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Abstract

This paper uses world records by age in running, swimming, and rowing
to estimate a biological frontier of decline rates for both men and women.
Decline rates are assumed to be linear in percent terms up to a certain age and
then quadratic after that, where the transition age is estimated. The decline
rates are smallest for rowing, followed by swimming and then running. De-
cline rates for women are roughly the same as those for men for the swimming
events. They are slightly larger for the rowing events. They are largest for
running. The age at which there is a 50 percent decline from age 30 ranges
from 69 to 89, an optimistic result for humans. The estimated decline rates
can be used by non physically elite people under the assumption that their
decline rates in percentage terms are similar to those of the elite athletes and
that they are in peak shape for their age.

1 Introduction

An important economic policy question is what to assume about the physical abil-

ities of people as they age. In setting a retirement age one question is how much

decline there is up to the chosen age? What can one expect, say, from a 70 year old

versus a 65 year old? In medicine an important question is how much exercise to

recommend as people age. The key question here is a biological one: how fast do
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people’s physical abilities decline with age. In previous work, Fair(1994, 2007)

and Fair and Kaplan (2018), world records by age were used to estimate decline

rates in track and field, road racing, swimming, and chess. Except for swimming,

only data for men were used. More recent and better data are now available for

both men and women, and Concept 2 rowing data are available for both men and

women. It is now possible to compare decline rates in men versus women, which

is what this paper does.

Nearly a hundred years ago Hill (1925) pointed out the potential usefulness of

athletic records to study the physiology of muscular exercise. The present paper is

in this tradition. The advantage of using world records to estimate the biological

frontier is that each record is based on many tries, where the best try is used.

The sample in this sense is very large. This being said, some of the records are

likely “soft” at the older ages because not enough elite people at these ages have

participated in the event for the world record to be a good estimate of the biological

minimum. More will be said about this later. Studies that have used world records

are reviewed in Fair (2007). As far as I am aware there are no other studies that

compare the performances of men versus women as is done in this paper.

The model used in this paper focuses on two restrictions that seem sensible

biologically. The first is that after a certain age the rate of decline is non decreasing

with age. This is the “first derivative” restriction. The second is that the change

in the rate of decline is non decreasing with age. This is the “‘second derivative”

restriction. In short, after decline begins, nothing gets better with age. The linear-

quadratic (LQ) model used here automatically meets these restrictions. The LQ

model postulates that decline rates are linear in percent terms up to a certain age

and then quadratic after that, where the transition age is estimated.

It will be seen that for both men and women the decline rates are smallest for

rowing, followed by swimming and then running. Decline rates for women are

roughly the same as those for men for the swimming events. They are slightly

larger for the rowing events. They are largest for running. The age at which there
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is a 50 percent decline from age 30 ranges from 69 to 89, an optimistic result for

humans. The estimated decline rates can be used by non physically elite people

under the assumption that their decline rates in percentage terms are similar to

those of the elite athletes and that they are in peak shape for their age.

2 The Data

Data for five running events were obtained from the site of the Association of

Road Racing Statisticians (AARS): arrs.net/SARec.htm. The data are AARS rec-

ognized world records by age. Four of the events are road racing events: 5K,

10K, Half Marathon, and Marathon, and the fifth event is 5,000 meters out-

door track. Data for both men and women were obtained. The AARS data

end in 2019, and more recent data were obtained from two Wikipedia sites:

https : //en.wikipedia.org/wiki/Listofworldrecordsinmastersathletics and

https : //en.wikipedia.org/wiki/Listofmastersworldrecordsinroadrunning.

The data were obtained on October 22, 2023. For men there were 19 world records

set after 2019, and for women there were 21. One of the more impressive records

was age 60, women’s 10K, where the record dropped from 39:10 to 36:43. This

shows the softness of some of the women’s records.

World records by age for swimming were obtained from the World Aquat-

ics site: worldaquatics.com/masters/records. Results for six long course meters

(LCM) freestyle events were obtained: 50, 100, 200, 400, 800, and 1500 meters.

