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Abstract—An important question in the study of aging con-
cerns the rate at which people physically deteriorate with age.
How much, for example, can be physically expected of, say, a
healthy, non-injured 75-year-old man or woman relative to
what he or she could do at age 457 This paper applies
econometric techniques to data on men’s track and field and
road racing records by age to estimate the rate at which men
slow down with age. Eight track, eight fieid, and eleven road
racing events are considered. The main econometric tech-
nigue used is a combination of the polynomial-spline method
and the frontier-function method. A number of the events
have been pooled 1o provide more efficient estimates.

L. Introduction

N important question in the study of aging

concerns the rate at which people physically
deteriorate with age. How much, for example,
can be physically expected of, say, a healthy,
non-injured 75-year-cld man or women relative to
what he or she could do at age 457 Policies on
aging should obviously depénd on the rate at
which deterioration occurs. If, for example, the
rate remains small into fairly old age, then poli-
cies designed to keep people physically fit will
have more payoff than if the rate increases rapidly
with age. The size of the rate is also relevant for
retirement policies. The smaller the rate, the less
emphasis should probably be placed on plans to
have people retire earlier than they would other-
wise want to. The size of the rate may also be
relevant for the gquestion of how wage rates should
change with age.

This paper applies econometric techniques to
data on men’s track and field and road racing
records by age to estimate the rate at which men
slow down with age. Eight track, eight field, and
eleven road racing events are considered. The
track events range from 100 meters to 10,000
meters, and the road racing events range from
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5 kilometers to the marathon. The field events
are the high jump, pole vault, long jump, triple
jump, shot put (16 pounds), discus throw (2 kilo-
grams), hammer throw (16 pounds), and javelin
throw (800 grams). The main econometric tech-
nique used is a combination of the polynomial-
spline method and the frontier-function method.

Sections II-V consider the track and road rac-
ing events. Section 1] discusses the methodology
that was followed, and section HI presents the
estimation results. Section 1V compares the age-
factors published in Masters Age-Graded Tables
(MAGT) with the age-factors implied by this
study. It will be seen that the MAGT age-factors
seem to be excessively variable and to be biased
against older runners. Table 3 presents the age-

factors implied by this study. Section V provides a

brief comparison of the present results to results
in the physiological literature. Section VI pre-
sents the results for the field events, and table §
presents the age-factors for the field events im-
plied by this study.

II. The Methodology
Assumptions

For a given track or road racing event, let g,
denote the log of the time of a2 runner of age & in
the race. For all runners of a given age, the
theoretical frequency distribution for g, probably
looks something like that depicted in figure 1.
The lower bound, b, is the fastest time that
could ever be run by a runner of age &k, Think of
b, as the biological limit of runners of age k,
given perfect race conditions (but no tail winds
allowed) and the use of the best training methods
and equipment possible (but no performance en-
hancing drugs allowed). The median of the distri-
bution is m,, and the vpper bound is u,.!

This paper focuses on b,, the lower bound for
runners of age k. The key assumption of this
study is that &, when plotted against k looks like

L1f runners are included in the population who do not finish
the race, then u, might be considered to be infinite. This
paper does not use u, in the analysis, and so it does not
matter here what is assumed about u,.
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Ficure 1.—THeORETICAL FREQUENCY DISTRIBUTION OF g
FOR INDIVIDUALS OF AGE &
g, = log of time of individual of age &

b my u

Ficure 2.-~AsSSUMED RELATIONSH!P BETWEEN THE LOWER
BounD AND AGE

Lower
Bound
by

o k ) k3 K

k {age)

that depicted in figure 2. (Remember that times
are measured in logs, so the rates of change are
percentage rates of change.) b, is assumed to be
infinite for small babies, to fall to some minimum
at age k,, to stay at this minimum to age k., and
then to begin to rise. After b, begins to rise (at
k,), the rate of slowing down is assumed to be
constant through age %, and then to begin to
rise. k* in the figure is the oldest age at which
anyone could finish the race.

The purpose of this paper is to estimate the
function in figure 2 from some time after age k,
on. The starting age used in the empirical work is
35, which means that k, is assumed to be less
than or equal to 35. k, need not be equal to 35.
If it is less than 35, this just means that the
sample used in this paper picks up the line some-
time after k,.

The functional form in figure 2 is assumed in
the empirical- work to be linear between &, and
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k. and quadratic after that. At &, the linear and
quadratic curves are assumed to touch and to
have the same first derivative. The specification is

a, + ok fork, <k <k,
b = a; + ak + ask? for k > kj,
(1)
with the restrictions
a; = a, + ask?
ay = a, — 2ok, (2)

The two restrictions force the curves to touch and

to have the same first derivative at k,.2 The

unrestricted parameters to be estimated are a,,
a,, ag, and k.

It should be stressed that there is no theoreti-
¢al reason for expecting the curve in figure 2 to
be linear between k, and k, and quadratic after
that. This study is primarily a curve fitting exer-
cise. After some experimentation, it turned out
that the assumption that the curve is linear be-
tween k, and k; and quadratic after that seemed
to be adequate for fitting the data fairly well.
Note that k, is estimated along with the other
parameters, and so the data are allowed to decide
where the switch from linear to quadratic occurs.
If, for example, the curve was in truth quadratic
from &, on, the estimate of &, would likely be
very close to k, (which, as noted above, is taken
to be 35 here).

In the initial experimentation, three other
functional forms were tried. First, the quadratic
in (1) was replaced with b, = o, + a,/(k — as)
for k > k4. The use of this form did not generally
lead to as good fits as did the quadratic, and the
curvature seemed too extreme at the top ages.
Second, the quadratic was made more general by
replacing the exponent 2 with a coefficient {a,) to
be estimated: b, = a, + a,k + ask®. This al-
lows the curvature to be either more or less
extreme than that implied by the quadratic. This
did not work because the estimates of as and a
were too collinear for any confidence to be placed
on the results. The estimates of a, were gener-
ally around 2, with large estimated standard er-
rors. Finally, two linear segments were aliowed
before the quadratic took over, one between &,

2 These restrictions are examples of polynomial spline re-
strictions. See Poirier (1976} for a general discussion of poly-
nomial splines.
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and k, and one between k, and, say, k,. The two
linear segments were restricted to touch at &,,
and both %, and k, were estimated. This speci-
fication did not work for the individual events
because the estimates were too collinear, but
estimates were obtained for the pooled regres-
sion. The results for the pooled regression are
reported below. It will be seen that the added
generality of two linear segments had only a
minor effect on the overall results.

The Data

The track data are from Masters Age Records
for 1990, and the road racing data are from
TACSTATS /USA. The track data give the cur-
rent world record by age for each event. The road
racing data give the current best time by an
American for each event. (Data on world records
by age are not yet available for road racing.) Let
r, denote the log of the observed record time for
age k for a given event, and let ¢, denote the
difference between r, and the unobserved b,. r,
can thus be written:

r,=b, +e¢,. (3)
€, is the measurement error for r,.

In principle €, can be cither negative or posi-
tive, although negative measurement error does
not seem likely. Two possible reasons for negative
measurement error are (1) the true distance of
the race is shorter than the stated distance, and
{2) the time is recorded too low. These kinds of
errors are likely to be small because the races and
records are monitored closely.

The story is different, however, regarding posi-
tive measurement error. The relevant question to
consider is how many races for a given event have
to be run by runners of age k£ before r, becomes
a good estimate of b,? Let N, denote the (uncb-
served) number of men age & who have run the
particular event in question up to the current
time. f N, is in the millions, as it may be for
runners in their 30s and 40s, there is probably a
good chance that one has sampled close to the
theoretical lower bound. If, on the other hand,
N, is only in the thousands or tens of thousands,
as it probably is for very old runners, one is not
likely to have sampled ciose to the lower bound.
In fact, it is commonly stated that therc are now
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many more runners, say, age 50 than there used
to be, and as these runners age, the age records
are likely to fall considerably. In 1989, nine age
records in the 100 meters were broken, six of
these for ages over 80. Eleven age records in the
10,000 meters were broken, seven of these for
ages over 60, Results for other events are similar.?
The large number of records broken in a single
year indicates that the lower bound is far from
being observed for many ages. This problem of
not having a large enough sample at the higher
ages to get a good estimate of the lower bound
will be called the “small N,” problem.* Put an-
other way, this problem is simply an order-statis-
tic sampling problem.

