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1. Introduction 

Advances in computer hardware in the last Lwo decades have considerably lessened 
the computational burden of working with large scale macroeconometric models. Most 
methods for single equations are now computationally trivial, and many methods for 
complete models are now routine. In particular, the availability of fast, inexpensive 
computers has made stochastic simulation routine, and this has greatly expanded the 
ways in which models can be tested and analyzed. 

This chapter discusses computational methods for the estimation and analysis of 
macroeconometTic models. The focus is on methods that, while possibly computation- 
ally routine, are at least not trivial; computationally trivial methods are not discussed. 
Most of the methods discussed are methods for complete models. Nonlinear nprimiza- 
tion algorithms, such as the DFP algorithm, are not discussed. The reader is assumed 
to be familiar with these algorithms. 

Much of the material in this chapter is taken from Fair (1984) and (1994), where the 
methods are both discussed and applied, and the reader is referred to these two sowces 
for the applications. To save space. no applications are presented in this chapter. It 
will help in what follows, however, to have an idea of the size of the model to which 
the methods have been applied. The latest version of this model, which will be called 
the “US” model, is presented in Fair (1994). It consists of 30 stochastic equations, 101 
identities, and a little over 100 exogenous variables. The basic estimation period is 
1954: l-1993:2, for a total of 158 observations. There are 166 unrestricted coefficients 
to estimate. 

No computer times are reported in this chapter. Advances in hardware are so rapid 
that any times reported now would be out of date even by the time this book is 
published. Suftice it to say that none of the methods discussed in this chapter - with 
the possible exception of FIML estimation of models with rational expectations - are 
currently impractical in the sense of requiring days of personal computer time to run. 

All the methods discussed in lhis chapter have been programmed into the Fair-Parke 
(1993) program. which is available for distribution. One advantage of this program 
is that once a model has been set up in the program, the methods can be carried out 
with a few simple commands. The only real work is setting up the model. 

What I have tried to show in this chapter is that for the most part computational 
issues are no longer a problem in macroeconometric model building. Computational 
requirements should not be a major constraint in the advancement of the field in the 
future. 

Finally, it should be stressed that this c hapter is not meant to be a survey of the 
field. It is obviously beyond the scope of one paper to survey the literature on all the 
numerical methods that are used in macroeconometric modeling - methods for the 
various estimators, for deterministic simulation, for Monte Carlo/stochastic simulation, 
for optimal control, for nonlinear models, for rational expectations models, etc. There 
are not only an enormous number of methods, but many of them pertain to non 
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macroeconomic models as well. I have instead focused on those methods that I have 
found useful in my own work and that are in the Fair-Parke program. 

2. Notation 

The general model considered in this chapter can be dynamic, nonlinear. and simul- 
taneous and can have autoregressive errors of any order. The model is written as: 

fi(YC>“C.“i) = wt: i= I ,.._, n, t= l,...,T, (1) 

where r/t is an n-dimensional vector of endogenous variables, z1 is a vector of prede- 
termined variables (including lagged endogenous variables), oli is a vector of unknown 
coefficients, and uit is the error term for equation i for observation t. It will he asswned 
that the first m equations are stochastic, with the remaining u,it (i = m f I, ,,rz.) 
identically zero for all t. 

The following notation is also used. ui denotes the T-dimensional vector 
(xi!, , uiz.)‘. G; denotes the ki x T matrix whose tth column is afi(yt, zt, a,)/an,, 
where ki is the dimension of ai. a denotes the vector of all the unknown coefficients 
in the model: cr’ = (a;,. , c&J’. The dimension of a is k, where k = CZf, ki. 
Finally, Z,& denotes a T x Ki matrix of predetermined variables that are to be used as 
first stage regressors for the ZSLS technique. 

The following additional notation is needed when discussing the FILL and 3SLS 
estimators. Ji denotes the n x rx Jacobian whose ij element is afi/agjt, (7,j = 
1:. , n). ‘TL denotes the m-T-dimensional vector (IA,,,. , UIT,. , urn,, ,,ulm,r)‘. 
G’ denotes the k x m. T matrix 

rG! 0 01 

(2) 

Finally, u.~ denotes the n-dimensional vector (u12:. , IL,~), and C denotes the rr~xm 
covariance matrix of ut. 

Each equation in (I) is assumed to have been transformed to eliminate any au- 
toregressive properties of its error term. If the error term in the untransformed 
version, say wit in equation r, follows a rth order autoregressive process_ wil = 
p~rwi,_l + i ppiwi~_r + uit, where uit is iid, then equation i is assumed to have 
been transformed into one with u.,,,~ on the right hand side. The autoregressive coeffi- 
cients pi,, : pvi are incorporated into the (2% coefficient vector, and the additional 
lagged values that are involved in the transformation are incorporated into the xt 
vector. This transformation makes the equation nonlinear in coefficients if it were not 



otherwise, but this adds no further complications to the model because it is already 
allowed to be nonlinear. It does result in the “loss” of the first ‘r observations, but this 
has no effect on the asymptotic properties of the estimators. ?Q in (1) can thus be 
assumed to be iid even though the original error term may follow an autoregrcssivc 
pi-ocess. 

3. lko stage least squares 

Probably the most widely used estimation technique for single equations that produces 
consistent estimates is two stage least squares (ZSLS). Although the computation 
of ZSLS estimates is trivial, it will be useful for reference purposes to present the 
estimator. The 2SLS estimate of (YC (denoted kc) is obtained by minimizing 

s, = u:z~(z~z~)-iz:ui = 7@& (3) 

with respect to u;. ZC can differ from equation to equation. An estimate of the co- 
variance matrix of & (denoted Vx) is 

C&i = &,,(?$I&~’ (4) 

where ec is Gi evaluated at &, ~?ii = T-’ CT=, +I:*, and Cit = fi(~~,~:iui). 
The 2SLS estimate o^f the k x k covariance matrix of all the coefficient estimates 

in the model (denoted V,) is 

4. 3SLS and FIML 

3SLS estimates of (Y are obtained by minimizing 

s = .‘[F-1 CC Z(Z’Z)_1Z’]u = U’DU (7) 



a 3: Ci,mpul”rii,nal h4aefhndr for M”cr”ec,,n,vnetnc M,wiels 147 

with respect to LY, where 5 is a consistent estimate of C and 2 is a T x K matrix 
of predetermined v@ables. An estimate of the covariance matrix of the coefficient 
estimates (denoted Vs) is 

i& = (2Lq (8) 

where c is G evaluated at the 3SLS estimate of a. C is usually estimated from the 
2SLS estimated residuals. 

