

T e d iy (09, ), ) =T —— d( ity (B, 70), 7)
am, am,
2 3
o, PN T (0, )~ BB, 7o)+ T a(m*, e WT(F— 1) (A.19)
ama am

where (m*, 7%} is on the line segment joining (i (8,, 7), 7) and (Efmy(0;, w0}, 7o), and hence, m* =P m(8,)
and v* »7 1, as T -» «. (More precisely, {A.19) holds with probability that goes to one as 7 = .}

The first term of the right-hand side of -(A.19) is zero for T large by Assumption 2(b). Also, since
VT(F = 15) = 0,(1) {Assumption 2(b}) and (8*/37'3m,}d(m, 7) is continuous over .# X .J (Assumption 2(e)),
we have:

62 2
d(m*, W T{F— TO)_G

- d(m(eo} T W T (F— 1)+, (1) =g,(1), (A.20)
ariom,

where the second equality follows from 2(b). Similarly, using Assumption 2(e), (*fam,am)d{m* %) =
[DY,+0,{1) where [ Y], denotes the a-th column of D. Hence, if VT(#i{6,, ) — Bz (8, 79)} = O, (1), the
above resuits and (A.19) yield '

ﬁiﬂ-d(rﬁr(ﬂﬁ, #), #) = DV T (tip (6, ) — Efip( 0y, 70)) +0,(1). (A.21)

The proof is complete once we show that
VTR0, 71— Eip {8y, 151) > N{0, 8} as T >, {A22)

since this implies that (A.21) and {A.18) hold, which establishes (A.11).
A mean value expansion of the a-th element of My (6, 7) yields

VT{#hr, (8, 7)— Efiz, {8y, 7))
]
=ﬁ(ﬁ1m(9n: o} — Erftry, (g, 7(;))4'5";. iy, (0. "'*}ﬁ(Q‘ o)

=T (Mg, (8, 7o} — Erfig, (8, To)}+0,(1), (A23)
where 7* lies on the line segment joining 7 and 7, using Assumption 2(b), since
(a/or)mr(8,, 7¥) > dm(6,, 7,) =0 by Assumption 2(f). Stacking equation {A.23) for a=1,..., p and using
Assumption 2(c) gives {A.22}. |
Praof of Theorem 3. M>"Mand B+ Das T by the arguments used in equations (A.16) and
(A7), respectively. Thus, F ¢ ¢ and j’ -+? $71 since # is nonsingular (Assumption 2(g)). ||

Proof of Theorem 4. To prove part (a}, the delta method gives
VTh{8) = k{8 > N{0, HYH'Y as T -» © (A.24)

usmg Assumption 4. By Theorem 3, V=P Vand by the contmuous mappmg theorem and Assumption 2(a},
H »? H as T » v0. Since HVH' is nonsingular, this implies that (HVHY™ -7 (HVH'} ' as T - co. This result,
(A.24), and the continucus mapping theorem give the desired result.
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Next we establish part (b). Standard arguments gives

For® HoPH and VofV as T (A.25)
Mean value expansions about 8, yield: Ya=1,...,p,
a3 R 8 _ . &* . - )
ﬁgé: d(i(8), H=vT 20, d (7 (8y), T)+asaae’ d(mr(8), FWT(H - 8y), {A.26)
~ i) ~
VTho(0)="Th, (8} + = b (0"WT(6 - &), (A27)

where § and 8 lic on the line segment joining § and 8, and hence, satisfy 0 »° 8 and 0% =" fyas T >
We stack equations (A.26) and {A.27) for a=1, ..., p and write them as

ﬁ%d(ﬁr(é),ﬁ:ﬁid{mf{eﬂx 2+ ST - 0)) (A-28)

and
0= H*VT{§ -6, (A.29)

using the fact that £{§) = h(8,) =4.

By equation (A.11), vT(3/80)d (fir(8), £) »< N{0, #) as T > 0. By equation (A 10}, E-P gas T,
Hence, using the nonsingularity of ¢, we get §~ @5 9, where = is defined in Comment 1 of Theorem 4. By
Assumptions 4 and 5, H* »# H as T -» oo, Pre-multiplication of (A.28) by H*§™ now gives

H N T(0/00)d(n (@), ) = H*§NT = d(rig (00), D)+ H* 3 3VT(6- )
@H*j‘ﬁ%d(ﬁw(ﬂo),ﬂ"d N, HF $FH) as T .

