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3 Estimating Event Probabilities
from Macroeconometric Models
Using Stochastic Simulation

Ray C. Fair

Government policymakers and business planners are interested in knowing
the probabilities of various economic events happening. In 1989 and 1990, for
example, there was interest in the probability that a recession would occur in
the near future. Model builders who make forecasts typically do not answer
probability questions directly. They typically present a “base” forecast and a
few alternative “scenarios.” If probabilities are assigned to the scenarios, they
are subjective ones of the model builders.!

Probability questions can, however, be directly answered within the context
of macroeconometric models by using stochastic simulation. The first part of
this paper (secs. 3.1-3.2) explains how this can be done and gives some ex-
amples. An adantage of this procedure is that the probabilities estimated from
the stochastic simulation are objective in the sense that they are based on the
use of estimated distributions. They are consistent with the probability struc-
ture of the model.

Estimated probabilities can also be used in the evaluation of a model. Con-
sider, for example, the event that, in a five-quarter period, there is negative
real GNP growth in at least two of the quarters. For any historical five-quarter
period, this event either did or did not happen. The actual value or outcome is
thus either zero or one. Now, for any five-quarter period for which data exist,
one can estimate from a model the probability of the event occurring. If this is
done for a number of five-quarter periods, one has a series of probability esti-

Ray C. Fair is professor of economics at Yale University and a research associate of the National
Bureau of Economic Research.

The author is indebted to Douglas Hamilton for stimulating his interest in the use of stochastic
simulation to estimate probabilities in econometric models. He is also indebted to James Hamil-
ton, James Stock, Mark Watson, and other conference participants for very helpful comments.

1. Within the context of their leading indicator approach, Stock and Watson (1989) do present,
however, estimates of the probability that the economy will be in a recession six months hence.
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158 Ray C. Fair

mates that can be compared to the actual (zero or one) values. One can thus
evaluate how good the model is at predicting various events. An example of
this type of evaluation is presented in the second part of this paper (sec. 3.3).

3.1 The Procedure

3.1.1 The Model

The model considered in this paper can be dynamic, nonlinear, and simul-
taneous and can have autoregressive errors of any order. Write the model as

1) fOpx,0)=wu,, i=1,...,nt=1,...,T,

where y, is an n-dimensional vector of endogenous variables, x, is a vector of
predetermined variables (both exogenous and lagged endogenous), o is a vec-
tor of unknown coefficients, and , is an error term. It is assumed that the first
m equations are stochastic, with the remaining ,(i = m + 1, . . ., n) iden-
tically zero for all .

Each equation in (1) is assumed to have been transformed to eliminate any
autoregressive properties of its error term. If the error term in the untrans-
formed version, say, v, in equation i, follows an rth-order autoregressive pro-
cess,

Vi = PV t oo TPV, T Uy,

where u, is i.i.d., then equation i is assumed to have been transformed into
one with u, on the right-hand side. The autoregressive coefficients p,;, . . . ,
p,; are incorporated into the o; coefficient vector, and the additional lagged
values that are involved in the transformation are incorporated into the x, vec-
tor. This transformation makes the equation nonlinear in coefficients if it were
not otherwise, but this adds no further complications to the model because it
is already allowed to be nonlinear. It does result in the “loss” of the first r
observations, but this has no effect on the asymptotic properties of the esti-
mators. u, in (1) can thus be assumed to be i.i.d. even though the original
error term may follow an autoregressive process.

Let u, be the m-dimensional vector (u,, . . . , u,,)’. For the stochastic sim-
ulatlons below, it is assumed that u, is distributed as multivariate normal N(O,
2), where 2, is m X m. Although the normality assumption is commonly
made, the general procedure discussed in this paper does not depend on it. If
another distributional assumption were used, this would simply change the
way in which the error terms were drawn for the stochastic simulations.

It is assumed that consistent estimates of o, denoted &,, are available for all
i. Given these estimates, consistent estimates of u,, denoted #,, can be com-
puted as f (¥, X, a) The covariance matrix 3, can then be estimated as 3, =
/nov’, where U is the m X T matrix of values of a,.

Let a be the k-dimensional vector (a;, . . . , a)’, where k is the total num-
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ber of unrestricted coefficients in the model, including any autoregressive
coefficients of the original error terms, and let & denote the estimate of a. It is
also assumed that an estimate of the covariance matrix of &, denoted V), is
available, where Vis k X k.

3.1.2 Estimating Standard Errors of Forecasts

It will be useful to consider first the use of stochastic simulation to estimate
standard errors of forecasts. A forecast from a model is subject to four main
sources of uncertainty—uncertainty from the structural error terms, from the
coefficient estimates, from the exogenous-variable forecasts, and from the
possible misspecification of the model. Stochastic simulation can easily
handle the first three sources, but accounting for possible misspecification is
much harder. A method is presented in Fair (1980) that uses stochastic simu-
lation to estimate the degree of misspecification of a model and to adjust the
standard errors for the misspecification. This method does not, however, carry
over in any straightforward way to the estimation of probabilities, and, in this
paper, only the first three sources of uncertainty are considered. The probabil-
ity estimates are thus based on the assumption that the model is correctly
specified.

