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Estimation of polynomial distributed lags
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This paper considers the use of the polynomial distributed lag {PDL} technique when the lag
length is estimated rather than fixed. We focus on the case where the degree of the polynomial is
fixed, the polynomial is constrained to he zero at a certain lag length g, and g is estimated along
with the other parameters. We extend the traditional PDL setup by allowing ¢ to be reak-valued
rather than integer-valued. and we derive the asymptotic covariance matrix of all the parameter
estimates, including the estimate of g. The paper also considers the estimation of distributed
leads rather than lags, a case that can arise if expectations are assumed 1o be rational.

L. Introduction

This paper considers the use of the polynomial distributed lag (PDL)
technique of Almon (1965) when the lag length is estimated rather than fixed.
We focus on the case where the degree of the polynomial is fixed, the
polynomial is constrained to be zero at a certain lag length g, and g is
gstimated along with the other parameters. We extend the traditional PDL
setup by allowing ¢ to be real-valued rather than integer-valued. This
extension plus a minor (and quite natural) modification of the PDL yields a
regression function that is twice differentiable in g. Consequently, the model
is simply a nonlinear regression model, and under standard assumptions the
least squares estimate of g and various functions of g and the other
parameters, such as the sum of the PDL coefficients, are consistent and
asymptotically normal. Furthermore, if the errors are iid and normally
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distributed, these estimates are also asymptotically efficient. Estimates of
their asymptotic variances and covariances are provided.

The paper also considers the estimation of distributed leads rather than
lags. If expectations are rational and if the coefficients of the lead variables
are assumed to lie on a polynomial, the PDL technique can be combined with
Hansen’s (1982) method of moments estimator to produce consistent and
asymptotically normal estimates of all the parameters, including the lead
length.

Considerable attention has been paid in the literature to the adverse
effects of incorrectly specifying the lag length of PDLs, e.g., Schmidt and
Waud (1973), Trevedi and Pagan (1979), Hendry, Pagan, and Sargan {1984),
and references therein. For a fixed lag length the parameter estimates are
usually inconsistent if the lag length is misspecified. For example, if the
correct specification is for an explanatory variable to enter an equation only
contemporaneously and if the lag length is specified to be greater than one,
then the effect of the explanatory variable on the dependent variable wilf not
be estimated consistently.

This misspecification problem does not arise if the lag length is estimated
consistently. In consequence, several papers have considered estimating the
lag length, e.g., Schmidt and Waud (1973), Sargan (1980), and Pagano and
Hartley (1981). In each of these papers, however, no estimated standard
error is obtained for the estimated lag length, and the estimated standard
errors for the other parameter estimates are computed as though the esti-
mated lag length is fixed. As has been recognized for some time - see
Schmidt (1973} and Frost (1975) — such estimated standard errors understate
the true variability of the parameter estimates. In contrast, this paper
provides a standard error estimate for the lag length, and the estimated
standard errors for the other parameter estimates take into account the
estimation of the lag length. Note that if the standard error of the lag length
estimate is large in a particular empirical application, one can argue using
the asymptotic efficiency result mentioned above that this is a consequence of
the difficulty of estimating the lag length, not of the method,

As mentioned above, the results of this paper apply to PDLs with a zero
end point constraint. Of course, the use of such a constraint is only war-
ranted if one believes a priori that the lag coefficients decline smoothly,
rather than jump abruptly, to zero. Sargan (1980, p. 119} argues that the
aggregation of micro-units leads to long-tailed lag distributions, where end
point constraints are often of interest. He also presents some empirical
evidence that end point constraints are appropriate in some applications. We
do not discuss this issue further here except to note that one may wish to test
whether the end point constraint is rejected by the data. See Sargan (1980}
for a discussion of such a test.