Under the assumption that ut is independently and identically disuib,uted as multi- 
variate normal N(0, Z), FIML estimates of cy are obtained by maximizing 

with respect to a. An estimate of the covariance matrix of the FIML estimates (denoted 
v,) is 

where the derivatives are evaluated at the optimum. 
The FIML computational problem can be separated into two main parts; the first 

is to find a fast way of computing L in (9) for a given value of a, and the second is 
to find an algorithm capable of maximizing L. 

The main cost of computing L is computing the Jacobian term. Two savings can be 
made here. One is to exploit the sparseness of the Jacobian. The number of nonzero 
elements in Jt is usually much less than n*. For the US model, for example, n is 131 
(so 7~’ = 17) 161), whereas the number of nonzero elements is only 556. Considerable 
time can be saved by using sparse matrix routines to calculate the determinant of Jt. 

The second saving is based on an approximation. Consider approximating 
IF=, loglJtl by simply the average of the first and last terms in the summation 
multiplied by T: (T/2)(log IJlI + log lrJ*l). Let So denote the true summation, and 
let 5’1 denote the approximation. It turns out in many applications that So - SI does 
not change very much as the coefficients change from their starting values (say 2SLS 
estimates) to the values that maximize the likelihood function. In other words, 5’0 -St 
is nearly a constant. This means that SI can be used instead of So in computing L, 
and thus considerable computer time is saved since the determinant of the Jacobian 
only needs to be computed twice rather than T times for each evaluation of L. As 
noted above, T is 158 for the US model. Using S1 in place of So means, of course, 
that the coefficient values that maximize the likelihood function are not the exact 
FIML estimates. If one is concerned about the accuracy of the approximation, one 
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can switch from S’1 to So after finding the maximum using 5’1. If the approximation 
is good, one should see little further change in the coefficients; otherwise additional 
iterations using the algorithm will be needed to find the true maximum. 

The choice of algorithm turns out to be crucial in maximizing L for large nonlinear 
models. My experience is that general purpose algorithms like DFP do not work for 
large problems, and in fact the only algorithm that does seem to work is the Parke 
(1982) algorithm, which is a special purpose algorithm designed for FIML and 3SLS 
estimation. The algorithm exploits two key features of models. The first is that the 
mean of a particular equation’s estimated residuals is approximately zero for FIML 
and 3SLS estimates. For OLS this must be true, and empirically it turns out that it is 
approximately true for other estimators. The second feature is that the correlation of 
coefficient estimates within an equation is usually much greater than the correlation 
of coefficients across equations. 

The problem with algorithms like DFP that require first derivatives is that the 
computed gradients do not appear to be good guides regarding the directions to move. 
Gradients are computed by perturbing one coefficient at a time. When a coei’ficient 
is changed without the constant term in the equation also being changed to preserve 
the mean of the residuals, a large change in L may result (and thus a large computed 
derivative), and this can be misleading. The Parke algorithm avoids this problem 
hy spending most of its time perturbing two coefficients at once, namely a given 
coefficient and the constant term in the‘equation in which the coefficient appears. 
The constant term is perturbed to keep the mean of the residuals unchanged. (The 
algorithm does not, of course, do this all the time, since the means of the residuals 
must also he estimated.) To take advantage of the generally larger correlation within 
an equation than between equations, the Parke algorithm spends more time searching 
within equations than between them. General purpose algorithms do not do this, since 
they have no knowledge of the structure of the problem. 

If only a few coefficients are changed before a new value of L is computed, 
considerable savings can be made by taking advantage of this fact. If, for example, 
the coefficients that are changed are not in the Jacobian, the Jacobian term does 
not have to he recomputed. If only a few equations are affected by the change in 
coefficients_ only a few rows and columns in the .V matrix have to be recomputed. 
Since the Parke algorithm spends much of its time perturbing two coefficients at a 
time, it is particularly suited for these savings. 

The estimated covariance matrix for the FIML coefficient estimates, ~~ in (IO), is 
difficult to compute. It is not part of the output of the Parke algorithm, and thus extra 
work is involved in computing it once the algorithm has found the optimum. My 
experience is that simply trying to compute the second derivatives of L numerically 
does not result in a positive definite matrix. Although the true second derivative 
m~atrices at the optimum are undoubtedly positive definite, they seem to be nearly 
singular. If this is true, small errors in the numerical approximations to the second 
derivatives may he sufficient to make the matrix not positive definite. 
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Fortunately, there is an approach to computing ?A that does work, which is derived 
from Parke (I 982). Parke’s results suggest that the inadequate numericnl approxima- 
tions may be due to the fact that the means of the right hand side variables in the 
estimated equations are not zero. If so, the problem can be solved by subtracting the 
means from the right hand side variables before taking numerical derivatives. Let ,fi 
denote the coefticient vector that pertains to the model after the means have been 
subtracted, and let a denote the original coefficient vector. The relationship between 
u and >q is 

<I = M 9 (11) 

where M is a k x k matrix that is composed of the identity matrix plus additional 
nonzero elements that represent the means adjustments. Unless there are constraints 
across equations, M is block diagonal. Assume, for example, that the first equation 
of the model is 

Yli = ,$I + l%(YZ, -w) + PI(W ~ ml) + u,t, t=l,...,T, (12) 

where m2 and m3 arc the sample means of Yzt and Y3t respectively. This equation 
can be written 

Y1t = ,@I - ,&mz - &w + ri(w2t + 1y3t + u,t 

= 01 + CaYZ + wy3t + u,t, t=l,...,T. (13) 

In this case the part of (I I) that corresponds to the first equation is 

(,I) = (i -8” -!3) (ii). (14) 

Parke found that the covariance matrix of fl could easily he computed numerically. 
Let V,(p) denote this matrix: 

Given f?d(O), ths covariance matrix of a is simply 

G = M i&(,8) M’ (16) 

pd can thus be obtained by first computing the covuiancc matrix of the coefficients 
of the transformed model (that it, the model in which the right hand side variables 
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have zero means) and then using (16) to get the covariance matrix of the original 
coefficients. 

Using the Parke algorithm and the various savings discussed above. 1 have found 
it feasible to obtain FIML estimates of the US model. In fact, the main work in using 
the FIML estimator is not the computational burden but making sure that no errors 
have been made in taking the derivatives for the Jacobian. 

Consider now the 3SLS estimation problem, which is to minimize (7). The only 
cost saving to note for this problem is that the D matrix, which is m. T x m. T, need 
not be calculated from scratch each time (7) is computed if only a few coefficients 
are changed. In other words, pieces of D can be saved and used many times before 
needing to be recomputed. This saves considerable time because D is large. For 
example, for T = 158 and m = 30, D is 4740 x 4740. I have also found the 3SLS 
estimates easy to compute using the Parke algorithm. 