Given 2, and V, the uncertainty from the error terms and coefficient esti-
mates can be estimated. Consider first drawing error terms. Let u; denote a
particular draw of the m error terms for period ¢ from the N(0, ) distribution.
Given u, &, and x,, one can solve the model for period ¢ using a method like
the Gauss-Seidel technique. This is merely a deterministic simulation for the
given values of the error terms, coefficients, and predetermined variables. Call
this simulation a “trial.” Another trial can be made by drawing a new set of
values of «’ and solving again. This can be done as many times as desired.
From each trial, one obtains a prediction of each endogenous variable. Let y/,
denote the value on the jth trial of endogenous variable i for period . For J
trials, the stochastic simulation estimate of the expected value of variable i for
period #, denoted i, is

J
2 i, = (DY ¥
j=1

The stochastic simulation estimate of the variance of the forecast error, de-
noted 62, is

3) & = (DX ¥, = B

If the forecast horizon is more than one period, then each trial is a dynamic
simulation over the horizon, with predicted values computed for each endo-
genous variable for each period. Any lagged endogenous variables in the x,
vector are updated as the simulation proceeds. If, for example, the horizon is
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eight quarters, then eight vectors u; are drawn (t = 1, . . ., 8), the simulation
is over the eight quarters, and eight means and variances are computed for
each endogenous variable using formulas (2) and (3).

Consider now drawing coefficients. Let a* denote a particular draw of the
coefficient vector a. Under the assumption that the asymptotic distribution of
& is multivariate normal with covariance matrix V, a* can be drawn from the
N(&, V) distribution. (Again, the normality assumption is not necessary. Some
other distribution could be assumed for & and the draws made from it.) Each
trial now consists of drawing both error terms and coefficients. If the forecast
horizon is more than one period, only one coefficient draw should be done for
the entire horizon. This is consistent with the assumption on which the esti-
mation of a model is based, namely, that the coefficients do not change over
time.

Accounting for exogenous-variable uncertainty is less straightforward than
accounting for uncertainty from the error terms and coefficient estimates. Ex-
ogenous variables are by their nature exogenous, and no probability structure
has been assumed for them. One might think that exogenous variables should
always just be taken to be fixed, but, when comparing forecast-error variances
across models, it is important to try to put each model on an equal footing
regarding the exogenous variables. Otherwise, the model that takes more im-
portant and hard-to-forecast variables as exogenous has an unfair advantage.
Therefore, some assumption about exogenous-variable uncertainty has to be
made when comparing models.

One approach is to try to estimate variances of the exogenous-variable fore-
casts from past predictions that model builders and others have made of the
exogenous variables. Given these estimates and a distributional assumption,
one could then draw exogenous-variable values for each trial. Each trial would
then consist of draws of the error terms, coefficients, and exogenous vari-
ables. An alternative approach is to estimate autoregressive or vector autore-
gressive equations for the exogenous variables and add them to the model.
One would then have a model with no exogenous variables, and error terms
and coefficients could be drawn from the expanded model. Either of these
approaches is a way of trying to incorporate exogenous-variable uncertainty
into the stochastic simulation estimates of the forecast-error variances.

3.1.3 Estimating Event Probabilities

Estimating event probabilities is straightforward once the stochastic simu-
lation has been set up and the event defined. Consider an eight-quarter predic-
tion period and the event that, within this period, there are two consecutive
quarters of negative real GNP growth. Assume that 1,000 trials are taken. For
each trial, one can record whether or not this event occurred. If it occurred,
say, 150 times out of the 1,000 trials, its estimated probability would be 15
percent. It should be clear that as many events can be considered as desired.
Almost no extra work is needed to estimate probabilities beyond what is
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needed to estimate means and variances, and there is wide latitude in the
choice of events. The extra work is simply keeping track of how often each
event occurs in the solution for each trial.

3.2 Estimated Probabilities for Three Events

3.2.1 The Model

Estimated probabilities for three events are presented in this section using
the model in Fair (1984). There are two contractionary events and one infla-
tionary event.

The model consists of thirty stochastic equations and ninety-eight identi-
ties. There are 179 estimated coefficients. The estimation period used for the
present results is 1954:1-1989:1V (144 observations). The model is estimated
by two-stage least squares with account taken when necessary of the autore-
gressive properties of the error terms. Ten of the equations are estimated under
the assumption of a first-order autoregressive process of the error term, and
two of the equations are estimated under the assumption of a third-order pro-
cess. The autoregressive coefficients are included in the 179 coefficients. The
30 X 30 covariance matrix of the structural error terms was estimated as
(UTOU’, where U is the 30 X T matrix of estimated residuals (as noted
above, T is 144). the 179 X 179 covariance matrix of the estimated coeffi-
cients was estimated using the formula in Fair (1984, 216-17). This matrix is
not block diagonal even though the correlation of the error terms across equa-
tions is not taken into account in the estimation of each equation by two-stage
least squares. The correlation affects the covariance matrix, so the matrix is
not block diagonal.

There are eighty-two exogenous variables in the model, not counting the
constant term, the time trend, and a few dummy variables. For the present
results, exogenous-variable uncertainty was handled as follows. Each of the
eighty-two exogenous variables was regressed on a constant, time, and its first
four lagged values (over the same 1954:1-1989:IV estimation period).? The
estimator was ordinary least squares. The 82 X 82 covariance matrix of the
error terms was estimated as (1/T)EE’, where E is the 82 X T matrix of esti-
mated residuals from the exogenous-variable equations. Denote this estimated
matrix as S.

The eighty-two equations were then added to the model, leaving the ex-
panded model with no exogenous variables except the constant term, the time
trend, and a few dummy variables. The expanded model was restricted in two
ways. First, the error terms in the thirty structural equations were assumed to
be uncorrelated with the error terms in the eighty-two exogenous-variable

2. Many of the exogenous-variable equations were estimated in logs. Logs were not used for
tax rates and for variables that were sometimes negative or very close to zero.
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equations. The 112 X 112 estimated covariance matrix of all the error terms
is thus block diagonal, with one block 3. and one block $. This treatment is
consistent with one of the assumptions on which the structural equations were
estimated, namely, that the exogenous variables are uncorrelated with the
structural error terms. Second, the coefficient estimates in the exogenous-
variable equations were taken to be fixed in the stochastic simulations. In
other words, only coefficients for the thirty structural equations were drawn.
This lessens somewhat the uncertainty assumed for the exogenous variables,
but it will be seen that the uncertainty from the coefficient estimates is small
relative to the uncertainty from the error terms.