Data were only available in five-year intervals, 30-34, 35-39, ..., 100-104. For each

interval the age was taken to be the youngest age, 30, 35, ..., 100. Data for both

men and women were obtained. The data were obtained on September 2, 2023.

World records by age for Concept 2 rowing were obtained from the site:

concept2.com/indoor-rowers/racing/records/world. The machine was RowErg;

the weight was heavyweight; and the events were 1000, 2000, 5000, 6000, and

10000 meters. Data were also only available in five-year intervals, but in this case
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the age of the record holder was available. Data for both men and women were

obtained. The data were obtained on September 7, 2023.

As noted above, some of the data are likely “soft” at the older ages. This is

particularly true for running. To adjust for this, the oldest age for the half marathon

for both men and women was taken to be 85. For the marathon the oldest age for

men was taken to be 85 and the oldest age for women was taken to be 88. For

swimming, the age category 100-104 was not used. For rowing, the age 95 record

for men for 1000 meters rowing was excluded. Also for rowing, the data appeared

soft for the 21,097 and 42,195 meter rowing events, especially for women, and

these two events were not used. The age 80 observation for women’s rowing

10000 meters was also excluded. Finally, the 100 meter and 500 meter rowing

events were excluded. For men 100 meters and 500 meters and women 500 meters

the world records were at ages in the mid 40’s, and so the times in the 30’s are

likely soft. For women 100 meters the time at age 54 was close to the world record.

Observations with dominated times were also excluded. A time is dominated

if there is a lower time at an older age. A dominated time is thus soft, which is

the reason for its exclusion. There was one dominated record for rowing and three

for swimming. There were a number for running, primarily because there were

records at each age rather then in just five year intervals.

Regarding possible changes over time, it may be that the estimated curves are

shifting down over time as nutrition, knowledge, technology, and the like improve.

For this paper it is assumed that the curves do not shift over time. The world

record data are primarily since 2000. For rowing the oldest record was 2011 for

women and 2010 for men. For swimming all of the records were set after 2000.

For running there were only 14 records out of 271 observations used that were set

before 1990, with the two earliest being in 1977.

Table 1 lists the notation for the 16 events plus one pooling case.
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Table 1
The Events

Notation Description

RU5000 Running, 5000 meters, outdoor track
RU5K Running, 5K
RU10K Running, 10K
RUHMA Running, half marathon
RUMA Running, marathon

SW50 Swimming, LCM, freestyle, 50 meters
SW100 Swimming, LCM, freestyle, 100 meters
SW200 Swimming, LCM, freestyle, 200 meters
SW400 Swimming, LCM, freestyle, 400 meters
SW800 Swimming, LCM, freestyle, 800 meters
SW1500 Swimming, LCM, freestyle, 1500 meters

RO1000 Rowing, RowErg, heavyweight, 1000 meters
RO2000 Rowing, RowErg, heavyweight, 2000 meters
RO5000 Rowing, RowErg, heavyweight, 5000 meters
RO6000 Rowing, RowErg, heavyweight, 6000 meters
RO10000 Rowing, RowErg, heavyweight, 10000 meters
ROPOOL Rowing, RowErg, heavyweight, pooled 1000–10000 meters

In the text a “M” after the name is men, and a “‘W” after the name is women,
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3 The Linear/Quadratic (LQ) Model

Consider first decline from age 40 on. It may be that there is some decline between,

say, ages 30 and 39, but this decline may be less in perecentage terms than decline

from 40 on. The following model is for decline starting at age 40. The estimation

of decline between 30 and 39 is discussed at the end of this section.

Ages 40 on

Let rk denote the log of the record time for age k. Using logs means that all decline

rates are in percentage terms. bk will be used to denote log of the (unobserved)

biological minimum time for age k. By definition,

rk = bk + εk , (1)

where εk is the gap between the record time and the true biological minimum

time. It will be close to zero if the record time is close to the biological minimum.

Otherwise it is positive.