Two adjustments were made in the data to try
to account for the small N, probiem. First, the
key assumption of this study is that after age k,,
b, is greater than b, _; for i positive (men slow
down with age). Given this assumption, if r, is
greater than r, . ; for any positive i, r, must have
a relatively large positive measurement error as-
sociated with it. Observations of this kind, where
the time for a given age is greater than the time
for some older age, were not used.

Second, observations at very high ages were not
used. The ages not used were always over 78 and
in most cases over 81. The highest age used was
89, for 100 meters. An age cutoff was made at the
point where there was a large increase in the
record time from one age to the next relative to
the sizes of the previous increases. In discarding
observations above the cutoff it is implicitly as-
sumed that the siow times are due to the small
N, problem and not to the fact that there is
actually a large jump at that age. In other words,
the problem is assumed to be a sampling prob-
lem, not a biological characteristic.

These two adjustments may not be encugh to
completely eliminate the small N, problem, and
so the following results may be biased in the
sense of overestimating the slowdown rate, espe-
cially at the older ages. An interesting question

3 Compare the records in Masters Age Records 1990 with
those in Masters Age Records 1989.

4 The reason women were not considered in this study is
that the small N, problem seems very serious for them.
Sacieties have not generally encouraged old women to run in
track meets and road races. :
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for future research is whether more can be done
with the current data to try to adjust for the small
N, problem. It is the case, for example, that N,
is likely to be a decreasing function of & and that
€, is a decreasing function of N,. Therefore, ¢,
is likely to be an increasing function of k. The
approach taken in this study in dealing with this
problem is simply to truncate the sample at the
point where the size of the effect of & on ¢,
appears to become large. An alternative ap-
proach would be to parameterize the function
relating k to €, (say €, = v, + v,k + y;k” for k
greater than some value &), add this to (3), and
try to estimate the new parameters (y,, ¥, ¥3, k)
along with the others. The data may not be good
enough to allow anything sensible to come out of
this, but it is a possible area for further research.

Another possible approach is the following.
Denote the density function in figure 1 for a
given age k as f(q,,©,), where g, is the log of
the time in the event of an individual of age
k and @, is a vector of parameters. Let g
denote the minimum value of g, in a sample of
size N,. g™ is an order statistic, and let
g(gM™» @,, N,) denote its density function. The
functional form of g depends, of course, on the
functional form of f. The data used in this study
are observations on g™ for k£ 35 and over.
Given (1) observations on g™, (2) an assumption
about the functional form of f, (3) a parameteri-
zation of the elements of ®, as functions of k,
and (4) values for N, or a parameterization of N,
as a function of &, one could estimate the param-
eters by maximum likelihood. Again, the data
may not be good enough to aliow sensible esti-
mates to be obtained using this approach, but it is
another possible area for further research.

Until further work is done, the present results
should be interpreted with caution. If the same
estimation is done ten or twenty years hence, it is
likely that the estimated slowdown rates will be
smaller than the currently estimated rates.
Whether they will be only slightly smaller or a lot
smaller is an important open question.

Note finally that if all ages are getting better
over time (say because of better nutrition, better
training methods, or better equipment), this will
not affect the estimated slowdown rates as long as
all ages are getting better at the same rate.
Progress like this will affect the estimated slow-
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down rates only if it differentially affects the
various ages.

The Econometrics

let d,=1if k<k, and d, =0 if k> k,.
Using this notation, substituting (1) into (3), and
using the restrictions in (2) vields the equation to
be estimated:

rk*=c!1 'Q‘ﬂzk“}'as(} —dk)
X(kg - 2k3k + kz) + Ek’
k=35..K. (4

There are four parameters to estimate, a,, a,,
a;, and k,, where it should be remembered that
d, is a function of k,. K is the oldest age in the
sample period. There are age gaps in the sample
period because of the exclusion of observations
with dominated times.

Let 7, be the predicted vaiue of r, from equa-
tion (4) for a particular set of coefficient esti-
mates. The main interest in this study is in the
derivative of 7, with respect to k. This derivative
is

3, Sk = &, + 265(1 —d )k - k),  (5)

where a hat over a coefficient denotes its esti-
mate. This derivative is not a function of the
estimate of the constant term a, in {(4), and so
the size of the constant term is not of direct
concemn here.

Eqguation (4) pertains to a particular event. If
one is willing to assume that a,, a;, and k, are
the same across events, then the data on the
different events can be pooled and more efficient
estimates obtained. It does not seem unreason-
able that the derivatives are the same at least for
events close to each other in distance. When the
data are pooled, different constant terms are
needed for each event, since these obviously vary
with distance. When the data were pooled for the
results below, the following equation was esti-
mated {n is the number of events pooled):

T = B1Dyy + - +B, Dy + gk
+ as(l - d;k)(kg - 2k3k + kz) -+ eﬂt’
i=1,...,mk=135_._.K;, (6)

where r,; is the log of the observed record for
event i and age k, D;;, is a dummy variable that
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15 equal to one when event { is equal to j and
zero otherwise (j=1,...,n), d,, =1 if k <k,
and d,, = 0 if &k > k,, ¢, is the measurement
error for event i and age k, and K, is the oldest
age used for event i. Again, there are age gaps in
the sample period for a given event because of
the exclusion of dominated observations. The n
B; coefficients in equation (6) are the n different
constant terms.

Return now to the estimation of equation (4}.
Since positive measurement error for r, is more
likely than negative measurement error, the mean
of ¢, is likely to be positive. f there is no
negative measurement error at all, then ¢, = 0
for all k. A positive mean for ¢, poses no prob-
lem in the estimation of equation (4) because the
positive mean is merely absorbed in the estimate
of the constant term. If the mean of ¢, is &,
define €f = ¢, — €, where e has mean zero.
Equation (4) can then be rewritten with €} re-
placing €, and the constant term changed from
a, to a, + €. In this case «, is not identified, but
this is of no concern here because the derivatives
do not depend on a,. One can thus estimate (4)
by nonlinear least squares in the usual way. This
estimation procedure will be called the NLS pro-
cedure.

There is, however, another estimation method
that is of interest to consider. Under the assump-
tion that ¢, > 0 for all k, equation (4) can be
estimated under the restriction that all estimated
residuals are non-negative. This procedure is
common in the estimation of frontier production
functions—see, for example, Aigner and Chu
(1968) and Schmidt (1976). The one added com-
plication here is that equation (4) is nonlinear in
coefficients. For linear equations the estimation
problem can be set up as a quadratic program-
ming problem and solved by standard methods,
but for nonlinear equations some other proce-
dure must be found.

The procedure used for the results below is the
following. In the standard case the coefficients in
equation (4) are estimated by minimizing the sum
of squared residuals F_..é;. Instead, one can
minimize a weighted sum TX_ 1, &2, where A, is
equal to 1 if é, 2 0 and is equal to a number
greater than one if €, < 0. This penalizes nega-
tive errors more than non-negative ones. For the
work below a value of 100 was used for A, when
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€, was less than zero. This was large enough to
make nearly all the estimated residuals non-nega-
tive at the optimum.® This estimation procedure
will be called the “frontier” procedure.

It turns out, as will be seen below, that the
use of the frontier procedure instead of the
NLS procedure has only a small effect on the
estimated slope coefficients and thus on the esti-
mated derivatives. The use of the frontier proce-
dure primarily affects the estimate of the constant
term, which is not of concern here.

An attempt was also made to estimate the
parameters of (4) under the assumption that €,
follows a gamma distribution, as discussed in
Greene (1980). The use of this distribution has
the advantage of allowing the statistical proper-
ties of the maximum likelihood estimator to be
readily obtained, which the procedure discussed
above does not. It aiso accommodates quite flex-
ible shapes of the error distributions. Unfortu-
nately, sensible results could not be obtained
following this approach. The estimates of the two
distribution parameters (P and A in Greene's
(1980) notation) were usually not sensible, and
convergence was hard to obtain. It would be
interesting to see in future work if this approach
could be made to work, but the effort so far
(which was considerable} was not successful.

III. Results
NLS Estimates

The results of estimating the equation for each
event by itself are presented first in table 1 (lines
i-17). The estimates of a,, k3, and a5 and their
estimated standard errors are presented along
with the implied values of the derivatives at ages
50, 60, 75, and 95. (The implied value of the
derivative for ages below k, is &,.) The estima-
tion technique for these results is NLS.