D.W.K. Andrews and R.C. Fair, Estimation of distributed lags and leads 128

It should be noted that the lag length estimator considered here is near-
ly the same as that obtained using Akaike’s (1974), Schwarz’s (1978), or
Mallows’ (1973} C, criterion. In a normal regression model for a fixed order
of the polynomial, all these criteria choose the lag length that minimizes the
sum of squared residuals (SSR). This occurs because the number of parame-
ters in the model is the same regardless of the lag length chosen. Hence, the
different penalties that these model selection procedures place on additional
parameters are irrelevant. The only difference between the Akaike, Schwarz,
and C, criteria and the criterion considered here is that the former typically
minimize the SSR over integer-valued lag iengths, whereas ours minimizes it

over real-valued lag lengths.

2. Estimation of distributed lags

2.1. A simple example

It will be useful to begin with a simple example. Assume that the polyno-
mial is Hinear and that there is one distributed lag variable:

q -
K=X{[,B+j;]an2,_y]dj+u,, t=1,....T,

Lq} (n
ﬁX;!B%_ Eanzg-_j‘}'u” r=1,...,T,
J=0
a;“_““']’e"'Y]Js JE[O,Q’], (2)
g =0, (3)

f_jﬂasds for j=0,....[g]-1,

a;

= (4)
fqasds for j=[g],

where X |, is a k-dimensional vector of explanatory variables other than X,
and its lags, g is a real number greater than or equal to one, and [g] is the

J.Ecan -E
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integer part of ¢. Y, and the X,,_; are scalars. Eqgs. (2} and (3) imply that
a;=alq)=—-v(a-J), (5)

n(g=i=4) o j=0..lal-1,

at = a’?‘(q) =

o ~yila~[a))’/2 for j=|[ql.
Since the constraints (2) and (3) imply that «; and o] are functions of g, they
have been written as e (gq) and «7(g) in (5) and (6). (When ¢ is integer-
valued, the above model is a minor modification of the standard PDL model

since the coefficient of X, _; is af rather than «;.)
Let

B=(JBJ='Y;=q)’3 er(X{mXZJ’XzzA]""’XerEq])" (7)

Given (5)-(7), eq. (1) can be written as

q N -
YZW-S’(XHQ)“Xigﬁ—%fo(G—J)Xzz—mdﬂr”r

[g]-1
7] . 2
=X,8—7 Z (q—f—%)er—j“L%(q—[qD XZr—[q] +u,
i=0

=X B v Qy tu,. (8)

An estimate of 8, denoted 5, can be obtained by minimizing the sum of
squared residuals u'u, where u’ ={u,,...,u;). One way this minimization
can be done in practice is by searching over values of g. Given a value of g,
(2, can be computed, and given @, eq. (8) is linear in parameters and can
thus be estimated by ordinary least squares. Thus, one can search over ¢ by
running least squares regressions to find the value that leads to the smallest
overall sum of squared residuals., Alternatively, a gradient method can be
used to compute the estimates, where the gradient is given in (9) below.,

By writing the nonlincar regression function g(X,,8) in terms of an
integral, as in (8), it is easy to see that it is a twice differentiable function of g
and the other parameters. Thus, under standard conditions the nonlinear
least squares estimator § is consistent and asymptotically normal [e.g., see
Hansen (1982), Gallant (1987, chs. 1, 2), or Andrews and Fair {1988)], Note
that g is identified only if g = 1, and it is an interior point of its parameter
space, as is required for asymptotic normality, only if g > 1.
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The estimation of the covariance matrix of # is straightforward. Let G be a
T % (k + 2) matrix whose rth row is

a8 fg]-1
a_epg(Xue)z( i::_Qll:_‘yl{ Z X2!f+(qm[q])X2le]})'

i=u
(9)

An estimate of the covariance matrix of 6 is

~ ~ oa =1
V=6%G6G) , (10)

where ¢2=0'1i/T, u is the vector of est1mated residuals from (8), and G is
G evaluated at & = 4. The estimate V is appropnate when the errors {u,:
t > 1} are independent, mean zero, variance o® random variables conditional
on {X,: =1} V is easy to compute in practice, since G is simply the matrix
of regressors expanded by one column to include the derivative of g(X,, 8)
with respect to g.!

