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SUMMARY 

A stochastic simulation procedure is proposed in this papa for obtaining median unbiased (Mu) estimates 
in macroeconometric models. MU estimates are computed for lagged dependent variable (LDV) 
coefficients in 18 equations of a macroeconometric model. The 2SLS bias for a coefficient, defined as the 
difference between the 2SLS estimate and the MU estimate, is on average smaller in absolute value than 
would be expected from Andrew’ exact results for an equation with only a constant term, time trend, and 
LDV. The results also show that in a practical sense the estimated biases are not very large because they 
have little effect on the overall predictive accuracy of the model and on its multiplier properties. 

1. INTRODUCTION 

It has been known since the work of Orcutt (1948) and Hurwicz (1950) that least squares 
estimates of lagged dependent variable (LDV) coefficients are biased. This bias has been 
extensively examined for autoregressive equations, both with and without constant terms and 
time trends.’ The purpose of this papa is to examine the bias of LDV coefficient estimates in 
typical equations in macroeconometric models. These equations are more complicated than the 
equations examined in the literature. At least some of the explanatory variables are usually 
endogenous; the error terms are sometimes serially correlated; and the equations may be non- 
linear in both variables and coefficients. Consistent estimation of these equations requires 
methods other than least squares, such as two-stage least squares (2SLS), three-stage least 
squares, and maximum likelihood. A stochastic simulation procedure is proposed in this paper 
for obtaining median unbiased (MU) estimates in macroeconometric models. From these 
estimates the 2SLS bias for a coefficient, defined as the difference between the 2SLS estimate 
and the MU estimate, can be computed. 

2. A PROCEDURE FOR COMPUTING MU ESTIMATES IN MACROECONOMETRIC 
MODELS 

The model considered here can be dynamic, non-linear, and simultaneous and can have 
autoregressive errors of any order. Write the model as 

.fi(Y,. x,. ai) = u;,. (i= 1, . . . . n), (t= 1, . . . . T) (1) 

‘See, for example, Orcutt and Winokur (1969), Gmbb and Symons (1987), Stine and Shaman (19891, and Andrew 
(1993). Gmbb and Symons (1987) also considered the case of exogenous variables other than the time trend in the 
equation. 
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where y, is an n-dimensional vector of endogenous variables, x, is a vector of predetermined 
variables (including lagged endogenous variables), ai is a vector of unknown coefficients, and 
u;, is the error term for equation i for observation t. It will be assumed that the first m equations 
are stochastic, with the remaining ui, (i = m + 1, , n) identically zero for all t. Each equation in 
(1) is assumed to have been aansformed to eliminate any autoregressive properties of its error 
term, where the autoregressive parameters are incorporated into ozP 

Let u,, be the m-dimensional vector (Us,, , u,“,). It is assumed for the stochastic simulations 
below that u, is distributed as multivariate normal N(0, X), where X is m x m. Although the 
normality assumption is commonly made, the procedures discussed in this paper do not depend 
on it. If another distributional assumption were used, this would simply change the way the 
error terms were drawn for the stochastic simulations. Given estimates of a;, denoted it;, 
consistent estimates of u;,, denoted fi,, can be computed as f,(y,, x,, d,). The covariance matrix 
C can then be estimated as (l/T)&?‘, where 0 is the m x T matrix of the values of fi, 

A vector of instruments Z, is assumed to be available for the estimation of each equation i, 
where Z,, is correlated with the endogenous variables on the right-hand side of equation i but 
uncorrelated with ud. This allows the estimation of equation i by 2SLS, which under standard 
assumptions provides a consistent estimate of aP 

The following procedure requires that one coefficient per stochastic equation be singled out 
for special treatment. The interest here is on the coefficient of the LDV, but other coefficients 
could be considered. Let a,i denote the coefficient of interest in equation i.’ 

The procedure for obtaining MU estimates of the cl,; coefficients (i = 1, . . . . m) using the 
2SLS estimator is as follows:’ 

(1) Estimate each equation i by 2SLS. Let &denote the 2SLS estimate of a,? 
(2) Guess the bias of 6,(, denoted b,,. Add b,; to 4,; to obtain .a first estimate of the true value 

of a,P Let a:, denote this estimate: czt= b,! + b . . Constrain a,i to be equal to a:; and re- 
estimate the other elements of ai by 2SLS. Let aydenote this estimate of ai (i = I, ., m). 
Use the estimated residuals from these constrained regressions to estimate the covariance 
matrix z. Let C* denote this estimate of 2. 