The LQ model postulates that the decline rate (in percentage terms) is linear

up to a transition age and then quadratic after that. The transition age is one of the

estimated parameters. At the transition age the linear and quadratic segments are

constrained to touch and to have the same first derivative. The formula for bk is

bk =

 β + αk, 40 ≤ k ≤ k∗, α > 0

γ + θk + δk2, k > k∗, δ > 0
(2)

with the restrictions
γ = β + δk∗2

θ = α− 2δk∗
(3)

k∗ is the transition age. The two restrictions force the linear and quadratic segments

to touch and to have the same first derivative at k∗. The unrestricted parameters to

estimate are the intercept, β, the slope of the linear segment, α, the transition age,

6



k∗, and the quadratic parameter, δ. The first derivative of bk with respect to k is

α up to the transition age and then increases by a constant amount (2δ) after that.

The second derivative is zero up to the transition age and then constant (2δ) after

that.

The equation that is estimated is then

rk = β + αk + δdk(k
∗2 − 2k∗k + k2) + εk, (4)

where dk = 0 if k ≤ k∗ and dk = 1 if k > k∗. εk is greater than or equal to zero,

so it has a positive mean. A positive mean poses no problem in the estimation

because it is simply absorbed in the estimate of the constant term. This means

that the constant β is not identified, but this is of no concern here because the

derivatives do not depend on β. The equation can be estimated by non linear least

squares, NLS.

The equation can also, however, be estimated under the restriction that εk ≥
0 for all k. The procedure is common in the estimation of frontier production

functions—see, for example, Aigner and Chu (1968) and Schmidt (1976). The

added complication here is that equation (4) is nonlinear in coefficients. For linear

equations the estimation problem can be set up as a quadratic programming problem

and solved by standard methods.

The procedure used here is the following. In the NLS case the coefficients in

equation (4) are estimated by minimizing the sum of squared residuals,
∑K

k=1 ε̂
2
k,

whereK is the total number of observations. Instead, one can minimize a weighted

sum,
∑K

k=1 λk ε̂
2
k, where λk is equal to 1 if ε̂k ≥ 0 and is equal to a number greater

than 1 if ε̂k < 0. This penalizes negative errors more than non-negative ones. For

the results here a value of 1000 was used for λk when ε̂k was less than zero.

It will be seen that the use of the frontier procedure instead of NLS has generally

small effects on the slope coefficients and k∗ and thus on the estimated derivatives.

The use of the procedure primarily affects the estimate of the constant term β,

which is not of concern here.
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Some events have very similar coefficient estimates, and for these events pool-

ing was done. The assumption is that the curve for each event is the same except

for the intercept. The equation estimated is (n is the number of events pooled):

rik = β1D1ik + · · ·+ βnDnik + αk + δdik(k
∗2 − 2k∗k + k2) + εik, (5)

i = 1, . . . , n; k = 40 . . . , Ki,

where rik is the log of the observed record for event i and age k, Djik is a dummy

variable that is equal to 1 when event i is equal to event j and 0 otherwise (j =

1 . . . n), dik = 1 if k ≤ k∗ and dik = 0 if k ≥ k∗, εik is the error for event i and age

k, andKi is the oldest age used for event i. The n β coefficients are the n different

constant terms.

Ages 30-39

Data were collected for each event from age 30 on. The overall world record for

each event and gender was also collected. In estimating the decline rate between

30 and 39 the time at age 30 was taken to be the overall world record even if the

actual time was higher. In other words, the times at age 30 were assumed to be soft

if they were not the overall world record, and the overall world record was used.

This assumes that decline does not begin before 30.

From the above estimation for each event and gender the predicted value of bk
is available for age 40, b̂40. (Remember that the times are in logs.) Then the values

of bk between 30 and 39 were assumed to lie on a straight line between the world

record (age 30 time) and b̂40. One would expect the slope of this line to be less

than α̂ if the percent decline before age 40 is less. In the tables below the ratio of

the slope to α̂ is presented. Note that the above estimation from age 40 on is not

affected by this treatment for ages 30 through 39.

For the results below ’‘age factors,” denoted Rk, are presented. They are

computed as follows. Let b̂k denote the predicted value of bk using the estimated
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values of β, α, k∗, and δ for k = 40, . . .. Let b̂k denote the predicted value of bk
for k = 30, . . . , 39 using the above procedure for ages 30-39. Then Rk is

Rk = eb̂k/eb̂30 , k = 30, . . . . (6)

Rk is an estimate of the percent decline at age k from age 30. This estimate does

not depend on the estimate of β, so the estimate of the constant term in the equation

does not matter. It does depend on the overall world record for the event and gender

because b̂30 is the overall world record.