In most PDL applications one is interested in the sum A of the lag
coeflicients. In the present context A is given by

q - q . .
A= [laa@ydi=—v.[ (a-))dj= ~y,a*/2. (11)
0 0
The least squares estimate of A, —$,4°/2, has asymptotic variance

a?(K) = (A /3y,,31 /3q)Vy(8X /0y 1,04 fdq) , (12)

where V, is the 2 X 2 covariance matrix of (y,,4), i.e., the lower right 2 X 2
block of the covariance matrix of €, and

ANy, = ~q*/2, (13)
dA/dg= —vq. (14)

o3(A) can be estimated using the lower right 2 X 2 block of V in (10) and
evaluating (13) and (14} at g = g and y, = ¥,.
We now consider various extensions of model (1).

if 4 is equal to one, then ¥ in (10} is singular, and se the variance of § cannot be computed,
Also, values of § close to one are likely to result in very Targe estimates of its variance (since
would be nearly singular). In practice, of course, if § is equal to or clase to one, the method
praposed in this paper is not needed.
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2.2. Endogenous explanatory variables

If X,, or some of the variables in X, are endogenous and if a matrix Z of
first-stage regressors 18 available, eq. (1) can be estimated by two-stage least
squares (2SLS). § is obtained by minimizing «'Z(2'Z)"'Z'u, and the esti-
mated covariance matrix is

v=62(62(22)"'2G) . (15)

Apgain, é can be computed by searching over values of g. Given g, the
problem is a standard 2SLS estimation problem. Alternatively, a gradient
method can be used.

2.3. Quadratic polynomials

If the polynomial is quadratic:

=y tviitygt  j€l0,q]. (16)

@, =0, (17)
and so

a;=a(q)=—yfa—j)—va(a®~7*), Ji€[0.q], (18)
and

~y(g—=i=3)—vAa*—*~i—13)
for j=0,....[q]-1,
~y(a—[a))’'/2-v(3)a-[a])(a +[41/2)
for j=[q].

(19)

af =aj(q) =

In this case, g > 2 is needed for identification, # contains an extra clement
v,, Le., & =(8',7..7,-9), and eq. (8) becomes

Yz‘:X;nB_Y!QItMITZQEr"}Mur’ (20)
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where @, is as in (8) and
[q]-1

Qo= X (-7 -i-3) X
j=0

+3(g—lal)(a+[q)/2) Xy o)- (21)

Eq. {9) becomes

d
s"ng(erg) = (X;::_le:—QZr:

[q]1-1
(7 + 2‘]'}"2)( )3 Xy +(a— [Q])er—{q]}],

=0
(22)
and egs. (11)-(14) become
4 : 2 3
A= [afa@)di= =v.a?/2=27.4"/3, (23)
a2(A) = (8A /3y, /Oy, 3N fAGIV4(ON /By, 0A Jdy,, 00 /dg)
(2%)
/Iy = —q°/2, (25)
Mfdy, = —2a°/3, (26)
dr/dg = _71‘1“2')"2512, (27)
where I, is the 3 % 3 covariance matrix of (§,, ., §¥.
2.4, Mulriple distributed lag variables
If model (1) contains a second distributed lag variable, say X;,_;, two cases

need to be considered, one in which the lag lengths for X, and X, are the
same and the other in which they are not. If they are the same, the new term
in (1) is f{‘}‘anhkmdj, where (assuming a linear polynomial) 1, = 8, + 8, j,
j€l0,q], and n,=0. # now contains an extra element §,, ie., 6=
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(B, v,,8,,q), and eq. (8) becomes

Y, =X[B—v0Q,—6 R, tu, (28)
where

[q]-1

R1t= Z (q_j_%)X3[7j+%(q“~[q])zX_%,f[q}. (29)
=0

Eq. (9) becomes

a

é_o;g(Xne) = (X{r Qi Ry,

[g1-1
_7’;_{ Zﬂ Xyt (a- [q])XZt[q})
i-

[g]—1
“51{ by X3r~;'+(f1“{q])X3:-[q]})- (30)