5. Two stage least absolute deviations 

A single equation estimator for which there are some computational issues is two 
stage least absolute deviations (2SLAD). This estimator is as follows. It is assumed 
for this estimator that the model in (1) can be written: 

hit = hi(yt,~t,w) + wt, i=l,...,n, t= l,...,T, (17) 

where in the ith equation yit appears only on the left-hand side. Let $4 = Diy; and 
ki = Dihi, where, as above. Di = &(Z:&-tZ:, where Z, is a matrix of first stage 
regressors. There are two ways of looking at the 2SLAD estimator. One is that it 
minimizes 

and the other is that it minimizes 

Amemiya (1982) has proposed minimizing 

(19) 

(20) 
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where CJ is chosen ahead of time by the investigator. The estimator that is based on 
minimizing (20) will be called the 2SLAD estimator. 

The ZSLAD computational problem is to minimize 

(21) 

with respect to cri, where zli~ = qvit -t (1 -q)&, - &. This computational problem is 
not particularly easy, especially when UC* is a nonlinear function of CQ. For example, I 
have had no snccess in minimizing (21) using Powell’s (1964) no derivative algorithm. 

Because standard algorithms do not work, other approaches must be tried. I have 
found the following approach to work well, which uses the fact that 

(22) 

where wil = 1~~1. For a given set of values of wit (t = 1,. , T), minimizing (22) 
is simply a weighted least squares problem. If vit is a linear function of ai. closed 
form expressions exist for &; otherwise a nonlinear optimization algorithm can be 
used. This suggests the following iterative procedure: 

1. Pick an initial set of values of wit. These can be the absolute values of the 2SLS 
estimated residuals. 

2. Given these values, minimize (22). 
3. Given the estimate of (Y< from step 2, compute new values of v;* and thus new 

values of u&t. 
4. With the new weights, go back to step 2 and minimize (22) again. Keep repeating 

steps 2 and 3 until successive estimates of ai are within some prescribed tolerance 
level. If on any step some value of tuit is smaller than some small preassigned 
number (say c), the value of wit should be set equal to t. 

In the case in which the equation to be estimated is linear in coe&ients, the closed 
form expression for iui for a given set of values of wil is 

2; is the same as _?i?,, where zi = DiXi, except that each element in row t of _?i is 

divided by &. The vector lj‘_ equals q~i + (1 - y)& except that row t is divided 
by @. (r, equals Diyi.) 

The accuracy of the estimates using this approach is a function of e: the smaller 
is t, the greater is the accuracy. If wt is a linear function of ai, the estimates will 



never be exact because the true estimates correspond to k; values of wit being exactly 
equal to zero, where iii is the number of elements of ai. One might think that this 
would he a serious problem in practice, but I have not found it to be. 1 typically use a 
value of t of O.OOOOOOl and a percentage stopping criterion for successive coefficient 
&mates of 0.001. and with these numbers it is seldom the cast that any weight is 
less than F. (I typically use a value of Q of 0.5.) The method also works well when the 
equation is nonlinear in coefficients, such as when the error term is assumed to follow 
an autoregressive process and the autoregressive coefficients are estimated along with 
the structural coefficients. 

6. The Gauss-Seidel technique 

Turn now from estimation to solution. Most macroeconomehic models are solved us- 
ing the Gauss-Seidcl technique. It is a remarkably simple technique and in most cases 
works remarkably well. Very early on it became the method of choice for solution 
purposes. Because the technique is so widely used, it is important 10 understand what 
it does. The technique is easiest to describe by means of an example. 

Assume that the model in (1) consists of three equations, and let zit denote the 
vector of predetermined variables in equation i. The model is as follows: 

fi~Utt,Y2trY3t,~1tr~I) = Ullr (24) 

fz(Ylt,Yzt,Y3t,~zt:~2) = wtr (25) 

where yLt, yzt, and Yzt arc scalars. The technique requires that the equations be 
rewritten with each endogenous variable on the left hand side of one equation. This is 
usually quite easy for macroeconometric models, since most equations have an obvious 
left hand side variable. If, say, the left hand side variable for (25) is log(yzl/Yit), 
then yrt can be written on the left hand side by taking exponents and multiplying 
the resulting expression by Yst. The technique does not require that each endogenous 
variable he isolated on the left hand side; the left hand side variable can also appear on 
the right hand side. It is almost always possible in macroeconometric work, however, 
to isolate the variable, and this will be assumed in the following example. 

The model (24)-(26) will be written: 



In order to solve the model, values of the coefficients and the error terms m needed. 
Given these values and given values of the predetermined variables, the solution 
proceeds as follows. Initial values of the endogenous variables are guessed. Thcsc 
arc usually either the actual values or predicted values from the previous period. 
Given these values, (24)‘-(26)’ can be solved for a new set of values. This requires 
one “pass” through the model: each equation is solved once. One pass through the 
model is also called an “iteration”. Given this new set of values, the model can 
be solved again to get another set, and so on. Convergence is reached if for each 
cndogenous variable the values on successive iterations are within some prescribed 
1olerance level. 

There are two main options that can be used when passing through the model. 
One is to use the values from the previous iteration for all the computations for 
the current iteration, and the other is to use, whenever possible, the values from the 
current iteration in solving the remaining equations. Following the second option in 
the example just given would mean using the current solution for ~1~ in the solution 
of vzt and ~3~ and using the current solutions for ~1~ and ~2~ in the solution of hit. 
In most cases convergence is somewhat faster using the second option. If the second 
option &used, the order of the equations obviously matters in terms of the likely speed 
of convergence. The first option is sometimes called the Jacobi technique rather than 
the Gauss-Seidel technique, but for present purposes both options will be referred to 
as the Gauss-Seidel technique. 

There is no guarantee that the Gauss-Seidel technique will converge. It is easy to 
construct examples in which it does not, and I have seen many examples in practice 
where it did not. The advantage of the technique, however, is that it can usually be 
made to converge (assuming an actual solution exists) with sufficient damping. By 

“damping” is meant the following. Let $jy-‘) denote the solution value of ~1~ for 
An) 

iteration n - 1 (or the initial value if n is I), and let glt denote the value computed 
z(n) 

by solving (24)’ on iteration n. Instead of using vlt as the solution value for iteration 
-(n-l, rh, one can instead adjust ult 

z(n) 
only partway toward vlt : 

If X is I, there is no damping, but otherwise there is. Damping can be done for any 
or all of the endogenous variables, and different values of X can be used for different 
variables. 

My experience is that one can usually make X small enough to achieve convergence. 
The cost of damping is, of course, slow convergence. In some cases I have seen values 
as low as 0.05 needed. In the vast majority of the problems that I have solved, however, 



no damping at all was needed. Two other ways in which one can deal with problems 
of convergence are to try different starting values and to reorder the equations. This 
involves, however, more work than merely running the problem with lower values of 
A, and I have generally not found it necessary to experiment with starting values and 
the order of the equations. 