4 The Results

There are five running events, six swimming events, and five rowing events, for

a total of 16 cases per gender. The estimates for these 32 cases are presented in

Table 2. The coefficient estimates for five rowing events for each gender are close

enough to warrant pooling, and the pooling estimates are presented at the bottom

of Table 2.

Table 2 presents the estimates of α, k∗, δ, the slope divided by α, the implied

age factors for ages 70, 80, and 90, the number of observations, the maximum age

in the estimation period, the age at which the decline is 50 percent from age 30

(denoted “Half”), and the estimated standard error of the estimate of k∗. For each

case the men’s results are presented and then the women’s. Although not shown,

the coefficient estimates are highly significantly different from zero. Only one

estimate of α has a t-statistic less than 2.0, 1.85 for rowing 1000 meters women,

and no estimate of δ has a t-statistic less than 2.0. This is, of course, not surprising

since there is obvious decline in the data. The estimated standard errors of the

estimates of k∗ are presented to give a sense of the precision of the estimates of

the transition age. There is collinearity between the estimate of the transition age
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Table 2
NLS Estimates

No. Max SE
Event α̂ k̂∗ δ̂ slope/α̂ R70 R80 R90 Obs. Age Half k̂∗

RU5000M 0.0100 73.9 0.00121 0.64 1.44 1.66 2.40 32 96 75 1.0
RU5000W 0.0107 65.8 0.00061 0.55 1.48 1.84 2.58 26 96 71 3.5

RU5KM 0.0084 66.9 0.00085 0.67 1.37 1.71 2.52 30 95 76 2.4
RU5KW 0.0105 66.5 0.00078 0.34 1.43 1.82 2.70 28 95 73 1.8

RU10KM 0.0097 76.0 0.00266 0.36 1.38 1.59 2.83 30 92 78 0.6
RU10KW 0.0135 82.7 0.02124 0.13 1.53 1.75 6.24 29 88 69 0.6

RUHMAM 0.0078 58.6 0.00032 0.82 1.40 1.68 2.15 29 85 75 3.0
RUHMAW 0.0100 56.2 0.00031 0.41 1.49 1.85 2.44 20 85 71 5.3

RUMAM 0.0107 73.3 0.00123 0.23 1.41 1.66 2.48 27 85 76 1.8
RUMAW 0.0137 74.2 0.00221 0.10 1.53 1.89 3.49 20 85 69 2.4

SW50M 0.0050 64.5 0.00043 0.74 1.22 1.41 1.76 12 95 84 1.7
SW50W 0.0072 76.6 0.00145 0.03 1.24 1.36 1.87 12 95 85 2.5

SW100M 0.0068 67.8 0.00053 0.55 1.28 1.47 1.89 12 95 81 2.6
SW100W 0.0067 68.4 0.00075 0.16 1.24 1.46 2.01 11 95 81 3.6

SW200M 0.0057 62.6 0.00044 0.63 1.26 1.49 1.92 12 95 81 2.7
SW200W 0.0050 63.0 0.00054 0.84 1.25 1.49 1.99 12 95 81 4.1

SW400M 0.0044 57.9 0.00038 0.73 1.25 1.48 1.90 12 95 81 2.2
SW400W 0.0057 58.5 0.00038 0.30 1.27 1.53 1.98 12 95 80 4.4

SW800M 0.0038 53.7 0.00030 1.36 1.28 1.51 1.89 12 95 80 4.0
SW800W 0.0065 60.0 0.00042 0.31 1.29 1.56 2.06 12 95 79 4.8

SW1500M 0.0054 59.7 0.00035 0.98 1.29 1.52 1.91 12 95 80 4.7
SW1500W 0.0094 69.3 0.00060 -0.07 1.32 1.55 2.05 10 95 79 4.2