The key exogenous variables in the model are government fiscal policy var-
iables, exports, and the price of imports. Monetary policy is endogenous—
Fed behavior is explained by an interest rate reaction function, the interest
rate reaction function being one of the thirty structural equations.

3.2.2 The Events

From about the beginning of 1989, there was concern that the economy
might enter a recession in the near future, a recession generally being consid-
ered to be two consecutive quarters of negative real growth. It is thus of inter-
est to examine this period. For the present results, the prediction period was
taken to be the five quarters 1990:1-1991:1. Given this period, the following
three events were considered:

A. At least two consecutive quarters of negative real GNP growth.

B. At least two quarters of negative real GNP growth.

C. At least two quarters in which inflation (percentage change in the GNP
deflator) exceeded 7 percent at an annual rate.

Event A is a recession as generally defined. Event B allows the two or more
quarters of negative growth not to be consecutive. Event C is a case in which
people would probably start to worry about inflation picking up.

3.2.3 The Stochastic Simulations

Three stochastic simulations were performed, each based on 1,000 trials.
For simulations 1 and 2, the exogenous-variable equations were not added to
the model, and the exogenous-variable values were taken to be the actual val-
ues. For simulation 1, only error terms were drawn; for simulation 2, both
error terms and coefficients were drawn.?

3. After the empirical work for this paper was finished, Gregory Chow suggested to me that
one may not want to draw coefficients when estimating probabilities. Although coefficient esti-
mates are uncertain, the true coefficients are fixed. In the real world, the reason that economic
events are stochastic is because of the stochastic shocks (error terms), not because the coefficients
are stochastic. (This is assuming, of course, that the true coefficients are fixed, which is the
assumption on which the estimation of the model is based.) As a practical matter, it makes little
difference whether or not one draws coefficients because, as will be seen below, most of the
uncertainty is from the error terms, not the coefficient estimates. In future work, however, Chow’s
argument suggests that coefficients should not be drawn when estimating probabilities.
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For simulation 3, the eighty-two exogenous-variable equations were added
to the model in the manner discussed above. It is important to note that, in
order to make this simulation comparable to the other two, the estimated re-
siduals in the exogenous-variable equations were added to the equations and
taken to be fixed across all the trials. The draws of the error terms for the
exogenous-variable equations were then added to the fixed residuals. Adding
the residuals to the exogenous-variable equations means that, when the ex-
panded model is solved deterministically (by setting the error terms in the
structural equations equal to zero), the solution is the same as when the non-
expanded model is solved using the actual values of the exogenous variables.
This treatment of the exogenous-variable equations for simulation 3 means
that the base paths of the exogenous variables are the actual paths (just as for
simulations 1 and 2). The base paths, for example, are not the paths that
would be predicted by the exogenous-variable equations if they were solved
by setting their error terms equal to zero.

All three simulations are thus based on knowledge of the exogenous-
variable values for the period 1990:1-1991:1. The simulations are, however,
outside the estimation period since the estimation period ended in 1989:1V.
Therefore, the simulations are predictions that could have been made as of the
end of 1989:1V had all the exogenous-variable values for the next five quarters
been known.

The same draws of the structural error terms were used for all three simu-
lations, and the same draws of the coefficients were used for simulations 2 and
3. This means that the differences across the three simulations are not due to
simulation error. There were no cases in which the model failed to solve for
the three sets of 1,000 trials.

3.2.4 The Mean Forecasts and Their Standard Errors

It will be useful to present the mean forecasts and the standard errors of the
forecasts before presenting the probabilities. The results for the percentage
change in real GNP (denoted g) and the percentage change in the GNP deflator
(denoted p) are presented in table 3.1. Two of the main features of the results
in table 3.1, which are almost always true for stochastic simulations of ma-
croeconometric models, are that the estimated forecast means are close to the
predicted values from the deterministic simulation and that drawing coeffi-
cients has a small effect on the forecast standard errors. The first result means
that the bias in the predicted values from the deterministic simulation, which
arises from the nonlinearity of the model, is small. The second result means
that the effect of coefficient uncertainty on the forecast standard errors is
small—most of the effects come from the structural error terms and the ex-
ogenous variables.*

4. Another common result in this area is that the estimates are not sensitive to the use of more
robust measures of central tendency and dispersion than the mean and variance. Forecast means
and variances do not necessarily exist, but this does not appear to be a problem in practice. For
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Table 3.1 Forecast Means and Standard Errors

1990 1990

I I I v 1991:1 I II o 1v 1991:1
Actual® 1.73 40 143 -1.59 -256 |Actal® 487 472 386 2.56 5.20

Forecast Means® Forecast Means®
det. 364 1.00 137 .98 —.19 |det. 4.57 1.31 341 3.76 3.38
u 358 1.06 137 1.02 -.14 |u 4.52 1.24 346 3.82 3.45
u,c 327 8 119 87 -23 |uc 4.41 1.43 3.37 393 3.40
uc e 332 91 143 1.02 -.11 |u4ce 4.35 1.60 3.27 3.82 3.39
Forecast Standard Errors Forecast Standard Errors
u 1.84 2.03 2.07 2.01 2.18 |u 1.69 1.75 1.63 1.62 1.65
u, ¢ 194 2.13 2.23 2.14 224 \u,c 1.74 1.81 169 1.65 1.68

u,c e 2.84 323 337 324 350 luce 226 233 236 232 245

“Percentage change in real GNP (g).
*Percentage change in the GNP deflator (p).