Note that nothing is changed in the foregoing discussion if, say, ~1~ is also on the 
right hand side of (24)‘. One still passes through the model in the same way. This 
generally means, however, that it takes longer to converge, and more damping may 
be required than if ytt is only on the left hand side; thus it is better to isolate variables 
on the left hand side whenever possible. 

The question of what to use for a stopping rule is not as easy as it might sound. 
The stopping rule can either be in absolute or percentage terms. In absolute terms it 
is 

and in percentage terms it is 

where ei is the tolerance criterion for variable i. (If damping is used. uit -(“) in (28) and 

(29) should be replaced with &‘.) 
The problem comes in choosing the values for E+ It is inconvenient to have to 

choose different values of the tolerance criterion for different variables, and one would 
like to use just one value throughout. This is not, however, a sensible procedure if the 
units of the variables differ and if the absolute criterion is used. Setting the tolerance 
criterion small enough for the required accuracy of the variable with the smallest units 
is likely to lead to an excess number of iterations, since a large numher of iterations 
are likely to be needed to satisfy the criterion for the variables with the largest units. 
Setting the criterion greater than this value, on the other hand, runs the risk of not 
achieving the desired accuracy for some variables. This problem is lessened if the 
percentage criterion is used, hut in this case one must he concerned with variables 
that can be zero or close to zero. 

My experience is that the number of iterations needed for convergence is quite 
sensitive to the stopping rule. It does not seem to he the case, for example, that 
once one has converged for most variables, one or two additional iterations increase 
the accuracy for the remaining variables very much. There is no real answer to this 
problem. One must do some initial experimentation to decide how many different 
values of ci are needed and whether to use the absolute or percentage criterion for a 
given variable. 



7. Stochastic simulation 

As noted in the Introduction, computer hardware advances have now made stochastic 
simulation routine, and this has greatly expanded the ways in which models can 
be tested and analyzed. Many applications of stochastic simulation are contained 
in Fair (1994), but these will not he discussed here. The following discussion will 
focus on computational aspects only. The notation in Section 2 will continue to be 
used. 

Stochastic simulation requires that an assumption be made about the distribution 
of ut. It is usually assumed that ut is independently and identically distributed as 
multivariate normal N(O: Z), although other assumptions can clearly be used. Al- 
ternative assumptions simply change the way the error terms are drawn. Stochastic 
simulation also requires that consistent estimates of CYI bc available for all i. Given 
these estimates, denoted &, consistent estimates of uil, denoted &, can bec_mputed 
as f< (?/*, ,zt, (ii), The covariance matrix C can then be estimated as (l/T)UU’, where 
6 is the n& x T matrix of the values of &. 

Let uf denote a particular draw of the m error terms for period t from the N(0, E) 
distribution. Given ut and given &yi for all i, one can solve the model for period t 
(using, say, the Gauss-Seidel technique). This is merely a deterministic simulation for 
the given values of the error terms and coefficients. Call this simulation a “repetition”. 
Another repetition can be made by drawing a new set of values of u; and solving 
again. This can be done as many times as desired. From each repetition one obtains a 
prediction of each endogenous variable. Let d* denote the value on the jtb repetition 
of variable i for period t. For J repetitions, the stochastic simulation estimate of the 
expected value of variable i for period t, denoted j&, is 

I$ = (1/j, - ,i;$. (31) 

The stochastic simulation estimate of the variance of variable I for period t, denoted 
5$, is then 
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Given the data from the repetitions, it is also possible to compute the variances of 
the stochastic simulation estimates and then to examine the precision of the estimates. 
The variance of fiit is simply 5it/.7. The variance of Zt, denoted var(?$), is 

In many applications, one is interested in predicted values more than one period 
ahead, i.e., in predicted values from dynamic simulations. The above discussion can 
be easily modified to incorporate this case. One simply draws values for ut for each 
period of the simulation. Each repetition is one dynamic simulation over the period 
of interest. For, say, an eight quarter period, each repetition yields eight predicted 
values; one per quarter, for each endogenous variable. 

It is also possible to draw coefficients for the repetition? Let & denote, say, the 
2SLS estimate of all the coefficients in the_ model, and let V denote the estimate of 
the k x k covariance matrix of iu. Given V and given the nor@ity assumption, an 
estimate of the distribution of the coefficient estimates is hr(&, V). When coefficients 
arc drawn, each repetition consists of a draw of the coefficient vector from N(&> F) 
and draws of the error terms as above. 

7.1. Numerical procedures for drawing values 

A standard way of drawing values of a* from the N(it, p) distribution is to 1) factor 
numerically p into PP’, 2) draw k values of a standard normal random variable 
with mean 0 and variance 1, and 3) compute a* as iu + Pe, where e is the k x 1 
vector of the st@ard normal draws. Since Eee’ = I, then E(a* - &)(cx” - Cz)’ 
= EPee’P’ = V, which is as desired for the dis@ution of (Y*. A similar procedure 
can be used to draw values of I$ from the X(0, C) distribution: 2 is factored into 
PI”, and UT is computed as Pe, where e is am x 1 vector of standard normal draws. 

An alternative procedure for drawing values of the error terms, derived from Mc- 
Carthy (1972). has also been used in practice. For this procedure one begins with the 
m x T matrix of estimated error terms, g. T standard normal random variables are 
then drawn, and I$ is computed as T-‘&Je, where E is a T x 1 vector of the standard 
normal draws. It is easy to show that the covariance matrix of u; is 2, where, as 
earlier, 5 is (1 /T)I?G”. 

An alternative procedure is also available for drawing v_alues of the coefficients. 
Given the estimation period (say, 1 through T) and given C, one can draw T values 
of ,u; (t = 1,. , T). One can then add these errors to the model and solve the model 
over the estimation period (static simulation, using the original values of the coefficient 
estimates). The predicted values of the endogenous variables from this solution can 



he taken to be a new data base, from which a new set of coeflicients can be estimated. 
This set can then be taken to be one draw of the coefficients. This procedure is more 
expensive than drawing from the N(&, p) distribution, since reestimation is required 
for each draw, but it has the advantage of not being based on a fixed estimate of the 
distribution of the coefficient estimates. It is, of course, based on a fixed value of 2 
and a fixed set of original coefficient estimates. 

8. Optimal control 

There is a large literature on the use of optimal control techniques in macroccono- 
metrics,’ and it is beyond the scope of this chapter to review this literature. Instead, 
I will simply discuss one technique that I have found to be very useful in solving 
optimal control problems for large models. This technique is presented and applied 
in Fair (1974). 