{A30)

With probability that tends to cne as T = o0, § is in the interior of @ and there exists a rv A of Lagrange
multipliers such that

a - P
ggd(rﬁT-(G).'FHH'wo, {A3D)
where H ={3/50)h{§). Equations {A.30) and (A.31) combine to give
L . . 3 .
~H*§ AT ¢H*j_ﬁl—£d{rﬁr(6), 1=0,(1). (A.32)

Since H*§ H' »* Hg~'H' and HF ' H’ is nonsingular, equations (A.32) and {A.31) imply that VTR = 0,{1)
and

] 3o
«/Ta—g dmp{6), $1=0,(1). (A.33)
Equations (A.25), (A.30), and (A.33} yield
. : o
Hgﬁa—ﬂ d(mp(6),7) >4 N0, HVH") as T » . (A34)
The desired result now follows from equations {A.25} and {A.34} and the continuous mapping theorem.
We now prove part {c). Suppose that Assumption 62 holds. A two-term Taylor expansion of d{#i{8), 7)
about # gives
- a A [ . . A
LRy = 2T(d {7 (8}, 7)— d(m(8), 7))/ b = 2T d(m(8), 76— 0)/b

62
poae
=T(§-8)g6-4)/6,

+T{é- 8y dimp(8%), )8 636 (A.35)

where 8% lies on the line segment joining é and &, and hence, 6* 7 8, as T - o, $* is defined implicitly, and
“=" holds by the first order conditions for the estimator 8.
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Applying the mean value theorem element by element and stacking the equations yields
ﬁa—‘;—d(m{é), F)wﬁ%d(ﬁh(é), 7+ ST 6)

= $ST(F -6} (A.36)

for a matrix £ that satisfies § +° # as T = co, Pre-multiplying (A.36) by $*$™ and substituting the result in
(A.35) gives

LRy = T d{mrw) NP I Y I g F % d(ms (), $)/ b
{A37)
r—d(mT(s) r)f“—d(mT(eJ #)/b+0,(1),

because $°F = 1,, VT (8/36)d(ih,(8), 7) = 0,(1), $*F ™ >P I, and F~$*>F 0 as T, by (A.10), (A.25),
and (A.33).

Since # =b¥ and b by Assumption 6a, V= 5}“4“01,(})_ In this case, LM, simplifies to
d P, 3 6 - ~
LM = Tgwﬂw d(mir(8), 7Y §" e d(mz(8), 7}/ b+0,(1)=LRr+0,(1) {A.38)

using (a/aﬂ)d(rﬁr(é), )% —f'X, as above. The desired result now follows from part {b) of the Theorem. The
proof of part (¢) when Assumption 6b holds is analogous to the above proof under Assumption 6a. |

Proof of Theorem 5. First we prove part (a}. The proof of Theorem 3 shows that M=>FMand D" D
under {Pr}, smce §-F 8y, 7% 7y, and Assumption 2{f) holds under {P;}. We have HVH is nonsingular,
§ »” 8 and H »* H under { P,}, by Assumpliions 4, 8, and 4 and 7, respectively. Thus, (HVA")™ >7 (HVH)™
under {Py}.

Mean value expansions of ha(é) about h {8}, stacked for a=1,..., p, yicld

VTh{6)=JThiér) + H*/T(6 - ;) {A39)

for an #x p matrix H* that satisfies H* -+ H under {P,}. Assumption 4 and element by element mean value
expansions give v1h(87) » Hy as T - <o, Part (a) now follows by the eontinuous mapping theorem once we
show that

JT(6- 0,04 N{0, V) under {P;} as T - . (A.40)

This follows using Assumption 7 by the proof of Theorem 2 with 8, replaced by &, in all equations but {A.10),
{A13)-(A.17), and {A.20),

To prave part (b), note that under Assumptions 4 and 7-9 the proof of Theorem 4({b} goes through with
the following changes: The parameter 8 is replaced by @1 in equations {A.26)-(A.28) and equations {A.29},
(A.30), and {A.34) are replaced by

0=+Thi{d, + H*VT(-8,), {A.41)}

H*;ﬂ«/‘“ - de(8), #) = H *j-ﬁa%d(mrwn,mﬁwr)

(A.42)
¢ N(Hn, HVH") as T » oo,

and
~w 0 x .
Hﬂ’gad(rﬁr(ﬁ)- #y -4 N(Hn), HVH") under {Pr}as T >, (A.43)

respectively.
Part {c} is proved by the proof of Theorem 4(¢). The latter goes through under Assumptions 4, 6a or 6b,
7,9, and 10 with the only change being an appeal to Theorem 5(b) rather than Theorem 4(b). |

Proof that S1=> 1 and $1 plus 82 = 2.  Assumption S1(f) and Lemma 2 of Jennrich (1969) guarantee
the existence of a sequence of 35LS estimators {#}. Next, the notation of Assumptions I and 2 and 51 and S2
are linked via the definitions of m, (-, -) and d{-, ') given just above equation (4.4).
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Assumption 1{a} is implied by Si{a). Assumption 1{b} follows from Si{b), the fact that {Z,Z]: ¢t=
-1,...,~T}and {Z,Z:t=1,..., T} satisfy weak LLNs as T, » 0 and T, - oo, respectively {which follows
from Andrews (1988) Theorem 1 and Example 4 using Assumptions S1{d} and (e)) and the Assumption S1{c)
that the appropriate limits exist.