Set aside for the moment the 100 meter, 200
meter, and marathon events. Of the remaining
fourteen events, two stand out as being consider-
ably different from the rest in table 1: 10,000

% This procedure does not guarantee that all the estimated
residuals are non-negative because if €, is negative but very
close to zero, its contribution to the objective function is small
even if A, is large. In practice the negative errors were very
close to zero and were for all intents and purposes zero.
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TabLE 1.—THe EstimaTion RESULTS FOR THE TRACK AND RoaD Racing EVENTS
. ) Derivative at Age No. Max
Line Dist. ay SE{a,) k5 SE(k,) as SE(ag) 50 60 75 95 SE  Obs. Age
Track
1 100 0048 0013 465 7.9 00013 06002 0057 0083 0123 017% 015 29 89
2 200 0076 0003 65.8 1.8 D006 00012 0076 0076 0179 0403 012 27 82
3 400 0068 0012 510 55 00021 00004 0063 0106 0168 0251 016 25 81
4 800 0052 0083 371 3.2 00012 00002 0083 0107 0143 0192 014 28 79
5 1500 .0O88 D006 540 4.4 00018 00004 .00BR 0108 0182 0233 013 3 82
6 3000 0080 .0008 528 4.1 00024 00005  D0BD 0114 0186 0281 015 24 82
7 5000 .0087 .0009 501 6.3 00013 00003 0087 0112 0150 .0201 .03 29 83
8 10000 0089 0014 473 17.8 00006 00004 0092 0105 0125 0150 015 24 82
Road Racing
9 5K D05 0012 576 6.2 00035 00013 0075 0091 0195 0335 .07 24 g2
10 10K 0071 0005 519 5.7 00020 00006 0071 0104 .i6d 0244 020 K} | 81
n 15K 0066 0013 48.7 7.5 00016 .00004 0070 0101 0147 .0210 .016 28 82
12 10M1 0066  .0031 451 19.6 00011 00005 0077 0100 0134 D180 .023 20 81
13 206 0052 0044 422 219 00014 .00005 0073 0100 .0l41 0196 025 18 1
14 1/2MA 0042 0076 401 250 00018 00004 0077 0113 0166 0237 029 22 81
15 MK 0054 0033 467 135 00023 060012 0070 0116 0185 0277 032 12 78
% 20M1 0055 0024 491 94 00028 00011 0059 0115 0198 .0309 027 11 78
17 MA D063 0009 582 25 00061 00012 0063 .00BS 0269 0515 .19 21 9
. : Pooled
i8? D069 0006 477 30 00016 0000t 0076 0109 0157 0221 021 256 83
19 0057 0018 490 15 00026 00009 0062 0115 0194 0299 030 23 78
Her hod
Line®
20 1 0046 - 493 e 00014 —_ 0048 0077 0120 0177 — 29 89
21 2 0079 - 669 — 00064 — 0079 0079 0183 441 — 27 82
22 18 0081 e 514 —_— 00014 —— 0081 0104 0146 0201 — 256 83
23 19 DO4s — 518 — 00035 e 0045 0103 0209 0351 - ] 78
24 17 0053 —_ 59.0 — 00077 — 0053 0068 0375 0606 02— 21 o

Note: Max Age « Oldest age used in the sample period.
;Thc ponied equations are 37, 1014,

The poovled equations are 15, 16.
€ 'The frontier method used for the equation in this line above.

meters and SK.° For 10,000 meters there is a
small estimate of ag, which means that the
derivatives grow very slowly with age. For 5K the
opposite is true. Note in particular that 10,000
meters is quite different from 10K even though it
is the same distance, and likewise for 5K and
5,000 meters. It may be that the 10,000 meter and
5K results reflect considerable measurement er-
ror, given that they are so different from the rest.

The other two events that have somewhat dif-
ferent results are 30K and 20 miles. These both
have slightly larger estimates of as than the events
between 400 meters and the half marathon ex-
. cept for 3000 meters. Two things could be going

S The 5000 meter and 10000 meter road racing events are
denoted 5K and 10K, respectively, to distinguish them from
the track events of the same distance.

on here. First, it may be that at roughly the 30K
distance, the slowdown rate at a given age begins
to increase, and this is what the estimates are
picking up. Second, the results may be unreliable.
The 30K and 20 mile events are not as popular as
the others, and so there is more of a potential
small N, problem here. The potential small N,
problem also reveals itself in the fact that the
samples are small for these two events (12 and 11
observations, respectively). The samples are small
because many of the records were dominated by
records at older ages and so were discarded. The
high number of dominated records probably indi-
cates a small N, problem. It is thus an open
question as to whether the 30K and 20 mile
results are capturing an increase in the slowdown
rate at a given age across distances or are simply
due to a small sample problem.
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The remaining five track events (400 meters
through 5,000 meters) and five road racing events
(10K through the half marathon) give similar
results. There is no evidence of anything varying
in a systematic way across distances. The implied
derivatives at age 60 across the ten distances are
in remarkably close agreement; the range is only
0.0100 at 10 miles and 20K to 0.0114 at 3000
meters. There is more variation in the estimaties
of a,, where the range is (.0042 at the half
marathon to 0.0087 at 5000 meters. The range at
age 75 is 0.0134 at 10 miles to 0.0186 at 3000
meters, and the range at age 95 is 0.0180 at 10
miles to 0.0281 at 3000 meters. The estimated
standard errors for @, and k; are fairly large for
some events. ,

Given that no systematic variation across dis-
tances is evident in the ten events, it seems sensi-
ble to pool them to obtain more efficient esti-
mates. The results of doing this are reported in
line 18 in table 1. The estimate of a, is 0.0069,
with an estimated standard error of 0.0006, and
the estimate of k, is 47.7, with an estimated
standard error of 3.0. The derivatives are 0.0076
at age 50, (,0109 at age 60, 0.0157 at age 75, and
0.0221 at age 95.7

These pooling results are not sensitive to the
exclusion of the 10,000 meters, 5K, 30K, and 20
mile events, When the observations from these
events are included in the pooling, the estimates
of a, and k, are 0.0069 and 48.3, respectively,
and the derivatives at ages 50, 60, 75, and 95 are
0.0075, 0.0109, 0.0159, and 0.0227, respectively.

TUnder the assumption that &, is normally distributed,
which cannot be quite right because of the truncation issues,
an F-test can be used to test the hypothesis that a,, as, and
k4 are the same across the ten events. There are 27 restric-
tions, and the number of observations in the pooled regres-
sion is 256, The F-value was 2.17, which compares with the
critical value at the 1% level of 1.82, and so the hypothesis is
rejected. Simitar results were obtained when other sets of
events were used. The hypothesis that the coefficients are the
same across the specified events was usuvally rejecied, al-
though the computed F-values were usually not too much
abave the critical values. (The hypothesis that the coefficients
are the same for 30K and 20 miles was, however, not rejected
at the 5% level)

I am not inclined to take these rejections as strong evidence
against pooling. The computed F-values were never too far
from not rejecting the null hypothesis; the sample size is smali
relative to the number of restrictions; and there seems to be
no compelling reason for believing that the coefficients change
across the particular events, especially since no systematic
pattesns across the ten events were evident when the equa-
tions were estimated individually.
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These estimates are very close to the estimates
presented in table 1 when the four events are
excluded.

Consider now the 100 meter, 200 meter, 30K,
20 mile, and marathon events. For 100 meters the
results indicate that the rate of slowdown is
smaller than it is for the other events. The esti-
mated age at which the quadratic takes over is
similar for 100 meters versus the pooled sample
(46.5 versus 47.7), but the sizes of the derivatives
are smaller. For example, at age 60 the slowdown
rate is 0.0083 compared to 0.0109 for the pooled
sample. At age 95 the rate is 0.0175 compared to
0.0221 for the pooled sample.

The resuits for 200 meters are quite different
from the rest. The estimated age at which the
quadratic takes over is 65.8, which is much higher
than the other estimates. Also, the estimate of ay
is much larger, which means that once the
quadratic takes over, the estimated increase in
the slowdown rate is larger than it is for the other
events. The derivatives at age 60 are similar for
100 and 20Q meters, but the derivative is notice-
ably larger at age 75 for 200 meters and consider-
ably larger at age 95 (0.0403 versus 0.0175). Be-
cause the 200 meter results stand out as being
much different from the rest—both from the 100
meter results and from the results for 400 meters
and above—they should be interpreted with con-
siderabie caution. It seems likely, for example,
that the increase in the slowdown rate after age
64 has been overestimated.