The first step in setting up an optimal control problem is to postulate an objcctivc 
function. Assume that the period of interest is t = 1: , T. A general specification 
of the objective function is 

W=h(yt ,._. :YT,Z ,,... :DT) (34) 

where W; a scalar, is the value of the objective function corresponding to values of 
the endogenous and exogenous variables for t = I,. , T. In most applications the 
objective function is assumed to be additive across time, which means that (34) can 
be written 

where ht(yt, xt) is the value of the objective function for period t. The model can be 
taken to be the model in (1). 

Let zt be a k-dimensional vector of control variables, where zt is a subset of zt, 
and let z be the k T-dimensional vector of all the control values: z = (z,! , ZT). 
Consider first the deterministic case where the error terms in (1) are all set to zero. 
For each value of z one can compute a value of W by first solving the model (I) for 
y, , , yr and then using these values along with the values for 2,: , ZT to compute 
W in (34). Stated this way, the optimal control problem is choosing variables (the 
elements of z) to maximize an unconstrained nonlinear function. By substitution, the 
constrained maximization problem of maximizing W in (34) subject to the model is 



transformed into the problem of maximizing an unconstrained function of the control 
variables: 

w = G(Z) (36) 

where @ stands for the mapping z i ~3,. , yr, q, , ZT A W. For nonlinear 
models it is generally not possible to express yt explicitly in terms of zt, which 
means that it is generally not possible to write W in (36) explicitly as a function of 
x1:. , zT. Nevertheless, given values for z,, : zT, values of W can be obtained 
numerically for different values of 2. 

Given this setup, the problem can be turned over to a nonlinear maximization 
algorithm like DFP. For each iteration, the derivatives of @ with respect to the elements 
of z, which are needed by the algorithm, can be computed numerically. Each iteration 
will thus require kT function evaluations for the derivatives plus a few more for 
the line search. Each function evaluation requires one solution (dynamic simulation) 
of the model for T periods plus the computation of W in (34) after ~1,. , VT are 
determined. 

There is one important cost saving feature regarding the method that should be 
noted. Assume that there are two control variables and that the length of the period 
is 30. The number of unknowns is thus 60, and therefore 60 function evaluations will 
have to be done per iteration to get the numerical derivatives. In perturbing the control 
values to get the derivatives, one should start from the end of the control period and 
work backward. When the control values for period 30 are perturbed, the solution 
of the model for periods 1 through 29 remains unchanged from the base solution, so 
these calculations can be skipped. The model only needs to be resolved for period 30. 
Similarly, when the control values for period 29 are perturbed, the model only needs 
to be resolved for periods 29 and 30, and so on. This cuts the cost of computing the 
derivatives roughly in half. 

My experience is that algorithms like DFP are quite good at solving optimal control 
problems set up in the above way. See, for example, Fair (1974) for the use of the 
DFP algorithm to solve quite large problems. 

8.1. Stochastic simulation option 

Consider now the stochastic case, where the error terms in (1) are not zero. It is 
possible to convert this case into the deterministic case by simply setting the error 
terms to their expected values (usually zero). The problem can then be solved as 
above. In the nonlinear case this does not lead to the exact answer because the values 
of W that are computed numerically in the process of solving the problem are not 
the expected values. In order to compute the expected values correctly, stochastic 
simulation has to be done. In this case each function evaluation (i.e., each evaluation 
of he expected value of W for a given value of z) consists of the following. 



1. A set of values of the error terms in (1) is drawn from an estimated distribution. 
2. Given the values of the error terms, the model is solved for ?/, , : yz and the 

value of W corresponding to this solution is computed from (34). Let W3 denote 
this value. 

3. Steps 1 and 2 are repeated J times, where J is the number of repetitions. 
4. Given the J values of %i (i = I,. , J), the expected value of W is the mean 

of these values: 

This procedure increases the cost of solving control problems by roughly a factor of 
J, and it is probably not worth the cost for most applications. The bias in predicting 
the endogenous variables that results from using deterministic rather than stochastic 
simulation is usually small, and thus the bias in computing the expected value of W 
using deterministic simulation is likely to be small. 

9. Asymptotic distribution accuracy 

Computer advances have also increased the ability to compute “exact” distributions 
of the estimators that are used for macroeconometric models. These distributions can 
then be compared to the asymptotic approximations of the distributions that are gen- 
erally used for hypothesis testing to see how accurate the asymptotic approximations 
are. If some variables are not stationary, the asymptotic approximations may not be 
very good. In fact, much of the recent literature in time series econometrics has 
been concerned with the consequences of non stationary variables. As will be seen, 
computing the exact distributions requires stochastic simulation and reestimation. 

The procedure for examining asymptotic distribution accuracy is as follows. Take 
an estimator, say 2SLS, 3SLS. or F’IML, and estimate thEmodel. Take these coefficient 
estimates,_denoted iu, as the base values, and compute C using these estimates. From 
the N(0, C) distribution (assuming the hormality assumption is used), draw a vector 
of the m error terms for each of the T observations. Given these error terms and 6. 
solve the model for the entire period I through T. This is a dynamic simulation of the 
model over the entire estimation period. The lagged endogenous variable values in (I) 
are updated in the solution process. Also, the matrices of first stage regressors, Z,,, 
are updated to incorporate the new lagged endogenous variable values if the matrices 
arc used in the estimation, as for 2SLS. The predicted values from this solution form 
a new data set. Given this data set, estimate the model by the technique in question, 
and record the set of estimates. This is one repetition. Repeat the draws, solution, and 
estimation for many repetitions, and record each set of estimates. (Remember that the 
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draws of the ec~ors are always from the N(O; E’) distribution and that the cocl’ficient 
vector used in the solution is always I%) 

If .I repetitions arc done, one has J values of each coefficient estimate, which are 
likely to be a good approximation of the exact distribution. For ease of exposition, 
this distribution of the J values will be called the “exact distribution”, although it 
is only an approximation because C is estimated rather than known. The asymptotic 
distribution can then be compared to this exact distribution to see how close the two 
distributions are. 

Once an exact distribution has been computed, there are a number of ways to exam- 
ine the closeness of the asymptotic distribution to it. For the application in Fair (1994) 
the median of the exact distribution was first compared to the coeflicient estimate to 
examine the bins of the estimate. Given the median from the exact distribution and 
given the estimated standard error of the coefficient estimate from the asymptotic dis- 
tribution, one can compute the value above which, say, 20 percent of the coefticient 
estimates should lie if the asymptotic distribution is correct. For 20 percent, this value 
is the median plus 0.84 times the estimated asymptotic standard error. One can then 
compute the actual percent of the coel?icient estimates from the exact distribution that 
lie above this value and compare this percent to 20 percent. For the work in Fair 
(1994), this comparison was made for 20, 10. and 5 percent values and for both left 
and right tails. 