=0

If the lag lengths are not equal, the new term in (1) is f(;nJ.X&,[ ndd,
where (assuming a linear polynomial) 5, =é,+8,j, j€[0,r], and 5, =0. ¢
now contains two extra elements 8, and r, i.e., # ={(8,v,,8,,4,r). Eq. (8)
becomes eq. (28) except that r replaces ¢ in the definition of R, given in
(29). Eq. (9) becomes

a
EEg(Xna) = ( ';I:-_Qif:_let:

[gi-1
“71( ) XZrAj+(q_[q])X21—[q]}:

i=0

[ri—1%
51{ E X3tj+(r[r])X3l[r]})‘ (31)
i=0
When there are two lag lengths rather than one, the computational burden of
searching over different lag lengths is more burdensome, and a gradient
method is likely to be much faster.
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The extension to models with quadratic polynomials and more than two
lagged variables is straightforward. In addition, the extension is straightfor-
ward to models with a PDL on both the dependent variable and various
independent variables, as in the class of autoregressive distributed lag models
considered in Hendry, Pagan, and Sargan (1984).

2.3. Nonlinearity

Finally, eq. (1) - and thus g(X,,#) in (8) — can be nonlinear in parameters
other than just g. Given g, the minimization of #'u need not be an ordinary
least squares problem, and the derivatives of g(X,,#) with respect to # can
be more involved than those in (9). This means, among other things, that the
case in which u, is mth order autoregressive can be handled easily. Eq. (1)
can be guasi-differenced using the autoregressive parameters in order to
eliminate the autoregressive part of the error, and the autoregressive coeffi-
cients can be incorporated into 8. This merely converts the problem into one
in which g(X,, 8) is more nonlinear in parameters than otherwise.

2.6. Estimation and testing of the degree of the polynomial

Thus far we have considered the case where the degree of the polynomial
is fixed. It is possible, however, to estimate both the lag length and the
degree of the polynomial and to test the adequacy of a specified polynomial
degree. With the lag length g treated as a real-valued parameter to be
estimated, a sequence of models with PDLs of increasing degrees is a
sequence of nested nonlinear regression models. Therefore, any of a number
of standard consistent model selection procedures can be applied to estimate
the polynomial degree. For example, one can use a downward sequential ¢-
or F-testing procedure, as in Pagano and Hartley (1981), or one can use
Akaike’s information criterion, Schwartz’s criterion, Mallow’s C, criterion,
cross-validation, generalized cross-validation, or a posterior odds procedure,
etc, With a consistent model selection procedure, the asymptotic variances
given above are still valid (because the correct model is selected with
probability that goes to one as T goes to infinity), but the accuracy of the
asymptotic approximation is likely to suffer.

The adequacy of a given choice of polynomial degree can be tested using
an asymptotic ¢~ or F-test as in Pagano and Hartley (1981}, A RESET or
RASET specification test can be used to test whether the degree of the
polynomial is correct and whether the PDL restriction itself is appropriate
[see Harper (19771

This completes the discussion of distributed lags. The cases considered in
this section can be easily extended and combined, and in each case it is
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straightforward to treat the lag length or lengths as parameters to be
estimated and to estimate their standard errors.

