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Estimation of polynomial distributed 
and leads with end point constraints 
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lags 

This paper wnsiders the use of the polynomial distributed lag (PDL) Cechnique when the lag 
length is estimated rather than tixed. We focus on the case where the degree of the polynomial is 
fixed_ the polynomial is mnstrained to be zero at a Certain lag length q. and q is estimated along 
with the other parameters. We extend the traditional PDL setup by allowing q to he real-valued 
rather than integer-valued. and we derive the asymptotic CowCane matrix of all the parameter 
estimates, including the estimate of q. The paper also considers the estimation of distributed 
leads rather than lags, a case that can arise if expectations are assumed 10 be rational. 

1. Introduction 

This paper considers the use of the polynomial distributed lag (PDL) 
technique of Almon (1965) when the lag length is estimated rather than fixed. 
We focus on the case where the degree of the polynomial is iixed, the 
polynomial is constrained to be zero at a certain lag length 4, and q is 
estimated along with the other parameters. We extend the traditional PDL 
setup by allowing 4 to be real-valued rather than integer-valued. This 
extension plus a minor (and quite natural) modification of the PDL yields a 
regression function that is twice differentiable in 4. Consequently, the model 
is simply a nonlinear regression model, and under standard assumptions the 
least squares estimate of 4 and various functions of 4 and the other 
parameters, such as the sum of the PDL coefficients, are consistent and 
asymptotically normal. Furthermore, if the errors are iid and normally 
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distributed, these estimates are also asymptotically efficient. Estimates of 
their asymptotic variances and covariances are provided. 

The paper also considers the estimation of distributed leads rather than 
lags. If expectations are rational and if the coefficients of the lead variables 
are assumed to lie on a polynomial, the PDL technique can be combined with 
Hansen’s (1982) method of moments estimator to produce consistent and 
asymptotically normal estimates of all the parameters, including the lead 
length. 

Considerable attention has been paid in the literature to the adverse 
effects of incorrectly specifying the lag length of PDLs, e.g., Schmidt and 
Waud (1973), Trevedi and Pagan (19791, Hendry, Pagan, and Sargan (1984), 
and references therein. For a t&d lag length the parameter estimates are 
usually inconsistent if the lag length is misspecified. For example, if the 
correct specification is for an explanatory variable to enter an equation only 
contemporaneously and if the lag length is specified to be greater than one, 
then the effect of the explanatory variable on the dependent variable will not 
be estimated consistently. 

This misspecification problem does not arise if the lag length is estimated 
consistently. In consequence, several papers have considered estimating the 
lag length, e.g., Schmidt and Waud (1973), Sargan (1980), and Pagan0 and 
Hartley (1981). In each of these papers, however, no estimated standard 
error is obtained for the estimated lag length, and the estimated standard 
errors for the other parameter estimates are computed as though the esti- 
mated lag length is fixed. As has been recognized for some time - see 
Schmidt (1973) and Frost (1975) - such estimated standard errors understate 
the true variability of the parameter estimates. In contrast, this paper 
provides a standard error estimate for the lag length, and the estimated 
standard errors for the other parameter estimates take into account the 
estimation of the lag length. Note that if the standard error of the lag length 
estimate is large in a particular empirical application, one can argue using 
the asymptotic efficiency result mentioned above that this is a consequence of 
the difficulty of estimating the lag length, not of the method. 

As mentioned above, the results of this paper apply to PDLs with a zero 
end point constraint. Of course, the use of such a constraint is only war- 
ranted if one believes a priori that the lag coefficients decline smoothly, 
rather than jump abruptly, to zero. Sargan (1980, p. 119) argues that the 
aggregation of micro-units leads to long-tailed lag distributions, where end 
point constraints are often of interest. He also presents some empirical 
evidence that end point constraints are appropriate in some applications. We 
do not discuss this issue further here except to note that one may wish to test 
whether the end point constraint is rejected by the data. See Sargan (1980) 
for a discussion of such a test. 