To establish Assumption 1(c), we need {m, (8, r): t=~T,,..., T,} to satisfy a uniform LLN over (6, 7} &
9 x 7. Duetothe multiplicative way in which = (i.c. {1;) enters m, (8, 1-) and the assumption thatlimy | , m = m,
exists, this reduces to obtaining uniform LLNs for {fn 2, t=— LT} and {f,{0)2Z,:1=1,..., T}
over §e@® as T,»>m and T, - o, respectively, for each i r —1 ,n The latter follow using the
Theorem and Corollary 2 of Andrews (1987b), since Assumptions Sl(a], Si(d) and (e), and Si{a) and
(f} imply Assumptions Al, A2, and A5 of Andrews (1987b), respectively, where A2 is verified using
Theorem 1 and Example 4 of Andrews {1988). Assumption S1{c} guarantees that the function m{8, v)=
limr, o1/ TE 75, Em (8, 7) exists uniformly for (8, 1) &x J.

Assumption 1(d) holds because {1} d(-,-} is a quadratic form and (2) m(8, r} is continuous on the
compact set @ x J by a subsidiary result of the uniform LLN used above (which utilizes Assumption S1(f)
and by the fact that r enters multiplicatively.

Assumption 1{e) holds because D} is nonsingular and m(8, 7g) has a unique zero at 8 = 8, by 51{c).

Assumption 51 and Theorem 1 imply that Assumptson 2(a) holds. The first part of Assumption Z(b)
holds by Assumption S2(d) and the fact that 1/v/'T Z (24 Z,— EZIZ,) satisfies a CLT for all i=1,.

The latter holds using Assumptions S1(d}, 52(d), S2(f] and S2(g) and Herrndorf’s (1984) Corollary 1 or
Withers’ (1981) Theorem 2.1A and equations {6.1)-(6.3). The second and third parts of Assumptions 2(b) hold
by Assumptions 52(b) and 51(c), respectively.

Assumption 2(c) follows from Herrndorfs (1984, Corollary 1) or Withers’ (1981, Theorem 2.14) CLT
using S1{d}, S2{c}, S2(f), and S2(g). Assumption 2(d) follows directly from S1(a) and 52(a). Assumption 2{e}

holds because d{-,-) is a quadratic form.
) Assumption 2(f) is established as follows: The differentiability of m, (6, 7} holds by S2(g). {m,(8, )}
satisfies a unmiform LLN using Assumption S1 by the above proof that Si1=»1  {(3/80)m,(8, )} and
{3/ o73m, (8, 7)} satisfy uniform LLNs by the Theorem and Corollary 2 of Andrews (1987b) since Assumptions
S1(a}, S1(d) and 82{g), and S2(g) imply Assumptions Al, A2, and A5 of Andrews (1987b), respectively, where
A2 is verified using Theorem 1 and Example 4 of Andrews {1988). m(#8, r) and M (8, r) exist by Assumptions
$1(c) and S2(e}, respectively. dm(8, 7) exists and dm(8,, rg) = 0 because E(3/88)m,(6,, 7} =0, ¥, ¥, by S2(b).
{SUP(grrcm {87/ 30,80)m (8, 7}} satisfies a weak LLN for all a=1,..., p by assumptions S1(d) and 8§2{g).
Assumption 2(g) follows immediately from S1(c) and 52(e) |

Proof of Theorem 6. If § 52 § as T - w, then M +7 M and V57 V as T o in patts {a) and (b) of
Theorem 6 by Theorem 3, since Assumptions 51 and S2 1mp1y Assumption 2 {as shown immediately above).
In part (b), the proof of S—)” & is analogous to that of M7 M.