Note: All percentage changes are at annual rates. det. = deterministic simulation (error terms in the
structural equations set to zero and the model solved once); # = structural error terms drawn; ¢ =
coefficients drawn; e = exogenous-variable equations added to the model as discussed in the text.

The actual values for g show that the growth rate was positive but very
small in 1990:1I and negative in 1990:1V and 1991:I. The forecast means for
g are generally larger than the actual values for the five quarters. For 1990:1V,
the means are about 1.0, compared to the actual value of —1.59, and, for
1991:1, the means are about —0.2, compared to the actual value of —2.56.
Regarding the inflation predictions, 1990:11 was underpredicted by about 3
percentage points, 1990:IV was overpredicted by about 1 percentage point,
and 1991:1 was underpredicted by about 2 percentage points. The predictions
for the other two quarters are very close.

The exogenous variables add substantially to the forecast standard errors
(compare the u, ¢ rows to the u, c, e rows). It may be that the current treatment
of exogenous-variable uncertainty has overestimated this uncertainty. When a
model builder makes an actual ex ante forecast based on guesses of the future
values of the exogenous variables, it may be that the average errors of the
exogenous-variable guesses are less than those implied by adding the
exogenous-variable equations to the model. In other words, one may know
more in practice about the exogenous variables, particularly government pol-

more discussion of this, see Fair (1984, chap. 7). The use of more robust measures in the present
case led to very similar results to those reported above.
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icy variables, than is implied by the equations. The true forecast standard
errors may thus lie somewhere between the u, ¢ and the u, c, e cases above,
and the probability estimates reported below may lie somewhere between the
two cases.

Given that the predicted values of g are only around 1 percentage point for
three of the five quarters and negative for another, and given that the standard
errors are generally above 2 percentage points, it seems likely that a fairly
large fraction of the trials will have two or more quarters of negative growth.
The model is close to predicting negative growth for two or more quarters
already, so, given the size of the standard errors, it would not be surprising
that a fairly large probability of at least two quarters of negative growth was
estimated.

3.2.5 The Estimated Probabilities

The probability estimates are shown in table 3.2. These estimates indicate
that the probability of a recession or near recession occurring in the period
1990:1-1990:1V was fairly high according to the model. With the exogenous-
variable equations added to the model, the estimated probability is greater
than half for event B (two or more quarters of negative growth). The estimated
probability of inflation being greater than 7 percent for two or more quarters
(event C) is very small—less than 5 percent even with the exogenous-variable
equations included.

Two other simulations were run to examine the sensitivity of the results to
the exogenous-variable equations. For simulation 4, the error terms in the
exogenous-variable equations were assumed to be uncorrelated with each
other: § was taken to be diagonal. The three estimated probabilities in this
case were .397, .529, and .077. Only the last estimate is changed much,
where it is now slightly higher. Not accounting for the correlation of the
exogenous-variable error terms appears to increase somewhat the variance of
the inflation forecasts.

For simulation 5, the exogenous-variable equations were taken to be first-
order autoregressive rather than fourth order. This had only a small effect on
the results. The three estimated probabilities were .416, .538, and .037. It

Table 3.2 Probability Estimates for the Three Events
Event
Simulation A B C
u .275 .426 .002
u, c 321 .483 .006
u,ce .393 522 .049

Note: See the note to table 3.1 for the u, ¢, and e notation.
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appears that little is gained in decreasing the estimated uncertainty from the
exogenous variables by going from first to fourth order.’

Although the probability estimates for events A and B are fairly high, they
are perhaps not as high as one might hope given that events A and B actually
happened. The use of probability estimates to evaluate models will now be
discussed.

3.3 Using Probability Estimates to Evaluate Models

As noted above, it is possible for a given event to compute a series of prob-
ability estimates and compare these estimates to the actual outcomes. Con-
sider event A above, the event of at least two consecutive quarters of negative
values of g in a five-quarter period. Let A, denote this event for the five-quarter
period that begins with quarter 7, and let P, denote a model’s estimate of the
probability of A, occurring. Let R, denote the actual outcome of A,—one if A,
occurred, and zero otherwise. As Diebold and Rudebusch (1989) point out,
two common measures of the accuracy of probabilities are the quadratic prob-
ability score (QPS),

@) QPS = (/1)) 2(P, — R,

and the log probability score (LPS),

=1

®) LPS = — (/DY [(1 — R)log(1 — P) + R, log P,

where T is the total number of observations. It is also possible simply to com-
pute the mean of P, (say, P) and the mean of R, (say R) and compare the two
means. QPS ranges from zero to two, with zero being perfect accuracy, and
LPS ranges from zero to infinity, with zero being perfect accuracy. Larger
errors are penalized more under LPS than under QPS.

For the empirical work in this section, events A, and B, were analyzed for ¢
ranging from 1954:I through 1990:I (145 observations). A, is the event of at
least two consecutive quarters of negative real GNP growth for the five-
quarter period beginning with quarter #, and B, is the event of at least two
quarters of negative real GNP growth (not necessarily consecutive) for the
five-quarter period beginning with quarter ¢.

Since  ranges over 145 observations, there are 145 A, events and 145 B,
events. Estimating the probabilities of these events required 145 stochastic

5. Note that estimating, say, a fourth-order autoregressive equation for an exogenous variable
with a constant term and time trend included is equivalent to estimating the equation with only a
constant term and time trend included under the assumption of a fourth-order autoregressive pro-
cess for the error term. The equations are simply accounting for the autoregressive properties of
the error term once the mean and deterministic trend have been removed. The present results thus
show that little is gained in going from a first-order autoregressive process for the error term to a
fourth-order process.
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simulations. Each stochastic simulation was for a five-quarter period. The be-
ginning quarter for the first simulation was 1954:1, the beginning quarter for
the second simulation was 1954:II, and so on through the beginning quarter
for the 145th simulation, which was 1990:1. Two sets of 145 stochastic simu-
lations were in fact made. For the first set, the exogenous-variable values were
taken to be the actual values—the exogenous-variable equations were not
used, and no draws of exogenous-variable errors were made. The model used
for this set will be called model (u, c).