The results that I have obtained so far show that the exact and asymptotic distri- 
butions are generally quite similar regarding their tail properties. If this conclusion 
holds up upon further work, it has important consequences. It means that the unit root 
problems that have received so much attention lately may not be of much concern 
to macro model builders. While the existence of unit roots can in theory cause the 
asymptotic approximations that are relied on in macroeconometrics to be way off, in 
practice they seem fairly accurate. 

10. Solution and FIML estimation of RE models 

The rest of this chapter is concerned with the estimation and solution of models with 
rational expectations. As will be discussed, these models have severe computational 
requirements. 

The single equation estimation of equations with ralional expectations can be carried 
out using Hansen’s (1982) method of moments estimator, and there are no serious 
computational requirements here. It is also possible, however, to use FIML to estimate 
models with rational expectations, and here there are serious computational issues. 
Methods for the solution and FIML estimation of these models are presented in Fair 
and Taylor (1983). The basic solution method, called the “extended path” (EP) method, 



has come to be widely used for deterministic simulations of rational expectations 
models,2 but probably because of the cxpcnsc, the full information estimation method 
has not been tried by others. This earlier work discussed a “less expensive” method for 
obtaining full information estimates, hut the preliminary results using the method wcrc 
mixed. Since this earlier work, however, more experimenting with the less expensive 
method has been done, and it seems much more promising than was originally thought. 
This work is reported in Fair and Taylor (I 990), and the following discussion is taken 
from this paper. 

The first part of this section discusses the new results using the less expensive 
method that have been obtained and argues that full information estimation now seems 
feasible for rational expectations models. In the process of doing this some errors in 
the earlier work regarding the treatment of models with rational expectations and 
autoregressive errors are corrected. The second part discusses methods for stochastic 
simulation of rational expectations models, something that was only briefly touched 
on in the earlier work. 

10.2. The solution method 

The notation for the model used here differs somewhat from the notation used in 
Eq. (I). The lagged values of the endogenous variables are written out explicitly, and 
zt is now a vector of only exogenous variables. The model is written as 

where yt is an n-dimensional vector of endogenous variables, zt is a vector of ex- 
ogenous variables, Et-l is the conditional expectations operator based on the model 
and on information through period t - I, ai is a wctor of parameters, pi is the serial 
correlation coefficient for the error term wt. and tit is an error term that may be 
correlated across equations hut not across time. The function f< may he nonlinear in 
variables, parameters, and expectations. The following is a brief review of the solution 
method for this model. In what follows i is always meant to run from 1 through n. 
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Case 1. pi = 0. Consider solving the model for period s. It is assumed that estimates 
of a, are available, that current and expected future values of the exogenous variables 
are available, and that the current and future values of the error terms have been set to 
their expected values (which will always be taken to be zero here). If the expectations 
Es_,?/,, E,-,T,.+~, _, Es-,ys+h were known, (38) could be solved in the usual 
ways (usually by the Gauss-Seidel technique). The model would be simultaneous, 
but future predicted values would not affect current predicted values. The EP method 
iterates over solution paths. Values of the expectations through period s + h + k + h 
are first guessed, where k is a fairly large number relative to h.’ Given these guesses, 
the model can be solved for periods s through s + h + k in the usual ways. This 
solution provides new values for the expectations through period s i- h + k - the new 
expectations values are the solution values. Given these new values, the model can be 
solved again for periods s through s+ h+ k, which provides new expectations values, 
and so on. This process stops (if it does) when the solution values on one iteration are 
within a prescribed tolerance criterion of the solution values on the previous iteration 
for all periods s through s + h + k. 

So far the guessed values of the expectations for periods s + h + k + 1 through 
s + h + k + h (the h periods beyond the last period solved) have not been changed. If 
the solution values for periods s through s + h depend in a nontrivial way on these 
guesses, then overall convergence has not been achieved. To check for this, the entire 
process above is repeated for k one larger. If increasing k by one has a trivial effect 
(based on a tolerance criterion) on the solution values for s through s + h, then overall 
convergence has been achieved; otherwise k must continue to be increased until the 
criterion is met. In practice what is usually done is to experiment to find the value 
of k that is large enough to make it likely that further increases are unnecessary for 
any experiment that might be run and then do no further checking using larger valuer 
of li. 

The expected future values of the exogenous variables (which ax needed for the 
solution) can either be assumed to be the actual values (if available and known by 
agents) or be projected from an assumed stochastic process. If the expected future 
values of the exogenous variables are not the actual values, one extra step is needed 
at the end of the overall solution. In the above process the expected values of the 
exogenous variables would be used for all the solutions, the expected values of the 
exogenous variables being chosen ahead of time. This yields values for &I val 
E,_,y,+,. _. 1 ,?S_,Y~+~. Given these values, (38) is then solved for period s using 
the acr~al value of zs, which yields the final solution value Ij,. To the extent that the 
expected value of Z~ differs from the actual value, E,_ly, will differ from Q.. 

3Cuessed values are usually taken to be the actual valuers if the S~lUi~n is within the period for which 
data exist. Othetise, the last observed value of a variable cm be used for the future values or the variable 
can be extrapolated in some simple way. Sometimes information on tk steady stare solution (if rhere is 
one, CaLI be “Sed to help form the guesses. 
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Two points about this method should be mentioned. First, no general convergence 
proofs are available. If convergence is a problem, one can sometimes “damp” the so- 
lution values to obtain convergence. In practice convergence is usually not a problem. 
There may, of course, be more than one set of solution values, and so there is no 
guarantee that the particular set found is unique. If there is more than one set, the set 
that the method finds may depend on the guesses used for the expectations for the h 
periods beyond s + h + k. 

Second, the method relies on the certainty equivalence assumption even though the 
model is nonlinear. Since expectations of functions are treated as functions of the 
expectations in future periods in Eq. (38), the solution is only approximate unless 
fi is linear. This assumption is like the linear quadratic approximation to rational 
expectations models that has been proposed, for example, by Kydland and Prescott 
(1982). Although the certainty equivalence assumption is widely used, including in 
the engineering literature, it is, of course, not always a good approximation. 

Case 2. pi # 0 and &~a before s - I available. The existence of serial correlation 
complicates the problem considerably. The error terms for period t - I (uitml : i = 
I:. , n) depend on expectations that were formed at the end of period t ~ 2, and so 
a new viewpoint date is introduced. This case is discussed in Section 2.2 in Fair and 
Taylor (1983), but an error was made in the treahnent of the second viewpoint date. 
The following method replaces the method in Section 2.2 of this paper. 