RO1000M 0.0052 63.7 0.00023 0.31 1.20 1.33 1.55 10 91 89 4.0
RO1000W 0.0058 57.1 0.00021 0.31 1.26 1.44 1.71 10 91 83 13.9

RO2000M 0.0049 65.6 0.00028 0.55 1.20 1.32 1.55 11 95 89 1.5
RO2000W 0.0058 66.4 0.00030 0.73 1.24 1.39 1.64 10 90 86 2.5

RI5000M 0.0051 65.4 0.00032 0.39 1.20 1.34 1.60 10 90 87 1.4
RO5000W 0.0052 66.4 0.00059 0.97 1.24 1.45 1.90 9 93 82 2.1

RO6000M 0.0041 65.8 0.00038 0.91 1.18 1.32 1.59 11 95 88 3.1
RO6000Wf 0.0053 65.3 0.00052 1.08 1.26 1.47 1.91 8 80 81 2.5

RO10000M 0.0042 63.6 0.00031 0.57 1.18 1.32 1.57 10 90 88 2.0
RO10000W 0.0037 60.8 0.00043 1.51 1.23 1.44 1.84 8 90 83 2.7

ROPOOLM 0.0047 64.6 0.00030 0.53 1.19 1.33 1.57 57 96 88 1.4
ROPOOLW 0.0051 62.8 0.00037 0.73 1.23 1.42 1.76 49 93 83 3.2
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and the estimate of the quadratic coefficient. A larger estimate of k∗ tends to result

in a larger estimate of δ.

Table 3 is the same as Table 2 except that the estimates are obtained from the

frontier method, where all the estimated residuals are forced to be non negative.

Consider Table 2 first. The estimates of the transition age vary from 53.7 to

82.7. The mean across the 16 events (not counting the pooled results) is 64.9 for

men and 66.1 for women. The estimates of α, the percent decline per year up to

the transition age, vary from 0.0037 to 0.0137. The mean across the 16 events is

0.0063 for men and 0.0078 for women. The slope between 30 and 40 as a fraction

of α̂ is more erratic. In three cases it is greater than one, and in one case it is

negative but essentially zero (−0.07 for SW1500W). Otherwise, the range is from

0.03 to 0.97. A predicted value greater than one means that the linear decline rate

is larger between 30 and 39 than it is from 40 on. A predicted value less than zero

means that the predicted value at age 40 is less than the overall world record. The

age factors at age 80 vary from 1.32 to 1.89. The age at which there is a 50 percent

decline from age 30 varies from 69 for the women’s running 10K and marathon to

89 for some of the men’s rowing events. One of the estimated standard errors of

the estimate of k∗ is high: 13.9 for RO1000W.

The results in Table 3 for the frontier estimates are similar to those in Table 2.

The mean of the estimates of the transition age for men is 67.1 versus 64.9 in Table

2. For women it is 67.6 versus 66.1 in Table 2. The mean of the estimates of α is

0.0063 for men, the same as in Table 2, and 0.0075 for women versus 0.0078 in

Table 2. Three of the estimates of ratio of the slope to α̂ are still greater than one,

and five of the estimates are now slightly less than zero.

There are two problematic results for women in the two tables. One is for the

women’s marathon, RUMAW. The estimate of δ is fairly large, and the age-90 age

factor is unrealistically large—3.49 versus 2.48 for men in Table 2. This likely

reflects the soft data problem for women in the marathon, and more time
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Table 3
Frontier Estimates