Given that the results for 30K and 20 miles are
similar to each other and differ somewhat from
the rest, it is of interest to pool the two evenis.
The results of this pooling are presented in line
19 in table 1. Comparing lines 18 and 19, it ¢can
be seen that the estimated stowdown rate for 30K
and 20 miles is lower at the younger ages and
higher at the older ages. Although not shown in
the table, the age at which the slowdown rate
becomes greater for 30K and 20 miles is about 59.
By age 95 the estimated slowdown rate is 0.0299
for 30K and 20 miles versus 0.0221 for the others.

The results for the marathon in line 17 con-
tinue the paitern of the estimated slowdown rate
being lower at the younger ages and higher at the
older ages. Although not shown in the table, the
age at which the slowdown rate becomes greater
for the marathon compared to the pooled events
in line 18 is about 63. The estimated age at which
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the quadratic takes over is 58.2, which is higher
than all the other estimates except the one for
200 meters. The estimate of a, is 0.0063, which
means that until age 58 the estimated slowdown
rate is constant at 0.63% per year. After age 58
the estimated slowdown rate picks up fairly
rapidly (the estimate of « is large), and by age
95 the derivative is by far the largest of any event
at 0.0515. This derivative is even much larger
than the derivative for the 30K and 20 mile
events.

The differences between the marathon deriva-
tives and the other derivatives at the older ages
are large enough to make one question whether
the marathon results should be trusted. There
may be, however, more to the marathon than a
mere 6.2 miles beyond 20 miles. Anyene who has
run the last 6.2 miles in a marathon can appreci-
ate this. If there is an important nonlinearity in
going from 20 miles to the marathon, one might
expect there to be a more rapid increase in the
rate of slowing down at older ages for the
marathon. This is what the current results show,
although the estimated size of the effects should
be taken with considerable caution.

Frontier Estimates

The final estimates in table 1 were obtained
using the frontier procedure. Resuits are pre-
sented for 100 meters, 200 meters, pooled 400
meters through the half marathon, pooled 30K
and 20 miles, and the marathon. The results
using the frontier procedure are quite similar to
the other results. None of the comparisons and
conclusions discussed above are changed by the
frontier results, although the results for 200 me-
ters (line 21) are somewhat less extreme using the
frontier method than they are using NLS.

Graphs

Figure 3 presents plots of actual and predicted
values for four events—100 meters, 200 meters,
5000 meters, and the marathon. The actual values
are the values used in the estimation, and so they
de not include the dominated values (which were
excluded) and the values excluded at the high
ages. The predicted values are from the frontier
estimates. For 100 meters, 200 meters, and the
marathon, the frontier estimates are presented in
lines 20, 21, and 24, respectively, in table 1. The
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frontier estimates for 5000 meters were obtained,
but they are not presented in table 1.

The plots for 100 meters and 5600 meters show
that the curvature for the quadratic is quite mod-
est once the gquadratic takes over. The plot for
5000 meters is quite typical of the events 400
meters through the half marathon. The quadratic
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for 200 meters does not begin until age 63, but
after it begins the curvature is greater than that
for 100 meters and 5000 meters. This feature was
discussed above. The curvature is much greater
for the marathon once the quadratic takes over,
which was also discussed above. The four plots in
figure 3 give a pood indication of the nature of
the datz and the type of fits that were obtained.

Estimating an Additional Linear Segment

As mentioned in section II, the main pooled
equation (line 18 in table 1) was also estimated
assuming two linear segments before the
quadratic takes over. In this case two additional
parameters are estimated, the slope of the second
linear segment and the break point between the
two linear segments. This added flexibility re-
sulted in a very modest increase in fit—the stan-
dard error of the regression only fell from 0.02108
to 0.02063. The two estimated break points were

-40.2 and 48.0, compared to the one break point
of 47.7 in line 1B8. The estimated standard error
of the first estimated break point was large, 17.5.
The slope of the first linear segment was slightiy
larger than the slope of the second linear seg-
ment (0.0088 versus 0.0082), but the difference
was not close to being statistically significant, The
derivative at age 60 was 0.0112 compared to
0.0109 in line 18, and the derivative at age 95 was
0.0198 compared to 0.0221 in line 18. In short,
the added flexibility made little difference.

IV. Age-Graded Tables

It is possible to use the coefficient estimates in
table 1 to estimate the ratio (denoted R,) of the

1

lower bound time at a given age k to the best
lower bound time regardless of age. To do this,
one needs a starting point, which in the present
case is a value for R,;. Given Ry Ry is Rag(1
+ D,,), where D, is the derivative at age &
computed from the estimated equation (remem-
ber that the derivatives are in percentage terms).
R;; is then Ry (1 + D4,), and so on.

The inverse of R, is called an “age-factor” in
Masters Age-Graded Tables (MAGT), and tables
of age-factors are presented in MAGT for vari-
ous events. Although MAGT does not explain
how the age-factors were arrived at, it is of inter-
est to see how they compare to the age-factors
computed in this study. Table 2 presents the
implied values of R, (the inverse of the age-fac-
tors) from the table on page 24 in MAGT. These
age-factors are for the 5K through half marathon
events. The percentage changes in R, are also
presented in table 2, along with the change in the
percentage changes. These are the equivalent of
the first and second derivatives of equation (4).

Table 2 shows that the MAGT value of R, for
age 35 is 1.02838, This means that MAGT has
assumed that some loss in time has occurred by
age 35 (2.838% ta be exact).

Table 2 also presents values of R, implied by
the estimates in line 22 in table 1. These are the
estimates for the pocled events 400 meters
through the half marathon, estimated by the fron-
tier procedure. To make these values of R, com-
parable to the MAGT values, the MAGT value
of 1.02838 was used for R, for the starting point.
The derivatives from the equation and the
changes in the derivatives are also presented in
table 2. )

Two interesting conclusions emerge from table
2. First, the MAGT derivatives are (with one
exception) increasing with age, but the sizes of
the increases are erratic. The derivatives from
this study, on the other hand, are constant through
age 47 (actually 47.7) and then change at a con-
stant amount (0.00028) after that. This constant
rate of change is, of course, due to the use of the
gquadratic functional form. The erratic behavior
of the change in the MAGT derivatives does not
seem sensible. It seems unlikely, for example,
that the derivative would change by 0.00033 at
age 77, 0.00003 at age 78, (0.00050 at age 79, and
0.00004 at age 80. Nature is not generally like
this. '