(3) Draw T values of the vector uz f= I, . . . . T, from the distribution N(O,I:*). Use these 
values and the values CL t (i = 1, . , m) to solve the model dynamically for t = 1, , 7’. This 
is a dynamic simulation of the model over the entire estimation period using the drawn 
values of the error terms and the coefficient values a: The lagged endogenous variable 
values in x, in equation (I) are updated in the solution process. After this solution, update 2, 
to incorporate the new lagged endogenous variable values (if lagged endogenous variable 
values are part of .ZJ. Let ZT, t = 1, , T, denote this update. Given the new data (i.e. the 
solution values of the endogenous and lagged endogenous variables), estimate each 
equation by 2SLS, and record the estimate of a,; as a\:’ (i= l,...,m). This is one 
repetition. Do a second repetition by drawing another T values of uz using these values and 
the values a:to solve the model, using the new data to estimate each equation by 2SLS, and 

* Rudebusch (1992, pp. 675-76) also presents a stochastic-simulation method for deriving ‘median-unbiased’ 
estimates (in the context of a single-equation, OLS framework). His method does not single out one coefficient per 
equation for special tnarmenr, but, as discussed in footnote 4, it does 30 at a possible cost. 
‘This procedure is an extension of Andrew (1993) method of computing exoc~ MU estimates in an equation with a 
constant term, time trend. and LDV; which itself is based on a method discussed in Lehmann (19591. Andrew and 
Chen (1994) use essentially the present stochastic-simulation prwedure in their estimation of @h-order autoregressive 
equations with time trends. Andrew and Chen’s paper was written after the first version of this paper (Fair, 1992). 
and Andrew5 and Chen cite this version. 
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recording the estimate of + as aii’ (i = 1, , m). Do this J times, and then find the median 
a;:oftheJvaluesof aIj’(j=l I..., J),(i=l,..., m). 

(4) If for each i a: is within a prescribed tolerance level of d,?, go to step (6). If this condition 
is not met, take the new value of aTi to be the 

z 
revious value plus ir,, - a;: for each i. Then 

constrain cl,; to be equal to this new value of a ,; and re-estimate the other elements of nj by 
ZSLS using the historical data. Let aTdenote this estimate of a; (i = 1, . . . . m). Again, use 
the estimated residuals from these constrained regressions to estimate the covariance matrix 
X;. Let Z* denote this estimate of C. Now repear step (3) for these new values. 

(5) Keep doing steps (3) and (4) until convergence is reached and one branches to step (6). 
(6) Take the MU estimate of a,; to be IX:,, and take the other coefficient estimates to be those 

in cfy( i = 1, , m). a:; is the MU estimate in that it is the value of CI,; that generates data 
that lead to the median 2SLS estimate equalling (within a prescribed tolerance level) the 
2SLS estimate based on the historical data. The estimated bias of 8,; is ir,, - ityP4 

Confidence intervals for a;: can be computed from the final set of values of a 2’ (j = I, ., J). 
For a 90% confidence interval, for example, 5% of the smallest values and 5% of the largest 
values would be excluded. 

As noted above, this procedure does not require the normality assumption. Other distributions 
could be used to draw the u~values. Also, the basic estimator need not be the 2SLS estimator. 
Other estimators could be used. The model in (1) can also consist of just one equation. In this 
case X is a scalar and the ‘solution’ of the model simply consists of solving the particular 
equation (dynamically) over the sample period. The procedure does, however, have two 
limitations. First, as noted above, it focuses on just one coefficient per equation. No other 
coefficient estimate in an equation necessarily has the property that its median value in the final 
set of values is equal to the original estimate. The focus, of course, need not be on the 
coefficient of the LDV, but it must be on one particular coefficient per equation. Second, there is 
no guarantee that the procedure will converge. Remember that overall convergence requires that 
convergence be reached for each equation, and achieving this much convergence could be a 
problem. For the results reported in this paper, however, convergence was never a problem. 