No. Max
Event α̂ k̂∗ δ̂ slope/α̂ R70 R80 R90 Obs. Age Half

RU5000M 0.0095 71.9 0.00106 0.31 1.37 1.61 2.34 32 96 77
RU5000W 0.0105 70.6 0.00080 0.26 1.41 1.68 2.35 26 96 75

RU5KM 0.0083 70.1 0.00086 0.48 1.34 1.58 2.23 30 95 78
RU5KW 0.0100 69.1 0.00100 0.14 1.37 1.71 2.60 28 95 76

RU10KM 0.0091 75.5 0.00244 0.23 1.34 1.54 2.69 30 92 79
RU10KW 0.0123 81.9 0.01898 -0.27 1.40 1.58 6.18 29 88 76

RUHMAM 0.0078 61.8 0.00044 0.59 1.36 1.66 2.19 29 85 76
RUHMAW 0.0093 57.6 0.00037 0.17 1.42 1.78 2.40 20 85 73

RUMAM 0.0107 74.4 0.00168 -0.04 1.37 1.61 2.56 27 85 78
RUMAW 0.0132 74.5 0.00262 -0.18 1.45 1.79 3.56 20 85 73

SW50M 0.0051 65.6 0.00047 0.46 1.20 1.38 1.74 12 95 85
SW50W 0.0054 73.9 0.00120 0.00 1.18 1.30 1.79 12 95 86

SW100M 0.0065 72.1 0.00076 0.57 1.26 1.41 1.83 12 95 83
SW100W 0.0061 69.0 0.00077 0.13 1.21 1.41 1.92 11 95 83

SW200M 0.0057 63.5 0.00047 0.39 1.24 1.46 1.89 12 95 82
SW200W 0.0061 68.2 0.00068 0.26 1.22 1.43 1.90 12 95 83

SW400M 0.0051 61.6 0.00044 0.43 1.23 1.45 1.87 12 95 82
SW400W 0.0070 66.5 0.00056 -0.19 1.23 1.45 1.91 12 95 82

SW800M 0.0039 59.0 0.00040 1.11 1.23 1.45 1.86 12 95 82
SW800W 0.0076 70.4 0.00080 -0.12 1.24 1.44 1.96 12 95 82

SW1500M 0.0063 66.5 0.00051 0.40 1.24 1.44 1.85 12 95 82
SW1500W 0.0094 71.7 0.00078 -0.34 1.29 1.49 2.02 10 95 81

RO1000M 0.0053 65.1 0.00027 0.13 1.19 1.32 1.55 10 91 89
RO1000W 0.0052 58.8 0.00023 0.34 1.22 1.39 1.65 10 91 85

RO2000M 0.0051 67.5 0.00031 0.35 1.19 1.31 1.54 11 95 89
RO2000W 0.0064 67.8 0.00030 0.34 1.24 1.38 1.64 10 90 86

RI5000M 0.0048 65.1 0.00033 0.37 1.19 1.33 1.59 10 90 88
RO5000W 0.0054 67.7 0.00067 0.59 1.22 1.42 1.88 9 93 83

RO6000M 0.0046 72.3 0.00060 0.40 1.17 1.27 1.55 11 95 89
RO6000Wf 0.0030 54.0 0.00024 2.56 1.26 1.43 1.71 8 80 83

RO10000M 0.0036 61.4 0.00031 0.65 1.16 1.31 1.57 10 90 88
RO10000W 0.0036 60.3 0.00044 1.15 1.21 1.43 1.83 8 90 83

ROPOOLM 0.0047 64.7 0.00029 0.20 1.17 1.30 1.53 57 96 89
ROPOOLW 0.0057 64.5 0.00031 0.21 1.21 1.37 1.64 49 93 86
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will be needed to obtain an accurate biological frontier for the women’s marathon,

at least at the older ages. A similar problem occurs for the women’s 10K, RU10KW.

This case shows the collinearity between the estimate of the transition age and the

estimate of δ. Both are large, likely reflecting a soft data problem. .

Some of the results in Table 2 are summarized in Table 4, where the five

rowing events, 1000 through 10000 meters, are summarized by the pooled results.

Presented are the percent declines from age 30 to 80. The following is a discussion

of this table.

Which sport has the smallest decline rates? The pooled rowing events have

remarkably small decline rates at age 80, 33 percent for men and 42 percent for

women. Next comes swimming. Running has by far the largest decline rates,

roughly double compared to rowing for each gender.

How do men and women compare? Women are on par with men for swimming,

a little better for the shorter distances and a little worse for the longer ones. For

rowing the difference for the pooled results is 9 percentage points, 33 for men

and 42 for women. The differences for running are the largest. The differences

for the five events are respectively 18, 11, 16, 17, and 23 percentage points. As

noted above, the results for women for the 10K and marathon are problematic, and

dropping these two the differences are 18, 11, and 17.