112 THE REVIEW OF ECONOMICS AND STATISTICS

TabLe 2.—COMPARISON OF ESTIMATED AGE-FACTORS

MAGT Present Study
Age R, D, Dy = Dy Ry D, Dy =D,y

35 1.02838 —_ - 1.02838 —_ —

36 1.03455 0.00600 — 1.03666 0.00805 —

Kyl 1.04080 0.00604 0.00004 1.84501 0.00805 0.00000
38 1.04723 0.00618 0.00014 1.05343 0.00805 0.00000
39 1.05374 0.00622 0.00004 1.06191 0.00B05 0.00000
40 1.06045 0.00636 0.00015 1.07047 0.00805 (.00000
41 1.06724 0.00640 000004 1.07909 0.00805 0.00000
42 1.07411 0.00644 0.00004 1.08778 0.00805 0.00000
43 1.08120 0.00660 0.00015 1.09654 0.00805 0.00000
44 1.08849 0.00675 0.00015 1.10537 0.00805 0.00000
45 1.09589 0.00679 0.00005 1.11428 0.00805 0.00000
46 1.10327 000673 - (.00006 1.12325 0.00805 0.00000
47 1.11086 0.00689 0.00016 1.13230 0.00805 0.00000
48 1.11882 0.00716 0.00027 1.14142 0.00805 0.00000
49 1.12714 0.00744 0.00028 1.15061 0.00805 0.00060
50 1.13585 0.00772 0.00G28 1.15988 0.00805 0.00000
51 1.14482 0.0079G 0.00018 1.16922 0.00803 0.00000
52 1.15420 0.00819 0.00030 1.17884 0.00823 0.00017
53 1.16411 0.00850 0.00030 1.18887 0.00850 0.00028
54 1.17412 0.00869 0.00019 1.19930 0.00878 (.00028
55 1.18469 0.00900 0.00032 1.21017 0.00906 0.00028
56 1.19589 0.00945 0.00044 1.22146 0.00933 0.60028
57 1.20744 0.00966 0.00021 1.23320 0.00961 0.00028
58 1.21936 0.00988 0.00022 1.24539 0.60989 0.60028
59 1.23153 0.00998 0.00010 1.25804 0.01016 0.00028
60 1.24409 0.01020 0.00023 1.27117 0.01044 0.00028
61 1.2569 0.01031 0.60011 1.28479 0.01071 0.00028
62 1.27000 0.01041 0.00011 1.29891 0.01099 0.00028
63 1.28370 0.01078 0.00037 1.31354 0.01127 0.60028
64 1.29769 001090 0.00012 1.32871 0.01154 0.00028
65 131199 0.01102 0.00012 1.34441 0.01182 0.00028
66 1.32679 0.01128 0.00026 1.36067 0.01209 0.00028
67 1.34210 0.01154 0.00026 1.37750 0.01237 0.00028
68 135717 0.01168 0.00013 1.39492 0.01265 0.00028
69 137382 0.01181 0.00014 1.41295 0.01292 0.00028
70 1.39043 0.01210 0.00028 1.43160 0.01320 0.00028
K 140726 0.01210 0.00001 1.45000 0.01348 0.00028
n 1.42470 0.01239 0.00029 1.47085 0.01375 0.00028
73 1.44259 0.01255 0.00016 1.49148 0.01403 0.00028
74 1.46113 0.0128¢6 0.00031 1.51282 0.01430 0.00028
TS 1.47995 0.01288 0.00002 1.53488 0.01458 0.00028
76 1.49925 0.01304 0.00017 1.55768 0.01486 0.00028
77 1.51930 0.01337 0.00033 1.58125 0.01513 0.00028
i 1.53965 0.01339 0.00003 1.60562 001541 0.00028
7% 1.56104 0.01389 0.00050 1.63081 0.01569 0.00028
80 1.58278 0.01393 0.00004 165684 001596 000028
81 1.60514 0.01413 0.00020 1.68374 0.01624 0.00028
82 162840 0.01449 0.00037 1.71155 0.01651 0.00028
&3 1.65235 0.01471 0.00021 1.74029 0.01679 0.00028
84 L6770 001493 0.00022 1.76999 0.01707 0.00028
85 1.70242 0.01515 0.00023 1.80069 0.01734 0.00028
B6 1.72861 0.01538 0.00023 1.83241 0.01762 0.00028
87 1.75593 0.01580 0.00042 1.86521 0.01790 0.00028
88 1.78380 0.01588 0.00007 1.89910 0.01817 0.00028
B9 1.81291 0.01632 C.00044 1.93414 0.01845 0.00028
2 1.84264 0.01640 0.00008 1.97035 0.01872 0.00028

Notes: MAGT w Masters Age-Graded Tables, R, is the inverse of the age-factors in MAGT. The MAGT
age-faciors are for the SK through ball marsthon events, The age-factors from the present study sre from the
estimates in line 22 in table 1. D, is the percentage change in R,: D, = (R, /R, 1) — 1.
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The second conclusion is that the values of R,
are always higher for the present study. By age 90
the value of R, is about 7% higher than the
MAGT value. MAGT thus assumes that men
slow down at a slower rate than seems warranted
by the data.

Table 3 presents five sets of values of R,
implied by the present study. The values are
based on the coefficient estimates in lines 20-24
in table 1, which were obtained using the frontier
estimation procedure. The starting values of R,
{at age 35) are taken from MAGT. The values of
R, are presented through age 100, although the
values for about age 83 and above are extrapola-
tions bevond the end of the estimation range and
should be interpreted with more caution.

As noted in section III, the 200 meter results
are somewhat suspect. If the 200 meter results
are ignored, table 3 shows that beginning with
age 79 the values of R, increase with the length
of the race. At age 90 the values are 1.6979 for
100 meters, 1.9704 for 400 meters through the
half marathon, 2.2169 for 30K and 20 miles, and
2.8573 for the marathon. If the best marathon
time is taken to be 2 hours and 6 minutes, the
value of R, for the marathon implies that the
best time for a 90 vear old is 6 hours (2.8573
times 2 hours and 6 minutes). At age 100 the four
values of R, are, respectively, 2.0265, 2.4076,
3.1398, and 5.1821, although again these values
are extrapolations way beyond the end of the
estimation petriod.

Coming back to the MAGT values, although
not shown in table 2, the MAGT value of R, at
age 90 for 100 meters is 1.6736. This is again
lower than the value of 1.6979 in table 3, al-
though in this case the values are quite close. The
MAGT value of R, at age 90 for the marathon is
1.8171, which is considerably lower than the value
of 2.8573 in table 3. The MAGT values imply that
the slowdown rates for the marathon are smalier
than they are for the SK through half marathon
events, which is the opposite of what the empiri-
cal results seem to show and of what is presented
in table 3. Using a best marathon time of 2 hours
and 6 minutes, the MAGT value of 1.8171 for age
80 implies that the best time for a 90 year old is 3
hours and 49 minutes, which compares to the
above estimate of 6 hours using the results in this
study.
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Use of Table 3 by Individuals

The key assumption of this paper so far is that
b, when plotted against k looks like that de-
picted in figure 2 from age k, on. An additional
assumption is needed to justify the use of table 3
by a single individual. This assumption is that the
difference in figure 1 between an individual’s
position on the horizontal axis and b, does not
change as b, changes with age. If this assumption
is true, it simply means that the individual's times
are increasing at the same percentage rate as the
record times are increasing. Obviously, injury or
illness will increase one’s distance from b,. Also,
if average runners slow down at a different rate
from elite runners, then the distance from b, for
an average runner will be changing over time,
thus making the results in table 3 unreliable.
Finally, if prolonged running wears out parts of
the body—the opposite of use-it-or-lose-it-—then
one’s distance from b, will change over time as a
function of how much past running has been
done. This will also make the results in table 3
unreliable.

Given the assumption that one’s distance from
b, in figure 1 is constant over time and given an
estimate of one’s best time ever in the event, the
values of R, in table 3 can be used to compute
one’s projected times by age. Race officials can
also use the values to adjust each runner’s time
for his age.

V. Comparison to the VO, . Results

A common measure of aerobic capacity in
physiology is VO,,.... It is well known that VO,_,,
declines with age, and it is of interest to see how
this decline compares to the decline in running
performance estimated in this study. There seems
to be nothing in the physiological literature for
VO, that is equivalent to table 3, but there are
some relevant results. Rogers et al. {1990) report
a decline of 4.1% in 7.5 years in master athletes
whose average age at the start was 62. This is a
yearly fall of 0.0054, which compares to 0.0115 in
table 3 for age 64 and the events 400 meters-half
marathon. Heath et al. (1981) report between 2
5% and 9% decline per decade for subjects be-
tween the ages of 50 and 62. A 5% decline is a
yearly fall of 0.0049, and a 9% decline is a vearly
fall of 0.0087. These numbers compare to 0.0096
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TaBLE 3.—ESTIMATED AGE FAcTORS
R, = PROJIECTED TIME FOR AGE K DIVIDED BY DVERALL BEST TIME
D, = PERCENTAGE CHANGE I¥ R}