It should be noted that the lag length estimator considered here is near- 
ly the same as that obtained using Akaike’s (1974), Schwarz’s (19781, OT 
Mallows’ (1973) C, criterion. In a normal regression model for a fixed order 
of the polynomial, all these criteria choose the lag length that minimizes the 
sum of squared residuals (SSR). This occurs because the number of parame- 
ters in the model is the same regardless of the lag length chosen. Hence, the 
different penalties that these model selection procedures place on additional 
parameters are irrelevant. The only difference between the Akaike, Schwarz, 
and C, criteria and the criterion considered here is that the former typically 
minimize the SSR over integer-valued lag lengths, whereas ours minimizes it 
over real-valued lag lengths. 

2. Estimation of distributed lags 

2.1. A simple example 

It will be useful to begin with a simple example. Assume that the polyno- 
mial is linear and that there is one distributed lag variable: 

x =X;,p + ~qnjX,,_ij,dj+ u,, t=1,. 

1‘21 
=x;,p+ CnTX,,_j+U,, t=1,. 

j-0 

a,=Yo+Y,J> j E [O,ql, 

a4 = 0, 

for j=O,...,[q]-1, 

for j= [41, 

.., T, 

T, 

(‘1 

(2) 

(3) 

(4) 

where X,, is a k-dimensional vector of explanatory variables other than X2, 
and its lags, LJ is a real number greater than or equal to one, and [41 is the 
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integer part of q. q and the X,,_, are scalars. Eqs. (2) and (3) imply that 

aj=ai(4) = -y,(4-j), (5) 

a: =a,*(q) = 
-~,(4 -j- t) for j=O,...,[q]-1, 

-y1(4- [4U2/2 for j= [41. 
(6) 

Since the constraints (2) and (3) imply that ai and a; are functions of q, they 
have been written as a,(q) and a:(q) in (5) and (6). (When q is integer- 
valued, the above model is a minor modification of the standard PDL model 
since the coefficient of Xzz_ is a; rather than aj.) 

Let 

e=(p’,Y,?q)‘, x, = (x;,,x*,,x,, _,>..., Xz,_in,)l. 

Given (51471, eq. (1) can be written as 

(7) 

Yi=g(X,,B) =X;,P-~,j*(q-j)X~,-[~~dj+u, 
0 

i 

[41-1 
=Y,B - Y, C (4 -j - f)Xzimi + f(4 - [41)2&-1q1 

i 
+ uc j=O 

=GP - Y&Al + %. (8) 
An estimate of 8, denoted s^, can be obtained by minimizing the sum of 

squared residuals u’u, where u’ = (u,, _. , u,). One way this minimization 
can be done in practice is by searching over values of q. Given a value of q, 
Q,, can be computed, and given Q,,, eq. (8) is linear in parameters and can 
thus be estimated by ordinary least squares. Thus, one can search over q by 
running least squares regressions to find the value that leads to the smallest 
overall sum of squared residuals. Alternatively, a gradient method can be 
used to compute the estimates, where the gradient is given in (9) below. 

By writing the nonlinear regression function g(X,,B) in terms of an 
integral, as in (8), it is easy to see that it is a twice differentiable function of q 
and the other parameters. Thus, under standard conditions the nonlinear 
least squares estimator a is consistent and asymptotically normal [e.g., see 
Hansen (19821, Gallant (1987, chs. 1, Z), or Andrew and Fair (1988)I. Note 
that q is identified only if q t 1, and it is an interior point of its parameter 
space, as is required for asymptotic normality. only if q > 1. 
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The estimation of the covariance matrix of 6 is straightfonvard. Let G be a 
TX (k + 2) matrix whose fth row is 

$(x,,O)= Xl,:-Q,,:-Y, 1~~‘X~~~i+(4-[41)X~,~,~, 
( i ,=” iI 

(9) 

An estimate of the covariance matrix of e^ is 

&q&i;)-‘, ( 10) 

where 6’ = a’Li/T, ri is the vector of estimated residuals from (81, and 6 is 
G evaluated at 0 = e^. The estimate c is appropriate when the errors (u,: 
t 2 1) are independent, mean zero, variance r2 random variables conditional 
on {X,: t 2 1). p is easy to compute in practice, since G is simply the matrix 
of regressors expanded by one column to include the derivative of &f,, 0) 
with respect to q.’ 