3. Estimation of distributed leads

Suppose that X,, ; in (1) is replaced by X3, ,, where the latter is the
expected value of X, .; and all expectations are¢ assumed to be formed at the
end of period r—1, before information for period ¢ is available. Let
the expectation error for X3, ; be

t—iEr+j=X21+j_X§r+j’ 1'20,1,...,[(]]. (32)

Eqg. (1) in this case is

4q .
y;mx;,ﬁ+f0an§,+U§dJ+u,, t=1,....T,

lg]
=X{B+ Y a’X, , +u, t=1,...,7T, (33)
j=0
where
q .
v, = —Laj»t,tgt+[11dj+ut. (34)

Given (2)-(7), a new eq. (8) can be derived:

Y,=g(X,.9)

q - .
=XiB— 1’1}2} (g _J)X2z+[j] dj+ve,

[a]-1
r ; 2
=X1rﬁ_'yl Z (q_l_%)szf"‘%(q_[qD X2:+[q] T,
J=0

=X{,8 -0+, (35)

where X, now denotes (X[, X5, Xy y oo Xprupg)-

Consider first 2SLS estimation of (35). Let Z, be a vector of first-stage
regressors. A necessary condition for consistency is that Z, and ¢, be
uncorrelated. This will be true if both «, and the ,_,¢,,; are mean zero and

uncorrelated with Z,. The assumption that #, is mean zero and uncorrelated
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with Z, is the usual 28L8 assumption. The assumption that the ,_,¢,,; are
mean zero and uncorrelated with Z, is the rational expectations assumption.
If expectations are formed rationally and if the variables in £, are used
(perhaps along with others} in forming the expectations of the X, ;, then Z,
and the ,_ e, are uncorrelated. Therefore, given this assumption (and the
other standard assumptions that are necessary for consistency), the 2SLS
estimator of @ is consistent. It minimizes v'Z(Z'Z)Y'Z'v.

A problem with the 2SLS estimator in this context is that it ignores the
m-dependent property of ¢,. Because of the , e, v, will in general be
m-dependent with m =[g]— 1 if g is not an integer and m =[g]— 2 if q is
an integer. The 2SLS estimates are consistent, but the standard formula for
their covariance matrix in (15) is incorrect and the estimates are not efficient
within the class of limited information estimators. Hansen’s {1982} method of
moments estimator takes account of the m-dependent character of v,. It is
based on minimizing 'ZM~'Z’v, where M is some consistent estimate of
lim T7'E{Z v’ Z}). In order to construct an estimate of M one needs an
estimate of v, in (35), such as the 28LS estimate 7,.

A general way of computing M is as follows. Let f,=0,Z,. Let R, =
T L i ffiopi=0,1,...,m Misthen (R, + R, + R\ + -+ +R, +R.).
In many cases computing M in this way does not vield a positive definite
matrix, and something else must be done. Hansen (1982}, Cumby, Huizinga,
and Obstield (1983), Andrews (1991), and Andrews and Monahan (1990),
among others, discuss the computation of M based on an estimate of the
spectral density matrix of Zv, evaluated at frequency zero. A third approach
is to compute M under the following homoskedasticity assumption:

E[vpy,lZ2,.2,_,,...] =E[p,] for t=zs, (36)

which says that the contemporaneous and serial correlation in ¢ do not
depend on Z. This assumption is implied by the assumption that E[¢, Z,] =0
for r=s if normality is also assumed. Under this assumption M can be
computed as follows. Let a; = T’l):(f;jﬂﬁ,ﬁ,_j and B,=7"" LJ_HZ,ZL],
j=0,1,...,m. M is then (a8, +a,B,+a, B} + -+ +a,B, +a,B,).

The complete estimation procedure in the case of polynomial distributed
leads can now be summarized. 1) Estimate B8, y,, and ¢ in (35) by 2SLS,
which minimizes ©'Z(Z'Z) ' Z'v. This requires searching over values of g or
using a gradient method. 2) Given these estimates, compute &, from (35).
Then compute M in the one of the above ways. 3) Estimate 8, y,, and g in
(35) by minimizing v'ZM~'Z'v. This again requires searching over values of
g or using a gradient method. These are the final parameter estimates, The
estimated covariance matrix of these estimates is

V=T(GzM 7Y (37)
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where the elements of G are as in (9) except that X,,,; replaces X,,_; and
Xorpq Teplaces X, .

The various extensions discussed in section 2 can also be applied here. The
modifications needed for the case of leads rather than lags are slight, and
they will not be discussed further.