400 Meters-
100 Meters 200 Meters Half Marathon 30K, 20 Miles Marathon
Age R, D, R, D, R, D, R, D, R, D,
35 1.0368 0.0046 10442 0.0068 1.0284 0.0080 1.0284 0.0045 1.0143 0.0053
36 116 0,0046 1.0512 0.0068 1.0367 0,000 1.03306 0.0045 1.0197 0.0053
37 1.0463 0.0046 1.0583 0.0068 1.0450 0.008B0 1.0376 0.0045 1.0251 0.0053
38 1.0512 0.0046 10655 {0.0068 10534 0.0080 1.6422 0.045 1.0305 0.0053
39 1.0560 0.0046 1.0727 0.0068 1.0619 0.0080 1.8469 0.0045 1.0360 (.0053
40 1.0608 0.00465 1.0B00 0.0068 10765 0.0a80 L0515 0.0045 1.0415 {.0053
41 1.0657 0.0046 1.0873 0.0068 1.0791 0.0680 £.0562 0.0045 1.0470 0.0053
42 1.0706 0.0046 1.0946 0.0068 1.0878 0C.00B0 10610 0.0045 1.0526 0.0053
43 1.0755 0.0046 1.1020 0.0068 1.0965 0.0080 1.0657 0.0045 10581 0.0053
A4 1.0804 0.0046 11095 0.0068 1.1054 0.0080) L0704 0.0045 1.0637 0.0053
45 1.0854 0.0046 L1170 0.0068 1.1143 0.0080 1.0752 0.0045 1.0694 0.0053
46 1.0904 0.0046 1.1245 0.0068 1.1233 0.0080 1.0800 0.0045 1.0751 0.0053
47 1.0954 0.0046 1.1324 0.0068 1.1323 0.0080 1.0849 0.0045 £.0808 0.0053
48 1.1004 0.0046 1.1398 0.0068 1.1414 0.0080 1.0897 0.0045 1.0865 0.0353
49 1.1085 0.0046 1.1475 0.0068 1.1506 0.0080 1.0946 0.0045 1.0922 0.0053
50 1.1107 0.0048 1.1553 0.0068 1.1599 0.0080 10994 0.0045 1.0980 0.0053
51 11164 0.005! 1.1631 0.0068 1.1692 00080 11043 0.0045 1.1039 G.0053
52 11224 20054 1.1709 0.0068 1.1788 Q0082 1.1094 0.0046 L1097 Q0053
53 i.i287 0.0056 1.17B9 0.0068 1.1889 0.0085 11183 0.0053 1.1156 0.0053
54 1.1354 0.0059 1.186% 0.0068 11993 0.0088 1.1220 0.0060 1.1215 0.0053
55 1.1424 0.0062 1.1949 0.0068 £2102 0.0091 1.1296 0.0067 1.1275 0.0053
56 1.1499 0.0065 1.2029 0.0068 1.2215 0.0093 1.1380 0.0074 1.1334 0.0053
57 1.1577 0.0068 2111 0.0068 1.2332 {.0056 1.1472 0.0081 1.1395 0.0053
58 1.1659 1.0071 1.2193 0.0068 1.2454 0.0099 11574 (.0089 1.1455 0.0053
59 1.1745 0.0074 1.2275 {.0068 1.2580 0.0102 L. 1684 0.00% 1.1516 0.0053
60 1.1835 0.0077 1.2358 0.0068 1.2712 0.0HM I EBO4 0.0103 1.1594 0.0068
61 11929 00079 1.2442 0.0068 1.2848 G.0107 LE934 {01 1) 1.1690 0.0083
62 1.2027 00082 1.2526 0.0068 1.2989 00510 1.2073 G.01£7 1. 1806 0.0009
A3 1.2129 00085 12614 0.06068 1.3135 0.6113 12223 0.0124 1. 1940 0.0154
64 1.2236 0.0088 12709 0.0078 1.3287 08115 1.2343 0.0131 1.2094 0.0129
65 1.2347 0.009! 1.2821 0.0088 1.3444 0.0118 1.2554 0.0138 1.2270 0.0145
66 1.2463 00094 1.2946 0.0098 1.3607 0.0121 12736 0.0145 1.2466 0.0160
67 1.2584 00097 1.3085 0.0108 13775 0.0124 1.2930 0.0152 1.2685 0.0175
68 1.2709 0.0100 1.3239 00118 1.3949 0.0126 1.3136 0.0159 1.292% 0.0191
69 1.2839 00102 - 13408 00128 1.4129 0.0129 1,3358 0.0166 13193 00206
70 1.2974 0.0105 1.3593 0.0138 1.4316 0.0132 1.3586 0.0 74 1.3486 0.0222
71 1.3115 0.0108 1.3793 0.0147 1.4509 0.0135 1.3832 0081 1.3805 0.0237
ki 1.3260 00111 1.4010 0.0157 1.4708 0.0138 1.4061 0.0588 {4153 00252
73 1.3411 0.0114 1.4244 0.0167 1.4915 {4140 1.4366 0.0195 1.4532 0.0268
74 1.3568 0.0117 1.4497 00177 1.5128 0.0143 1.4656 0.0202 1.4944 0.0283
75 1.3730 0.0120 14768 0.0187 1.5349 0.0146 1.4962 0.0209 1.5390 0.0298
76 1.3858 0.0123 1.5060 0.0197 1.5577 0.0149 1.5285 0.0216 1.5872 0.0314
77 14072 0.0125 1.5372 0.0207 1.5813 0.0151 1.5626 (.0223 1.6395 0.0329
3 1.4253 00128 1.5705 00217 1.6056 0.0154 1.5986 0.0230 1.6960 0.0345
9 1.4440 0.0131 1.6062 0.0227 1.6308 0.0157 1.6365 0.0237 1.7570 0.0360
80 1.4633 0.0134 1.6442 0.0237 1.6568 0.0160 1.6765 0.0244 1.8229 0.0375
Bl 1.4834 0.0137 1.6848 0.0247 1.6837 0.0162 1.7187 00251 1.8941 0.0391
82 15041 0.0140 1.728) 0.6257 1.7115 0.0165 1.7631 0.0259 1.9710 0.0406
83 1.5255 0.0143 1.7742 ©0.6267 1,7403 0.0168 1.8099 0.0266 2.054) 0.0421
84 154717 0.0146 1.8233 0.0277 1.7700 0.0171 1.8593 0.0273 2.1438 0.0437
85 1.5707 0.0148 1.8756 0.0287 1.8007 0.0173 19113 00280 2.2407 00452
86 1.5944 0.015! 19312 ° 0.0297 1.8324 Q.0176 1.9662 0.0287 2.3455 0.0467
87 16190 90154 1.9504 0.0307 1.8652 [eXi ] i) 2.0240) 0.0294 2.4587 0.0483
88 1.6444 0.0157 2.0534 00316 18991 0.0182 2.0849 0.0301 2.5812 0.0498
89 1.6797 00160 - 2,124 0.0326 1.9341 0.0185 2.1491 0.0308 2.7138 0.0514
o0 16979 0.0163 21917 0.0336 1.9704 0.0187 22169 0.0315 2.8573 0.0529
9l 1.7260 0.0166 22677 0.0346 20078 0.0190 2.2a83 0.0322 3.0129 0.0544
92 1.7551 0.0169 2.3484 0.0356 2.0465 00193 2.3637 0.0329 3.1815 0.0560
93 1.7852 0.0171 24345 0.0366 20865 0.0196 2.4432 0.0336 3.3645 0.0575
G4 1.B162 0.0174 2.5260 0.0376 212719 0.0198 2.5272 0.0344 3.5631 0.0590
95 1.B484 80177 26238 0.0386 21797 0021 2.6158 0.0351 3.7790 Q0606
9% 1.8817 0.0180 2.1278 0.03% 22149 0.0204 2.7054 0.0358 4.0137 0.062)
97 1.9161 Q0183 2.8382 0.0406 2.2667 0.0207 2.8082 0.0365 4.2692 0.0636
98 1.9516 00186 2.9562 0.0416 2.3080 0.0209 2.9127 0.0372 4.5475 0.0652
99 1.9884 0.0189 3.0821 0.0426 2.3569 0.0212 3.0231 0.0379 4.8510 00667
100 20265 0.0191 3.2165 0.0436 24076 0.0215 3.1398 0.0386 5.1821 00683

Notes: The vahlues for Ry are taken from MAGT. The values for R, arc computed using the coeficient estimates in lines 20-24 in wable 1.
Dy =™ Ry /By~ L.
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in table 3 for age 57. Both of these studies thus
show a smaller VO,_,, decline than the esti-
mated decline in performance for the events 400
meters--half rmarathon in table 3. Note in table 3,
however, that the derivative for the marathon is
0.0053 until age 60 and the derivative for 30K, 20
miles is 0.0045 until age 52. These numbers are
close to the VO, ., results.