Consider again solving for period s. If the values of ui,?-, were known, one could 
solve the model as above. The only difference is that the value of an error term like 
ujtr-l would be p;uia-~ instead of zero. The overall solution method first uses 
the EP method to solve for period s ~ j, where j > 0, based on the assumption 
that ‘Q-~-L = 0. Once the expectations are solved for, (38) is used to solve for 
‘u+i. The actual values of us_i and ~~-1 are used for this purpose (although the 
solution values are used for the expectations) because these are structural errors being 
estimated, not reduced form errors. Given the values for uia-j, the model is solved for 
period s ~ j + 1 using the EP method, where an error term like ~i~-j+~ is computed 
as p;ui,*_j, Once the expectations are solved for. (38) is used to solve for u~~-~+~, 
which can be used in the solution for period s-j f2, and so on through the solution 
for period s. 

The solution for period s is based on the assumption that the error terms for period 
s j I are ECTO. To see if the solution values for period s are sensitive to this 
assumption, the entire process is repeated with j increased by 1. IF going back one 
more period has effects on the solution values for period s that are within a prcscribcd 
tolerance criterion, then overall convergence has been achieved; otherwise j must 
continue to be increased. Again, in practice one usually finds a value of j that is large 
enough to make it likely that further increases are unnecessary for any experiment 
that might be run and then do no further checking using larger values of j. 

It should be noted that once period s is solved for, period s + 1 can be solved 
for without going back again. From the solution for period s, the values of ui.? can 



he computed, which can then be used in the solution for period s + 1 using the EP 
metlwd. 

Case 3. pi # 0 and data before period s - 1 not uvailable. This case is based on 
the assumption that F,&,-, = 0 when solving for period s. This type of an assump- 
tion is usually made when estimating multiple equation models with moving average 
residuals. The solution problem is to find the values of u,,-1 that are consistent with 
this assumption. The overall method begins by guessing values for 1~~~ -2. Given these 
values, the model can be solved for period s I using the EP method and the fact 
that 21, i,V+r_2 = p:%liJ_2. From the solution values for the expectations, (3X) and (39) 
can be used to solve for Q-~.’ If the absolute values of these errors are within a pre- 
scribed tolerance criterion, convergence has been achieved. Otherwise. the new guess 
t’or ‘xs--2 is computed as the old guess plus G_,/~~. The model is solved again for 
period s - 1 using the new guess and the EP method. sod so on until convergence is 
reached. 

At the point of convergence 11,8-l can be computed as piw_~, where tkda_l is the 
estimated value on the last iteration (the value consistent with <is-, being within a 
prescribed tolerance criterion of zero). Given the values of uis-, , one can solve for 
period s using the EP method, and the solution is finished. 

The easiest way to think about the computational costs of the solution method is to 
consider how many times the equations of a model must be “passed” through. Let 
Nj hc the number of passes through the model that it takes to solve the model f(>r 
one period, given the expectations. NI is usually some number less than IO when 
the Gauss-Seidel technique is used. The EP method requires solving the model for 
il+ fi -t- 1 periods. Let :‘Jz be the number of iterations it takes to achieve convergence 
over these periods. Then the total number of passes for convergence is NxN, (lrtkl I). 
If, say, h is 5, k is 30, Nz is 15, and NI is 5, then the total number of passes needed 
to solve the model for one period is 11,250, which compares to only 5 when there are 
no expectations. If k is increased by one to check for overall convergence, the total 

is not always done. ” 
number of passes is s Ightly more than doubled, although, as noted above, this check 

For Case 2 ahovc the number of passes is iocreascd by roughly a factor OF j if 
overall convergence is not checked. Checking for overall convergence slightly more 
than doubles the number of passes. .i is usually a number between 5 and IO. If q is 
the number of iterations it takes to achicvc convergence for Case 3 above, the number 



of passes is increased by a factor of 4 + 1. In practice Q seems to be between about 5 
and IO. Note for both Cases 2 and 3 that the number of passes is increased relative 
to the non serial correlation case only for the solution for the first period (period s). 
If period s + 1 is to he solved for, no additional passes are needed over those for the 
regular case. 

10.4. FML estimation 

Assume that the estimation period is I through T. The objective function tha FIML 
maximizes (assuming normality) is 

;P 
resented in Eq. (9) above. In the present notationl 

the ii element of C is (l/T) C,;! ciiejt. S’ mce the expectations have viewpoint 
date t - I, they are predetermined from the point of view of taking derivatives for 
the Jacobian, and so no additional problems are involved for the Jacobian in the 
Irational expectations case. In what follows (Y will he used to denote the vector of 
all the coefficients in the model. In the serial correlation case a also includes the p,,, 
coeffii-ients. 

In the standard case computing C for a give value of a is fairly inexpensive. One 
simply solves (38) and (39) for the tit error terms given the data and the value of a. 
This is only one pass through the model since it is the structural error terms that 
are being computed. In the rational expectations case, however, computing the error 
terms requires knowing the values of the expectations, which themselves depend on u. 
Therefore, to compute C for a given value of a one has to solve for the expectations 
for each of the T periods. If, say, 11>250 passes through the model are needed to 
solve the model for one period and if T is 100, then 1,125.000 passes are needed 
for one evaluation of C and thus one evaluation of L. In a 25 cocllicient problem 
discussed in Fair and Taylor (1990), the Parke algorithm required 2,s 17 evaluations 
of L to converge, which would bc over 3 trillion passes if done this way.’ 

It should be clear that the straightforward combination of the EP solution method 
and FIML estimation procedures is not likely to be computationally feasible for most 
applications. There is, however, a way of cutting the number of times the model has to 
be solved over the estimation period to roughly the number of estimated coefficients. 
The trick is to compute numerical derivatives of the expectations with respect to 
the parameters and use these derivatives to compute C (and thus L) each time the 
algorithm requires a value of L for a given value of a. 

Consider the derivative of E _ y t , t+T with respect to the first element of a. One can 
first solve the model for a given value of CY and then solve it again for the lirst element 
of (x changed by n certain percent, both solutions using the EP method. The computed 
derivative is then the difference in the two solution values of El-~gitV divided by 
the change in the first element of N. To compute all the derivatives requires K + I 



solutions of the model over the T number of observations, where K is the dimension 
of a6 One solution is for the base values. and the K solutions are for the K changes 
in a, one coefficient change per solution. From these K + 1 solutions, K T. (h + 1) 
derivatives are computed and stored for each expectations variable, one derivative for 
each length ahead for each period for each coeffician7 Once these derivatives arc 
computed, they can be used in the computation of C for a given change in a. and 
no further solutions of the model are needed. In other words, when the maximization 
algorithm changes a and wants the corresponding value of L, the derivatives are first 
used to compute the expectations, which are then used in the computation of C. Since 
one has (from the derivatives) an estimate of how the expectations change when a 
changes, one does not have to solve the model any more to get the expectations. 