In most PDL applications one is interested in the sum A of the lag 
coefficients. In the present context h is given by 

A=iqaj(q)dj= -y,/‘(q-j)dj= -y,q*/Z. (11) 
0 

The least squares estimate of A, - 9,$/2, has asymptotic variance 

m*(i) = (ah/ay,,an/aq)v,(an/ay,,ah/aq)‘, (12) 

where Vz is the 2 x 2 covariance n@ix of (q,. iY, i.e., the lower right 2 X 2 
block of the covariance matrix of 0, and 

ar\/ay, = -42/2, (13) 

aA/dq = -ylq. (14) 

g’(i) can be estimated using the lower right 2 X 2 block of p in (10) and 
evaluating (13) and (14) at q = cj and y, = ql. 

We now consider various extensions of model (1). 

‘If 6 is equal to one, then P in (10) is singular, and 50 the Variance of i Cannot be compufed~ 
Also, values of rj close to one are likely to result in very large estimates of its variance (since V 
would be nearly singular). In practice. of course, if 4 is equal to or close to one; the method 
proposed in this paper is not needed. 



If X,, or ~cnne of the variables in X,, are endogenous and if a matrix Z of 
first-stage regressors is available, eq. (1) can be estimated by two-stage least 
squares (2SL.9. s^ is obtained by minimizing u’Z(Z’Z)-‘Z’u, and the esti- 
mated covariance matrix is 

ri=S’(~~Z(z’Z)_‘Z’i;)~‘. (15) 

Again, t? can be computed by searching over values of q. Given q, the 
problem is a standard ZSLS estimation problem. Alternatively, a gradient 
method can be used. 

2.3. Quadratic poiyrmninls 

If the polynomial is quadratic: 

ai = Y” + v,j + y2j2, jE[O,ql, 

a‘) = 0, 

and so 

aj=aj(4) = -y1(9-j) -y2(+j2). iE[O,ql, 

(1’5) 

(17) 

(18) 

: 

-y,(4-j-~)-y2(42~jz-_j-~) 

a: =aT(q) = 
for j=O,...,[q]-1, 

-y,(4- [41)*/2-Y,($)(c [4l)?q+ [q1/4 
for j= [q]. 

(19) 

In this case, q t 2 is needed for identification, 0 contains an extra element 
yz, i.e., 8’ = (p’,~,, yZr q), and eq. (8) becomes 

Y,=X;,P-v,Q,t-v,Q,,+u,, (20) 



where Q,, is as in (8) and 

[41-l 
Q2,= c (q2-j2-j-j)&+, 

j=D 

+i(4 - [91Y(4 + [41/2)&-,q,. 

Eq. (9) becomes 

(21) 

and eqs. (U-(14) become 

(22) 

h = 
I, 

‘aj(q) dj = - y,q2/2 - 2y,q3/3, (23) 

uZ(Q = (ah/ay,,ah/a,,,ah/aq)V~(ah/ay,,ah/ay,,a~/aq)’, 

(24) 

ahjay, = -$/2_ (25) 

ahjay, = -2$/3, (26) 

ahm = 74 - 2&, (27) 

where Vi is the 3 x 3 covariance matrix of (q,, T2, $Y. 