4. Monte Carlo results

We report results from some Monte Carlo experiments in this section. The
experiments are based on three of the equations estimated in Fair (1990).
The equations are price equations for fairly specific commodities, with
distributed lag or lead values of an aggregate price variable added to pick up
aggregate expectational effects on individual price setting behavior. The data
are monthly. The equations are estimated using 330, 359, and 323 observa-
tions, respectively, and include 21, 18, and 21 explanatory variables, respec-
tively. Eleven of the explanatory variables in each equation are seasonal
dummy variables. The polynomial is taken to be linear, and the aggregate
price variable is the only variable to which the polynomial lag distribution is
applied. Given the lag length g, each equation is linear in parameters.

The Monte Carlo experiments were run as follows. Each equation was first
estimated using the historical data. For the first case for each equation all the
estimated parameters were used as the true parameters and the error term in
the equation was assumed to be normal with mean zero and variance &2,
where the latter is the estimated variance of the equation. For each repeti-
tion a new data set was generated by drawing error terms from this distribu-
tion and using these error terms plus the estimated parameters to compute
new values of the dependent variable. The equation was then re-estimated
using the new data, and the parameter estimates were recorded (including
the estimate of g). The number of repetitions per equation was 750. The
largest value of g allowed was 132, (The smallest value of g allowed was 1.)

Three estimators were computed for each repetition: 1) the estimator
proposed in this paper, 2) the estimator when ¢ is known, and 3) an
estimator proposed by Sargan (1980, pp. 117-118). For the case of a polyno-
mial of known degree, the estimator proposed by Sargan reduces to starting
at a specified minimum lag length and increasing the lag length by one until
the sum of squared residuals increases. In the Monte Carlo experiments we
took the minimum lag length to be one. If the sum of squares is a bowl-shaped
function of the lag length, then this procedure gives the same estimate as
ours except for the integer-value, real-value difference. If, on the other hand,
there are local minima, then Sargan’s procedure may stop before reaching
the global minimum. For many of the cases reported below there are local
minima, and so, as will be seen, Sargan’s estimates are not always close to
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ours.? Sargan’s procedure does not provide standard errors for the estimated
lag length, and it does not adjust the standard errors of the other coefficient
estimates to reflect the estimation of ¢.

For each repetition the estimates of g and A were recorded. The means
and variances of the estimates of ¢ and A over the 750 repetitions were then
calculated. In addition, the variances of the estimates of ¢ and A were
estimated for each repetition using the asymptotic formulae, and the aver-
ages of these estimates over the 750 repetitions were calculated.” In table 1,
E(4} denotes the mean of the 750 estimates of g, SE(4) denotes the square
root of the variance of the 750 estimates, and ave. asy. SE(§) denotes the
square root of the average of the 750 calculations of the variance computed
from the asymptotic formulae. Similar notation holds for A. In addition, a
95% confidence interval for § was computed for each repetition using the
asymptotic formulae, and the percentage of repetitions in which the true
value of g fell outside of this interval was calculated. This percentage for
each case is presented in the table under the heading ‘5% nom. test’. If the
asymptotic formulae were exact, this percentage would be 5.0. A 90%
confidence interval was also computed, and the results are recorded in the
table under the heading ‘10% nom. test’. Similar computations were done
for A.

The first case for each equation in table 1 uses the estimated parameters as
the truth. For each of the other cases either g or ¢ is changed and used as
the truth, with the other parameters remaining at their estimated values.

The following conclusions can be drawn from table 1. (1) In a number of
cases the Sargan estimates of g are much too small, which reveals a local
minima problem. Otherwise, as expected, the Sargan estimates are quile
close to the estimates using the method of this paper.* (2) The estimates of g
using the method of this paper in general show only a small bias, which is
always upward, and similarly for the estimates of A. (3) The asymptotic
estimates of the SE of A are generally close to the Monte Carlo estimates.”
Both of these estimates are higher than the estimates when ¢ is known,

?Because of the local minima problem, we used a grid search on g in the computations for our
estimator, If a gradient algorithm had been used, there would have been no guarantee that the
global minimurm had been found.