3. RESULTS FROM A MACROECONOMETRIC MODEL 

The above procedure for obtaining MU estimates was used on the model in Fair (1994). The 
version of the model used here consists of 30 stochastic equations and 101 identities. The basic 
estimation technique that is used for the model is 2SLS, and these estimates were used as 
starting value~.~ Starting from these values, MU estimates of the LDV coefficients were 
obtained for 18 of the 30 stochastic equations. The estimates for the other 12 equations were 
fixed at their 2SLS values. The estimation period was 1954:1-1993:2, for a total of 158 

‘Rudebusch’s medxd in the present context would be the following. In step (2) the bias of all the coefficients per 
equation would be guessed to form nz No re-estimation would be done to get the other elements of a:once afj was 
chosen. In step (3) the median of all the coefficients per equation would be found. Convergence would be reached 
when for each coefficient per equation its median was within a prescribed tolerance level of its original estimate. The 
possible problem with tiis method is the following. Assume for sake of simplicity that there is only one equation, and 
consider the J regressions (repetitions) of the equation in step (3). If will not in general he the case that the medians for 
all the coefficients in the equation come from the same regression. For example, rhe value of cotli%ent I may come 
from regression 432, the value of coefficient 2 from regression 789, and so on. and this may not be desirable. 
‘Other estimates of the model aside from 2SLS estimates are also presented in Fair (1994). These include estimates 
obtained by three-stage least squares, full information maximum likelihood, and wo-stage least absolute deviations. 
Some MU estimates are also presented, using the procedure discussed in this paper. 
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observations. The number of repetitions per iteration (i.e. the value of J in step (3) above) was 
500. After three iterations (i.e. after steps (3) and (4) were done three times), the largest 
difference between the successive estimates of any LDV coefficient was less than 0.001 in 
absolute value. Convergence thus occurred very quickly.” 

The bias for each of the 18 LDV coefficients is defined as the difference between its 2SLS 
estimate and its MU estimate. It is interesting to compare this bias to what will be called the ‘AR 
bias’, which is the exact bias for an equation with a constant term, time trend, and LDV and 
with the LDV coefficient equal to its 2SLS coefficient estimate. These biases are interpolated 
from Table III in Andrews (1993). 

The results’ show that the estimated biases are essentially zero for two of the 18 coefficients 
and negative for the rest. The average bias across the 18 estimates is -0.018. The average AR 
bias is -0.033, and so the results suggest that the bias of a typical macroeconometric equation 
is on average less than the bias of an equation that includes only a constant term, time trend, 
and LDV. For only four of the 18 coefficients is the AR bias smaller in absolute value.* 

An interesting question is whether the biases just reported are quantitatively important 
regarding the properties of the model. For example, is the predictive accuracy of the model 
sensitive to the use of the MU estimates over the 2SLS estimates? To examine this question, 
rwt mean squared errors (RMSEs) were computed using the two sets of estimates. The 
prediction period was the same as the estimation period, namely 1954:1-1993:2, and one 
through eight-quarter-ahead RMSEs were computed. The results show that the RMSEs are very 
similar for the two sets of estimates. There is clearly no discrimination possible between the two 
sets on predictive accuracy grounds. 

This result-that the predictive accuracy of the model is little changed by the use of 
unbiased over biased estimates-is consistent with the properties of a simple equation with 
only the LDV as an explanatory variable, say y, = ay,., + E,. Malinvaud (1970, p. 554) shows 
for this equation that the expected value of the prediction error is zero when the distribution of 
Ed is symmetric even if the estimate of a that is used to make the prediction is biased. The 
present results show that even for much more complicated models, prediction errors seem to be 
little affected by coefficient estimation bias. 

Although the predictive accuracy of the model is essentially the same using the MU and 
2SLS estimates, it may be that the multiplier properties are different. To examine this question, 
multipliers were computed using the two sets of estimates. The multipliers are for a sustained 
increase in government spending of one percent of real GDP beginning in 1989:3. The results 
show very little difference, and for all practical purposes the two sets of estimates of the model 
have the same properties. 

4. CONCLUSION 

This paper has shown that it is possible to obtain MU estimates of coefficients in 

‘To lessen stochastic simulation emx, the same draws of the error terms were used for each itemrion. The number of 
errors drawn per iteration is 2,370,ooO = (500 repetitions) x (30 stochastic equations) x (158 observations). The model 
is solved dynamically over the estimation period for each repetition, and each of the 18 equations is estimated for each 
repetition. 
‘Detailed results are available from the author upon request, including the confidence-interval, predictive-accuracy, 
and multiplier results reported below. 
‘Confidence intervals were also computed using the 500 repetitions from the last (third) iteration. These intewals were 
similar to the 2X.S intervals, although the left tail of the distribution of the MU estimates was slightly thicker than the 
right tail. 
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macroeconomic equations using stochastic simulation.’ The estimated biases of the LDV 
coefficient estimates for 18 equations are, on average, smaller in absolute value than would be 
expected from Andrew exact results for an equation with only a constant term, time trend, and 
LDV. In a practical sense the estimated biases are not very large because they have little effect 
on the overall predictive accuracy of the model and on its multiplier properties. 
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