For the second set, the exogenous-variable equations were added to the
model, and error terms were drawn for these equations. As was done for the
results in section 3.2, the error terms in the exogenous-variable equations
were assumed to be uncorrelated with the error terms in the structural equa-
tions, and no coefficients were drawn for the exogenous-variable equations.
Unlike in section 3.2, however, the estimated residuals were not added to the
exogenous-variable equations. The base values of the error terms in these
equations were assumed to be zero, just as is always done for the structural
equations. This means that the model’s prediction of the five-quarter period is
based only on information available prior to the period. The model used for
this set of stochastic simulations will be called model (u, c, €). As noted in
section 3.2, the use of the exogenous-variable equations may overestimate
exogenous-variable uncertainty, so it is not clear that the structural model
should be judged by model (u, c, e) rather than by model (u, c). The truth
probably lies somewhere in between.

The number of trials for each stochastic simulation was 100. This means
that each set of 145 stochastic simulations required solving the model over a
five-quarter period 14,500 times. In some cases, the model failed to solve for
the particular draws, and, in these cases, the trial was simply discarded. This
means that some of the probability estimates are based on slightly fewer than
100 trials. Most of the failures occurred early in the sample period.

A simple autoregressive model for real GNP was also estimated and sto-
chastically simulated. The model consisted of regressing the log of real GNP
on a constant, time, and the first four lagged values of log real GNP. The
estimation period was 1954:1-1989:1V, the same as for the structural model,
and 145 stochastic simulations were made. In this case, 1,000 trials were
made for each simulation. This model will be called model AR.

From this work, one has three sets of values of P, (+ = 1, . . ., 145) for
each of the two events, one set for each model. One also has the values of R,
for each event. Given the values of R,, a fourth model can be considered,
which is the model in which P, is taken to be equal to R for each observation,
where R is the mean of R, over the 145 observations. This is simply a model
in which the estimated probability of the event is constant and equal to the
frequency with which the event happened historically. This model will be
called model CONSTANT. The results are shown in table 3.3.

Both the structural model and model AR overestimate R. (Remember that
model CONSTANT is constructed so that 7 = R.) Model AR has somewhat
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Table 3.3 Measures of Probability Accuracy
Event A Event B

P QPS LPS P QPS LPS
Actual (P = R) 138 Actual (P = R) .297
Model (u, c) 285 .192  .315 | Model («, c,) 394 249 .383
Model (u, c, e) 336 .268 .416 | Model («, c, ) 445 322 481
Model AR 238 .239 .401 | Model AR 341 361 .544
Model CONSTANT .138  .238 .401 [ Model CONSTANT 297 417 .608

less bias than the structural model. Regarding QPS and LPS, model (u, ¢) is
always the best. For event A, model (u, c, e) is the worst, but the results for
it, model AR, and model CONSTANT are all fairly close. Model (u, c, e) is
noticeably better than model AR and model CONSTANT for event B.

Table 3.4 presents the 145 values of R, for each event and the 145 values of
P, for each event and each model except model CONSTANT. (P, for model
CONSTANT is simply .138 for all ¢ for event A and .297 for all ¢ for event
B.) Figures 3.1-3.3 plot the values of R, and P, for event B for models (u, c),
(u, c, e), and AR, respectively.

One knows from the QPS and LPS results above that models (u, ¢) and (u,
c, e) do better than model AR, and the three figures provide a helpful way of
seeing this. The probability estimates for model AR never get above .64,
whereas they are close to 1.0 for models (x, ¢) and (4, c, e) around a number
of the actual occurrences of event B. Remember that model (u, c, e) is based
on predicted values of the exogenous variables, and even this version does a
reasonable job of having high estimated probabilities when event B occurs and
low estimated probabilities when event B does not occur. One of the main
times during which the structural model gets penalized in terms of the QPS
and LPS criteria is the second half of the 1960s, where the estimated proba-
bilities were fairly high for a number of quarters before event B actually hap-
pened.

Note from the figures that the occurrence of event B for the period begin-
ning in 1990:I was not well predicted relative to earlier occurrences. The
recession of 1990:IV-1991:I was not an easy one to predict.®

6. Note that the values of P, in the last row of table 3.4 for models (u, ¢) and (u, c, €)—.350
and .280 for event A and .510 and .340 for event B—are not the same as those presented in table
3.2—.321 and .393 for event A and .483 and .522 for event B—even though the five-quarter
period is the same. For model (u, ¢), the differences are due to the use of 1,000 trials for the results
in table 3.2 compared to 100 trials for the results in table 3.4. For model (u, c, ), the differences
are further due to the use of predicted values as the base values for the exogenous variables in
table 3.4 rather than the actual values in table 3.2. For model (u, c, ), the probability estimates
are considerably lower when the predicted values of the exogenous variables are used. The
exogenous-variable equations for some of the government spending variables failed to predict the
slowdown in the growth rate of these variables that occurred, and this is one of the reasons for
‘the lower probability estimates for model (u, c, €) in table 3.4.
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Table 3.4 Estimated Probabilities from the Three Models
Event A Event B