*For two repetitions (one for the third case for eq. 1 in table 1 and one for the third case for
eq. 3), § was equal to one and hence the formula for the asymptotic variance of § and A was
inapplicable. These two repetitions were skipped for purposes of computing ave. asy. SE(4) and
ave. asy. SE():), although they were not skipped for the other calculations. This skipping was not
important. Instead of skipping the repetitions, we also computed the asymptotic formulae vsing
§ = 1.2, and this had a trivial effect on the values in table 1.

*In three cases in table 1 Sargan's estimate of g is slightly larger than ours. This can happen
because of the integer-value, real-value difference between the estimators. Sargan stops at the
nearest integer, and our estimate may be slightly below this integer.

*In the following discussion, ave. asy. SE(A) will be referred to as ‘the asymptotic estimate of

the SE of A’ and SE(A) will be referred to as “the Monte Carlo estimate of the SE of A”. Similar
statements hald for 4.



Table 1
Monte Carlo results.?

Ave., 5% 10% Ave. 5% 10%
asy.  rnom. nom. 4asy.  nom. nom.
E(§) E(X) SE(g) SE(g) test test SE(A) SE(A) test test
Eq. 1: Inner tabes
o = 0.02000
Truth 2857 1840  — e e e e e e e
g estimated 29.48 1954 1449 1199 156 209 03526 0504 64 111
g known 2857 1.861  0.00 000 — — (432 0436 53 104
Sargan 1947 1632 1454 —_ — —_— (1686 —_ —_ —_
Truth 1540 1840 — e -— — — — — —
g estimated 1670 1935 888 704 155 219 (419 Q419 S56 111
g known 1500 1863 0.00 000 — — (385 038% 47 100
Sargan 1331 1862 7.63 — — — (330 — e e
Truth 300 1840 — — — — — — — —
g estimated 320 1886  1.07 0,79 125 1e7 0331 4310 6.1 12.0
q known 300 1.848  0.00 000 — — 0264 0270 41 8.8
Sargan 322 1887 1.04 - — — 0334 — — —
a ={1.01045
Truth 2857 1840  — e e e e e e e
g estimated 28.84 1893 624 551 92 149 0255 6260 33 104
g known 2857 1867 0.0 000 — — 0232 0237 355 8.6
Sargan 2770 1860  7.57 — — — 0317 — — —
Eq. 2: Insect wire screening
o= 0.01070
Truth 426 0921 — — — — — — —
q estimated 4.5t 0942 169 1.23 128 164 0156 013 6
g known 426 0928 000 0.00  — — D139 0437 52
Sargan 441 0.938 1.37 —_ — —  0.15§ — —
Truth 15.00 0.921 — — — — — — — —
g estimated 17.19 0956  9.92 7.18 192 233 0206 0189 75 129
g known 15.00 0.927 000 000 — — 0177 075 39 108
Sargan 1378 0902 791 — — - (.232 N —— —
Truth 30.00 0.921 — R — — — e e e
g estimated 3146 0971 1537 1287 169 219 0247 0224 7.7 119
q known 3000 0929 00 000 - e 0197 0195 53 il
Sargan 217 0.844 1528 — — —  0.301 _— e e
a = 0.00535
Truth 426 0921 e e e e — — — e
g estimated 430 04932 (.38 0.53 76 121 04087 0082 356 117
g known 426 0927 GO0 0.0 — 007 0075 55 111
Sargan 432 0932 0.64 — - — 0089 — — —
Truth 15.000 0.921 — — — — — — — —
g estimated 1553 0936 360 3.03 109 171 0106 0100 0 127
g known 1500 0928 000 000 — — 0098 00% 56 107
Sargan 15.25 0933 345 — — —  0.107 — —
Truth 000 0.921 — — — — — — — -—
g estimated 30.65 0.944  6.58 618 160 143 0119 0117 56 112
g known coe 0826 GO0 000 — — 0108 0106 53 107
Sargan 2977 093 7.62 — — — 01330 — — —
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Table 1 {continued)

Ave. 5% 10% Ave. 3% 0%
asy. nom. nom. asy. nom. nom.