Another way of examining the differences between men and women is to plot

the values by age for each. In Figure 1 the predicted values of bk are plotted for

men and women for the running half marathon. (The marathon is not used because

of the problematic nature of the results for women at the older ages.) Both of these

curves obviously have similar shapes—the linear/quadratic estimates—but the gap

between women and men is widening with age. This is better seen in Figure 1a,

where the percent decline since 30 is plotted. The gap at age 80 is 0.17 (from

Table 3), and it gradually gets larger. Figures 2 and 2a plot the same variables for

swimming 200 meters. Here the plots are very similar. The only main difference

is that women have a larger constant term. Figures 3 and 3a do the same for pooled
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Table 4
Summary: Percent Decline 30 to 80

Event Men Women Difference

RU5000 66 84 18
RU5K 71 82 11
RU10K 59 75 16
RUHMA 68 85 17
RUMA 66 89 23

SW50 41 36 -5
SW100 47 46 -1
SW200 49 49 0
SW400 48 53 5
SW800 51 56 5
SW1500 52 55 3

ROPOOL 33 42 9

Results taken from Table 2.

rowing. (The constant term for each gender in Figure 3 is for the first pooled event,

1000 meters.) The gap widens with age, as in Figure 1a.

Overall, one would say that the differences in decline rates between men and

women for swimming and rowing are zero or modest, but more pronounced for

running. There is also evidence that the differences widen slightly with age for

running and rowing.

Regarding the economic and medical issues mentioned at the beginning of this

paper, how bad is aging? Overall, it seems not too bad. Table 2 shows the age

at which the decline is 50 percent from age 30. As noted above, the values range

from 69 to 89. Rowing is remarkable in showing the high 80’s for men and the low

80’s for women. In general quadratic decline does not begin until the mid 60’s,

and even after it begins it is modest for many years.
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5 Robustness

The estimates per gender for rowing for the five events 1000 meters through 10000

meters are remarkably similar in Table 2, which is why they were pooled. This is

support for the specification. As noted above, the decline rates for rowing are low,

which is true for all five estimates per gender.

The estimated standard errors for the estimates of the transition age are small

with one exception as discussed above. The also adds support for the specification.

6 Use of the Estimated Decline Rates

A world age record is the best that anyone at that age has done, and so it is a

good estimate of the biological frontier aside from the soft data problem. The

decline rates are in percent terms, and they can be used by non physically elite

people under the assumption that their decline rates are the same percentages as

those for the elite athletes. In other words, the decline rates can be used if one

is on the biological frontier regarding percentage decline rates. To be on the line

requires that one is not sick or injured and is in peak shape age corrected, a severe

requirement. My experience is that some are on their line and some are not. But

at least it is something to aim for.

In general, as noted above, the decline rates are modest and are encouraging

for people having an active life well into the older ages. These results support

the recent move in medicine to focus on active lifestyles as people age. See, for

example, Attia (2023).
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7 Conclusion

There are three main conclusions from the results in this paper, two more conclusive

than the third. The first is that the decline rates are modest into the older ages.

In most cases the decline is less than 1 percent per year between age 30 and the

mid 60’s. For rowing it is about a half a percent per year. In many cases the age

at which the decline is 50 percent from age 30 is greater than 80. These results

suggest that on physical grounds there is no compelling reason for retirement at

age 65 for healthy and fit individuals. They also suggest that exercise need not be

cut back much as people age, even into the older ages.

The second conclusion is that decline rates are larger for running than for

swimming and rowing. Although less strong, there is evidence that the decline in

rowing is less than the decline in swimming.

As noted in the text, this is the first study that estimates decline rates for men

versus women. The third conclusion is that except for the swimming events there is

more decline for women than for men, with the largest differences for the running

events. This conclusion is, however, tentative because of the soft data problem. If

the data are softer for older women than for older men, there will be in the future

more records broken by women than by men, which in the estimation is likely

to lower the decline rates more for women than for men. Will this be enough

to eliminate the differences? It seems unlikely that the current estimates are this

biased, but time will tell. One of the key events where more time is needed for

both men and women is the marathon.
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