Beg. Model Model Model Model Model Model
Quar. Act. (u, ¢,) (u, c, e) AR Act. (u, ¢,) (u, c, e) AR
1954:1 1.0 .462 .407 .275 1.0 .667 531 .408
1954:11 .0 .439 .254 .246 .0 .585 .476 .350
1954:111 .0 .200 .188 171 .0 .345 .266 .264
1954:1v .0 215 .170 122 .0 .557 318 .180
1955:1 .0 314 .292 132 .0 .407 .326 .194
1955:11 .0 229 .355 .160 .0 554 516 .234
1955:111 .0 .337 .394 190 .0 .584 .564 .276
1955:1V .0 .363 474 .200 .0 .758 .684 .290
1956:1 .0 .454 .552 .202 .0 619 .750 .296
1956:11 .0 .330 474 .225 .0 .546 .680 .332
1956:111 .0 418 474 .195 .0 .622 .680 .294
1956:1V .0 .280 .408 .178 1.0 .730 .653 .261
1957:1 1.0 .585 .495 .158 1.0 .702 .657 .233
1957:11 1.0 .565 465 .166 1.0 .765 .636 241
1957:111 1.0 .442 434 .183 1.0 651 .566 274
1957:1V 1.0 .402 .455 .163 1.0 .644 .646 .241
1958:1 .0 .223 .380 .205 .0 .362 522 .286
1958:11 .0 .051 .088 .199 .0 127 176 .267
1958:111 .0 .063 .068 .082 .0 125 136 132
1958:1V .0 .156 110 .085 .0 .200 154 .116
1959:1 .0 .097 .081 .103 .0 172 152 .146
1959:11 .0 .085 112 128 1.0 .340 337 .188
1959:111 .0 .258 .253 126 1.0 .526 444 .191
1959:1V .0 .289 .333 .161 1.0 .495 455 .230
1960:1 .0 .287 454 133 1.0 .468 .546 214
1960:11 .0 .333 .340 116 1.0 .548 515 .169
1960:111 .0 .138 214 .153 .0 .298 .337 223
1960:1V .0 .079 234 .151 .0 213 .362 .226
1961:1 .0 .032 .082 .130 .0 .053 112 .192
1961:11 .0 .021 .051 .088 .0 .031 .071 .135
1961:111 .0 .010 .074 .096 .0 .030 -.096 131
1961:1V .0 .020 .071 .104 .0 .061 122 .146
1962:1 .0 .061 11 118 .0 .101 152 .166
1962:11 .0 .091 131 .136 .0 131 .192 .195
1962:111 .0 .106 .206 152 .0 223 .278 223
1962:1V .0 .104 .206 151 .0 .219 .268 224
1963:1 .0 .053 .165 .170 .0 .095 .216 243
1963:11 .0 .040 122 132 .0 .070 .184 .204
1963:111 .0 .060 121 139 .0 .120 .182 .203
1963:1V .0 .160 162 .158 .0 220 .242 .235
1964:1 .0 .210 .180 .180 .0 300 .220 .263
1964:11 .0 .160 232 172 .0 .230 .333 .263
1964:111 .0 121 .232 .210 .0 222 .364 .307
1964:1V .0 121 .337 221 .0 .182 .480 .331
1965:1 .0 .071 .354 .225 .0 131 .485 .333
1965:11 .0 .081 .480 .210 .0 212 .653 .309

(continued)
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Table 3.4 (continued)
Event A Event B
Beg. Model Model Model Model Model Model
Quar. Act. (u, c,) (u, c, e) AR Act. (u, ¢,) (u, c, e) AR
1965:111 .0 .192 .430 .255 .0 273 .570 .355
1965:1V .0 .232 .390 .280 .0 .323 .530 .398
1966:1 .0 .276 .500 315 .0 357 .640 .428
1966:11 .0 .327 .600 .370 .0 .541 .780 .491
1966:111 .0 .388 .680 424 .0 .592 .860 .576
1966:1V .0 434 .700 .379 .0 .707 .880 .534
1967:1 .0 .500 .670 .380 .0 .630 .850 .530
1967:11 .0 .404 .530 377 .0 .566 .690 .532
1967:111 .0 112 410 .365 .0 .276 .580 518
1967:1IV .0 273 .490 .362 .0 525 .680 .496
1968:1 .0 .354 .400 .393 .0 .455 .590 .540
1968:11 .0 .470 .390 392 .0 .600 .670 .536
1968:111 .0 .616 .622 .410 .0 .808 .776 .538
1968:1V .0 .790 610 .448 1.0 .940 .830 .584
1969:1 1.0 .700 .590 .459 1.0 .830 .750 .627
1969:11 1.0 .850 910 .408 1.0 .970 .970 .552
1969:111 1.0 .850 770 .437 1.0 950 .900 .588
1969:1V 1.0 .780 .690 418 1.0 930 .900 .587
1970:1 1.0 .680 .680 424 1.0 .820 .830 .584
1970:11 .0 .530 .660 344 1.0 .680 .800 .509
1970:111 .0 .550 .660 .303 1.0 710 .790 .440
1970:1v .0 .350 .350 .278 1.0 .600 .490 401
1971:1 .0 .080 .110 .326 1.0 .110 .200 .459
1971:11 .0 .090 .220 .245 1.0 .230 .360 .383
1971:111 .0 .090 .130 .304 .0 .230 .210 428
1971:1V .0 .100 .190 .293 0 .190 .230 .452
1972:1 .0 .020 .120 273 .0 .020 .180 .405
1972:11 .0 .020 .180 .247 .0 .020 .260 371
1972:111 .0 .020 .320 .307 .0 .030 .470 415
1972:1v .0 .110 .350 .350 .0 130 .500 .496
1973:1 .0 .220 .300 .352 1.0 .260 410 .488
1973:11 .0 .370 .560 .408 1.0 .470 .660 .537
1973:111 .0 .540 .620 479 1.0 .790 .810 .624
1973:1V 1.0 .720 .710 .451 1.0 .920 .890 .632
1974:1 1.0 .830 .790 .385 1.0 .940 .950 .542
1974:11 1.0 .760 .660 .405 1.0 .900 .840 .562
1974:111 1.0 .870 .630 .366 1.0 .950 .830 .529
1974:1V 1.0 .750 .740 371 1.0 .800 .860 514
1975:1 0 .430 510 .300 0 .480 .670 .446
1975:11 0 .020 .070 .286 0 .090 120 .390
1975:111 .0 .050 .000 .148 .0 .070 .000 252
1975:1v .0 .090 .050 .159 .0 130 .060 227
1976:1 0 .100 .080 .191 0 .150 .080 .270
1976:11 0 .040 .080 211 0 .050 .080 .296
1976:111 0 .040 .090 242 0 .050 .100 344
1976:1V 0 .030 .100 236 0 .140 .120 .360
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Table 3.4 (continued)
Event A Event B