E{§) E(A) SE(§) SE{(¢) test test SE(AY SE(A} test test

Eq. 3: Ball and roller bearings

o = 000816

Truth 2357 0.79% - o — — — —

g estimated 2530 0.836 1265 98% 171 21.1 0.16¢ 0162 80 131
g known 2357 0.809 G.00 000 - — 0160 0133 73 134
Sargan 20057 0775 11.61 — — —  0.238 — —

Truth 15.04 0799 — — — -— e — — —

g estimated 1678 0830 907 670 127 185 0160 0132 7.7 1440
¢ known 1500 0.811 ¢0¢  0.00 — — 0154 0147 72 129
Sargan 1476 0.799  7.68 — — —  0.198 — — e

Truth 300 0.79¢ — — — — — — —_ —

g estimated 315 0815 083 063 11.2 145 0131 0120 81 136
g known 300 0800 000 000 — — 0106 0105 52 104
Sargan 3.18 0.815 (.87 — — —  0.135 — - —

Truth 4000 0.79% — — — — — . — —

g estimated 4216 0.851 1968 1658 147 193 0203 0.192 69 11.1
¢ known 4000 0.807 000 0.00 — — 0171 0164 68 123
Sargan 2964 0915 2214 — — — 0325 o e e

*Each case is based on 750 repetitions. The seed is the same for each case within an
equation, but it differs across the theee equations. SE(-) is the Monte Carlo standard
errot. Ave. asy. SE(+) is the square root of the average of the 750 variances computed
using the asymptotic formulae, 5% (10%) nom. test is the percentage of repetitions in
which the true value of ¢ or A is outside of the 95% (90%) confidence interval, where
the confidence interval is computed using the asymptotic formalae, If the asvmptotic
formulae were exact the percentages would be 5.0 (10.0}

which shows that one underestimates the uncertainty of A if g is taken
incorrectly to be known. (4) The asymptotic estimates of the SE of § are
always lower than the Monte Carlo estimates. This is true across different
values of g and A, and so there appears to be a general downward bias to the
asymptotic estimates. The bias as a percent of the Monte Carlo standard
error — SE(§) — ranges from 9% to 28%. The average of the percent biases
in table 1 is 18%. This bias can also be seen in the results for the 5% and
10% nominal tests. The percentage of repetitions in which the true value of ¢
lies outside the 95% confidence interval ranges from 7.6% to 19.2% in the
table. The range for the 90% confidence interval is 12.1% to 23.3%. Given
that the left tail of the distribution of § is truncated at one, it must be that
the right tail of the actual distribution is fatter than that of the asymptotic
distribution.

We also estimated for each repetition the equation using a quadratic
polynomial. We then used first the Akaike and second the Schwarz criterion
to choose between the linear and quadratic polynomials. (Remember that the
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data are generated using the linear polynomial.} Both criteria always resulted
in the linear polynomial being chosen. This result is encouraging in that it
says that if the truth is lincar and one selects between linear and quadratic,
the linear is likely to be chosen.

To conclude, the overall results are fairly favorable to the method pro-
posed in this paper. The biases are fairly small except for the estimates of the
SE of §, which are too small by about 18%.

5. Conclusion

Since it is quite rare that lag and lead lengths are known with certainty, the
ability to estimate them and adjust the standard errors of all the coefficient
estimates to account for their estimation should prove useful in practice. In
addition, although biased downward somewhat, the estimated standard er-
rors on the lag length estimates provided here should help one in deciding
how much confidence to place on the overall estimated lag or lead distribu-
tions.
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