2.4. Mdtiple disrrilmted lag cwiables 

If model (1) contains a second distributed lag variable, say X3P_j, two cases 
need to be considered, one in which the lag lengths for X2 and X3 are the 
same and the other in which they are not. If they are the same, the new term 
in (1) is /;~T~X,,_,~~ d j, where (assuming a linear polynomial) vri = 6, + 6, j, 
jt[O,q], and TJ~ = 0. 6’ now contains an extra element 6,, i.e., 8’ = 
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(p: yl, S,, 41, and eq. (8) becomes 

Y, =X;,P -Y,QI, - SIR,, + at> 

where 

RI,= C (4-j- f)x3,mj+f(4- [4l)2X3,m,41 j-0 

Eq. (9) becomes 

v-8) 

(29) 

;g(Xt,8) = 
i 

X;,:-Q,,:-R,,: 

i 

LY1F-l 
-6, C x3f-j+ (Y-141)x3i-[q] 

ii 
(30) 

j=O 

If the lag lengths are not equal, the new term in (1) is l;~~~X,,_,~,dj, 
where (assuming a linear polynomial) vi = 6, + 6, j, j E LO, rl, and T, = 0. 8 
now contains two extra elements 6, and I_ i.e.: 0’ = (p’, y,, fi,, q, r). Eq. (8) 
becomes eq. (28) except that I replaces q in the definition of R,, given in 
(29). Eq. (9) becomes 

;g(X,,8) = Xi,:-Q,,:-R,,: 
i 

When there are two lag lengths rather than one, the computational burden of 
searching over different lag lengths is more burdensome, and a gradient 
method is likely to be much faster. 



The extension to models with quadratic polynomials and more than two 
lagged variables is straightforward. In addition, the extension is straightfor- 
ward to models with a PDL on both the dependent variable and various 
independent variables, as in the class of autoregressive distributed lag models 
considered in Hendry, Pagan, and Sargan (1984). 

2.5. Nonlinearity 

Finally, eq. (1) - and thus 8(X,, 0) in (8) - can be nonlinear in parameters 
other than just 4. Given 4, the minimization of u’u need not be an ordinary 
least squares problem, and the derivatives of g(X,, 8) with respect to fJ can 
be more involved than those in (9). This means, among other things, that the 
case in which u( is nth order autoregressive can be handled easily. Eq. (1) 
can be quasi-di&renced using the autoregressive parameters in order to 
eliminate the autoregressive part of the error, and the autoregressive coeffi- 
cients can be incorporated into 8. This merely converts the problem into one 
in which g(X,, 0) is more nonlinear in parameters than otherwise. 

2.6. Estimation and testing of the degree of the polynomial 

Thus far we have considered the case where the degree of the polynomial 
is fixed. It is possible, however, to estimate both the lag length and the 
degree of the polynomial and to test the adequacy of a specified polynomial 
degree. With the lag length q treated as a real-valued parameter to be 
estimated, a sequence of models with PDLs of increasing degrees is a 
sequence of nested nonlinear regression models. Therefore, any of a number 
of standard consistent model selection procedures can be applied to estimate 
the polynomial degree. For example, one can use a downward sequential t- 
or F-testing procedure, as in Pagano and Hartley (1981), or one can use 
Akaike’s information criterion, Schwartz’s criterion, Mallow’s C,, criterion, 
cross-validation, generalized cross-validation, or a posterior odds procedure, 
etc. With a consistent model selection procedure, the asymptotic variances 
given above are still valid (because the correct model is selected with 
probability that goes to one as T goes to infinity), but the accuracy of the 
asymptotic approximation is likely to suffer. 

The adequacy of a given choice of polynomial degree can be tested using 
an asymptotic t- or F-test as in Pagano and Hartley (1981). A RESET or 
RASET specification test can be used to test whether the degree of the 
polynomial is correct and whether the PDL restriction itself is appropriate 
[see Harper (1977)I. 

This completes the discussion of distributed lags. The cases considered in 
this section can be easily extended and combined. and in each case it is 
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straightforward to treat the lag length or lengths as parameters to be 
estimated and to estimate their standard errors. 

3. Estimation of distributed leads 

Suppose that X1,-j in (1) is replaced by X;,+j, where the latter is the 
expected value of X,,_j and all expectations are assumed to be formed at the 
end of period t - 1, before information for period t is available. Let 
the expectation error for X;t+j be 

t-l"r+j=X2r+j-X~c+j~ j = 0,l ,....[41. 