It remains to show § -7 § in part {a). This foHlows by the method of proof af Theorem 2 of Newey and
West (1987), noting that their assumptions (i}, (i), and (iv) are implied by 52(g)}, 52(g) and 83, and 52(b) and
the asymptotic normality of ﬁ(é— #,), respectively. Their assumption (iii} is stronger than our assumption
S2(f}. Their proof still works with the weaker assumption S2(f), however, by using the mixing inequality of
Lemma 2.1 of Herrndotf (1984) in place of that of White's (1984) Corollary 6.16 in the proof of White’s {1984)
Lemmas 6.17 and 6.19, which are used in Newey and West’s {1987} proof. The fact that our observations are
indexed by a doubly infinite sequence only requires a slight akteration of their proof. ||

NOTES

1. The authors thank Charles Coleman, Douglas Rivers, Quang Vuong, Guofu Tan, and two referees for
helpful comments. The first author thanks the California Institute of Technology for its hospitality while part
of this research was carried out and the Alfred P. Sloan Foundation and the National Science Foundation for
research support provided through a Research Feltowship and grant No. SES-8419789 respectively.

2. These books do, however, have much more detail than the present paper.

3. Gallant and White (1988, Chapter 2, pp. 11-12} accommodate multi-stage estimation procedures by
elongating the parameter vector # to include preliminary estimators. If both a preliminary estimator and the
final estimator are asymptotically efficient, however, then their assumption PD (Chapter 5, p. 81), which requires
the two estimators to have nonsingular asymptotic joint covariance matrix, is not satisfied. For example, this
occurs with the 25L3 and 38LS estimators in a simultaneous equations model when the errors are uncorrelated
across equations, In consequence, theiry asymptotic distributional results for multi-stage estimators and test
statistics do not apply in certain important contexts.

In addition, when misspecification occurs, the estimator obtained by elongating the parameter vector does
not necessarily equai the multi-stage estimator of interest.
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4. As mentioned above, the nonlinear LS estimator, various M-estimators, and ML estimators can be
defined in two ways. The choice between the two definitions depends on Assumption 1(eg). If the lmit function
d{m{8, n)), 7o} is minimized yniquely at # =8, when m,(+, -} and d{-, -) are defined in terms of the first arder
conditions (i.e. the second definition given above for the LS, M-, and ML estimators), then this is the most
convenient definition. The reason is that this definition must be used in any event to establish asymptotic
normality by Theorem 2 belaw.

On the other hand, the limiting first order conditions may have multiple solutions, even though the
function d(m(@, #;), r;) that corresponds to the underlying minimization problem (i.e. the function that
corresponds to the first definition of m, (-, ) and d(-, ) for the LS example) has a unique minimum at ;. In
this case, we need to use the first definition of m,(-, -} and d(-, -} to establish consistency of { 6} Then, given
consistency, we use the second definition to establish asymptoiu: normality. Since 8, is assumed to lie in the
interior of ® for the proof of asymptotic normality a sequence of estimators defined using the first definition
also solves equation (3.2} for the second definition with probability that goes to one as T - o,

The advantage of proceeding as above is that one need not treat the classes of least mean distance and
method of moments estimators separately {as is done by BGS (1982) and Gallant (1987)). This results in
considerable sconomy of presentation without sacrificing the generality of the consistency results,

5. The existence of the limits uniformlty for (@, 7}¢ @, % F means that

1
=1 Em(6.1)-m(8,7)

= =+ asT»w

SUP, nse.x 7

and likewise for M(8, 7} and dm{4, r}.
6. In addition to the conditions given in these references, one needs the limiting covariance of
l/ﬁzl m, (8, 5} between the two samples to be zero, i.e.

. 1 1
limy , o F (ﬁzlr] ”’r(ﬁﬂs fﬂ)) (ﬁzril ’"u{GOs Tﬂ)’) =

This follows under standard conditicns of asymptatic weak dependence. For example, if {m,(8,, 7,)} is strong
mixing with mixing numbers {«(s}} that satisfy a{s) = O(s9) as s » o for some g > 1, then this condition holds.

7. H necessary, the nonsingularity of HVH' can be avoided by using asymptotic distributional results for
guadratic forms with g-inverted weighting matrices and singular limiting matrix-~sece Andrews (1987a).

8. As defined, LR is unique except in the very rare case that M is proportional {o the identity matrix,
In this case, LR, can be taken as either of the two expressions above.

9. Strong mixing is a condition of asymptotic weak dependence. A sequence of rv's {W,} is strong
mixing if

a(s)=sup, inf4.z'_p5=,, |PIAAB)—P(AIP(B)]+0 ass-co,

where #F._, denotes the smallest o-field in F that is generated bythe rv's {..., W,_,, W,} and likewise for Fr.

10. Slﬂclly speaking, the consistency result for § given by Theorem 6(&) below only applies to § when
§ is defined using the Parzen kernel. When defined using the QS kernel, the consistency of § can be established
under somewhat different assumptions regarding the asymptotic weak dependence of {m,(8,, 7o}} than the
strong mixing assumptions used here, see Andrews (1987¢).
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