Beg. Model Model Model Model Model Model
Quar. Act. (u, c,) (u, c, e) AR Act (u, c,) (u, c, e) AR
1977:1 .0 .100 .090 .210 .0 120 .090 314
1977:11 .0 .110 150 225 .0 130 .210 .321
1977:111 .0 .100 .230 .242 .0 .110 .330 .345
1977:1vV .0 .210 .300 .268 .0 .370 .440 .383
1978:1 .0 110 .370 332 .0 .190 .520 .464
1978:11 .0 170 .360 .275 .0 .220 .570 .426
1978:111 .0 .390 .560 .287 .0 .450 .750 .396
1978:1V .0 400 .540 .359 1.0 .540 .760 .498
1979:1 .0 .580 710 371 1.0 .780 .850 .537
1979:11 .0 460 .730 .384 1.0 .790 .890 .537
1979:111 .0 .740 .750 .368 1.0 .890 .920 .532
1979:1V .0 .860 .780 .305 1.0 .950 .900 .448
1980:1 .0 .680 .660 325 .0 .840 .820 .465
1980:11 .0 .740 .660 .283 1.0 .920 .830 .420
1980:111 .0 470 .530 .386 .0 .710 .740 515
1980:1V .0 .200 .390 .220 1.0 310 .460 375
1981:1 1.0 .600 .500 174 1.0 .750 .640 .258
1981:11 1.0 950 .610 213 1.0 .960 .810 .299
1981:111 1.0 .850 .660 .257 1.0 .990 .800 371
1981:1V 1.0 .980 .830 .230 1.0 1.000 .900 .359
1982:1 .0 .860 .730 .244 1.0 .950 .800 .356
1982:11 .0 .700 .390 224 .0 .780 .480 .327
1982:111 .0 .580 .220 112 .0 .660 .330 174
1982:1V .0 .180 .080 113 .0 .270 .080 .170
1983:1 .0 .000 .000 .096 .0 .000 .000 .155
1983:11 .0 .000 .000 .090 .0 .000 .000 126
1983:111 .0 .000 .010 .091 .0 .000 .010 127
1983:1V .0 .000 .020 112 .0 010 .020 153
1984:1 .0 .050 .050 128 .0 .050 .050 .185
1984:11 .0 .100 .170 .148 .0 .140 .250 .203
1984:111 .0 .320 .250 179 .0 .480 .300 .251
1984:1V .0 400 .260 .204 .0 .520 410 .293
1985:1 .0 .120 210 197 .0 .190 .270 .284
1985:11 .0 .070 .210 171 .0 .090 .240 .250
1985:111 .0 .030 110 .185 .0 .060 .140 .262
1985:1V .0 .040 .160 .183 .0 .080 .180 .263
1986:1 .0 .030 110 .185 .0 .050 120 262
1986:11 .0 .010 .050 .186 .0 .020 .060 267
1986:111 .0 .000 .000 .220 .0 .000 .000 317
1986:1V .0 .010 .030 .201 .0 .010 .050 .300
1987:1 .0 .000 .020 .163 .0 .000 .020 237
1987:11 .0 .000 .020 .163 .0 .010 .020 234
1987:111 .0 .010 .110 .181 .0 .010 .150 254
1987:1V .0 .070 .160 .185 .0 .070 .190 .263
1988:1 .0 .020 .150 .188 .0 .030 .260 .265
1988:11 .0 .010 110 .203 .0 .030 .170 .285

(continued)
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Table 3.4 (continued)
Event A ) Event B

Beg. Model Model Model Model Model Model
Quar. Act. (u, c,) (u, c, e) AR Act. (u, c,) (u, c, e) AR
1988:111 .0 .020 .170 224 .0 .050 .230 321
1988:1V .0 130 .290 .230 .0 .150 .400 332
1989:1 .0 120 310 223 .0 .160 .400 323
1989:11 .0 .170 .300 213 .0 .370 470 .307
1989:111 .0 .270 .360 .229 .0 .450 460 .329
1989:1V .0 .350 .300 227 .0 470 .450 .328
1990:1 1.0 .350 .280 .226 1.0 510 .340 .321

Note: “Beg. Quar.” = beginning quarter. “Act.” = actual.

As a final comment, the results in this section are all within sample except
for the results for the last five quarters. Even model CONSTANT is within
sample because it uses the sample mean over the entire period. In future work,
it would be of interest to do rolling regressions and have all the simulations be
outside sample. This is expensive because covariance matrices also have to be
estimated each time, and it limits the number of observations for which P, can
be computed because observations are needed at the beginning for the initial
estimation period. In future work, it would also be useful to do more than one
hundred trials per stochastic simulation. There is still considerable stochastic-
simulation error with only one hundred trials.