Eq. (1) in this case is 

K =X;,P +(njX;,+ljldj+u,, f=l,...,T: 

(32) 

IQ1 
=x;,p+ c ufXZrcj+U,, f= l,...,T. 

j=lJ 

L’,= -Lqajt_,e,+,j,dj+u,. 

Given (2)-(7), a new eq. (8) can be derived: 

K=g(X,,@ 

=X;,P - YI~,~(‘I -j)Xzr+[jl dj + uz 

(33) 

(34) 

( [41- 1 

=‘w -Y, jgo (4 -j - W2t+j + 34 - [41)zx,,+,,, 
1 

+ I’( 

=.G,P-Y,Q~,+u,, (35) 

where X, now denotes (Xi,, X2,.X,,+,, , Xzr+rqlY. 
Consider first 2SLS estimation of (35). Let Z, be a vector of first-stage 

regressors. A necessary condition for consistency is that Z, and o, be 
uncorrelated. This will be true if both u, and the ,_,E(+~ are mean zero and 
uncorrelated with Z,. The assumption that u, is mean zero and uncorrelated 



with Z, is the usual 2SLS assumption. The assumption that the l_,~,+i are 
mean zero and uncorrelated with Z, is the rational expectations assumption. 
If expectations are formed rationally and if the variables in Z, are used 
(perhaps along with others) in forming the expectations of the X,,+j, then Z, 
and the ,_,erij are uncorrelated. Therefore, given this assumption (and the 
other standard assumptions that are necessary for consistency), the 2SL.S 
estimator of 0 is consistent. It minimizes u’Z(Z’Z)-‘Z’I;. 

A problem with the ZSLS estimator in this context is that it ignores the 
m-dependent property of u,. Because of the r_,er+i, II, will in genera1 be 
m-dependent with m = [ql - 1 if q is not an integer and m = [q] - 2 if q is 
an integer. The 2SLS estimates are consistent, but the standard formula for 
their covariance matrix in (15) is incorrect and the estimates are not efficient 
within the class of limited information estimators. Hansen’s (1982) method of 
moments estimator takes account of the m-dependent character of u,. It is 
based on minimizing c’ZM_‘Z’u, where M is some consistent estimate of 
IimT-‘E(Z’w’Z). In order to construct an estimate of M one needs an 
estimate of lj, in (35), such as the 2SLS estimate L:,. 

A general way of computing M is as follows. Let f, = QZ,. Let Rj = 
T-‘cT_,+,f,f;_j, j=O,l,..., m. M is then(R,+R, +R’, + .‘. +R, +R;,). 
In many cases computing M in this way does not yield a positive definite 
matrix, and something else must be done. Hansen (19821, Cumby, Huizinga, 
and Obstfeld (1983), Andrew (1991), and Andrews and Monahan (1990), 
among others, discuss the computation of M based on an estimate of the 
spectra1 density matrix of Z;a, evaluated at frequency zero. A third approach 
is to compute M under the following homoskedasticity assumption: 

E[L’,c.,IZ,:Z,_ ,,... ] =E[L~,L’~] for fzs, (36) 

which says that the contemporaneous and serial correlation in u do not 
depend on Z. This assumption is implied by the assumption that E[u,Z,l = 0 
for f 2 s if normality is also assumed. Under this assumption M can be 
computed as follows. Let aj = T-lC:=j+,L1,C,_j and B, = T~‘~:_j+,Z,Z;& 
j = 0,l ,..., m. M is then (a,B,+a,B, +a,& + “’ +a,B,+a,B~). 

The complete estimation procedure in the case of polynomial distributed 
leads can now be summarized. 1) Estimate p, y,, and q in (35) by 2SLs, 
which minimizes u’Z(Z’Z)-‘Z’u. This requires searching over values of q or 
using a gradient method. 2) Given these estimates, compute fit from (35). 
Then compute M in the one of the above ways. 3) Estimate p, y,, and q in 
(35) by minimizing o’ZM-‘Z’I;. This again requires searching over values of 
q or using a gradient method. These are the final parameter estimates. The 
estimated covariance matrix of these estimates is 

ri= T@ZM-‘Z’i;)f, (37) 



where the elements of G are as in (9) except that X,,+j replaces X2,_j and 
X 2i+t4, replaces X*,-,4,. 