Dehn and Bruce (1972) provide an interesting
regression 1o compare with the present results,
Using a sample of ages between 40 and 69, they
regress VO, .. adjusted for body weight on age.
The coefficient estimate on age is ~0.362, and
the estimate of the constant term is 52.741. One
can compute from this regression the percentage
fall in VO,,,, at different ages, using the pre-
dicted value from this regression for the given age
as the base value from which to compute the
percentage. The results for selected ages com.
pared to the results for 400 meters—half marathon
in table 3 are:

Age: 40 50 60 70 80 9% 100
VO, 0095 0105 0117 0132 0152 .0180 .0210
Table 3: 0080 .0080 .0104 .0132 016G .0187 - .0215

The agreement in this case from age 60 on is
remarkable, although for ages 40 and 50 the
estimated decline in table 3 is noticeably less than
it is from the VO,,,, regression. Also, estimates
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from the VO, ., regression for ages 50 and 60
are greater than the estimates from the two other
studies reported above, and so the present com-
parisons are quite tentative. An interesting ques-
tion for future work is whether the VO, .. re-
sults for the older ages (say 75 and above) can be
used to help one estimate the slowdown rate at
the older ages, where the small N, problem is so
severe.

V1. The Field Events

The small N, problem is probably more seri-
ous for the field events than it is for the track and
road racing events. This is particularly true for
the shot put, discus throw, hammer throw, and
javelin throw, where in many meets the weights of
the relevant objects are less for older competi-
tors. For this study only the results for the heavi-
est weights were used because these were the
only results for which observations began at age
35,

The same procedure was followed for the field
events as was followed for the other events. The
log of the distance was used as the variable to be
explained, and «, and a; are now expected to be
negative since distance falls with age.® Also, ¢, is

® When the phrase “slow down” is applied to the field
events, il obviously refers to smaller distances rather than
larger times.

_ Tapre 4.~~Tue EsTimaTion RESULTS FOR THE FIELD EVENTS

— i

Derivative at Age

R R No. Max

Line Event 4, SE{a@,) k; SE(k,} dig SE{as) 50 60 75 %5 SE Obs. Age
1 HI 0093 0009 515 62 —.00015 00003 -.0003 -.0119 -—.0163 ~.0223 .M7 26 90
2 PV 0130 0010 &1 21 -~.00108 00019 -—0130 -.0130 ~.0366 —.0798 036 3t 86
3 LJ -0140 0007 740 19 - 00158 00030 -—0140 - Q140 -~ 0173 - 0BOS 040 26 95
4 T -.012% .0012 3531 9.6 -, 00015 00006 —.0125 - 0145 -—0189 -—.0247 022 27 83
5 SP -0281 0010 — - — —_— - 0281 -.0281 -.0281 — 061 23 80
6 DT -.0280 .0013 — - - — —-.0280 —~0280 -.0280 - 070 20 78
7 HT 0275 0009 — — — — -02715 - 0275 ~.0275 — 049 21 76
8 T -0273 Mo — — — — -0273 -0273 -.0273 — 059 26 K2

Pooled
g* -.0278 0005 — — —_ -0278 0278 -2 — 060 9N 80
Frontier Method
Line® :

10 1 0095 «— 627 — —-.00030 - —.0095 —0095 ~0170 —.0290 — 26 L1
11 2 -9 —_ 65.8 _— - 00125 -— —.0129 —.0129 ~.0358 -.0856 ~—- 3 86
12 3 -0135 -~ 754 — -00194  — =0135 -.0135 0135 -.0895 — 26 95
13 4 -0129 — 605 — ~.00018 — -0 -0129 ~0180 -.0251 — 27 83
14 g -.0266 — — — — — -.G266 -.0206 -0266 — -~ 80 80

Notes: Max Age = oldest age used in the sample period. HJ = high jump; PV = pole vault; LI = long jump; TJ = (riple jump; SP « shot put, 16 poands;
DT « discus throw, 2 kgs; HT = hamuner throw, 16 pounds: JT = javelin throw, 800 grams.

* The pooied equations are 5-8.
® The frontier method used for this line above.



116 THE REVIEW OF ECONOMICS AND STATISTICS

TaBLE 5.—EstiMatep Ace Factors For THE FIELD Events
R, = PROIECTED TIME FOR AGE k DIVIDED BY OVERALL BEST TIME
D, = PERCENTAGE CHANGE IN R,