3.4 Conclusion

This paper shows that stochastic simulation can be used to answer probabil-
ity questions about the economy. The procedure discussed here is flexible in
allowing for different models, different assumptions about the underlying
probability distributions, different assumptions about exogenous-variable un-
certainty, and different events for which probabilities are estimated. The paper
also shows that a series of probability estimates can be computed and that
these estimates can then be used to evaluate a model’s ability to predict the
various events.
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Comment James D. Hamilton

If one has a fully specified econometric model of the economy, as Ray Fair
does, and if one has no compunction about torturing a computer, as Fair ap-
parently does not, then one need not be limited to reporting just the point
forecast for GNP predicted by the model. By simulating the model, one can
in principle calculate the probability distribution of any future economic
event. This distribution can reflect both uncertainty about the future course of
the economy and uncertainty about the true values of the structural parame-
ters. Fair offers a nice illustration of this method using his model of the U.S.
economy.

Although the calculated probabilities of future events provide some of the
most interesting insights from Fair’s analysis, I would like to begin with the
simple point forecasts of real GNP growth, in order to compare Fair’s predic-
tions with those of other models. Table 3C.1 compares the results from Fair’s
simulations with two real-time forecasts. The first forecast is based on a vector
autoregression maintained by Christopher Sims at the Federal Reserve Bank
of Minneapolis, and the second is based on a survey of alternative forecasts
compiled by Victor Zarnowitz for the National Bureau of Economic Research
(for sources, see table 3C.1). Between 1954 and 1990, quarterly U.S. real
GNP growth averaged 2.9 percent at an annual rate, with a standard deviation
of 4 percent. The economy grew unusually slowly during 1990, with a reces-
sion beginning in the fourth quarter. Fair’s model tracks this outcome fairly
well, in contrast to the ex ante forecasts produced by many economists at the
beginning of the year.

It is worth emphasizing that Fair’s (u, c, €) simulations reported in his table
3.1 are not strictly comparable to these real-time ex ante forecasts. In Fair’s
simulations, the exogenous variables are not drawn from their conditional dis-
tribution based on information available at the beginning of 1990 but are in-
stead drawn from a distribution based on the actual ex post values of these
variables. Fair argues that a practical user of his model has better information
about the future values of the exogenous variables than is captured by simple
autoregressions. Even if one were uncomfortable with this argument, the pa-
rameters of his model were estimated without using the 1990 data, with the
result that his simulations clearly offer evidence that his model contains an

James D. Hamilton is professor of economics at the University of California, San Diego, and
research adviser to the Federal Reserve Bank of Richmond.
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Table 3C.1 Comparison of Forecasts of Real GNP Growth
1990
| 11 111 v 1991:1

Actual 1.7 4 1.4 -1.6 -2.6
Fair 33 9 1.4 1.0 —-.1

(2.8) 3.2) 3.4) 3.2) (3.5)
Minnesota 2.7 29 3.1 3.1 3.1

2.5) 3.3) (3.0) 3.1 4.5)
NBER 1.2 1.8 2.1 3.0 2.1

Sources: Minnesota: Christopher Sims, “Economic Forecasts from a Vector Autoregression”
(Minneapolis: Federal Reserve Bank of Minneapolis, 30 December 1989 [release date]). NBER:
Victor Zarnowitz, “Economic Outlook Survey” NBER Reporter (Spring 1990).

accurate description of the economy and of the exogenous variables that con-
tributed to the recession of 1990-91.

Although the point estimates in Fair’s table 3.1 do not incorporate ex ante
uncertainty about the exogenous variables, the standard errors that he calcu-
lates are very similar to those that would be calculated from a simulation
based solely on historically available information. It is instructive to note that
the standard errors for his five-quarter-ahead (u, ¢, ) simulation for real GNP
growth are close to the unconditional standard deviation. This suggests that,
in the absence of better information about the values of the exogenous vari-
ables than contained in an autoregression, the model does not offer much im-
provement over a simple forecast that a year from now GNP growth will pro-
ceed at its historical average rate. Recall the familiar result that the mean
squared error is equal to the variance plus the square of the bias:

EJY — EDP = EEylY — EYXF + EJEY) — EXXP.

Let Y in this formula stand for GNP growth; then E(Y) is the unconditional
average growth of GNP, and E,[Y — E(Y)]? is the unconditional variance
around this mean. Let X represent information on which a forecast of GNP
might be based. Then E,,[Y — E(Y|X)]? is the variance of this forecast, the
magnitude that would be calculated from Fair’s simulations in his equation
(3), while [E(Y) — E(Y|X)] is the difference between the forecast and the his-
torical mean. For typical values of X, if the forecast variance E,,[Y —
E(Y|X)J? equals the unconditional variance E,[Y — E(Y)]?, then the forecast
E(Y|X) should be equal to the unconditional mean E(Y).

This suggests another role that simulation might play in model verification.
If one finds that the model generates longer-run forecasts that differ signifi-
cantly from the unconditional mean but that the standard deviations for these
forecasts equal or exceed the unconditional standard deviation, then the fore-
casts might be improved by Bayesian shrinkage toward the unconditional
mean. Confidence intervals should also be correspondingly tightened to re-
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flect the value of the prior information, with the result that the distribution of
forecast errors converges to the unconditional distribution as the forecast ho-
rizon grows larger.

A similar issue may apply to the calculations of probabilities of recessions.
Fair’s model appears to be helpful in predicting turning points, as measured
by both the quadratic probability score and the log probability score. On av-
erage, however, the model errs in overpredicting recessions, with the bias
most severe for the (u, ¢, e) simulation. This could result from either the mean
GNP growth implied by the model being too low or the standard deviation
being too high. Again, Bayesian adjustment so that the distribution of longer-
run forecast errors converges to the unconditional distribution of GNP growth
might prove helpful. The simpler expedient of shrinking the probabilities of -
turning points calculated by the model toward the unconditional probabilities
would also be interesting to explore.

Overall, Fair has proposed a valuable tool for economic research and prac-
tical forecasting, and the results seem quite favorable for his model of the
economy.