The various extensions discussed in section 2 can also be applied here. The 
modifications needed for the case of leads rather than lags are slight, and 
they will not be discussed further. 

4. Monte Carlo results 

We report results from some Monte Carlo experiments in this section. The 
experiments are based on three of the equations estimated in Fair (1990). 
The equations are price equations for fairly specific commodities, with 
distributed lag or lead values of an aggregate price variable added to pick up 
aggregate expectational effects on individual price setting behavior. The data 
are monthly. The equations are estimated using 330, 359, and 323 observa- 
tions, respectively, and include 21, 18, and 21 explanatory variables, respec- 
tively. Eleven of the explanatory variables in each equation are seasonal 
dummy variables. The polynomial is taken to be linear, and the aggregate 
price variable is the only variable to which the polynomial lag distribution is 
applied. Given the lag length 4, each equation is linear in parameters. 

The Monte Carlo experiments were run as follows. Each equation was first 
estimated using the historical data. For the first case for each equation all the 
estimated parameters were used as the true parameters and the error term in 
the equation was assumed to be normal with mean zero and variance G2, 
where the latter is the estimated variance of the equation. For each repeti- 
tion a new data set was generated by drawing error terms from this distribu- 
tion and using these error terms plus the estimated parameters to compute 
new values of the dependent variable. The equation was then re-estimated 
using the new data, and the parameter estimates were recorded (including 
the estimate of 4). The number of repetitions per equation was 750. The 
largest value of y allowed was 132. (The smallest value of 4 allowed was 1.) 

Three estimators were computed for each repetition: 1) the estimator 
proposed in this paper, 2) the estimator when q is known, and 3) an 
estimator proposed by Sargan (1980, pp. 117-118). For the case of a polyno- 
mial of known degree, the estimator proposed by Sargan reduces to starting 
at a specified minimum lag length and increasing the lag length by one until 
the sum of squared residuals increases. In the Monte Carlo experiments we 
took the minimum lag length to be one. If the sum of squares is a bowl-shaped 
function of the lag length, then this procedure gives the same estimate as 
ours except for the integer-value, real-value difference. If, on the other hand, 
there are local minima, then Sargan’s procedure may stop before reaching 
the global minimum. For many of the cases reported below there are local 
minima, and so, as will be seen, Sargan’s estimates are not always close to 
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ours2 Sagan’s procedure does not provide standard errors for the estimated 
lag length, and it does not adjust the standard errors of the other coefficient 
estimates to reflect the estimation of y. 

For each repetition the estimates of 4 and h were recorded. The means 
and variances of the estimates of 4 and A over the 750 repetitions were then 
calculated. In addition, the variances of the estimates of 4 and h were 
estimated for each repetition using the asymptotic formulae, and the aver- 
ages of these estimates over the 750 repetitions were calculated.’ In table 1, 
E(t) denotes the mean of the 750 estimates of 4, SE(@) denotes the square 
root of the variance of the 750 estimates, and ave. asy. SE($) denotes the 
square ro+t of the average of the 750 calculations of the variance computed 
from the asymptotic formulae. Similar notation holds for A. In addition, a 
95% confidence interval for 6 was computed for each repetition using the 
asymptotic formulae, and the percentage of repetitions in which the true 
value of 4 fell outside of this interval was calculated. This percentage for 
each case is presented in the table under the heading ‘5% nom. test’. If the 
asymptotic formulae were exact, this percentage would be 5.0. A 90% 
confidence interval was also computed, and the results are recorded in the 
table under the heading ‘10% nom. test’. Similar computations were done 
for A. 

The first case for each equation in table 1 uses the estimated parameters as 
the truth. For each of the other cases either 4 or v is changed and used as 
the truth, with the other parameters remaining at their estimated values. 