Throwing
High Jump Poie Vault Long Jump Triple Jump Events
Age R, D, R, D, R, Dy R, D, R, b,
35 0.9381 - 00095 0.9302 —0.0129 £.9328 ~{.0135 09311 - 10,0129 0.9351 — 0.0266
35 0.9291 ~ {10095 0.9182 —-0.0129 0.9202 -=0.0135 09191 —0.0129 0.9132 - .0266
37 0.9203 = 0.0095 0.9063 - 0.0129 0.9078 «{.0135 0.9072 —=0.0129 0.888¢9 - 00256
38 0.911% = (L0005 0.8946 -0.0129 0.8955 -0.0135 0.8955 -0.0129 0.8652 - (.0266
i 0.9028 - {0095 (.B830 -0.0129 0.8834 —-0.0135 0.BB40 -0.0129 0.8423 - 0,0266
40 0.8942 — (L0095 08716 - 0.0129 0.8715 =0.0135 0.8725 —0.3129 08199 -~ 0,0266
41 0.8857 = 0.0005 0.8603 - 0.0129 0.8597 —0.0135 0.8613 —~0.0129 0.7981 ~(.0266
42 0.8772 - 0.0095 0.8492 -0.0129 0.8481 ~{.0135 0.8502 -0.0129 0.7769 - 0.0266
43 0.8689 - {.0095 0.8382 -~0.0129 0.8366 -0.0135 0.8392 -0.0129 0.7562 —-0.0266
44 0.8606 - 0.0095 0.8274 —0.0129 0.8253 -0.0138 0.8284 —0.0129 0.736} ~0.0266
45 08524 —0.0095 0.8167 -0.0129 0.8142 -{.0135 0.8177 -0.0129 (.7166 -0.0266
46 0.8442 —0.0095 0.8061 -0.0129 0.8032 ~0.0135 0.807% ~0.0129 0.6975 -~ 0.0266
47 0.8362 - B.0085 0.7957 -~ 0.0129 0.7923 - 00135 0.7967 —=0.0129 0.6790 -0.0266
48 0.8282 - 0.0095 0.7854 -0.0129 0.7816 -{.0135 0.7864 -0.0129 0.6609 —0.0266
49 0.8203 —0.0095 0.77153 - 0.0129 0.7710 =-{.0135 0.7762 -0.0129 0.6433 - 1.0266
50 08125 —0.0095 0.7652 —~.0129 0.7606 —{.0135 0.7662 -0.0129 0.6262 - 0.0266
51 0.8047 - 0.0095 0.7553 -0.0129 0.7503 -0.0135 0.7563 -0.0129 0.6096 ~0.0266
52 0.7971 -0.0095 0.7456 —-(.0129 0.7402 -00135 0.1466 -0.0129 0.5934 —-0.0266
53 0.78%4 - D.0095 0.7359 - (.0129 0.7302 - 0135 0.7369 -0.0129 .577% - {10266
84 0.7819 —-0.0095 0.7264 ~0.0129 0.7203 {00135 0.7274 ~0.0129 0.5623 - 0.0266
55 0.7745 - (LORS 0.7170 -0.0129 0.7106 =00135 0.7180 ~0.0129 0.5473 - Q266
56 0.7671 - 0.0005 0. 7077 —-0.0129 0.7010 —-0.0135 0.7088 ~0.0129 0.5328 -0.0266
57 9.7598 = 0.0095 0.6986 ~0.0129 {.6915 -0.0135 0.6996 -{.0129 0.5186 —0.0266
58 0.7525 - (0.0095 0.6396 -{0.0129 0.6822 -~ 8.0135 8.6906 -0.0129 0.5048 —-0.0266
59 0.7453 ~0.0095 0.6806 - (0.0129 0.6729 =0.0135 06817 =0.0129 04914 - {0266
60 0.7382 - {.0095 0.6718 -~ 0.0129 £.6639 —~0.0135 0.6729 ~-0.0129 0.4783 = {00266
61 07312 ~0.0095 0.6632 -0.0129 0.6549 -0.0135 0.6641 ~{0.0131 0.4656 -~ {0266
62 0.7242 -0.0095 0.6546 -0.0129 0.6480 -~ (0135 0.6552 - 0.0134 0.4533 - 0.0266
63 0.7172 =0.0097 0.6461 -0.01% 0.6373 —0.0135 0.6461 -0.0138 0.4412 - (L0266
B4 f.7008 «0,0103 0.6378 -0.0129 0.6287 -0.0135 06370 =0.0141 0.4295 - 0.0266
65 0.7020 -90.0108 0.6295 -0.0129 06202 —-0.0135 0.6277 ~{.0145 0.4181 - 00266
66 0.6940 —-0.0115 0.6210 -0.0134 0.6118 —-0.0135 0.6184 =0.0140 0.4070 — 0266
67 0.6855 -0.0121 0.6112 -0.0159 0.6435 -0.0135 0.6090 - 00152 0.3961 —0.0266
68 0.6768 -00127 0.5999 -0.0184 0.5954 —-0.0135 0.5995 -0.0156 0.3856 - 0.0266
69 0.6678 —~{.0133 0.5874 -0.0200 0.5873 -~ 0,0135 0.5900 - (L0159 0.3754 =0.0266
0 0.6585 -~ 0.013% 0.5736 -0.0234 0.5794 -0.0135 05804 — {0163 0.3654 - 0.0266
71 D.6489 —0.0145 0.5588 -0.0259 057146 -0.0135 o507 - 00166 0.3557 - (L.{266
n 0.6391 -8.0151 0.5430 -(.0284 0.5638 -0.0135 05611 =001 0.3462 —0.0266
73 0.6299 -0.0158 0.5262 - 0.0309 0.5562 -0.0138 0.5513 -00173 0.3370 - (0266
T4 0.6188 - {.0163 05087 - 0.0333 0.5487 —-0.0135 05416 -0.0177 0.3281 - (.0266
75 0.6083 —0.0170 0.4904 —0.0358 0.5413 —-0.0135 0.5318 - {0180 03193 - 0.0266
76 0.5976 -0.0176 24716 -0.0383 05327 -=0.0159 0.5220 ~ 00184 0.3109 -~ {.0266
77 0.5867 =0.0182 {.4524 —-0.0408 0.5221 -0.0198 035122 ~0.0187 0.3026 ~.0266
78 0.5757 ~{0.0188 0.4328 -0.0433 0.5098 -0.0237 0.5025 ~{.0191 0.2945 - 0.0266
79 0.5646 —0.0194 0.4130 —0.0458 0.4957 -0.0275 0.4927 =0.0194 0.2867 -~ 0.0266
80 0.5533 - 0.0200 0.3930 - (0483 0.4802 -0.0314 0.4829 -0.0198 02791 =0.0266
81 0.5419 —0.0206 0.3731 —0.0508 0.4632 -0.0353 0.4732 - 00202 - — —
82 0.5304 -0.0212 0.3532 -~(.0533 0.4451 —-0.0392 0.4635 —-0.0205 —_ —
83 0.5189 -0.0218 0.3335 -.0558 0.425% —-0.0430 0.4538 —0.0200 — —
& 0.5072 ~0.0224 0.3141 —~D.0582 G.4059 - 0.0469 0.4442 - 00212 — e
85 0.4956 -~ {.0230 0.2950 -~ 0,0607 . 0.3853 -~ 0.0508 0.4346 -0.0216 —_ e
86 0.4839 ~0.0236 0.2764 - 00632 0.3643 - (.0547 0.4251 -0.0219 —_ —_—
87 DAT? -0.0242 0.2582 —0.0657 0.3429 —(,.0585 0G.4156 —-0.0223 e _
88 0.4605 -{0.0248 0.2405 —0.0682 03215 —-0.0624 G.4062 — 00226 — —_
89 0.44B87 ~0.0254 0.2236 -0.0707 0.3002 —0.0663 0.3968 —0.0230 -— e
90 0.4371 - 0.0260 0.2072 ~ 00732 02792 -0.0702 0.3876 -0.0233 —_ —
9 0.4254 ~0.0266 0.1915 ~0.0757 0.2585 -0.0740 0.3784 ~{.0237 — —_
€« 0.4138 -040272 0.1766 ~0.0781 0.2383 -0.0779 0.3593 0,024} e —
93 04023 00278 0.1623 —0.0806 0.2188 ~ {0818 03603 —0.0244 —_ —_—
b 0.3909 ~0.0284 0.1488 —-0.0831 0.2001 —~ 00857 0.3513 -~ 0.0248 —_— —_
95 0.3795 —0.0290 0.1361 -(0856  0.1822 - .0895 0.3425 —0.0251 _ -
96 0.3683 - 0.0296 0.1241 -{.0881 0.14652 -0.0934 0.3338 —0.0285 —_ _—
97 0.3572 —-0.0302 0.1129 =00906 . 0.1491 - 0.0973 0.3252 —0.0258 —_ —_
98 03461 -0,0308 0.1024 —=0.0031 0.1340 -0.1012 0.3167 © - 0.0262 ——— —-
9 33352 -0.0315 0.0926 —0.0956 0.119%9 - 01050 0.3083 - 0.0265 —_ _
100 (.3245 -~0.0321 0.0835 L0981 0.1069 -~(.1089 0.3000 =0.0269 _— —_

Notes: The values for Ry are taken from MAGT. The values for R, wre computed using the cocfficient estimates in lines 1-9in table 1. B, = R, /R, — 1.
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expected to be mostly negative rather than mostly
positive, and the frontier estimates are based on
trying to force all the estimated residuals to be
non-positive rather than non negative. The esti-
mation results are presented in table 4,

The resuits for the high jump and triple jump
are similar to each other. They are also similar to
the results for the pooled sample in line 18 in
table 1, aithough the estimated slowdown rates
are somewhat higher for the two field events. The
estimated slowdown rates are considerably larger
for the pole vault and the long jump, especially
after the quadratic takes over at ages 64.1 and
74,0, respectively.

Sensible results using the quadratic specifica-
tion could not be obtained for the other four field
events—the throwing events. The relationship

between r, and k appeared to be linear or close -

to linear up to about age 80, and there were not
enough observations past age 80 to estimate the
quadratic part with even moderate precision.
There is, however, a remarkable similarity in re-
sults across the four throwing events when the
linear specification is used. These results are pre-
sented in lines 5-8 in table 4. The estimates of a,
range only from —0.0273 to —0.0281. When the
four events are pooled (line 9), the estimate of a,
is ~0.0278. This estimated slowdown rate is larger
than the rates for the other four field events
except for the pole vault and the long jump at the
older ages. This estimated rate for the four
throwing events seems relevant up to about age
80, but it should not be extrapolated beyond this.
The data so far tell us little about what happens
beyond age 80.

The frontier estimates for the first four field
events and for the four throwing events pooled
are presented in lines 10-14 in table 4. As was
the case for the track and road racing events, the
differences between the NLS estimates and the
frontier estimates are small, especially regarding
the implied derivative values. The largest differ-
ence is for the high jump, where the estimate of
k., is increased from 51.5 to 62.7 and the estimate
of as is changed from -0.00015 to —0.00030.
Even here, however, the effects on the derivatives
are fairly small.

The implied values of R, for the first four field
events and for the four throwing events pooled
are presented in table 5. Only values through age
80 are -presented for the four throwing events
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pooled, for reasons discussed above. The esti-
mates in lines 10-14 in table 4 were used for
these values, which are the estimates based on
the frontier procedure. The values for Ry for
each event were taken from MAGT.

Comparing tables 3 and 5, almost all the
derivatives are larger in absolute value in table 5.
Men seem to slow down faster in the field events
than they do in the track and road racing events.
The two exceptions to this are (1)} the high jump
and triple jump at the older ages, where the
slowdown rates are not out of line with the rates
for the pooled events in table 3, and (2) the
marathon, where the slowdown rates at the older
ages are high relative to the rates for the high
jump, triple jump, and the throwing events. These
two exceptions pertain only to ages beyond about
80, however, and it seems clear that for ages
below B0 the slowdown rate is greater for the
fieid events than it is for the running events,

V. Conclusion

Do the above results have anything to do with
economics? As noted in the Introduction, policies
on aging shouid take into account physical deteri-
oration rates. Looking at the numbers in table 3,
1 am struck by how small the deterioration rates
are. For example, under the assumption that the
estimates can be applied to a given individual and
using the values of R, for the events 400
meters—half marathon, a man of 85 is only 49%
slower than he was at age 55 (1.8007 versus
1.2102). (Presumably the numbers are similar for
women.) Table 3 may thus have something to say
about policies on aging. In particular, it may be
that societies have been too pessimistic about
losses from aging for individuals who stay healthy
and fit. Societies may have passed laws dealing
with old people under incorrect assumptions. But
then again it may be that the numbers in table 3
are only of interest to old runners as they run
ever more slowly into the sunset.
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