Assuming that the solution method in Case 3 above is used for the FIML estimates, 
derivatives of q--l with respect to the coefficients are also needed when the errors are 
serially correlated. These derivatives can also be computed from the K + 1 solutions, 
and so no extra solutions are needed in the serial correlation case. 

Once the K + 1 solutions of the model have been done and the maximization 
algorithm has found what it considers to be the optimum, the model can be solved 
again for the T periods using the optimal coefficient values and then L computed. This 
value of L will in general differ from the value of L computed using the derivatives 
for the same coefficient values, since the derivatives are only approximations. At this 
point the new solution values (not computed using the derivatives) can be used as new 
base values and the problem turned over to the maximization algorithm again. This 
is the second “iteration” of the overall process. Once the maximization algorithm 
has found the new optimum, new base values can be computed, a new iteration 
performed, and so on. Convergence is achieved when the coefficient estimates from 
one iteration to the next are within a prescribed tolerance criterion of each other. This 
procedure can be modified by recomputing the derivatives at the end of each iteration. 
This may improve convergence, but it obviously adds considerably to the expense. 
At a minimum, one might want to recompute the derivatives at the end of overall 
convergence and then do one more iteration. If the coefficients change substantially 
on this iteration, then overall convergence has not in fact been achieved. 

10.5. Stochastic simulation 

For models with rational expectations one must state very carefully what is meant by 
a stochastic simulation of the model and what stochastic simulation is to be used for. 
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In the present case stochastic simulation is not used to improve on the accuracy of 
the solutions of the expected values. The expected values are computed exactly as 
described above - using the EP method. This way of solving for the expected values 
can be interpreted as assuming that agents at the beginning of period s form their 
expectations of the endogenous variables for periods s and beyond by 1) forming 
expectations of the exogenous variables for periods s and beyond, 2) setting the error 
terms equal to their expected values (say zero) for periods s and beyond, 3) using the 
existing set of coefficient estimates of the model, and then 4) solving the model for 
periods s and beyond. These solution values are the agents’ expectations. 

For present purposes stochastic simulation begins once the expected values have 
been solved for. Given the expected values for periods s through s + h, stochastic 
simulation is performed for period s. The problem is how no different from the 
problem for a standard model becawe the expe$ations are predetermined. Assume 
that the errors are distributed N(0, C), where C is the FIML estimate of C from 
Section 10.4. From this distribution one can draw a vector of error terms for period s. 
Given these draws (and the expectations), the model can be solved for period s in 
the usual ways. This is one repetition. Another repetition can be done using a new 
draw of the vector of error terms, and so on. The means and variances of the forecast 
values can be computed using Eqs (30) and (32). 

One can also use this approach to analyze the effects of uncertainty in the coeffi- 
cients by assuming that the coefficients are distributed N(iy, Q), where & is the FIML 
estimate of N and pd is the estimated covariance matrix of &. In this case each draw 
also involves the vector of coefficients. 

If uit is serially correlated as in (39), then an estimate of u;~-I is needed for the 
solution for period s. This estimate is, however, available from the solution of the 
model to get the expectations (see Case 2 in Section 10.2), and so no further work is 
needed. The estimate of Q-_I is simply taken as predetermined for all the repetitions, 
and ?lia is computed as pi~i~-1 plus the draw for tis. (Note that the F errors are 
drawn, not the u errors.) 

Stochastic simulation is quite inexpensive if only results for period s are needed 
because the model only needs to be solved once using the EP method. Once the expec- 
tations are obtained, each repetition merely requires solving the model for period s. 
If, on the other hand, results for more than one period are needed and the simulation 
is dynamic, the EP method must be used p times for each repetition, where p is the 
length of the period. 

Consider the multi period problem. As above, the expectations with viewpoint date 
B - I can be solved for and then a vector of error terms and a vector of coefficients 
drawn to compute the predicted value of yea. This is the first step. 

Now go to period s + 1. An agent’s expectation of. say. yis+z is different with 
viewpoint date s than with viewpoint date s - 1. In particular, the value of yi. is in 
general different from what the agent at the end of period s ~ 1 expected it to be 



(because of the error terms that were drawn for period s).’ A new set of expectations 
must thus be computed with viewpoint date s. Agents are assumed to use the original 
set of coefficients (not the set that was drawn) and to set the values of the error terms 
for periods s + 1 and beyond equal to zero. Then given the solution value of yi. and 
the actual value of .z,~. agents are assumed to solve the model for their expectations 
for periods s + 1 and beyond. This requires a second use of the EP method. Given 
these expectations, a vector of error terms for period s + 1 is drawn and the model is 
solved for period s+ I. If equation i has a serially correlated error, then zl<,_+l is equal 
to p&t plus the draw for t,,+,. Now go to period s + 2 and repeat the process, 
where another use of the EP method is needed to compute the new expectations. The 
process is repeated through the end of the period of interest. At the end; this is one 
repetition. The overall process is then repeated for the second repetition, and so on. 
Note that only one coefficient draw is used per repetition, i.e.. per dynamic simulation. 
After J repetitions one can compute means and variances just as above, where there 
are now means and variances for each period ahead of the prediction. Also now that 
agents are always assumed to use the original set of coefficients and to set the current 
and future error terms to zero. They do not perform stochastic simulation themselves. 

Stochastic simulation has also been used to evaluate alternative international mone- 
tary systems using the multicountry models in Carloyzi and Taylor (1985) and Taylor 
(1988). For this work values of tit were drawn, but not values of the coefficients. The 
vector of coefficients N was taken to be fixed. 

It seems that stochastic simulation as defined ahove is computationally feasible 
for models with rational expectations. Stochastic simulation is in fact likely to he 
cheaper than even FIML estimation using the derivatives. If, for exampleY the FIML 
estimation period is 100 observations and there are 25 coefficients to estimate, FIML 
estimation requires that the model be solved 2600 times using the EP method to get 
the derivatives. For a stochastic simulation of 8 periods and 100 repetitions, on the 
other hand, the model has to be solved using the EP method only 800 times. 

The results reported in Fair and Taylor (1990) using the methods discussed in this 
section are encouraging regarding the use of models with rational expectations. FIML 
estimation seems computationally feasible using the procedure of computing deriva- 
tives for the expectations, and stochastic simulation is feasible when done in the 
manner described above. FIML estimation is particularly imponant because it takes 
into account all the nonlinear restrictions implied by the rational expectations hypoth- 
esis. It is hoped that the methods discussed in this section will open the way for many 
more tests of models with rational expectations. 