The following conclusions can be drawn from table 1. (1) In a number of 
cases the Sagan estimates of 4 are much too small, which reveals a local 
minima problem. Otherwise, as expected, the Sagan estimates are quite 
close to the estimates using the method of this pa~er.~ (2) The estimates of 4 
using the method of this paper in general show only a small bias, which is 
always upward, and sin$larly for the estimates of A\. (3) The asymptotic 
estimates of the SE of A are generally close to the Monte Carlo estimates.’ 
Both of these estimates are higher than the estimates when 4 is known, 

ZBecause of the local minima problem, we used a grid search on q in the computations for our 
estimator. If a gradient algarithm bad been used, there would have been no guarantee that the 
global minimum had been found. 

‘For two repetitions (one far the third case for eq. 1 in table 1 and one for the third cap for 
eq. 3). B was equal to one and hence the formula far the asymptotic variance of 6 and A was 
inapplicable. These two repetitions were skipped for purposes of computing ave. asy. SE(<) and 
ave. asy. SEC& although they were not skipped for the other calculations. This skipping was not 
important. Instead of skipping the repetitions, we also computed the asymptotic formulae using 
$ = 1.2, and this had a trivial effect an the values in table 1. 

41n three cases in table 1 Sargan’s estimate of q is slightly larger than ours. This can happen 
because of the integer-value. real-value difference between the estimators. Sargan stops at the 
nearest integer, and our estimate may be slightly below this integer. 

‘In the fallowing discussion, ave. asy. SE(i) will bc referred 10 as ‘the asymptotic estimate of 
the SF of i’ and SE(i) will be referred to ah ‘the Monte Carla estimate of the SE of n^‘. Similar 
statements hold for 8. 
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Eq. 2: insect wire screenine 

Truth 4.26 0.921 - 
4 estimated 1.51 0.942 1.69 
4 knuwn 4.26 0.928 0.00 
SUga" 4.41 0.93x 1.37 

Tr”th 15.00 0.921 - 
q estimated 17.19 0.956 9.92 
4 known 15.00 0.927 0.00 
SXpJ” 13.78 ~I.902 7.91 

Truth 30.00 0.921 - 
q estimated 31.46 0.971 15.57 
q known 30.00 0.929 0.00 
Sargan 21.70 0.844 15.28 

Truth 4.26 0.921 - 
4 estimated 4.30 0.932 0.58 
q known 4.26 0.927 0.00 
Slrgan 4.32 0.932 0.64 

Truth 15.00 0.921 - 
q estimated 15.53 0.936 3.60 
q known 15.04 0.928 0.00 
Sargan 15.25 0.933 3.45 

Truth 30.00 0.921 - 
q estimated 30.65 0.944 h.XR 
y known 30.00 0.929 0.00 
Sargan 29.77 0.936 7.62 

1.23 12.8 16.4 0.156 0.150 
0.00 - - 

7.18 19.2 23.3 
0.w - - 

12.87 16.9 21.9 
0.w - - 

Lr=O.O0535 

0.53 7.6 12.1 
0.M) - - 

6.18 10.0 14.3 
0.M) - - 

0.139 0.137 
O.l5* - 

0.206 0.189 7.5 
0.177 0.17s 5.9 
,I.232 - - 

_ 
0.247 0.224 
0.197 0.195 
0.301 - 

0.087 0.082 
0.076 0.075 
0.089 - 

Oih 0% 
0.098 0.096 
0.107 ~ 

0.119 0.117 
0.108 0.106 
0.130 - 

_ 
6.9 
5.2 

_ 
7.7 
5.1 
- 

_ 
5.6 
5.5 
_ 

- 
6.0 
5.6 

_ 
5.6 
5.3 
_ 

_ 
12.8 
11.5 

12.9 
10.8 
_ 
_ 
12.9 
il.1 
- 

_ 
11.7 
il.1 
_ 

- 
12.7 
10.7 

_ 
11.2 
10.7 
_ 



- 
9.89 
0.00 
- 

_ 

- 
17.1 
_ 
_ 

_ 
12.7 
_ 

11.2 
_ 
- 

14.7 
_ 
_ 

Truth 23.57 0.799 
4 estimated 25.30 0.836 
q know" 23.57 0.809 
%@?I" 20.57 0.775 

Truth 15.00 0.79Y 
q estimated 16.78 0.830 
y know" 15.lM 0.811 
Sargan 14.76 0.799 

Truth 3.Do 0.799 
q estimated 3.15 O.RlS 
q know" 3.ou ,I.XOu 
Sargan 3.18 0.815 

Truth ‘ND0 0.799 
q estimated 42.16 0.851 
y know" 4cKM 0.807 
Sargan 29.64 0.715 

- 
12.65 
0.00 
11.61 
_ 
9.07 6.70 
MM 0.00 
7.68 
_ 
0.83 
0.04 
0.87 

19.68 
0.00 
22.14 

_ 
0.63 
0.00 

16.58 
OS10 
_ 

21.1 0.169 0.162 
_ 0.160 0.153 
_ 0.238 - 
_ 

18.5 0.160 0.152 
_ 0.154 0.147 
_ 0.19s - 

- 
14.5 0.131 0.120 
_ 0.106 0.105 
_ 0.135 - 

19.3 ozo3 0192 
_ 0.171 0.164 
_ 0.321 - 

_ 
8.0 
7.3 

7.7 
7.2 
_ 

_ 
8.1 
5.2 
_ 

_ 
6.9 
6.8 
_ 

137 

13.1 
13.1 

_ 
14.0 
12.9 
_ 

13.6 
10.4 

11.1 
12.3 

*Each case is based on 750 repetitions. The seed is the same foor each case within an 
equation, but if dithers across the three equations. SE(.) is the Monte Carlo standard 
error. Ave. asy. SEC.1 is the square ro"t of the average afthe 750 variances computed 
using the asymptotic formulae. 5% (10%) "om. test is the percentage of repetitions in 
which the true val"e of q or h is outside of the 95% (90%) confidence i"te1-4, where 
the confidence interval is computed "sing the asymptotic formulae. If the asymptotic 
formulae were exact the percentages would be 5.0 (10.0). 

which shows that one underestimates the uncertainty of i if 4 is taken 
incorrectly to be known. (4) The asymptotic estimates of the SE of 6 are 
always lower than the Monte Carlo estimates. This is true across different 
values of q and ,4, and so there appears to be a general downward bias to the 
asymptotic estimates. The bias as a percent of the Monte Carlo standard 
error - SE(G) - ranges from 9% to 28%. The average of the percent biases 
in table 1 is 18%. This bias can also be seen in the results for the 5% and 
10% nominal tests. The percentage of repetitions in which the true value of r~ 
lies outside the 95% confidence interval ranges from 7.6% to lY.2% in the 
table. The range for the 90% confidence interval is 12.1% to 23.3%. Given 
that the left tail of the distribution of ij is truncated at one, it must be that 
the right tail of the actual distribution is fatter than that of the asymptotic 
distribution. 

We also estimated for each repetition the equation using a quadratic 
polynomial. We then used first the Akaike and second the Schwarz criterion 
to choose between the linear and quadratic polynomials. (Remember that the 



data are generated using the linear polynomial.) Both criteria always resulted 
in the linear polynomial being chosen. This result is encouraging in that it 
says that if the truth is linear and one selects between linear and quadratic, 
the linear is likely to be chosen. 

To conclude, the overall results are fairly favorable to the method pro- 
posed in this paper. The biases are fairly small except for the estimates of the 
SE of @, which are too small by about 18%. 

5. Conclusion 

Since it is quite rare that lag and lead lengths are known with certainty, the 
ability to estimate them and adjust the standard errors of all the coefficient 
estimates to account for their estimation should prove useful in practice. In 
addition, although biased downward somewhat, the estimated standard er- 
rors on the lag length estimates provided here should help one in deciding 
how much confidence to place on the overall estimated lag or lead distribu- 
tions. 
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